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Abstract. The purpose of this article is to define and study the notion
of absolute intersection motive.
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1. Introduction

Let X be a smooth scheme over the field C of complex numbers. According to
Deligne, singular cohomology Hn(X(C),Q) carries a mixed Hodge structure
of weights > n, for all n ∈ Z. Dually, cohomology with compact support
Hn
c (X(C),Q) is equipped with a mixed Hodge structure of weights 6 n. The

canonical morphism

Hn
c (X(C),Q) −→ Hn(X(C),Q)

is a morphism of Hodge structures. It therefore factors over a morphism

un : GrWn Hn
c (X(C),Q) −→ GrWn Hn(X(C),Q)
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between pure Hodge structures of weight n, where GrWn Hn
c (X(C),Q) de-

notes the quotient of Hn
c (X(C),Q) by its part of weights 6 n − 1, and

GrWn Hn(X(C),Q) denotes the part of Hn(X(C),Q) of weight n. Therefore,
the direct sum

H(un) := ker(un)⊕ im(un)⊕ coker(un)

is again a pure Hodge structure of weight n.

If X is proper, then Hn(X(C),Q) = Hn
c (X(C),Q) is pure, un is an

isomorphism, and H(un) = Hn(X(C),Q). Furthermore, the collection of all
H(un), n ∈ Z is of motivic origin: there is a Chow motive Mgm(X) over C,
the motive of X, whose (cohomological) Hodge theoretic realization equals
(H(un))n∈Z.

The aim of this paper is to provide evidence for the following: when-
ever X is smooth (but not necessarily proper), the collection (H(un))n∈Z is
of motivic origin: there is a Chow motive M !∗(X), the absolute intersection
motive of X, whose Hodge theoretic realization equals (H(un))n∈Z .

The sequence (H(un))n∈Z satisfies the following minimality property:
the morphism un can be represented as the composition of a monomorphism
and an epimorphism

GrWn Hn
c (X(C),Q) ↪−→ H(un) −→→ GrWn Hn(X(C),Q),

and whenever un is factored through a pure polarizable Hodge structure H
of weight n in such a way, then H(un) is a direct factor of H. This property
explains the name of our construction: indeed, for any choice of compactifi-

cation j : X ↪→ X̃ of X, intersection cohomology of X with respect to j, i.e.,

the collection of pure polarizable Hodge structures Hn(X̃(C), j!∗Q) yields
factorizations

GrWn Hn
c (X(C),Q) ↪−→ Hn(X̃(C), j!∗Q) −→→ GrWn Hn(X(C),Q).

Thus, H(un) is a direct factor of Hn(X̃(C), j!∗Q) for all n ∈ Z. While the

cohomologies Hn(X̃(C), j!∗Q) depend on the choice of j—their notion is
therefore a relative one—the H(un) do not.

The definition of the absolute intersection motive M !∗(X) is conditional,
but makes sense for any perfect base field k (Definition 3.5). Indeed, it de-
pends on the existence of a minimal weight filtration of the boundary mo-
tive ∂Mgm(X). This existence would be ensured if as expected, all Chow
motives over k, or at least those necessary to build up ∂Mgm(X), were
finite-dimensional in the sense of Kimura. A priori, given the main result
from [20], this means that M !∗(X) can be defined as soon as ∂Mgm(X) is of
Abelian type.

Section 2 contains the necessary basics from the theory of minimal
weight filtrations. With an eye to the application to the Hodge theoretic
context, we take particular care to formulate results for triangulated cate-
gories, which are not only equipped with a weight structure w à la Bondarko,
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but equally with a t-structure transversal to w. The main result is Theo-
rem 2.9, which gives a characterization of morphisms in the radical in terms
of their effect on cohomology objects.

Section 3 contains the basic definitions, conditional as we said in the
motivic context, but unconditional in the Hodge theoretic one. We thus
get the notion of Hodge theoretic absolute intersection complex of a smooth
C-scheme X (Definition 3.6). Both definitions rely on Construction 3.1, which
establishes a bijection between isomorphism classes of weight filtrations of
some boundary object on the one hand, and isomorphism classes of fac-
torizations on the other.

By definition, the cohomology objects of the Hodge theoretic absolute
intersection complex give absolute intersection cohomology ; its study is the
object of Section 4. In particular (Theorem 4.8), we prove, using the theory
developed in Section 2, that absolute intersection cohomology of X is isomor-
phic to (H(un))n∈Z ; therefore it satisfies the minimality property mentioned
above. In particular (Corollary 4.11), it is a direct factor of intersection co-
homology of X with respect to any choice of compactification.

Section 5 contains a great number of examples. We establish the first
examples of minimal weight filtrations for motives which are not of Abelian
type (Example 5.4, Corollary 5.7). We also see that in general, the absolute
intersection motive of a product is unequal to the tensor product of the
absolute intersection motives of the factors (Remark 5.11).

Section 6 is concerned with the following problem (Question 6.1): can
absolute intersection cohomology be “topologically realized”, i.e., does there
exist a topological space X !∗, stratified into topological manifolds, among
which X(C), such that absolute intersection cohomology of X equals inter-
section cohomology relative to X !∗ ? None of the examples we found sug-
gests the contrary, and we identify X !∗ in many cases. Actually, we find that
sometimes, but not always, the Alexandrov one-point compactification X+

can be chosen as X !∗. Theorem 6.7 gives necessary and sufficient criteria
for the equation “X !∗ = X+” to hold. They basically tell us that whenever
Y is a smooth algebraic compactification of X, with complement Z, then
“X !∗ = X+” if and only if “the complement Z has maximal geometric self-
interaction”. By contrast, “no geometric self-interaction of Z” seems to lead
to the solution “X !∗ = Y (C)”. We finish the article with an example (Exer-
cice 6.9), where X !∗ exists, but is neither equal to X+ nor to Y (C), for any
smooth compactification Y of X.

Notation and conventions

For a perfect field k, we denote by Sch/k the category of separated schemes
of finite type over k, and by Sm/k ⊂ Sch/k the full sub-category of objects
which are smooth over k. As far as motives are concerned, the notation of this
paper is, with a single exception, that of [30] and [31], which in turn follows
that of [28]. We refer to [30, Sect. 1] for a concise review of this notation,
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and of the definition of the triangulated category DMgm(k) of geometrical
motives over k.

The exception to the rule concerns the Tate motives, denoted Z(n) in
[28, 30, 31], for which we shall write 1(n).

Let F be a commutative semi-simple Noetherian Q-algebra, in other
words, a finite direct product of fields of characteristic zero. The notation
DMgm(k)F stands for the F -linear analogue of DMgm(k) defined in [1, Sect.
16.2.4 and Sect. 17.1.3]. Similarly, we denote by CHM(k) the category oppo-
site to the category of Chow motives, and by CHM(k)F the pseudo-Abelian
completion of the category CHM(k)⊗ZF . Using [27, Cor. 2], we canonically
identify CHM(k)F with a full additive sub-category of DMgm(k)F .

When we assume a field k to admit resolution of singularities, then it
will be in the sense of [15, Def. 3.4]: (i) for any separated k-scheme X of finite
type, there exists an abstract blow-up Y → X [15, Def. 3.1] whose source Y
is smooth over k, (ii) for any pair of smooth, separated k-schemes X,Y of
finite type, and any abstract blow-up q : Y → X, there exists a sequence of
blow-ups p : Xn → . . . → X1 = X with smooth centers, such that p factors
through q. We say that k admits strict resolution of singularities if, in (i),
for any given dense open subset U of the smooth locus of X, the blow-up
q : Y → X can be chosen to be an isomorphism above U , and such that
arbitrary intersections of the irreducible components of the complement Z
of U in Y are smooth (e.g., Z ⊂ Y is a normal crossing divisor with smooth
irreducible components).

2. Weight structures and t-structures

We make free use of the terminology of and basic results on weight structures
[6, Sect. 1.3]. Let us fix an F -linear triangulated category C, which is equipped
with a weight structure w = (Cw60, Cw>0). For simplicity, and in order to be
able to apply the results from [7], we assume w to be bounded. The following
notion is the key for everything to follow.

Definition 2.1 ([38, Def. 1.3]). Let M ∈ C, and n ∈ Z. A minimal weight
filtration concentrated at n of M is a weight filtration

M6n−1 −→M −→M>n
δ−→M6n−1[1]

(M6n−1 ∈ Cw6n−1, M>n ∈ Cw>n) such that the morphism δ belongs to the
radical of C:

δ ∈ radC(M>n,M6n−1[1]).

Recall [18] that the radical of an F -linear category A is the ideal radA

which associates to each pair of objects A,B of A the subset

radA(A,B) := {f ∈ HomA(A,B) | ∀ g ∈ HomA(B,A), idA − gf invertible}
of HomA(A,B). It can be checked that radA is indeed a two-sided ideal of A
in the sense of [2, Sect. 1.3], i.e., for each pair of objects A,B, radA(A,B) is
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an F -submodule of HomA(A,B), and for each pair of morphisms h : A′ → A
and k : B → B′ in A,

k radA(A,B)h ⊂ radA(A′, B′).

Any two minimal weight filtrations of the same object M ∈ C are related
by an isomorphism (which in general is not unique) [37, proof of Thm. 2.2 (b)].
Minimal weight filtrations do not necessarily exist [37, Ex. 2.3 (c)].

Remark 2.2. (a) Minimal weight filtrations do exist if the heart

Cw=0 := Cw60 ∩ Cw>0

of w is pseudo-Abelian and semi-primary [37, Thm. 2.2 (a)], i.e. [2, Déf. 2.3.1] if

(1) for all objects M of Cw=0, the radical radCw=0(M,M) is nilpotent,

(2) the F -linear quotient category Cw=0/ radCw=0
is semi-simple.

(b) In practice, given M ∈ C, the existence of minimal weight filtrations
of M is assured once M can be shown to belong to a full, triangulated sub-
category C′ of C, such that w induces a weight structure on C′, and such that
C′w=0 = C′ ∩ Cw=0 is pseudo-Abelian and semi-primary.

Example 2.3. According to [5, Sect. 6], the category C := DMgm(k)F of geo-
metrical motives over k carries a bounded weight structure w, if k is of char-
acteristic zero. This claim still holds for arbitrary perfect fields (remember
that F is supposed to be a Q-algebra), as can be seen from the proof of [31,
Thm. 1.13], using the main results from [19, Sect. 5.5]. We refer to this weight
structure as motivic. It identifies CHM(k)F with the heart DMgm(k)F,w=0 .

The category CHM(k)F is pseudo-Abelian. It is expected, but not known to
be semi-primary. Consider the full sub-category CHMAb(k)F of CHM(k)F
of Chow motives of Abelian type over k, i.e. [34, Def. 1.1 (b)], the sub-category
of Chow motives whose base change to an algebraic closure k̄ of k can be
constructed out of shifts of Tate motives 1(m)[2m], for m ∈ Z, and of
Chow motives of Abelian varieties over k̄. Let C′ denote the full triangu-
lated sub-category DMAb

gm(k)F of DMgm(k)F generated by CHMAb(k)F .
The motivic weight structure induces a weight structure, still denoted w,
on DMAb

gm(k)F [34, Prop. 1.2], and DMAb
gm(k)F,w=0 = CHMAb(k)F . Accord-

ing to [34, Prop. 1.8], the category CHMAb(k)F is (pseudo-Abelian and)
semi-primary. We may thus apply Remark 2.2 (b): any geometrical motive
belonging to DMAb

gm(k)F admits minimal weight filtrations.

In the sequel of this section, we shall assume in addition that C carries a
bounded t-structure t = (Ct60, Ct>0), which is transversal to w [7, Def. 1.2.2].
(Note that in the motivic context discussed in Example 2.3, such a t-structure
is expected, but not known to exist.) Denote by Ct=mw=n , m,n ∈ Z, the full sub-
categories given by the intersections

Ct=mw=n := Cw=n ∩ Ct=m

(where Cw=n:= Cw6n∩Cw>n=Cw=0[n] and Ct=m:= Ct6m ∩ Ct>m=Ct=0[−m]).
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Proposition 2.4 ([7, Thm. 1.2.1, Rem. 1.2.3, Prop. 1.2.4]). Assume C to be
equally equipped with a bounded t-structure, which is transversal to w.

(a) The categories Ct=mw=n , m,n ∈ Z, are Abelian semi-simple, and any object
of Cw=0 is isomorphic to a finite direct sum of objects in Ct=mw=0 , m ∈ Z.

(b) For fixed m ∈ Z, and n1 6= n2, there are no non-zero morphisms between
objects of Ct=mw=n1

and of Ct=mw=n2
.

(c) For fixed m ∈ Z, any object of Ct=m admits weight filtrations by objects
of Ct=m, which are exact sequences in Ct=m.

(d) The t-truncation functors τ t6m, τ t>m, m ∈ Z, respect the sub-categories
Cw>n and Cw6n, n ∈ Z.

Corollary 2.5. Assume C to be equally equipped with a bounded t-structure,
which is transversal to w.

(a) The heart Cw=0 is pseudo-Abelian and semi-primary.

(b) Any object of C admits minimal weight filtrations.

Proof. As recalled in Remark 2.2 (a), part (b) is implied by (a).

The second claim of part (a) follows from Proposition 2.4 (a), and from
[2, proof of Prop. 2.3.4 c)]. It remains to show that Cw=0 is pseudo-Abelian.
Let M = ⊕m∈ZMm be an object of Cw=0, with Mm ∈ Ct=mw=0 , almost all Mm

being zero (Proposition 2.4 (a)). Let e be an idempotent endomorphism of M .
In order to show that e admits a kernel, we apply induction on the number of
non-zero components Mm, the initial case M = Mm resulting from Proposi-
tion 2.4 (a). For the induction step, take m to be minimal such that Mm 6= 0,
and write

M = Mm ⊕N.
Orthogonality for the t-structure tells us that with respect to this direct sum,

e =

(
A B
0 D

)
,

with A ∈ EndCw=0
(Mm), B ∈ HomCw=0

(N,Mm), and D ∈ EndCw=0
(N). The

relation e2 = e is equivalent to the system of relations

A2 = A, D2 = D, AB +BD = B. (∗)

By our induction hypothesis, ker(A) ⊂ Mm and ker(D) ⊂ N exist (and so
do ker(idMm −A) and ker(idN −D)). We leave it as an exercice to the reader
to prove, using (∗), that the morphism(

idker(A) −B
0 idker(D)

)
from ker(A)⊕ ker(D) to M is a kernel of e. �

Although it will not be needed in the sequel of the present article, let
us mention the following.
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Corollary 2.6. Assume C to be equally equipped with a bounded t-structure,
which is transversal to w. Then C is pseudo-Abelian.

Proof. This follows from Corollary 2.5 (a), and from [5, Lemma 5.2.1]. �

Write
Hm : C −→ Ct=0, m ∈ Z,

for the cohomology functors associated to t. The following holds even in the
absence of a weight structure.

Proposition 2.7. Let M and N be objects of C, and α : M → N a morphism.
If Hm(α) = 0 for all m ∈ Z, then α ∈ radC(M,N).

Proof. For any morphism β : N →M , and any m ∈ Z, we have

Hm
(
idM − βα

)
= idHm(M),

meaning that H∗(idM − βα) is an automorphism. Hence so is idM − βα. �

Example 2.8. The converse of Proposition 2.7 is not true in general. Let N
be a simple object of Ct=0

w=0 and M a non-trivial extension in Ct=0

0 −→ N− −→M
α−→ N −→ 0

of N by some object N− of Ct=0 of strictly negative weights. Schur’s Lemma
and Proposition 2.4 (c), (b) imply that

HomC(N,M) = 0.

Therefore, α ∈ radC(M,N), but 0 6= α = H0(α).

It turns out that the converse of Proposition 2.7 is true, once we restrict
the weights of M and N . Here is the main result of this section.

Theorem 2.9. Assume C to be equally equipped with a bounded t-structure,
which is transversal to w. Let n ∈ Z, M ∈ Cw>n, and N ∈ Cw6n. Let
α : M → N be a morphism. Then the following are equivalent.

(1) Hm(α) = 0 for all m ∈ Z.

(2) α ∈ radC(M,N).

Proof. Given Proposition 2.7, we may assume that α belongs to the radical,
and need to establish that it is zero on cohomology.

Let us first treat the case where both M and N are objects of some Ct=r,
and show the following claim (∗): if a morphism γ : M → N is non-zero, then
there is β : N → M such that βγ : M → M is a projector onto a non-zero
direct factor of M .

Indeed, let

0 −→WnM −→M −→Wn+1M −→ 0

and
0 −→Wn−1N −→ N −→WnN −→ 0
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be weight filtrations ofM andN within Ct=r (Proposition 2.4 (c)), withWnM
and WnN in Ct=rw=n , Wn+1M ∈ Cw>n+1, and Wn−1N ∈ Cw6n−1. Write γn
for the composition

WnM ↪−→M
γ−→ N −→→WnN ;

Proposition 2.4 (c), (b) imply that γn 6= 0. According to Proposition 2.4 (a),
there is βn : WnN →WnM such that βnγn is a projector onto a complement
of ker(γn) ⊂WnM . Define β as the composition

N −→→WnN
βn−→WnM ↪−→M.

Now let us come back to α ∈ radC(M,N). In order to show that Hm(α) = 0
for all m ∈ Z, let us apply induction on the sum s of the number of non-zero
cohomology objects of M and of N . The claim is trivial if s 6 1, or if there
is no degree r for which both Hr(M) and Hr(N) are non-zero. In order to
treat the case s = 2, we may thus assume that M,N ∈ Ct=r, for some r ∈ Z.
Claim (∗) then implies that indeed

0 = α = Hr(α).

For the induction step, let r ∈ Z be maximal such that Hr(M) and Hr(N)
are both non-zero. This takes trivially care of Hm(α), for all m > r + 1.

Using t-truncations τ t6 • , τ t> • , we see that the induction hypothesis
can be applied unless M ∈ Ct6r and N ∈ Ct>r. In that case, Hm(α) = 0 for
all m 6= r, and α equals the composition

M −→ Hr(M)[−r] γ−→ Hr(N)[−r] −→ N,

with γ := Hr(α)[−r]. The objectsHr(M)[−r] andHr(N)[−r] belong to Cw>n

and Cw6n, respectively (Proposition 2.4 (d)). If γ were non-zero, then claim (∗)
would show that there is β′ : Hr(N)[−r] → Hr(M)[−r] such that β′γ is a
projector onto a non-trivial direct factor of Hr(M)[−r]. The maps

HomC(N,M) −→ HomC(H
r(N)[−r],M)

and

HomC(H
r(N)[−r],M) −→ HomC(H

r(N)[−r], Hr(M)[−r])
are both surjective, as τ t>r+1(N)[−1] ∈ Cw6n−1 and τ t6r−1(M)[1] ∈ Cw>n+1

by Proposition 2.4 (d). Thus, the morphism β′ can be extended to yield
β : N →M . By construction, the composition βα : M → M is a projector
onto a non-trivial direct factor of M , implying in particular that idM −βα is
not an automorphism of M . But this contradicts the assumption on α. �

Theorem 2.9 has the following important consequences.

Corollary 2.10. Assume C to be equally equipped with a bounded t-structure,
which is transversal to w. Let

M6n−1 −→M −→M>n
δ−→M6n−1[1]
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be a minimal weight filtration concentrated at some n ∈ Z of an object M of
C (according to Corollary 2.5(b), such minimal weight filtrations exist). Then
for all m ∈ Z, the sequence

0 −→ Hm
(
M6n−1

)
−→ Hm(M) −→ Hm

(
M>n

)
−→ 0

is exact, and yields the weight filtration of Hm(M) concentrated at m + n.
In particular, the sequence does not depend on the choice of minimal weight
filtration.

Proof. Apply Theorem 2.9 to δ : M>n → M6n−1[1]. Thus, the long exact
cohomology sequence yields short exact sequences

0 −→ Hm
(
M6n−1

)
−→ Hm(M) −→ Hm

(
M>n

)
−→ 0,

for m ∈ Z. According to Proposition 2.4 (d), Hm(M6n−1)[−m] is indeed of
weights 6 n− 1, and Hm(M>n)[−m], of weights > n. �

Corollary 2.11. Assume C to be equally equipped with a bounded t-structure,
which is transversal to w. Let M,N ∈ Cw=0. Then

radCw=0(M,N) = {α ∈ HomCw=0(M,N) | Hm(α) = 0 for all m ∈ Z}.

Example 2.12. Assume F to be a field contained in R, and C := Db(MHSF ),
the bounded derived category of mixed graded-polarizable F -Hodge structures
[3, Def. 3.9, Lemma 3.11]. According to [7, Prop. 2.3.1 I] (with X = SpecC),
C carries a canonical weight structure w, which is bounded: indeed, the class
of a bounded complex K of mixed graded-polarizable F -Hodge structures lies
in Db(MHSF )w60 (resp., in Db(MHSF )w>0) if and only if the m-th cohomo-
logy object Hm(K) is a Hodge structure of weights 6 m (resp., > m), for all
m ∈ Z. Furthermore, the canonical t-structure on Db(MHSF ) is transver-
sal to w. Therefore, the theory developed in the present section applies.
In particular (Corollary 2.5 (a)), Db(MHMF X)w=0 is pseudo-Abelian and
semi-primary.

Example 2.13. Examples 2.3 and 2.12 are related by the Hodge theoretic
realization ([17, Sect. 2.3 and Corrigendum]; see [14, Sect. 1.5] for a simplifi-
cation of this approach). The field k is assumed to be embedded into C via
σ : k ↪→ C, and F is assumed to be a sub-field of R. Denote by

Rσ : DMgm(k)F −→ Db(MHSF )

the Hodge theoretic realization of [loc. cit.], and recall that it is a contrava-
riant tensor functor mapping the pure Tate motive 1(m) to the pure Hodge
structure Q(−m) [17, Thm. 2.3.3]. Chow motives are mapped to objects of
Db(MHSF ), which are pure of weight zero. Since the motivic weight structure
is bounded, it follows formally that

Rσ
(
DMgm(k)F,w60

)
⊂ Db(MHSF )w>0,

and that

Rσ
(
DMgm(k)F,w>0

)
⊂ Db(MHSF )w60.
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In the setting of Example 2.13, we have the following result.

Theorem 2.14. Consider the restriction

RAbσ : DMAb
gm(k)F −→ Db(MHSF )

of Rσ to DMAb
gm(k)F ⊂ DMgm(k)F .

(a) Let n ∈ Z, M ∈ DMAb
gm(k)

F,w>n
, and N ∈ DMAb

gm(k)
F,w6n

. Then

RAbσ
(
radDMAb

gm(k)F (M,N)
)
⊂ radDb(MHSF )

(
(Rσ(N), Rσ(M)

)
.

(b) The functor RAbσ maps minimal weight filtrations (concentrated at n) to
minimal weight filtrations (concentrated at −n+ 1).

Proof. Part (a) follows from [34, Lemma 1.11] and Proposition 2.7.

Given (a), part (b) follows from the definition (and the contravariance
of RAbσ ). �

Remark 2.15. The importance of the hypothesis “of Abelian type” is twofold.
First, it guarantees the existence of minimal weight filtrations of objects of
DMAb

gm(k)F . Note that this would still be true if we replaced DMAb
gm(k)F by

the full triangulated sub-category of DMgm(k)F generated by Chow motives,
which are finite-dimensional [20, Def. 3.7]. Second, and more seriously, Theo-
rem 2.14 (a) implies that the restriction of Rσ to CHMAb(k)F is radicial [2,
Déf. 1.4.6]. Indeed, this latter statement is the vital ingredient of the proof of
Theorem 2.14 (a); see [34, Thm. 1.9]. But as shown by the proof of [loc. cit.],
that statement is intimately related to the identification of homological and
numerical equivalence, which thanks to [22] is known for motives associated
to Abelian varieties.

3. Definitions

Let us come back to the situation from the beginning of Section 2, i.e., an
F -linear triangulated category C, equipped with a bounded weight structure
w = (Cw60, Cw>0) (but not necessarily with a t-structure). Let us fix a mor-
phism u : M− →M+ in C between M− ∈ Cw60 and M+ ∈ Cw>0.

Construction 3.1. First choose a cone C of u, i.e., an exact triangle

C[−1] −→M−
u−→M+ −→ C

in C. Then choose a weight filtration of C

C60 −→ C −→ C>1
δ−→ C60[1]
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(with C60 ∈ Cw60 and C>1 ∈ Cw>1). Consider the diagram, which we shall
denote by the symbol (1), of exact triangles

0

��

// C>1[−1] C>1[−1]

δ[−1]
��

// 0

��
M− C60

��

// M−[1]

M−

��

u // M+

��

// C

��

// M−[1]

��
0 // C>1 C>1

// 0

which according to axiom TR4’ of triangulated categories [4, Sect. 1.1.6] can
be completed to give a diagram, denoted by (2)

0

��

// C>1[−1]

δ+[−1]
��

C>1[−1]

δ[−1]
��

// 0

��
M−

i // M

π
��

δ−[−1] // C60

��

// M−[1]

M−

��

u // M+

��

// C

��

// M−[1]

��
0 // C>1 C>1

// 0

with M ∈ C. By the second row, and the second column of diagram (2), the
object M is simultaneously an extension of objects of weights 6 0, and an
extension of objects of weights > 0. It follows easily (c.f. [5, Prop. 1.3.3 3])
that M belongs to both Cw60 and Cw>0 , and hence to Cw=0 .

Note that even for a fixed choice of C, diagram (2) necessitates further
choices of M and of factorizations u = πi and δ = δ−δ+. In general, the
object M is unique up to possibly non-unique isomorphism.

Very precisely, we have the following.

Proposition 3.2. The map{(
C60, C>1

)}
/ ∼= −→

{(
M, i, π

)}
/ ∼=

from Construction 3.1 is a bijection between

(1) the isomorphism classes of cones C of u, together with weight filtrations
of C,

(2) the isomorphism classes of objects M of Cw=0 , together with a factor-
ization

M−
i−→M

π−→M+

of the morphism u : M− →M+, such that both i and π can be completed
to give weight filtrations of M− and of M+, respectively.
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Definition 3.3. Assume that a cone C of u : M− →M+ (and hence any cone
of u) admits a minimal weight filtration

C60 −→ C −→ C>1
δ−→ C60[1]

concentrated at n = 1. A minimal factorization of u : M− → M+ is a triple
(M, i, π) consisting of an object M of Cw=0 , together with a factorization

M−
i−→M

π−→M+

of u, whose isomorphism class corresponds to (C60, C>1) under the bijection
of Proposition 3.2.

Thus, given two minimal factorizations

M−
i1−→M1

π1−→M+ and M−
i2−→M2

π2−→M+

of u, there is an isomorphism (which in general is not unique) α : M1
∼−−→M2

such that the diagram

M−
i1 // M1

α
��

π1 // M+

M−
i2 // M2

π2 // M+

commutes.

Remark 3.4. (a) The correspondence from Proposition 3.2 is not a priori
functorial, meaning that a morphism between weight filtrations of C does
not yield a morphism of the corresponding objects M , not even up to auto-
morphism.

(b) Minimality of the weight filtration

C60 −→ C −→ C>1
δ−→ C60[1]

of C does in general not imply minimality of the weight filtrations

C60[−1] −→M−
i−→M

δ−[−1]−→ C60

of M− and

M
π−→M+ −→ C>1

δ+−→M [1]

of M+.

Applying the theory to the examples of Section 2, we get the following.

Definition 3.5. Assume that the field k admits resolution of singularities. Let
X ∈ Sm/k. Assume that the boundary motive ∂Mgm(X) of X [30, Def. 2.1]
admits a minimal weight filtration concentrated at n = 0. A Chow motive
M !∗(X), together with a factorization

Mgm(X)
i−→M !∗(X)

π−→M c
gm(X)

of the canonical morphism u :Mgm(X)→M c
gm(X) [28, pp. 223–224], is called

an absolute intersection motive of X if it is a minimal factorization of u.
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Recall [30, Prop. 2.2, Cor. 2.3] that ∂Mgm(X) fits into a canonical exact
triangle

∂Mgm(X) −→Mgm(X)
u−→M c

gm(X) −→ ∂Mgm(X)[1]

in DMgm(k)F . Therefore, C := ∂Mgm(X)[1] is a cone of u. According to [31,
Cor. 1.14], the motive Mgm(X) belongs to DMgm(k)F,w60 , and the motive

with compact support M c
gm(X) to DMgm(k)F,w>0. Given Example 2.3, the

assumptions of Definition 3.3 are satisfied if the boundary motive ∂Mgm(X)
belongs to the category DMAb

gm(k)F .

Definition 3.6. Assume F to be a field contained in R, and let X ∈ Sm/C.
An object RΓ!∗(X,F (0)) of Db(MHSF )w=0, together with a factorization

RΓc(X,F (0))
i−→ RΓ!∗(X,F (0))

π−→ RΓ(X,F (0))

of the canonical morphism u : RΓc(X,F (0))→ RΓ(X,F (0)), is called a Hodge
theoretic absolute intersection complex of X if it is a minimal factorization
of u.

Here, the objects RΓc(X,F (0)) and RΓ(X,F (0)) of Db(MHSF ) are
the canonical quasi-isomorphism classes computing singular cohomology of
X(C) with and without compact support, respectively, and together with
their Hodge structures [13, Sect. 8.1], [3, Sect. 4]. They satisfy the assump-
tion on weights thanks to [12, Cor. (3.2.15) (ii)], [3, Sect. 4.2]. According to
Example 2.12 and Corollary 2.5, any object of Db(MHSF ) admits minimal
weight filtrations.

Variant 3.7. (a) Assume that the field k admits resolution of singularities.
Let X ∈ Sm/k, and fix an idempotent endomorphism e of the triangle

∂Mgm(X) −→M(X) −→M c
gm(X) −→ ∂Mgm(X)[1],

that is, fix idempotent endomorphisms of each of the motives M(X), M c
gm(X)

and ∂Mgm(X), which yield an endomorphism of the triangle. Denote by
M(X)e, M c

gm(X)e and ∂Mgm(X)e the images of e on M(X), M c
gm(X) and

∂Mgm(X), respectively, and consider the canonical morphism u : M(X)e →
M c
gm(X)e. The object M(X)e belongs to DMgm(k)F,w60 , and M c

gm(X)e to

DMgm(k)F,w>0 . Assuming that ∂Mgm(X)e admits a minimal weight filtra-

tion concentrated at n = 0, Definition 3.3 allows for the definition of the
notion of e-part of the absolute intersection motive of X, which is a triple
(M !∗(X)e, i, π), with M !∗(X)e ∈ CHM(k)F , and a minimal factorizaion

Mgm(X)e
i−→M !∗(X)e

π−→M c
gm(X)e

of u. The hypothesis on ∂Mgm(X)e is satisfied as soon as ∂Mgm(X)e belongs
to DMAb

gm(k)F (which is the case in particular if the whole of ∂Mgm(X) be-

longs to DMAb
gm(k)F ).

(b) Similarly, for F a field contained in R, and X ∈ Sm/C, any pair e of
idempotent endomorphisms of RΓc(X,F (0)) and of RΓ(X,F (0)) commuting
with the canonical morphism RΓc(X,F (0)) → RΓ(X,F (0)) allows one to
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define the notion of e-part of the absolute intersection complex of X, which
is a triple (RΓ!∗(X,F (0))e, i, π), with RΓ!∗(X,F (0))e ∈ Db(MHSF )w=0, and
a minimal factorizaion

RΓc(X,F (0))e
i−→ RΓ!∗(X,F (0))e

π−→ RΓ(X,F (0))e

of u : RΓc(X,F (0))e → RΓ(X,F (0))e.

(c) In a similar vein, there are variants “with coefficients” of the ab-
solute intersection motive and the Hodge theoretic absolute intersection com-
plex. The scheme X need no longer be smooth, and the constant coefficients
F (0) are replaced by a Chow motive N ∈ CHM(X)F [32, Def. 1.5] in the
motivic context, and by a complex of Hodge modules N ∈ Db(MHMF X)
[25, Sect. 4], which is pure of weight zero [25, Sect. 4.5] in the Hodge theo-
retic context. Write a for the structural morphism of X, and consider the
canonical morphism u : a!(N) → a∗(N) ([8, Thm. 2.4.50 (2)], [25, proof of
Thm. 4.3]). The hypotheses on weights are satisfied ([16, Thm. 3.8 (ic), (i′c)],
[25, (4.5.2)]). In the motivic context, one needs to assume in addition that a
cone of u admits a minimal weight filtration concentrated at n = 1, which as
before is the case if it belongs to DMAb

gm(k)F . The result is an isomorphism

class of a Chow motive M !∗(X,N) in the motivic context, and of an object
RΓ!∗(X,N) of Db(MHSF )w=0 in the Hodge theoretic context, together with
a minimal factorization of u.

Note that in the motivic context, following [8, Cor. 16.1.6], we have
identified DMgm(k)F with the triangulated category DMB,c(Spec k)F of
constructible Beilinson motives over Spec k [8, Def. 15.1.1]. Under that iden-
tification, the canonical morphism M(X)→M c

gm(X) equals the dual of the
canonical morphism a!(1X)→ a∗(1X) (see e.g. [36, Prop. 2.8]). This point of
view also allows one to drop the hypothesis on resolution of singularities in
Definition 3.5 and Variant 3.7 (a).

4. Absolute intersection cohomology

The purpose of this section is to identify, up to isomorphism, the Hodge
structure on the cohomology objects of a Hodge theoretic absolute intersec-
tion complex RΓ!∗(X,F (0)) of a smooth, separated scheme X over C. For
n ∈ Z, denote by Hn(X,F (0)) the n-th singular cohomology group, and by
Hn
c (X,F (0)) the n-th cohomology group with compact support of X(C).

Definition 4.1. Assume F to be a field contained in R, and let X ∈ Sm/C.
Absolute intersection cohomology of X is defined as the collection(

Hn
!∗(X,F (0)), i, π

)
n∈Z,



Absolute intersection motive 15

where for n ∈ Z, we denote by Hn
!∗(X,F (0)) the n-th cohomology object of

a Hodge theoretic absolute intersection complex RΓ!∗(X,F (0)) of X (Defini-
tion 3.6), and by

Hn
c (X,F (0))

i−→ Hn
!∗(X,F (0))

π−→ Hn(X,F (0))

the factorization of the canonical morphism Hn
c (X,F (0)) → Hn(X,F (0))

induced by the factorization

RΓc(X,F (0))
i−→ RΓ!∗(X,F (0))

π−→ RΓ(X,F (0)).

The relation of absolute intersection cohomology of X to intersection
cohomology of X with respect to a compactification will be spelled out in
Corollary 4.11.

From Definition 4.1, we deduce the following.

Proposition 4.2. Assume F to be a field contained in R, and let X ∈ Sm/C.

(a) Absolute intersection cohomology of X is equipped with a pure polariz-
able F -Hodge structure. More precisely, Hn

!∗(X,F (0)) is pure (and po-
larizable) of weight n, for all n ∈ Z.

(b) Absolute intersection cohomology of X is well-defined up to isomorphism
of F -Hodge structures.

Remember that for n ∈ Z, the mixed graded-polarizable F -Hodge struc-
tures on Hn

c (X,F (0)) and on Hn(X,F (0)) are of weights 6 n and > n, re-
spectively. Denote by Wr the r-th filtration step of the weight filtration of a
mixed Hodge structure, and by GrWr the quotient of Wr by Wr−1, r ∈ Z.

Corollary 4.3. Assume F to be a field contained in R, let X ∈ Sm/C and
n ∈ Z. Then i : Hn

c (X,F (0))→ Hn
!∗(X,F (0)) factors uniquely over

GrWn Hn
c (X,F (0)) =

Hn
c (X,F (0))

Wn−1Hn
c (X,F (0))

:

i : Hn
c (X,F (0)) −−→→ GrWn Hn

c (X,F (0))
in−→ Hn

!∗(X,F (0)),

and π : Hn
!∗(X,F (0))→ Hn(X,F (0)) factors uniquely over

GrWn Hn(X,F (0)) = WnH
n(X,F (0)) :

π : Hn
!∗(X,F (0))

πn−→ GrWn Hn(X,F (0)) ↪−→ Hn(X,F (0)).

Definition 4.4. Assume F to be a field contained in R, let X ∈ Sm/C and
n ∈ Z. Denote by un the canonical morphism

GrWn Hn
c (X,F (0)) −→ GrWn Hn(X,F (0))

induced by Hn
c (X,F (0))→ Hn(X,F (0)).
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Thus, any choice of absolute intersection cohomology of X yields a fac-
torization

GrWn Hn
c (X,F (0))

in−→ Hn
!∗(X,F (0))

πn−→ GrWn Hn(X,F (0))

of un, for all n ∈ Z. As we shall see, this factorization can be used to charac-
terize absolute intersection cohomology up to isomorphism.

It turns out that the most appropriate context to formulate the result
is purely abstract. Fix a semi-simple Abelian category A.

Definition 4.5. Let v : S → T be a morphism in A. Define

H(v) := ker(v)⊕ im(v)⊕ coker(v).

Monomorphisms and epimorphisms being split in A,

H(v) ∼= S ⊕ coker(v) and H(v) ∼= ker(v)⊕ T,

the isomorphisms being in general non-canonical. In particular, H(v) ∼= S
if v is an epimorphism, and H(v) ∼= T if it is a monomorphism. The inclusion
of im(v) into H(v), or equivalently, the projection from H(v) to im(v) is an
isomorphism if and only if v is an isomorphism.

Proposition 4.6. Let v : S → T be a morphism in A. There exists a factor-
ization

S
iH−→ H(v)

πH−→ T

of v with the following properties:

(1) iH is a monomorphism, and πH is an epimorphism.

(2) The restriction of iH to ker(v) equals the inclusion i1 of the first com-
ponent into H(v) = ker(v) ⊕ im(v) ⊕ coker(v), and the composition
of πH with the quotient map to coker(v) equals the projection π3 from
H(v) = ker(v)⊕ im(v)⊕ coker(v) to the last component. In particular,

π3 ◦ iH = 0: S −→ coker(v) and πH ◦ i1 = 0: ker(v) −→ T.

Proof. Choose a left inverse s of the inclusion of ker(v) into S, and a right
inverse t of the quotient map from T to coker(v). Define

iH := (s, q, 0) : S −→ H(v) = ker(v)⊕ im(v)⊕ coker(v),

where q is the quotient map from S to im(v), and

πH := 0 + ι+ t : H(v) = ker(v)⊕ im(v)⊕ coker(v) −→ T,

where ι is the inclusion of im(v) into T . �

Again, factorizations as in Proposition 4.6 are in general not unique
(they are unique for trivial reasons, if v is an isomorphism). Still, any given
choice satisfies a “versal” property, as we are about to see.
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Theorem 4.7. Let v : S → T be a morphism in A. Fix a factorization

S
iH−→ H(v)

πH−→ T

of v as in Proposition 4.6. Let

S
k−→ H

p−→ T

be any factorization of v, with a monomorphism k and an epimorphism p.
Then there is an object H ′ of A and an isomorphism

H ∼= H(v)⊕H ′

compatible with the factorizations. In other words, denoting by ι the inclusion
of, and by q the quotient map to H(v), the diagrams

S
iH // H(v)

� _
ι ��

πH // T

S
k // H

p // T

and

S
k // H

q ����

p // T

S
iH // H(v)

πH // T

commute.

Proof. Denote by s the composition

S
iH−→ H(v)

π1−→→ ker(v),

where π1 denotes the projection from H(v) to the first component ker(v).
According to property 4.6 (2), the morphism s is a left inverse of the inclusion
of ker(v) into S. Let us show first that there is a left inverse of the inclusion
of ker(p) into H, which is compatible with s in the sense that the diagram

S� _
k ��

s // ker(v)
� _
k��

H // ker(p)

commutes; we shall denote such a left inverse by the same letter s.

Choose a complementH ′ of k(ker(v)) in ker(p). As k−1(ker(p)) = ker(v),
the intersection of im(k) and H ′ is trivial. Therefore,

ker(p) = k(ker(v))⊕H ′ ↪−→ im(k)⊕H ′ ⊂ H.

Choose a complement H ′′ of im(k)⊕H ′ in H, and define

s := (k(s), idH′ , 0) : H = im(k)⊕H ′ ⊕H ′′ −→ ker(p) = k(ker(v))⊕H ′ ⊕ 0.

Then, using s, we have

H(v) = ker(v)⊕ T and H = ker(p)⊕ T,
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T being in both cases identified with ker(s). We define

ι := (k, idT ) : H(v) −→ H

and

q := (k−1 ◦ π′1, idT ) : H −→ H(v),

where π′1 is the left inverse of k : ker(v) ↪→ ker(p) with kernel equal to H ′. �

Let us get back to the geometric situation considered in the beginning
of this section.

Theorem 4.8. Assume F to be a field contained in R, let X ∈ Sm/C and

n ∈ Z. Recall the morphism un : GrWn Hn
c (X,F (0)) → GrWn Hn(X,F (0))

from Definition 4.4. Fix a choice of Hn
!∗(X,F (0)), together with the associated

factorization

GrWn Hn
c (X,F (0))

in−→ Hn
!∗(X,F (0))

πn−→ GrWn Hn(X,F (0))

of un.

(a) The morphism in is injective, and πn is surjective.

(b) In the semi-simple Abelian category of polarizable F -Hodge structures,
which are pure of weight n,

Hn
!∗(X,F (0)) ∼= H(un),

and the isomorphism can be chosen such that in = iH and πn = πH.

Proof. According to Definition 4.1, absolute intersection cohomology is the
collection of cohomology objects of a choice of Hodge theoretic absolute in-
tersection complex RΓ!∗(X,F (0)). This choice induces a factorization

RΓc(X,F (0))
i−→ RΓ!∗(X,F (0))

π−→ RΓ(X,F (0)),

which on the level of cohomology yields the factorization

Hn
c (X,F (0)) −→ Hn

!∗(X,F (0)) −→ Hn(X,F (0)).

According to Definition 3.6, the above objects and morphisms fit into a dia-
gram

0

��

// C>1[−1]

��

C>1[−1]

δ[−1]
��

// 0

��
RΓc(X,F (0))

i // RΓ!∗(X,F (0))

π
��

// C60

��

// RΓc(X,F (0))[1]

RΓc(X,F (0))

��

u // RΓ(X,F (0))

��

// C

��

// RΓc(X,F (0))[1]

��
0 // C>1 C>1

// 0

of exact triangles in Db(MHSF ), where δ : C>1 → C60[1] belongs to the
radical.
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On the level of cohomology, the above induces a diagram of exact se-
quences, the part of interest of which looks as follows:

Hn−2(C>1)

Hn−2(δ)��

// 0

��

// Hn−1(C>1)

��

Hn−1(C>1)

Hn−1(δ)��
Hn−1(C60)

��

// Hn
c (X,F (0))

i // Hn
!∗(X,F (0))

π
��

// Hn(C60)

��
Hn−1(C)

��

// Hn
c (X,F (0))

��

// Hn(X,F (0))

��

// Hn(C)

��
Hn−1(C>1) // 0 // Hn(C>1) Hn(C>1)

According to Corollary 2.10, the first and last columns equal the weight
filtrations of Hn−1(C) and Hn(C), concentrated at n and n+1, respectively:

Hn−1(C)
Wn−1Hn−1(C)

��
Wn−1H

n−1(C)

��

// Hn
c (X,F (0))

i // Hn
!∗(X,F (0))

π
��

// WnH
n(C)

��
Hn−1(C) // Hn

c (X,F (0)) // Hn(X,F (0))

��

// Hn(C)

��
Hn(C)

WnHn(C)
Hn(C)

WnHn(C)

Applying GrWn , the sequences remain exact, yielding

GrWn Hn−1(C)

��
0

��

// GrWn Hn
c (X,F (0))

in // Hn
!∗(X,F (0))

πn��
GrWn Hn−1(C) // GrWn Hn

c (X,F (0))
un // GrWn Hn(X,F (0))

��
0

This diagram shows that in is injective, and that πn is surjective, proving
part (a) of our claim.

The last column also shows that ker(πn) is the image of GrWn Hn−1(C)

in Hn
!∗(X,F (0)). The morphism GrWn Hn−1(C) → Hn

!∗(X,F (0)) factors over

GrWn Hn
c (X,F (0)). The image of GrWn Hn−1(C)→ GrWn Hn

c (X,F (0)) equals
ker(un), according to the second line. The morphism in being injective, we
get a canonical short exact sequence

0 −→ ker(un) −→ Hn
!∗(X,F (0))

πn−→ GrWn Hn(X,F (0)) −→ 0,
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which is (in general non-canonically) split. This shows that

Hn
!∗(X,F (0)) ∼= ker(un)⊕GrWn Hn(X,F (0)),

which in turn is isomorphic to H(un). Applying Theorem 4.7 to

GrWn Hn
c (X,F (0))

in−→ Hn
!∗(X,F (0))

πn−→ GrWn Hn(X,F (0))

(using part (a)), we see that the isomorphism Hn
!∗(X,F (0)) ∼−−→ H(un) can

be chosen in a way compatible with the factorizations. �

Recall that for X ∈ Sm/C and n ∈ Z, interior cohomology Hn
! (X,F (0))

is defined as the image of the canonical morphismHn
c (X,F (0))→Hn(X,F (0)).

Given that Hn
c (X,F (0)) and Hn(X,F (0)) are of weights 6 n and > n, re-

spectively,

Hn
! (X,F (0)) = im(un),

where un : GrWn Hn
c (X,F (0))→ GrWn Hn(X,F (0)) is as before.

Corollary 4.9. Assume F to be a field contained in R, let X ∈ Sm/C and
n ∈ Z. Then interior cohomology Hn

! (X,F (0)) is a direct factor of any choice
of absolute intersection cohomology Hn

!∗(X,F (0)). The two are canonically

isomorphic if and only if un : GrWn Hn
c (X,F (0)) → GrWn Hn(X,F (0)) is an

isomorphism.

Proof. On the one hand, Hn
! (X,F (0)) = im(un). On the other hand, H(un)

contains im(un) as a direct factor, with complement ker(un)⊕coker(un). Now
apply Theorem 4.8 (b). �

Note that a sufficient condition for un to be an isomorphism is that
boundary cohomology ∂Hr(X,F (0)) avoids weight n in degrees r = n − 1
and r = n.

Remark 4.10. It happens rarely that ∂Hr(X,F (0)) avoids weights r and r+1
in all degrees r. Note however that all constructions and results concerning
Hodge structures on cohomology established in this section admit obvious
analogues in the context considered in Variant 3.7 (b), i.e., in the presence
of an idempotent endomorphism e, and that there exist non-trivial examples
[33, 34, 9, 29] where ∂Hr(X,F (0))e does avoid weights r and r + 1 in all
degrees.

Corollary 4.11. Assume F to be a field contained in R, let X ∈ Sm/C and

j : X ↪→ X̃ any compactification of X. Then absolute intersection cohomology
Hn

!∗(X,F (0)) is a direct factor of intersection cohomology of X with respect

to j, i.e., of Hn(X̃, j!∗ F (0)), for all n ∈ Z.

A word of explanation is in order. Since X is smooth, the variation of
Hodge structure F (0) on X can be seen as a Hodge module, up to a shift
by −dimX :

F (0) = (F (0)[dimX ])[−dimX ],
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see [25, Thm. 3.27]. By slight abuse of notation, we define

j!∗ F (0) := (j!∗ F (0)[dimX ])[−dimX ]

[25, Sect. 4.5]; this definition, together with the formalism of six operations on
the bounded derived category of Hodge modules, in particular [25, Thm. 4.3],

yields the Hodge structure on Hn(X̃, j!∗ F (0)).

Proof of Corollary 4.11. The morphism un factors canonically through the

pure polarizable Hodge structure on Hn(X̃, j!∗ F (0)):

GrWn Hn
c (X,F (0))

k−→ Hn(X̃, j!∗ F (0))
p−→ GrWn Hn(X,F (0)) .

Denote by i the closed immersion of the complement of X into X̃, and by ã

the structural morphism of X̃. The exact localization triangle [25, (4.4.1)]

j!∗ F (0) −→ j∗F (0) −→ i∗i
! j!∗ F (0)[1] −→ j!∗ F (0)[1]

is a weight filtration concentrated at 1 of j∗F (0) [25, (4.5.9), (4.5.2)]. The
morphism ã being proper, the direct image ã∗ preserves weights [25, (4.5.2)].
Therefore,

ã∗ j!∗ F (0) −→ ã∗j∗F (0) −→ ã∗i∗i
! j!∗ F (0)[1] −→ ã∗ j!∗ F (0)[1]

is a weight filtration concentrated at 1 of ã∗j∗F (0).

It follows that the morphism p : Hn(X̃, j!∗ F (0)) → GrWn Hn(X,F (0))
is surjective for all integers n. Dually, the morphism k is injective. Now apply
Theorems 4.8 (b) and 4.7. �

Remark 4.12. Both complexes RΓ!∗(X,F (0)) and RΓ(X̃, j!∗ F (0)) being pure
of weight zero, they are (in general, non-canonically) isomorphic to the di-
rect sum of their n-th cohomology objects, shifted by n. According to Corol-
lary 4.11, the complex RΓ!∗(X,F (0)) is therefore isomorphic to a direct factor

of RΓ(X̃, j!∗ F (0)). We do not know whether the isomorphism can be chosen
in a way compatible with the factorizations of

RΓc(X,F (0)) −→ RΓ(X,F (0))

through RΓ!∗(X,F (0)) and through RΓ(X̃, j!∗ F (0)) (see Remark 3.4 (a)).

Corollary 4.13. Assume F to be a field contained in R, let X ∈ Sm/C and

X̃ any smooth compactification of X. Then absolute intersection cohomology

Hn
!∗(X,F (0)) is a direct factor of Hn(X̃, F (0)), for all n ∈ Z.

5. Examples

Let us begin by recalling a special case of a result of Voevodsky.

Theorem 5.1. Let r and s be two integers. Then

HomDMgm(k)F

(
1(r)[2r],1(s)[2s]

)
= 0 if r 6= s.
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Proof. This is a special case of [27, Cor. 2] ([28, Prop. 4.2.9] if k admits reso-
lution of singularities). �

In the sequel, we assume that the base field k admits resolution of singu-
larities. For X ∈ Sm/k, repeat Construction 3.1 for the canonical morphism
u : Mgm(X)→M c

gm(X) and (the shift by +1 of) a weight filtration

∂M6−1 −→ ∂Mgm(X) −→ ∂M>0
d−→ ∂M6−1[1]

of ∂Mgm(X) (with ∂M6−1 ∈ Cw6−1 and ∂M>0 ∈ Cw>0):

0

��

// ∂M>0

d+ ��

∂M>0

d��

// 0

��
Mgm(X)

i // M

π
��

d− // ∂M6−1[1]

��

// Mgm(X)[1]

Mgm(X)

��

u // M c
gm(X)

��

// ∂Mgm(X)[1]

��

// Mgm(X)[1]

��
0 // ∂M>0[1] ∂M>0[1] // 0

The motive M is pure of weight zero, i.e., it is a Chow motive,

Mgm(X)
i−→M

π−→M c
gm(X)

is a factorization of u, and

∂M6−1 −→Mgm(X)
i−→M

d−−→ ∂M6−1[1]

and

M
π−→M c

gm(X) −→ ∂M>0[1]
d+[1]−→ M [1]

are weight filtrations of Mgm(X) and of M c
gm(X), respectively. Proposi-

tion 3.2 tells us that, up to isomorphism, the process is reversible: a triple
(M, i, π) leads to a weight filtration (∂M6−1, ∂M>0) of ∂Mgm(X).

According to Definition 3.5, the triple (M, i, π) is an absolute intersec-
tion motive of X (in which case we write M = M !∗(X)) if and only if it is a
minimal factorization of u, i.e., if and only if the morphism

∂M>0
d−→ ∂M6−1[1]

belongs to the radical radDMgm(k)F
(∂M>0, ∂M6−1[1]).

Example 5.2. Put X = A1
k. The morphism u : Mgm(A1

k)→M c
gm(A1

k) factors

canonically through the Chow motive Mgm(P1
k):

u : Mgm(A1
k)

j∗−→Mgm(P1
k) = M c

gm(P1
k)

j∗−→M c
gm(A1

k),

where j∗ and j∗ denote the morphisms induced by the open immersion j of
A1
k into P1

k. We claim that (Mgm(P1
k), j∗, j

∗) is a minimal factorization of u.



Absolute intersection motive 23

Indeed, both j∗ and j∗ can be completed to give weight filtrations of
Mgm(A1

k) and of M c
gm(A1

k), respectively: the inclusion of the point at infinity

of Mgm(P1
k) yields exact (purity and localization) triangles

1(1)[1] −→Mgm(A1
k)

j∗−→Mgm(P1
k)

d−−→ 1(1)[2]

[28, Prop. 3.5.4] and

Mgm(P1
k)

j∗−→M c
gm(A1

k) −→ 1(0)[1]
d+[1]−→ Mgm(P1

k)[1]

[28, Prop. 4.1.5]. We thus get a diagram of exact triangles

0

��

// 1(0)

d+ ��

1(0)

d��

// 0

��
Mgm(A1

k)
j∗ // Mgm(P1

k)

j∗ ��

d− // 1(1)[2]

��

// Mgm(A1
k)[1]

Mgm(A1
k)

��

u // M c
gm(A1

k)

��

// ∂Mgm(A1
k)[1]

��

// Mgm(A1
k)[1]

��
0 // 1(0)[1] 1(0)[1] // 0

The morphism d : 1(0) → 1(1)[2] is zero according to Theorem 5.1. A for-
tiori, it belongs to radDMgm(k)F

(1(0),1(1)[2]). Therefore, (Mgm(P1
k), j∗, j

∗)
is minimal; in particular,

M !∗(A1
k) = Mgm(P1

k).

The third column of the above diagram also shows that

∂Mgm(A1
k) ∼= 1(1)[1]⊕ 1(0).

Exercice 5.3. More generally, if X is the complement of a zero-dimensional
sub-scheme Z in a smooth, proper k-scheme Y , of pure dimension n > 1,
then

M !∗(X) = Mgm(Y )

and

∂Mgm(X) ∼= Mgm(Z)(n)[2n− 1]⊕Mgm(Z).

Example 5.4. To generalize further, assume that X is the complement of
a smooth closed sub-scheme Z in a smooth, proper k-scheme Y , and that
the immersion of Z into Y is of pure codimension c. Again, we have weight
filtrations of Mgm(X) and of M c

gm(X), respectively, coming from purity and
localization:

Mgm(Z)(c)[2c− 1] −→Mgm(X)
j∗−→Mgm(Y )

d−−→Mgm(Z)(c)[2c]

[28, Prop. 3.5.4] and

Mgm(Y )
j∗−→M c

gm(X) −→Mgm(Z)[1]
d+[1]−→ Mgm(Y )[1]
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[28, Prop. 4.1.5]. We get

0

��

// Mgm(Z)

d+ ��

Mgm(Z)

d��

// 0

��
Mgm(X)

j∗ // Mgm(Y )

j∗
��

d− // Mgm(Z)(c)[2c]

��

// Mgm(X)[1]

Mgm(X)

��

u // M c
gm(X)

��

// ∂Mgm(X)[1]

��

// Mgm(X)[1]

��
0 // Mgm(Z)[1] Mgm(Z)[1] // 0

The (shift by −1 of the) third column is clearly a weight filtration of the
boundary motive ∂Mgm(X); the question is to determine whether it is min-
imal, i.e., whether the morphism

Mgm(Z)
d−→Mgm(Z)(c)[2c]

belongs to the radical radDMgm(k)F
(Mgm(Z),Mgm(Z)(c)[2c]). Observe that

according to [28, Thm. 4.3.7 3., Prop. 4.2.9],

HomDMgm(k)F

(
Mgm(Z),Mgm(Z)(c)[2c]

)
= CHdimX (Z ×k Z)F .

(a) Assume that the dimension of Z is strictly smaller than c. Then

CHdimX (Z ×k Z)F = 0.

Therefore, the morphism d is zero, (Mgm(Y ), j∗, j
∗) is minimal,

M !∗(X) = Mgm(Y ),

and

∂Mgm(X) ∼= Mgm(Z)(c)[2c− 1]⊕Mgm(Z).

These four statements remain true, up to replacing Mgm(Z)(c)[2c − 1] by
Mgm(Z)∗(dimX)[2 dimX −1], if the smoothness assumption on Z is dropped.
(Hint: use induction on the dimension of T ∈ Sch/k to show that, for all
non-negative integers j,

HomDMgm(k)F
(Mgm(T ),1(r)[2r − j]) = 0 if r > dimT +j.

For the induction step, use [28, Prop. 4.1.3]. Apply this to T = Z×k Z, j = 0
and r = dimX .)

(b) By contrast, without the condition on the codimension from (a), the
morphism

Mgm(Z)
d−→Mgm(Z)(c)[2c],

which corresponds to a class in the Chow group

CHdimX (Z ×k Z)F ,

can a priori be non-zero. Actually, it does happen that d does not belong to
the radical, meaning that (Mgm(Y ), j∗, j

∗) is not minimal. This is the case
for X = Ank and Y = Pnk , n > 2; we refer to Example 5.10 below.
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(c) Consider the identification

HomDMgm(k)F

(
Mgm(Z),Mgm(Z)(c)[2c]

)
= CHdimX (Z ×k Z)F .

According to [11, Cor. 2.33], the morphism d : Mgm(Z) → Mgm(Z)(c)[2c]
corresponds to the Lefschetz operator Li∗[Z] associated to the “self intersec-
tion” i∗[Z], defined as the image under

∆Z,∗ : CHc(Z)F −→ CHdimX (Z ×k Z)F

of i∗[Z], where [Z] denotes the class of the cycle Z in CHc(Y )F , and i∗ the
pull-back from CHc(Y )F to CHc(Z)F .

Alternatively, given the definition of composition of cycles, we see that
d corresponds to the image of the class

[∆Z ] ∈ CHdimX (Z ×k Y )F

of the diagonal ∆Z ⊂ Z ×k Z ⊂ Z ×k Y under the pull-back

CHdimX (Z ×k Y )F −→ CHdimX (Z ×k Z)F ,

which by [21, Lemma 1.1 (i)]) equals Li∗[Z].

(d) Assume that c = 1, i.e., that Z is a smooth divisor. The morphism

Mgm(Z)
d−→Mgm(Z)(1)[2]

corresponds to
Li∗[Z] ∈ CHdimX (Z ×k Z)F .

Assume that i∗[Z] or its opposite is ample. Assume also that Mgm(Z) satisfies
the following weak form of the Lefschetz decomposition for Li∗[Z]: there exist
two decompositions

Mgm(Z) = P1 ⊕Mgm(Z)s1 and Mgm(Z) = P2 ⊕Mgm(Z)s2,

such that Li∗[Z] equals zero on P1, maps the sub-motive Mgm(Z)s1 of Mgm(Z)
to the sub-motive Mgm(Z)s2(1)[2] of Mgm(Z)(1)[2], and induces an isomor-
phism Mgm(Z)s1

∼−−→Mgm(Z)s2(1)[2].

This means that the zero morphism P1 → P2(1)[2] and d have isomor-
phic cones. Thus,

P2(1)[1] −→ ∂Mgm(X) −→ P1
0−→ P2(1)[2]

is a minimal weight filtration of ∂Mgm(X). The absolute intersection motive
M !∗(X) can be constructed out of Mgm(Y ) as follows. Start with the diagram

0

��

// Mgm(Z)

d+ ��

Mgm(Z)

d��

// 0

��
Mgm(X)

j∗ // Mgm(Y )

j∗
��

d− // Mgm(Z)(1)[2]

��

// Mgm(X)[1]

Mgm(X)

��

u // M c
gm(X)

��

// ∂Mgm(X)[1]

��

// Mgm(X)[1]

��
0 // Mgm(Z)[1] Mgm(Z)[1] // 0
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The motives Mgm(Z)s1 and Mgm(Z)s2(1)[2] are direct factors of Mgm(Z) and
Mgm(Z)(1)[2], respectively, and the morphism d = d− ◦ d+ induces an iso-
morphism between them. Therefore, the kernel M ′gm(Y ) of the composition

Mgm(Y )
d−−→Mgm(Z)(1)[2] −→→Mgm(Z)s2(1)[2]

(exists and) is a direct factor of Mgm(Y ), with complement equal to the image
of the composition

Mgm(Z)s1 ↪−→Mgm(Z)
d+−→Mgm(Y ).

By definition, the morphisms j∗ and j∗ factor through M ′gm(Y ). We thus get
the following direct factor of the above diagram:

0

��

// P1

��

P1

0��

// 0

��
Mgm(X)

j∗ // M ′gm(Y )

j∗
��

// P2(1)[2]

��

// Mgm(X)[1]

Mgm(X)

��

u // M c
gm(X)

��

// ∂Mgm(X)[1]

��

// Mgm(X)[1]

��
0 // P1[1] P1[1] // 0

The zero morphism belonging to the radical, we see that (M ′gm(Y ), j∗, j
∗) is

an absolute intersection motive of X. In particular,

M !∗(X) = M ′gm(Y ).

Remark 5.5. (a) Recall the classical notion of Lefschetz decomposition for LD
associated to an ample divisor D on a smooth, proper k-scheme Z of pure
dimension r: there is a decomposition

Mgm(Z) =

2r⊕
i=0

[ i2 ]⊕
m=max(0,i−r)

LmP i−2m

into Chow motives LmP i−2m, such that

(1) for all 0 6 m 6 r − i − 1, the morphism LD induces an isomor-
phism between the sub-motive LmP i of Mgm(Z) and the sub-motive
Lm+1P i(1)[2] of Mgm(Z)(1)[2],

(2) for all i 6 r, the morphism LD is zero on Lr−iP i.

Such decompositions exist if Z is an Abelian variety [21, Thm. 5.1].

Putting

P1 :=

r⊕
i=0

Lr−iP i and P2 :=

r⊕
i=0

P i

(and Mgm(Z)s1, Mgm(Z)s2 equal to the sums of the respective remaining direct
factors in the Lefschetz decomposition), we get

Mgm(Z) = P1 ⊕Mgm(Z)s1 and Mgm(Z) = P2 ⊕Mgm(Z)s2,
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such that LD equals zero on P1, and induces an isomorphism

Mgm(Z)s1
∼−−→Mgm(Z)s2(1)[2].

(b) We leave it to the reader to formulate a generalization of Exam-
ple 5.4 (d) for smooth sub-schemes i : Z ↪→ Y of pure codimension c, such
that i∗[Z] is the c-fold self intersection of the class of an ample divisor on Z.

Let us come back to the situation considered in Example 5.4.

Theorem 5.6. Let Z be a smooth, geometrically connected closed sub-scheme
of pure dimension c > 1 of a smooth, proper k-scheme Y of pure dimen-
sion 2c. Denote by i the closed immersion of Z, and by j the open immersion
of its complement X into Y . Consider the morphism

Mgm(Z)
d−→Mgm(Z)(c)[2c]

corresponding to

Li∗[Z] ∈ CH2c(Z ×k Z)F = CH0(Z ×k Z)F .

(a) The morphism d belongs to radDMgm(k)F
(Mgm(Z),Mgm(Z)(c)[2c]) if

and only if the self intersection number Z · Z of Z in Y equals zero.

(b) If Z · Z 6= 0, then there exist unique decompositions

Mgm(Z) = Mr
1 ⊕Ms

1 , Mgm(Z)(c)[2c] = Mr
2 ⊕Ms

2 ,

such that
(1) the decompositions are respected by d:

d = dr ⊕ ds ∈ HomDMgm(k)F

(
Mgm(Z),Mgm(Z)(c)[2c]

)
,

(2) the morphism dr belongs to radDMgm(k)F
(Mr

1 ,M
r
2 ),

(3) and the morphism ds is an isomorphism Ms
1
∼−−→Ms

2 .

Furthermore, the motives Ms
1 and Ms

2 are canonically isomorphic to 1(c)[2c],
and under these isomorphisms,

(4) the composition 1(c)[2c] ∼−−→Ms
1 ↪→Mgm(Z) corresponds to the inclu-

sion into Mgm(Z) of the canonical sub-motive M2c
gm(Z) [26, Sect. 1.13],

(5) the composition Mgm(Z)(c)[2c] −−→→ Ms
2

∼−−→ 1(c)[2c] corresponds to
the twist by c of the shift by 2c of the projection from Mgm(Z) onto the
canonical quotient M0

gm(Z) [26, Sect. 1.11],

(6) and the morphism ds corresponds to multiplication by Z · Z.

Proof. We have

HomDMgm(k)F

(
Mgm(Z)(c)[2c],Mgm(Z)

)
= CH0(Z ×k Z)F

[28, Thm. 4.3.7 3., Prop. 4.2.9]. The group CH0(Z ×k Z) is generated by the
class of Z ×k Z. According to [21, Lemma 1.1 (i)], the composition

e′ := Li∗[Z] ◦ [Z ×k Z]
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equals Z · Z times an idempotent non-zero endomorphism of Mgm(Z). As
cycles classes on Z ×k Z, both Li∗[Z] and [Z ×k Z] are symmetric; therefore,
the composition [Z ×k Z] ◦ Li∗[Z] equals te′, which is again Z · Z times an
idempotent non-zero endomorphism. Thus, if Z · Z 6= 0, then

idMgm(Z) −
1

Z · Z
[Z ×k Z] ◦ Li∗[Z]

is not an automorphism, meaning that Li∗[Z] is not in the radical. If Z ·Z = 0,
then [Z ×k Z] ◦ Li∗[Z] = 0, i.e.,

idMgm(Z) − g ◦ Li∗[Z] = idMgm(Z)

for any morphism g ∈ HomDMgm(k)F
(Mgm(Z)(c)[2c],Mgm(Z)).

This shows part (a) of our claim. As for part (b), assume that Z ·Z 6= 0.
Put f := 1

Z·Z [Z ×k Z] ∈ CH0(Z ×k Z)F . As the reader will verify, both

e := f ◦ d ∈ EndDMgm(k)F

(
Mgm(Z)

)
and

g := d ◦ f ∈ EndDMgm(k)F

(
Mgm(Z)(c)[2c]

)
are idempotent; more precisely, the image Ms

1 of e equals M2c
gm(Z), and the

image Ms
2 of f projects isomorphically onto M0

gm(Z)(c)[2c]. Put

Mr
1 := ker(e) and Mr

2 := ker(f).

Properties (1) to (6) then follow from our construction, and from the fact that
any morphism in HomDMgm(k)F

(Mgm(Z)(c)[2c],Mgm(Z)) is a scalar multiple
of f ; hence

HomDMgm(k)F

(
Mr

2 ,M
r
1

)
= 0.

The same argument shows the unicity of the decompositions. �

Corollary 5.7. In the situation of Theorem 5.6, assume that Z ·Z = 0. Then
(Mgm(Y ), j∗, j

∗) is an absolute intersection motive of X. In particular,

M !∗(X) = Mgm(Y ).

Remark 5.8. The above setting provides examples for non-zero morphisms
in the radical. Namely, if i∗[Z] is of degree zero, without being rationally
equivalent to zero, then 0 6= d : Mgm(Z) → Mgm(Z)(c)[2c] belongs to the
radical. In this case,

∂Mgm(X) 6∼= Mgm(Z)(c)[2c− 1]⊕Mgm(Z).

Corollary 5.9. In the situation of Theorem 5.6, assume that Z · Z 6= 0.

(a) There is a canonical direct factor M ′gm(Y ) of Mgm(Y ), admitting a
canonical complement, which is isomorphic to 1(c)[2c].

(b) The morphism j∗ : Mgm(X)→Mgm(Y ) factors through the sub-motive
M ′gm(Y ), and the morphism j∗ : Mgm(Y ) → M c

gm(X) factors through
the quotient M ′gm(Y ).
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(c) The triplet (M ′gm(Y ), j∗, j
∗) is an absolute intersection motive of X. In

particular,

Mgm(Y ) ∼= 1(c)[2c]⊕M !∗(X).

Proof. Recall the diagram

0

��

// Mgm(Z)

d+ ��

Mgm(Z)

d��

// 0

��
Mgm(X)

j∗ // Mgm(Y )

j∗
��

d− // Mgm(Z)(c)[2c]

��

// Mgm(X)[1]

Mgm(X)

��

u // M c
gm(X)

��

// ∂Mgm(X)[1]

��

// Mgm(X)[1]

��
0 // Mgm(Z)[1] Mgm(Z)[1] // 0

According to Theorem 5.6 (b), the motive 1(c)[2c] can be identified with di-
rect factors of bothMgm(Z) andMgm(Z)(c)[2c], and the morphism d=d−◦d+
induces an isomorphism between them. Therefore, the kernel M ′gm(Y ) of the
composition

Mgm(Y )
d−−→Mgm(Z)(c)[2c] −→→ 1(c)[2c]

(exists and) is a direct factor of Mgm(Y ), with complement equal to the image
of the composition

1(c)[2c] ↪−→Mgm(Z)
d+−→Mgm(Y ).

By definition, the morphisms j∗ and j∗ factor through M ′gm(Y ). With the
notation of Theorem 5.6 (b), we thus get the following direct factor of the
above diagram:

0

��

// Mr
1

��

Mr
1

dr��

// 0

��
Mgm(X)

j∗ // M ′gm(Y )

j∗
��

// Mr
2

��

// Mgm(X)[1]

Mgm(X)

��

u // M c
gm(X)

��

// ∂Mgm(X)[1]

��

// Mgm(X)[1]

��
0 // Mr

1 [1] Mr
1 [1] // 0

But according to Theorem 5.6 (b) (2),

dr ∈ radDMgm(k)F
(Mr

1 ,M
r
2 ) .

�

Example 5.10. Let n > 1, and put X = Ank . We have Mgm(Ank ) = 1(0) and
M c
gm(Ank ) = 1(n)[2n] [28, Cor. 4.1.8]. In particular, the exact triangle

M c
gm(Ank )[−1] −→ ∂Mgm(Ank ) −→Mgm(Ank )

u−→M c
gm(Ank )
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is a weight filtration of ∂Mgm(Ank ). By Theorem 5.1, the morphism u is zero;
therefore, the above weight filtration is minimal. Construction 3.1 ensures the
existence of a Chow motive M , and of morphisms i, π, d+ and d− such that

0

��

// Mgm(Ank )

d+
��

Mgm(Ank )

0��

// 0

��
Mgm(Ank )

i // M

π
��

d− // M c
gm(Ank )

��

// Mgm(Ank )[1]

Mgm(Ank )

��

0 // M c
gm(Ank )

��

// ∂Mgm(Ank )[1]

��

// Mgm(Ank )[1]

��
0 // Mgm(Ank )[1] Mgm(Ank )[1] // 0

is a diagram of exact sequences. Observe that both morphisms M c
gm(Ank )→

Mgm(Ank )[1] in the second row and in the second column are zero since their
source is of weight zero, and their target, of weight one. Thus, we see that
M := Mgm(Ank )⊕M c

gm(Ank ), i := d+ := the inclusion of the first direct factor,
and π := d− := the projection to the second direct factor, is a solution.
Therefore, (Mgm(Ank )⊕M c

gm(Ank ), i, π) is minimal. In particular,

M !∗(Ank ) = Mgm(Ank )⊕M c
gm(Ank ) = 1(0)⊕ 1(n)[2n];

we may think of this as the “motive of the 2n-sphere”Mgm(S2n). The minimal
weight filtration of ∂Mgm(Ank ) shows that

∂Mgm(Ank ) ∼= M c
gm(Ank )[−1]⊕Mgm(Ank ) = 1(n)[2n− 1]⊕ 1(0).

Remark 5.11. Example 5.10 shows in particular that, in general, the absolute
intersection motive of a product is unequal to the tensor product of the
absolute intersection motives of the factors.

Example 5.12. Let X∗ be a proper surface over k, which we assume to be
normal. The singular locus X∗sing of X∗ is of dimension zero; denote by X
its complement. We claim that the absolute intersection motive of X (exists
and) is isomorphic to the intersection motive of X∗ [10, 35].

Choose a cartesian diagram

X
� � j // Y oo

i ? _

π
��

Z

π
��

X �
� // X∗ oo ? _X∗sing

where π is proper and birational, Y is smooth (and proper), and Z is a divisor
with normal crossings, whose irreducible components Zm are smooth (this is
possible according to [24, Theorem] and the discussion in [23, pp. 191–194]).

As before, localization gives a weight filtration of M c
gm(X):

Mgm(Y )
j∗−→M c

gm(X) −→Mgm(Z)[1]
d+[1]−−−→Mgm(Y )[1].
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Dualizing it, twisting by 2 and shifting by 4, we get a weight filtration of
Mgm(X), according to [28, Thm. 4.3.7 3.]:

Mgm(Z)∗(2)[3] −→Mgm(X)
j∗−→Mgm(Y )

d−−→Mgm(Z)∗(2)[4].

We get

0

��

// Mgm(Z)

d+ ��

Mgm(Z)

d��

// 0

��
Mgm(X)

j∗ // Mgm(Y )

j∗
��

d− // Mgm(Z)∗(2)[4]

��

// Mgm(X)[1]

Mgm(X)

��

u // M c
gm(X)

��

// ∂Mgm(X)[1]

��

// Mgm(X)[1]

��
0 // Mgm(Z)[1] Mgm(Z)[1] // 0

There is a canonical morphism

ι∗ :
⊕
m

M2
gm(Zm) ↪−→

⊕
m

Mgm(Zm) −→Mgm(Z)

[26, Sect. 1.13]. According to [35, Thm. 2.2 (i)] (see also [10, Sect. 2.5]), the
composition⊕
m

M2
gm(Zm)

ι∗−→Mgm(Z)
d−→Mgm(Z)∗(2)[4]

(ι∗)
∗(2)[4]−−−−−−→

⊕
m

M2
gm(Zm)∗(2)[4]

is an isomorphism. Therefore, the kernel of the composition

Mgm(Y )
d−−−→Mgm(Z)∗(2)[4]

(ι∗)
∗(2)[4]−−−−−−→

⊕
m

M2
gm(Zm)∗(2)[4]

(exists and) is a direct factor of Mgm(Y ), with complement equal to the image
of the composition⊕

m

M2
gm(Zm)

ι∗−→Mgm(Z)
d+−→Mgm(Y ).

But by definition [35, Def. 2.3, Ex. 5.2], that kernel equals M !∗(X∗), the in-
tersection motive of M∗. The morphisms j∗ and j∗ factor through M !∗(X∗).
Denoting by M61

gm(Z) the complement of
⊕

mM
2
gm(Zm) in Mgm(Z) (see [35,

Lemma 5.4]), we thus get the following direct factor of the above diagram:

0

��

// M61
gm(Z)

��

M61
gm(Z)

d61

��

// 0

��
Mgm(X)

j∗ // M !∗(X∗)

j∗

��

// M61
gm(Z)∗(2)[4]

��

// Mgm(X)[1]

Mgm(X)

��

u // M c
gm(X)

��

// ∂Mgm(X)[1]

��

// Mgm(X)[1]

��
0 // M61

gm(Z)[1] M61
gm(Z)[1] // 0
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Here, we set d61 := the restriction of d to M61
gm(Z). We claim that

d61 ∈ radDMgm(k)F

(
M61
gm(Z),M61

gm(Z)∗(2)[4]
)
.

In fact, all morphisms M61
gm(Z)→M61

gm(Z)∗(2)[4] belong to the radical, since

HomDMgm(k)F

(
M61
gm(Z)∗(2)[4],M61

gm(Z)
)

= 0.

To prove this latter claim, observe that the closed covering by the Zm in-
duces a weight filtration of M61

gm(Z) (see the first part of the proof of [35,
Prop. 6.5 (i)]):⊕
n<m

Mgm(Zn,m) −→
⊕
m

M61
gm(Zm) −→M61

gm(Z) −→
⊕
n<m

Mgm(Zn,m)[1],

where we denote by Zn,m the intersection Zn ∩Zm. Whence the dual weight
filtration⊕
n<m

Mgm(Zn,m)∗[−1]−→M61
gm(Z)∗−→

⊕
m

M61
gm(Zm)∗−→

⊕
n<m

Mgm(Zn,m)∗

of M61
gm(Z)∗. Orthogonality for weight structures shows that any morphism

from M61
gm(Z)∗(2)[4] to a motive of non-negative weights factors through⊕

mM
61
gm(Zm)∗(2)[4], and that any morphism from a motive of weight zero

to M61
gm(Z) factors through

⊕
mM

61
gm(Zm). Therefore,

HomDMgm(k)F

(
M61
gm(Z)∗(2)[4],M61

gm(Z)
)

is a direct factor of⊕
n,m

HomDMgm(k)F

(
M61
gm(Zn)∗(2)[4],M61

gm(Zm)
)
.

We claim that

HomDMgm(k)F

(
M61
gm(Zn)∗(2)[4],M61

gm(Zm)
)

= 0

for all n and m. Indeed, the split monomorphisms M2
gm(Zm) ↪→ Mgm(Zm)

induce an isomorphism between

HomDMgm(k)F

(
M2
gm(Zn)∗(2)[4],M2

gm(Zm)
)

and

HomDMgm(k)F
(Mgm(Zn)∗(2)[4],Mgm(Zm)) ,

as can be seen from the comparison wih Chow theory: both groups are iden-
tified with

CH0(Zn ×k Zm)F

[28, Thm. 4.3.7 3., Prop. 4.2.9], and the morphism between them corresponds
to the identity.

Altogether, we proved that (M !∗(X∗), j∗, j
∗) is minimal. In particular,

M !∗(X) ∼= M !∗(X∗).



Absolute intersection motive 33

Remark 5.13. For k = C, and F a field contained in R, the reader may
choose to compute absolute intersection cohomology in the geometric situa-
tions treated in this section, taking into account the results from Section 4,
in particular, Theorem 4.8. The computations are a priori compatible with
the above under the Hodge theoretic realization.

6. A question

In this section, the base k equals the field C of complex numbers. The coef-
ficients F are assumed to be contained in R. Let X ∈ Sm/C. The examples
treated in Section 5 seem to suggest the following.

Question 6.1. Does there exist an open, dense immersion j of X(C) into
a compact topological space X !∗ satisfying the hypothesis of [4, 2.1.16], and
equipped with a stratification into topological manifolds of even (real) dimen-
sion, among which X(C), such that “intersection cohomology of X !∗ equals
absolute intersection cohomology of X” in the following sense: for all n ∈ Z,
there is an isomorphism of F -vector spaces

Hn(X !∗, j!∗ F ) ∼−−→ Hn
!∗(X,F )

from cohomology of X !∗ with coefficients in the intermediate extension j!∗ F
to the F -vector space Hn

!∗(X,F ) underlying absolute intersection cohomology
Hn

!∗(X,F (0)), respecting the factorizations

Hn
c (X,F )

Hnj∗−−−→ Hn(X !∗, j!∗ F )
Hnj∗−−−→ Hn(X,F )

and

Hn
c (X,F (0))

i−→ Hn
!∗(X,F (0))

π−→ Hn(X,F (0)) ?

Note that since X is smooth, the constant sheaf F on X can be seen as
a perverse sheaf up to a shift by −dimX :

F = (F [dimX ])[−dimX ],

where F [dimX ] belongs to the heart of the perverse t-structure. By slight
abuse of notation, we define

j!∗ F := (j!∗ F [dimX ])[−dimX ].

Note that j!∗ F [dimX ] is defined, and that if X !∗ is a topological manifold,
then Hn(X !∗, j!∗ F ) equals Hn(X !∗, F ) for all n ∈ Z [4, Prop. 2.1.17]. Note
also that

Hnj∗ : Hn
c (X,F ) −→ Hn(X !∗, j!∗ F )

factors through the F -vector space underlying GrWn Hn
c (X,F (0)), and

Hnj∗ : Hn(X !∗, j!∗ F ) −→ Hn(X,F )

factors through the F -vector space underlying GrWn Hn(X,F (0)) (Corolla-
ry 4.3).
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Examples 6.2. The answer to Question 6.1 is affirmative in the following
cases:

(a) For X = A1
C, put X !∗ = P1(C) (Example 5.2).

(b) More generally, for X equal to the complement of a finite number of
closed points in a smooth, proper C-scheme Y , which is of pure dimen-
sion n > 1, put X !∗ = Y (C) (Example 5.3).

(c) Even more generally, let X be equal to the complement of a closed
sub-scheme Z in a smooth, proper C-scheme Y . Assuming that the
dimension of Z is strictly smaller than its codimension in Y , we may
put X !∗ = Y (C) (Example 5.4 (a)).

(d) Let X be equal to the complement of a smooth closed sub-scheme Z
of pure dimension c > 1 in a smooth, proper C-scheme Y of pure di-
mension 2c. Assume that Z is connected, and that the self intersection
number Z · Z of Z in Y is non-zero. We know (Corollary 5.9) that X !∗

cannot be chosen to be equal to Y (C).

(e) Let X be equal to the complement of a smooth divisor Z in a smooth,
proper C-scheme Y . Assume that the pull-back i∗[Z] of the divisor to
the sub-scheme Z is ample, and that Mgm(Z) satisfies the weak form
of the Lefschetz decomposition for Li∗[Z]. We know (Example 5.4 (d))

that X !∗ cannot be chosen to be equal to Y (C).

(f) For X = AnC, n > 1, put X !∗ = S2n (Example 5.10).

(g) For X equal to the complement of the singular locus in a proper normal
surface X∗ over C, we may put X !∗ = X∗(C) (Example 5.12).

We omitted to specify X !∗ in Examples 6.2 (d) and (e). Before doing so,
let us treat the remaining example from Section 5; as we shall see (Proposi-
tion 6.4), it is fundamentally different from those treated in Example 6.2.

Example 6.3. Let X be equal to the complement of a smooth closed sub-
scheme Z of pure dimension c > 1 in a smooth, proper C-scheme Y of pure
dimension 2c. Assume that Z is connected, and that Z ·Z = 0. We may then
put X !∗ = Y (C) (Corollary 5.7).

Denote by X+ the Alexandrov one-point compactification of X(C).

Proposition 6.4. (a) In all of Examples 6.2, the compactification X !∗ of
X(C) may be chosen to be equal to X+.

(b) In Example 6.3, exactly one of the following cases occurs: either

dimF H
n(X+, j!∗ F ) > dimF H

n
!∗(X,F )

for n = 2c− 1 and n = 2c+ 1 or there is no isomorphism

H2c(X+, j!∗ F ) −→ H2c
!∗ (X,F )

respecting the factorizations of H2c
c (X,F ) → H2c(X,F ). In particular,

the compactification X !∗ of X(C) cannot be chosen to be equal to X+.
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Proposition 6.4 is obvious in certain cases. For the treatment of the
others, the following observation turns out to be useful.

Proposition 6.5. Let X ∈ Sm/C of pure dimension. Denote by j the immer-
sion of X(C) into X+. Then

Hn(X+, j!∗ F ) = Hn(X,F ) for n 6 dimX −1

HdimX (X+, j!∗ F ) = HdimX

! (X,F ),

Hn(X+, j!∗ F ) = Hn
c (X,F ) for n > dimX +1.

Each of the identifications is understood with the canonical factorization of
the morphism Hn

c (X,F )→ Hn(X,F ).

Remark 6.6. (a) In particular, intersection cohomology ofX+ carries a canon-
ical Hodge structure (which in general is mixed).

(b) Given the formulae from Proposition 6.5, we see that in those cases
where intersection cohomology of X+ and absolute intersection cohomology
of X are isomorphic, the isomorphisms Hn(X+, j!∗ F ) ∼−−→ Hn

!∗(X,F ), n ∈ Z,
are unique.

Indeed, for n 6 dimX −1, to say that Hn(X,F ) is (abstractly) iso-
morphic to Hn

!∗(X,F ) implies that Hn(X,F ) is pure of weight n. The only
morphism α making the diagram

GrWn Hn
c (X,F )

in // Hn
!∗(X,F )

α
��

πn // Hn(X,F ) = GrWn Hn(X,F )

GrWn Hn
c (X,F )

un // Hn(X,F ) Hn(X,F ) = GrWn Hn(X,F )

commute is α = πn. Since we suppose the existence of some isomorphism
making the diagram commute, this isomorphism equals α. The case where
n > dimX −1 is dual. For n = dimX , consider the diagram

GrWdimX
HdimX
c (X,F )

� �idimX // HdimX

!∗ (X,F )
πdimX// // GrWdimX

HdimX (X,F )

GrWdimX
HdimX
c (X,F ) // // HdimX

! (X,F ) �
� // GrWdimX

HdimX (X,F ).

If there is an isomorphism α making the diagram commute, then all horizontal
morphisms are necessarily isomorphisms (cmp. Corollary 4.9). Therefore, the
isomorphism α is unique.

Furthermore, the isomorphisms Hn(X+, j!∗ F ) ∼−−→ Hn
!∗(X,F ), n ∈ Z,

respect the Hodge structures (which are pure).

Proof of Proposition 6.5. Denote by τ t6• and τ t>• the truncation functors
with respect to the t-structure on the derived category of sheaves on the
complement {∗} of X(C) in X+, in other words, on the derived category of
F -vector spaces. Denote by i the inclusion of {∗} into X+. According to [4,
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Prop. 2.1.11], there is an exact triangle

i∗τ
t>dimX i∗Rj∗F [−1] −→ j!∗ F −→ Rj∗F −→ i∗τ

t>dimX i∗Rj∗F.

Applying the direct image a∗ under the structure map a of X+, we get
isomorphisms

Hn(X+, j!∗ F ) ∼−−→ Hn(X,F ) for n < dimX ,

and a monomorphism

HdimX (X+, j!∗ F ) ↪−→ HdimX (X,F ).

Dually, we obtain an epimorphism

HdimX
c (X,F ) −→→ HdimX (X+, j!∗ F ),

and isomorphisms

Hn
c (X,F ) ∼−−→ Hn(X+, j!∗ F ) for n > dimX . �

Using Proposition 6.5, the reader may choose to provide a direct proof
of Proposition 6.4. The one we shall give is a consequence of the next result.

Theorem 6.7. Let X ∈ Sm/C of pure dimension. Then the following are
equivalent.

(1) The compactification X !∗ of X(C) (exists and) may be chosen to be equal
to X+.

(2) For all integers n 6 dimX −1, the Hodge structure on ∂Hn(X,F (0)) is
of weights 6 n.

(3) For all integers n > dimX , the Hodge structure on ∂Hn(X,F (0)) is of
weights > n+ 1.

(4) There exists an open immersion of X into a smooth, proper C-scheme
Y , with complement i : Z ↪→ Y , such that the maps

Hn(Z, i!F ) −→ Hn(Z,F )

(i! = the exceptional inverse image under the immersion i) are injective
in the range 2 · codimY Z 6 n 6 dimX .

(5) Whenever X is represented as the complement of a closed sub-scheme
i : Z ↪→ Y in a smooth, proper C-scheme Y , the maps

Hn(Z, i!F ) −→ Hn(Z,F )

are injective in the range 2 · codimY Z 6 n 6 dimX .

If the equivalent conditions (1)–(5) are satisfied, then the following also hold.

(6) For all integers n 6 dimX −1, the Hodge structure on Hn(X,F (0)) is
pure of weight n.

(7) For all integers n > dimX +1, the Hodge structure on Hn
c (X,F (0)) is

pure of weight n.
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Proof. Proposition 6.5 shows that claim (1) implies claims (6) and (7).

The Hodge structures Hn
c (X,F (0)) and H2 dimX −n(X,F (0))(dimX) are

dual to each other, and under this duality, the collection of morphisms(
u : Hn

c (X,F (0)) −→ Hn(X,F (0))
)
n∈Z

is auto-dual up to a twist by dimX . Given the long exact sequence

· · · −→ ∂Hn−1(X,F (0)) −→ Hn
c (X,F (0))

u−→ Hn(X,F (0)) −→ · · · ,

the Hodge structures ∂Hn(X,F (0)) and ∂H2 dimX −n−1(X,F (0))(dimX) are
therefore dual to each other. Thus, claims (2) and (3) are equivalent.

We leave it as an exercice to the reader to show, using Theorem 4.8 (b)
and Proposition 6.5, that (2) and (3) together (and hence individually) are
equivalent to (1).

To finish the proof, note that we have nothing to prove if X is proper.
Else, let i : Z ↪→ Y be a closed immersion, with Y smooth and proper
over C, and such that X = Y − Z. Write j for the open immersion of X
into Y , and a : Y → SpecC for the structure morphism of Y . The morphism
u : RΓc(X,F (0))→ RΓ(X,F (0)) in Db(MHSF ) is the result of applying the
direct image a∗ to the morphism

v : j!F (0) −→ j∗F (0)

in Db(MHMF Y ) [25, proof of Thm. 4.3]. A canonical choice of cone of v is
given by i∗i

∗j∗F (0) (apply [25, (4.4.1)] to j∗F (0)). Thus, a∗i∗i
∗j∗F (0) is a

cone of u; its cohomology objects are thus equal to boundary cohomology.

Consider the localization exact triangle

i∗i
!F (0) −→ F (0) −→ j∗F (0) −→ i∗i

!F (0)[1]

in Db(MHMF Y ) [25, (4.4.1)]. Applying the functor a∗i∗i
∗ yields

a∗i∗i
!F (0) −→ a∗i∗i

∗F (0) −→ a∗i∗i
∗j∗F (0) −→ a∗i∗i

!F (0)[1].

We thus see that boundary cohomology is part of a long exact sequence

· · · −→ ∂Hn(X,F (0)) −→ Hn+1(Z, i!F (0)) −→ Hn+1(Z,F (0)) −→ · · · .

The Hodge structures on Hn+1(Z, i!F (0)) and on Hn+1(Z,F (0)) are of
weights > n+ 1 and 6 n+ 1, respectively [25, (4.5.2)]. Therefore, for a fixed
integer n, the Hodge structure on ∂Hn(X,F (0)) is of weights 6 n if and only
if Hn+1(Z, i!F )→ Hn+1(Z,F ) is injective. We leave it to the reader to show,
for example by using duality, that

Hn(Z, i!F ) = 0 for n < 2 · codimY Z. �

Example 6.8. For the surfaceX = A1
C×CP1

C, the Hodge structureHn(X,F (0))
is pure of weight n for n = 0, 1, meaning that property 6.7 (6) is satisfied.
But according to Proposition 6.4, the compactification X !∗ of X(C) may not
be chosen to be equal to X+.
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Proof of Proposition 6.4. The claim is obvious in cases 6.2 (a) and 6.2 (f).
Cases 6.2 (b) and 6.2 (g) follow from invariance of intersection cohomology
under direct images of finite morphisms.

To treat cases 6.2 (c), 6.2 (d) and 6.3, we apply criteria 6.7 (4) (for 6.2 (c)
and 6.2 (d)) and 6.7 (5) (for 6.3) to the respective choice of i : Z ↪→ Y . In
case 6.2 (c), it is trivially satisfied since 2 · codimY Z > dimX . In cases 6.2 (d)
and 6.3, the only degree that needs to be verified is n = 2c. By purity, the
source H2c(Z, i!FY ) of the map in question is identified with H0(Z,F (−c)) =
F (−c). The trace map gives the same type of identification for the target
H2c(Z,F ). Under these identifications,

H2c(Z, i!FY ) −→ H2c(Z,F )

corresponds to multiplication by Z · Z. According to Theorem 6.7, we may
put X !∗ = X+ in case 6.2 (d), but not in case 6.3. In the latter case, note
that by duality,

dimF H
2c−1(X+, j!∗ F ) > dimF H

2c−1
!∗ (X,F )

if and only if

dimF H
2c+1(X+, j!∗ F ) > dimF H

2c+1
!∗ (X,F ),

and recall that for all integers n,

Hn
!∗(X,F ) = Hn(Y, F ).

The sequence

H2c(Z,F )
∂−→ H2c+1

c (X,F ) = H2c+1(X+, j!∗ F ) −→ H2c+1(Y, F ) −→ 0

is exact. Thus, if ∂ 6= 0, then dimF H
2c+1(X+, j!∗ F ) > dimF H

2c+1
!∗ (X,F ).

If ∂ = 0, then

H2c
c (X,F ) −→ H2c(Y, F )

is not surjective. This means that interior cohomology

H2c
! (X,F ) = H2c(X+, j!∗ F )

and H2c(Y, F ) cannot be identified in a way compatible with the factoriza-
tions of H2c

c (X,F )→ H2c(X,F ).

To treat case 6.2 (e), note that the maps

Hn(Z, i!F (0)) −→ Hn(Z,F (0))

are identified with the cohomological Lefschetz operators

Li∗[Z] : H
n−2(Z,F (−1)) −→ Hn(Z,F (0)).

According to the weak Lefschetz theorem, these operators are injective for
all n 6 dimZ +1 = dimX . In other words, criterion (4) from Theorem 6.7 is
satisfied. �
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Exercice 6.9. For X = Gm,C × A1
C, compute M !∗(X) and identify a choice

of X !∗. Prove that X !∗ can neither be chosen to be equal to X+, nor to the
space of C-valued points of a smooth algebraic compactification of X. Relate
this observation to the rank of the intersection matrix of the irreducible
components Zi of the complement Z of X in a smooth compactification.
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[13] P. Deligne. Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math., (44):5–
77, 1974.

http://arxiv.org/abs/1705.03235


40 J. Wildeshaus

[14] P. Deligne and A. B. Goncharov. Groupes fondamentaux motiviques de Tate
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