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Abstract. In this paper we study the values of higher Green’s functions
at points of complex multiplication (CM points). Higher Green’s func-
tions are real-valued functions of two variables on the upper half-plane
which are bi-invariant under the action of a congruence subgroup, have
a logarithmic singularity along the diagonal and satisfy ∆f = k(1−k)f ,
where ∆ is the hyperbolic Laplace operator and k is a positive integer.
B. Gross and D. Zagier conjectured in “Heegner points and derivatives of
L-series” (1986) that certain explicit linear combinations of CM values
of a Green’s function are equal to the logarithm of the absolute value of
an algebraic number. In this paper we prove the conjecture for any pair
of CM points lying in the same imaginary quadratic field.
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1. Introduction

For any integer k > 1 there is a unique function Gk on the product of two
upper half-planes H× H which satisfies the following conditions:

(i) Gk is a smooth function on H × H \ {(τ, γτ), τ ∈ H, γ ∈ SL2(Z)} with
values in R.

(ii) Gk(τ1, τ2) = Gk(γ1τ1, γ2τ2) for all γ1, γ2 ∈ SL2(Z).

(iii) ∆iGk = k(1 − k)Gk, where ∆i = −4=(τi)
2 ∂2

∂τi∂τ̄i
is the hyperbolic

Laplacian with respect to the i-th variable, i = 1, 2.

(iv) Gk(τ1, τ2) = s log |τ1 − τ2|+O(1) when τ1 tends to τ2 (s is the order of
the stabilizer of τ2, which is almost always 1).

(v) Gk(τ1, τ2) tends to 0 when τ1 tends to a cusp.

This function is called the k-th Green’s function.

The significant arithmetic properties of these functions were discovered
by B. Gross and D. Zagier [10]. In particular, it was conjectured that certain
explicit linear combinations of CM values of a Green’s function are equal
to the logarithm of the absolute value of an algebraic number. To state the
conjecture, we need the following definitions.

Let f be a modular function. Then the action of the Hecke operator Tm
on f is given by(

f | Tm
)

(τ) = m−1
∑

(
a b
c d

)
∈ SL2(Z)\Mm

f

(
aτ + b

cτ + d

)
,

where Mm denotes the set of 2× 2 integral matrices of determinant m.

The Green’s functions Gk have the property

Gk(τ1, τ2) | T τ1
m = Gk(τ1, τ2) | T τ2

m ,

where T τi
m denotes the Hecke operator with respect to the variable τi, i = 1, 2.

Therefore, we will simply write Gk(τ1, τ2)|Tm.

Denote by S2k(SL2(Z)) the space of cusp forms of weight 2k on the full
modular group.

Proposition 1.1. Let k > 1 and λ = {λm}∞m=1 ∈
⊕∞

m=1 Z. Then the following
are equivalent:

(i)
∑∞
m=1 λmam = 0 for any cusp form

f =

∞∑
m=1

amq
m ∈ S2k(SL2(Z)).

(ii) There exists a weakly holomorphic modular form

gλ(τ) =

∞∑
m=1

λmq
−m +O(1) ∈M !

2−2k(SL2(Z)).
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The proof of this proposition can be found, for example, in [3, Section 3].
Let us outline the proof. The space of obstructions to finding modular forms of
weight 2−2k with given singularity at the cusp and the space of holomorphic
modular forms of weight 2k can be both identified with cohomology groups of
line bundles over a modular curve. The statement follows from Serre duality
between these spaces.

We call a λ with the properties given in the above proposition a relation
for S2k(SL2(Z)). Note that the function gλ in (ii) is unique and has integral
Fourier coefficients.

For a relation λ denote

Gk,λ :=

∞∑
m=1

λmm
k−1Gk(τ1, τ2) | Tm.

The following conjecture was formulated in [10] and [9].

Conjecture 1.2. Suppose λ is a relation for S2k(SL2(Z)). Then for any two
CM points z1, z2 of discriminants D1, D2 there is an algebraic number α
such that

Gk,λ(z1, z2) = (D1D2)
1−k
2 log |α|.

This conjecture was verified numerically by D. Zagier [9], [15]. In the case
k = 2, D1 = −4 and D2 arbitrary the conjecture was proven by A. Mellit in
his doctoral dissertaion [11]. In this paper we prove the conjecture for any
pair of points z1, z2 lying in the same imaginary quadratic field Q(

√
−D).

Theorem 1.3. Let z1, z2 ∈ H be two CM points in the same quadratic imag-
inary field Q(

√
−D) and let λ be a relation for S2k(SL2(Z)) for some inte-

ger k > 1. Then there is an algebraic number α such that

Gk,λ(z1, z2) = log |α|.

Let us briefly explain the idea of the proof. The key technique used
in our paper is the regularized theta lift introduced in [2]. Following ideas
given in [4] we prove in Theorem 8.2 that the Green’s function is equal to the
regularized theta lift of an eigenfunction of the hyperbolic Laplace operator.
This allows us to extend a method given in [12], that is to analyze CM
values of Green’s functions using rich functoriality properties of theta lifts.
In Theorem 9.1 we prove that a CM-value of a higher Green’s function is
equal to the regularized Petersson product of a weakly holomorphic modular
form of weight 1 and a binary theta series. In Theorem 10.1 we show that the
regularized Petersson product of any weakly holomorphic modular form of
weight 1 and a binary theta series is equal to the logarithm of a CM-value of
a certain meromorphic modular function. Thus, from Theorems 9.1 and 10.1
we see that a CM-value of a higher Green’s function is equal to the logarithm
of a CM-value of a meromorphic modular function with algebraic Fourier
coefficients. This proves Theorem 1.3.
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2. Vector-valued modular forms

Recall that the group SL2(Z) has a double cover Mp2(Z) called the metaplec-
tic group whose elements can be written in the form((

a b

c d

)
,±
√
cτ + d

)
where

(
a b
c d

)
∈ SL2(Z) and

√
cτ + d is considered as a holomorphic function

of τ in the upper half plane whose square is cτ + d. The multiplication is
defined by

(A, f(τ))(B, g(τ)) = (AB, f(B(τ))g(τ))

for A,B ∈ SL2(Z) and f, g suitable functions on H.

Suppose that V is a vector space over Q and that ( , ) is a bilinear
form on V × V with signature (b+, b−). For an element x ∈ V we will write
q(x) = 1

2 (x, x). Let L ⊂ V be a lattice. The dual lattice of L is defined as
L′ = {x ∈ V |(x, L) ⊆ Z}. We say that L is even if q(`) ∈ Z for all ` ∈ L. In
this case L is contained in L′ and L′/L is a finite abelian group.

We let the elements eν for ν ∈ L′/L be the standard basis of the group
ring C[L′/L], so that eµeν = eµ+ν . Complex conjugation acts on C[L′/L]
by eµ = eµ. Consider the hermitian scalar product on C[L′/L] given by

〈eµ, eν〉 = δµ,ν (2.1)

and extended to C[L′/L] by sesquilinearity. Recall that there is a unitary
representation ρL of the double cover Mp2(Z) of SL2(Z) on C[L′/L] defined by

ρL(T̃ )(eν) = e
(
q(ν)

)
eν (2.2)

ρL(S̃)(eν) = i(b
−/2−b+/2) |L′/L|−1/2

∑
µ∈L′/L

e
(
−(µ, ν)

)
eµ, (2.3)

where

T̃ =

((
1 1
0 1

)
, 1

)
, and S̃ =

((
0 −1

1 0

)
,
√
τ

)
(2.4)

are the standard generators of Mp2(Z) and we use the notation e(a) := e2πia.

For an integer n ∈ Z we denote by L(n) the lattice L equipped with a
quadratic form q(n)(`) := nq(`). In the case n = −1 the lattices L′(−1) and
(L(−1))′ coincide and hence the groups L′/L and L(−1)′/L(−1) are equal.
Both representations ρL and ρL(−1) act on C[L′/L] and for γ ∈ Mp2(Z) we

have ρL(−1)(γ) = ρL(γ).

A vector valued modular form of half-integral weight k and representa-
tion ρL is a function f : H→ C[L′/L] that satisfies the following transforma-
tion law:

f

(
aτ + b

cτ + d

)
=
√
cτ + d

2k
ρL

((
a b

c d

)
,
√
cτ + d

)
f(τ).
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We will use the notation Mk(ρL) for the space of real analytic, Mk(ρL)

for the space of holomorphic, M̂k(ρL) for the space of almost holomorphic,
and M !

k(ρL) for the space of weakly holomorphic modular forms of weight k
and representation ρL.

Now we recall some standard maps between the spaces of vector valued
modular forms associated to different lattices [6].

If M ⊂ L is a sublattice of finite index then a vector valued modu-
lar form f ∈ Mk(ρL) can be naturally viewed as a vector valued modular
form f ∈Mk(ρM ). Indeed, we have the inclusions

M ⊂ L ⊂ L′ ⊂M ′

and therefore

L/M ⊂ L′/M ⊂M ′/M.

We have the natural map L′/M → L′/L, µ→ µ̄.

Lemma 2.1. For M = M,M, M̂ or M ! there are two natural maps

resL/M : Mk(ρL)→Mk(ρM )

trL/M : Mk(ρM )→Mk(ρL)

given by

(
resL/M (f)

)
µ

=

{
fµ̄ if µ ∈ L′/M
0 if µ /∈ L′/M

(
f ∈Mk(ρL), µ ∈M ′/M

)
(2.5)

(
trL/M (g)

)
λ

=
∑

µ∈L′/M
µ̄=λ

gµ
(
g ∈Mk(ρM ), λ ∈ L′/L

)
. (2.6)

Now suppose that M and N are two even lattices and L = M ⊕ N .
Then we have

L′/L ∼= (M ′/M)⊕ (N ′/N).

Moreover

C[L′/L] ∼= C[M ′/M ]⊗ C[N ′/N ]

as unitary vector spaces and naturally

ρL = ρM ⊗ ρN .

Lemma 2.2. For two modular forms f ∈ Mk(ρL) and g ∈ Ml(ρM(−1)) the
function

h := 〈f, g〉C[M ′/M ] =
∑

ν∈N ′/N

eν
∑

µ∈M ′/M

fµ⊕ν gµ

belongs to Mk+l(ρN ).
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3. Regularized theta lift

In this section we recall the definition of the regularized theta lift given by
R. Borcherds in the paper [2].

We let (L, q) be an even lattice of signature (2, b) with dual L′. The (pos-
itive) Grassmannian Gr+(L) is the set of positive definite two-dimensional
subspaces v+ of L⊗R. We write v− for the orthogonal complement of v+, so
that L⊗ R is the orthogonal direct sum of the positive definite subspace v+

and the negative definite subspace v−. The projection of a vector ` ∈ L⊗ R
into the subspaces v+ and v− is denoted by `v+ and `v− respectively, so
that ` = `v+ + `v− .

The vector valued Siegel theta function ΘL : H × Gr+(L) → C[L′/L]
of L is defined by

ΘL(τ, v+) = =(τ)b/2
∑
`∈L′

e
(
q(`v+)τ + q(`v−)τ̄

)
e`+L. (3.1)

Remark 3.1. Our definition of ΘL differs from the one given in [2] by the
multiple =(τ)b/2.

Theorem 4.1 in [2] says that ΘL(τ, v+) is a real analytic vector valued
modular form of weight 1 − b/2 and representation ρL with respect to the
variable τ .

We suppose that f is some C[L′/L]-valued function on the upper half
plane H transforming under SL2(Z) with weight 1−b/2 and representation ρL.
Define a regularized theta integral as

ΦL(v+, f) :=

∫ reg

SL2(Z)\H

〈f(τ),ΘL(τ, v+)〉 y−1−b/2 dx dy, τ = x+ iy. (3.2)

The integral is often divergent and has to be regularized. In [2] Borcherds
suggested the following method. We integrate over the region

Ft = {τ ∈ H | −1/2 < <(τ) < 1/2, and |τ | > 1, and =τ < t}.

Note that F∞ :=
⋃
t>0 Ft is a fundamental domain of SL2(Z)\H. Suppose

that for <(s)� 0 the limit

lim
t→∞

∫
Ft
〈f(τ),ΘL(τ, v+)〉 y−1−b/2−s dx dy

exists and can be continued to a meromorphic function defined for all com-
plex s. Then we define∫ reg

SL2(Z)\H
〈f(τ),ΘL(τ, v+)〉 y−1−b/2 dx dy

to be the constant term of the Laurent expansion of this function at s = 0.
In all the cases considered in this paper the limit as t goes to infinity already
exists at s = 0 .
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Denote by Aut(L) the group of those isometries of (L ⊗ Q, q) which
map L to itself. The action of Aut(L) on f is given by the action on L′/L.
We define Aut(L, f) to be the subgroup of Aut(L) fixing f . The regularized
integral ΦL(v+, f) is a function on the Grassmannian Gr+(L) that is invariant
under Aut(L, f). Let Aut(L,L′) be the group of those elements in Aut(L)
which act trivially on L′/L. Clearly, Aut(L,L′) is a subgroup of Aut(L, f).

Suppose that f ∈ M̂ !(Mp2(Z), ρL) has a Fourier expansion

fµ(τ) =
∑
n∈Q

∑
t∈Z

cµ(n, t) e(n, τ) y−t

and the coefficients cµ(n, t) vanish whenever n� 0 or t < 0 or t� 0.

We will say that a function f has singularities of type g at a point if f−g
can be redefined on a set of codimension at least 1 so that it becomes real
analytic near the point.

Then the following theorem, which is proved in [2], describes the singu-
larities of regularized theta lift ΦL(v+, f).

Theorem B1 ([2, Theorem 6.2]). Near the point v+
0 ∈ Gr+(L), the function

ΦL(v+, f) has a singularity of type∑
t≥0

∑
`∈L′∩v−0
` 6=0

−c`+L
(
q(`), t

) (
−4π q(`v+)

)t
log
(
q(`v+)

)
/t! .

In particular ΦL is nonsingular (real analytic) except along a locally finite set
of codimension 2 sub-Grassmannians (isomorphic to Gr+(2, b−1)) of Gr+(L)
of the form `⊥ for some negative norm vectors ` ∈ L.

The Grassmannians of signature (2, b) are of particular interest for us
since they can be equipped with a complex structure. A complex structure
can be introduced as follows. The open subset

P = {[Z] ∈ P(L⊗ C) | (Z,Z) = 0 and (Z,Z) > 0}

is isomorphic to two copies of Gr+(L) by mapping [Z] to the oriented subspace
spanned by <(Z), =(Z).

Next, we recall a convenient coordinate system on Gr+(L) introduced
in [2]. To this end we need the additional assumption that L contains a
primitive vector of length 0. We choose m ∈ L, m′ ∈ L′ such that m2 = 0
and (m,m′) = 1. Denote V0 := L⊗Q ∩m⊥ ∩m′⊥. The tube domain

H = {z ∈ V0 ⊗R C | (=(z),=(z)) > 0} (3.3)

is isomorphic to P by mapping z ∈ H to the class in P(L⊗ C) of

Z(z) = z +m′ − 1

2
((z, z) + (m′,m′))m.

We consider the lattices M = L ∩m⊥ and K = (L ∩m⊥)/Zm, and we
identify K ⊗ R with the subspace L⊗ R ∩m⊥ ∩m′⊥.



8 M. Viazovska

We write N for the smallest positive value of the inner product (m, `)
with ` ∈ L, so that |L′/L| = N2|K ′/K|.

Suppose that f =
∑
µ eµfL+µ is a modular form of type ρL and half

integral weight k. Define a C[K ′/K]-valued function

fK(τ) =
∑

κ∈K′/K

fK+κ(τ) eκ

by putting

fK+κ(τ) =
∑

µ∈L′/L
µ|M=κ

fL+µ(τ)

for κ ∈ K. The notation λ|M means the restriction of λ ∈ Hom(L,Z) to M ,
and γ ∈ Hom(K,Z) is considered as an element of Hom(M,Z) using the
quotient map from M to K. The elements of L′ whose restriction to M is 0
are exactly the integer multiples of m/N .

For z ∈ H denote by w+ the following positive-definite subspace of V0

w+(z) = R=(z) ∈ Gr+(K).

Theorem 7.1 in [2] gives the Fourier expansion of the regularized theta
lift. In the case where the lattice L has signature (2, b) this theorem can be
reformulated in the following form:

Theorem B2 ([2, Theorem 7.1]). Let L,K,m,m′ be defined as above. Suppose

f =
∑

µ∈L′/L

eµ
∑
m∈Q

cµ(m, y) e(mx)

is a modular form of weight 1 − b and type ρL with at most exponential
growth as y → ∞. Assume that each function cµ(m, y) exp(−2π|m|y) has
an asymptotic expansion as y → ∞ whose terms are constants times prod-
ucts of complex powers of y and nonnegative integral powers of log(y). Let
z = u+ iv be an element of a tube domain H. If (v, v) is sufficiently large
then the Fourier expansion of ΦL(v+(z), f) is given by the constant term of
the Laurent expansion at s = 0 of the analytic continuation of√
q(v)ΦK(w+(z), fK) +

1√
q(v)

∑
`∈K′

∑
µ∈L′/L
µ|M=`

∑
n>0

e
(
(n`, u−m′) + (nµ,m′)

)
×

×
∫
y>0

cµ
(
q(`), y

)
exp

(
−πn

2q(v)

y
− πy

( (`, v)2

q(v)
− 2q(`)

))
y−s−3/2 dy

(3.4)

(which converges for <(s) � 0 to a holomorphic function of s which can be
analytically continued to a meromorphic function of all complex s).
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The lattice K has signature (1, b − 1), so Gr+(K) is a real hyperbolic
space of dimension b−1 and the singularities of ΦK lie on hyperplanes of codi-
mension 1. Then the set of points where ΦK is real analytic is not connected.
The components of the points where ΦK is real analytic are called the Weyl
chambers of ΦK . If W is a Weyl chamber and ` ∈ K then (`,W ) > 0 means
that ` has positive inner product with all elements in the interior of W .

4. Infinite products

We see from Theorem B1 that the theta lift of a weakly holomorphic mod-
ular form has logarithmic singularities along special divisors. The following
theorem relates regularized theta lifts with infinite products introduced in
Borcherds’s earlier paper [1].

Theorem B3 ([2, Theorem 13.3]). Suppose that f ∈ M !
1−b/2(SL2(Z), ρL) has

a Fourier expansion

f(τ) =
∑

λ∈L′/L

∑
n�−∞

cλ(n) e(nτ) eλ

and the Fourier coefficients cλ(n) are integers for n ≤ 0. Then there is a
meromorphic function ΨL(Z, f) on L with the following properties:

1. Ψ is an automorphic form of weight c0(0)/2 for the group Aut(L, f)
with respect to some unitary character of Aut(L, f).

2. The only zeros and poles of ΨL lie on the rational quadratic divisors `⊥

for ` ∈ L, q(`) < 0 and are zeros of order∑
x∈R+

x`∈L′

cx`
(
q(x`)

)
.

3. The following equality holds:

ΦL(Z, f) = −4 log |ΨL(Z, f)| − 2c0(0)(log |Y |+ Γ′(1)/2 + log
√

2π).

4. For each primitive norm 0 vector m of L and for each Weyl chamber W
of K the restriction Ψm(Z(z), f) has an infinite product expansion con-
verging when z is in a neighborhood of the cusp of m and =(z) ∈ W
which is some constant of absolute value∏

δ∈Z/NZ
δ 6=0

(1− e(δ/N))cδm/N (0)/2

times

e((Z, ρ(K,W, fK)))
∏
k∈K′

(k,W )>0

∏
µ∈L′/L
µ|M=k

(1− e((k, Z) + (µ,m′)))cµ(k2/2).



10 M. Viazovska

The vector ρ(K,W, fK) is the Weyl vector, which can be evaluated ex-
plicitly using the theorems in [2, Section 10].

Remark 4.1. In the case where L has no primitive norm 0 vectors Fourier
expansions of Ψ do not exist.

Remark 4.2. We say that c0(0) is the constant term of f .

5. Differential operators

For k ∈ Z denote by Rk and Lk the Maass rasing and lowering differential
operators

Rk =
1

2πi

(
∂

∂τ
+

k

τ − τ̄

)
, Lk =

1

2πi
(τ − τ̄)2 ∂

∂τ̄
.

The the weight k Laplace operator is given by

∆k = −4π2Rk−2 Lk = −4π2 (Lk+2Rk − k) = (τ − τ̄)2 ∂2

∂τ∂τ̄
+ k(τ − τ̄)

∂

∂τ̄
.

For integers l, k we denote by Fl,k the space of functions of weight k satisfying

∆kf =

(
l(1− l) +

k(k − 2)

4

)
f.

We will use the following well-known properties of the spaces Fl,k and
differential operators Lk, Rk.

Proposition 5.1. The spaces Fl,k satisfy the following properties:

(i) The space Fl,k is invariant under the action of the group SL2(R),

(ii) The operator Rk maps Fl,k to Fl,k+2,

(iii) The operator Lk maps Fl,k to Fl,k−2.

For a modular form f of weight k we will use the notation

Rrf = Rrk(f) = Rk+2r−2 ◦ · · · ◦Rkf.
For simplicity we drop the weight subscript in Rrk.

Denote f (s) := 1
(2πi)s

∂s

∂τs f . We have [5, equation (56)]

Rr(f) =

r∑
s=0

(−1)r−s
(
r

s

)
(k + s)r−s
(4πy)r−s

f (s), (5.1)

where (a)m = a(a+1) · · · (a+m−1) is the Pochhammer symbol. For modular
forms f and g of weight k and l the Rankin–Cohen bracket is defined by

[f, g] = lf ′g − kfg′,
and more generally

[f, g]r =

r∑
s=0

(−1)s
(
k + r − 1

s

)(
l + r − 1

r − s

)
f (r−s) g(s).
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The function [f, g]r is a modular form of weight k + l + 2r. Note that(
k

s

)
=

(k − s+ 1)s
s!

is defined for s ∈ N and arbitrary k.

We will need the following proposition.

Proposition 5.2. Suppose that f and g are modular forms of weight k and l
respectively. Then, for integer r ≥ 0 we have

Rr(f) g = a[f, g]r +R

( r−1∑
s=0

bsR
s(f)Rr−s−1(g)

)
where

a =

(
k + l + 2r − 2

r

)−1

and bs are some rational numbers.

Proof. The operator R satisfies the following property:

R(fg) = R(f)g + fR(g).

Thus, the sum ∑
i+j=r

aiR
i(f)Rj(g)

can be written as

R

( ∑
i+j=r−1

biR
i(f)Rj(g)

)
for some numbers bi if and only if

∑r
i=0(−1)iai = 0. For the Rankin–Cohen

brackets the following identity holds:

[f, g]r =

r∑
s=0

(−1)s
(
k + r − 1

s

)(
l + r − 1

r − s

)
R(r−s)(f)Rs(g). (5.2)

We will use the following standard identity:

r∑
s=0

(
k + r − 1

s

)(
l + r − 1

r − s

)
=

(
k + l + 2r − 2

r

)
.

It follows from the above formula and (5.2) that the sum(
k + l + 2r − 2

r

)
Rr(f)g − [f, g]r

can be written in the form

R

( ∑
i+j=r−1

biR
i(f)Rj(g)

)
.

This finishes the proof. �
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Proposition 5.3. Suppose that f is a real analytic modular form of weight
k− 2 and g is a holomorphic modular form of weight k. Then, for a compact
region F ⊂ H we have∫

F

Rk−2(f) ḡ yk−2 dx dy =

∫
∂F

f ḡ yk−2 (dx− idy).

Proof. The proposition follows immediately from Stokes’s theorem. �

Denote by Kν the Bessel K-function

Iν(x) =

∞∑
n=0

(x/2)ν+2n

n!Γ(ν + n+ 1)
, Kν(x) =

π

2

I−ν(x)− Iν(x)

sin(πν)
.

The function Kν becomes elementary for ν ∈ Z + 1/2. We have

Kk+ 1
2
(x) =

(π/2)
1
2

xk+ 1
2

e−x hk(x),

for k ∈ Z≥0, where hk is the polynomial

hk(x) =

k∑
r=0

(k + r)!

2rr!(k − r)!
xk−r.

The following statement follows immediately from equation (5.1):

Proposition 5.4. For k ∈ Z>0 the following identity holds:

Rk−2k(e(nτ)) = 2 y
1
2 nk+ 1

2 Kk+1/2(2πny) e(nx).

6. A see-saw identity

Suppose that (V, q) is a rational quadratic space of signature (2, b) and L ⊂ V
is an even lattice. Let V = V1 ⊕ V2 be the rational orthogonal splitting
of (V, q) such that the space V1 has signature (2, b− d) and the space V2 has
signature (0, d). Consider two lattices N := L∩V1 and M := L∩V2. We have
two orthogonal projections

prM : L⊗ R→M ⊗ R and prN : L⊗ R→ N ⊗ R.
Let M ′ and N ′ be the dual lattices of M and N . We have the following
inclusions

M ⊂ L, N ⊂ L, M ⊕N ⊆ L ⊆ L′ ⊆M ′ ⊕N ′,
and equalities of the sets

prM (L′) = M ′, prN (L′) = N ′.

Consider a rectangular |L′/L| × |N ′/N |-dimensional matrix TL,N with
entries

ϑλ,ν(τ) =
∑
m∈M ′

m+ν∈λ+L

e
(
−q(m)τ

)
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where λ ∈ L′/L, ν ∈ N ′/N, τ ∈ H. This sum is well defined since N ⊂ L.
Note that the lattice M is negative definite and hence the series converge.

Theorem 6.1. Suppose that the lattices L, M and N are as above. Then there
is a map TL,N : Mk(ρL) → Mk+d/2(ρN ) sending a function f = (fλ)λ∈L′/L
to the function g = (gν)ν∈N ′/N defined as

gν(τ) =
∑

λ∈L′/L

ϑλ,ν(τ) fλ(τ). (6.1)

In other words,

g = TL,Nf

where f and g are considered as column vectors.

Proof. Consider the function

ΘM(−1)(τ) = =(τ)−d/2ΘM (τ) =
∑

µ∈M ′/M

eµ
∑

m∈M+µ

e(−q(m)τ)

that belongs to Md/2(ρM(−1)). It follows from (6.1) that

TL,N (f) =
〈
resL/M⊕N (f),ΘM(−1)

〉
C[M ′/M ]

.

Thus, from Lemma 2.2 we deduce that TL,N (f) is in Mk+d/2(ρN ). �

Theorem 6.2. Let L, M , N be as above. Denote by i : Gr+(N)→ Gr+(L) the
natural embedding induced by the inclusion N ⊂ L. Then, for v+ ∈ Gr+(N)

the theta lift of a function f ∈ M̂ !
1−b/2(SL2(Z), ρL) the following holds:

ΦL(i(v+), f) = ΦN (v+, TL,N (f)). (6.2)

Proof. For a vector ` ∈ L′ denote m = prM (`) and n = prN (`). Recall
that m ∈M ′ and n ∈ N ′. Since v+ is an element of Gr+(N) it is orthogonal
to M . We have

q(`v+) = q(nv+), q(`v−) = q(m) + q(nv−).

Thus for λ ∈ L′/L we obtain

Θλ+L(τ, v+) =
∑

`∈λ+L

e
(
q(`v+)τ + q(`v−

)
τ̄)

=
∑

m∈M ′, n∈N ′
m+n∈λ+L

e
(
q(nv+)τ + q(nv−)τ̄ + q(m)τ̄

)
.

Since N ⊂ L we can rewrite this sum as

Θλ+L(τ, v+) =
∑

ν∈N ′/N

Θν+N (τ, v+)ϑν,λ(τ).

Thus, we see that for f = (fλ)λ∈L′/L the following scalar products are equal:

〈f,ΘL(τ, v+)〉 = 〈TL,N (f),ΘN (τ, v+)〉.
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So, the regularized integrals (3.2) of both sides of the equality are also equal.
�

Remark 6.3. Theorem 6.2 works even in the case where v+ is a singular point
of ΦL(v+, f). If the constant terms of f and TL,N (f) are different, then the

subvariety Gr+(N) lies in singular locus of ΦL(v+, f). On the other hand, if
the constant terms of f and TL,N (f) are equal, then the singularities cancel

at the points of Gr+(N).

Remark 6.4. The map TM,N is essentially the contraction map defined in [12,
Paragraph 3.2].

7. The lattice M2(Z)

Consider the lattice of integral 2× 2 matrices denoted by M2(Z). Equipped
with the quadratic form q(x) := −detx it becomes an even unimodular
lattice.

The Grassmannian Gr+(M2(Z)) is isomorphic to H × H as a complex
manifold. This isomorphism can be constructed in the following way. For a
pair of points (τ1, τ2) ∈ H× H consider the element of norm zero

Z =

(
τ1τ2 τ1
τ2 1

)
∈M2(Z)⊗ C.

Define v+(τ1, τ2) to be the vector subspace of M2(Z) ⊗ R spanned by two
vectors X = <(Z) and Y = =(Z). The group SL2(Z)×SL2(Z) acts on M2(Z)
by (γ1, γ2)(x) = γ1xγ

t
2 and preserves the norm. The action of SL2(Z)×SL2(Z)

on the Grassmannian agrees with the action on H × H by fractional linear
transformations

(γ1, γ2)(v+(τ1, τ2)) = v+(γ1(τ1), γ2(τ2)).

We have

X2 = Y 2 =
1

2
(Z,Z) = −1

2
(τ1 − τ̄1)(τ2 − τ̄2),

(X,Y ) = Z2 = 0.

For ` =

(
a b

c d

)
∈M2(Z) and v+ = v+(τ1, τ2) we have

q(`v+) =
(`, Z)(`, Z)

(Z,Z)
=
| dτ1τ2 − cτ1 − bτ2 + a |2

−(τ1 − τ̄1)(τ2 − τ̄2)
.

Denote

Θ(τ ; τ1, τ2) := ΘM2(Z)

(
τ, v+(τ1, τ2)

)
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where τ = x + iy. Considered as a function of τ , the kernel Θ belongs
to M0(SL2(Z)) and we can explicitly write this function as

Θ(τ ; τ1, τ2)=y
∑

a,b,c,d∈Z
e

(
|aτ1τ2 + bτ1 + cτ2 + d|2

−(τ1 − τ̄1)(τ2 − τ̄2)
(τ − τ̄)− (ad− bc)τ̄

)

=y
∑

a,b,c,d∈Z
e

(
|aτ1τ2 + bτ1 + cτ2 + d|2

−(τ1 − τ̄1)(τ2 − τ̄2)
τ − |aτ1τ̄2 + bτ1 + cτ̄2 + d|2

−(τ1 − τ̄1)(τ2 − τ̄2)
τ̄

)
.

8. Higher Green’s functions as theta lifts

The key point of our proof is the following observation:

Proposition 8.1. Denote by ∆z the hyperbolic Laplacian with respect to the
variable z. For the function Θ defined in the previous section the following
identities hold:

∆τΘ(τ ; τ1, τ2) = ∆τ1Θ(τ ; τ1, τ2) = ∆τ2Θ(τ ; τ1, τ2).

A similar identity can be found in [4].

Suppose that λ = {λm}∞m=1 is a relation for S2k(SL2(Z)) (the definition
is given in the introduction). Then there exists a unique weakly holomorphic
modular form gλ of weight 2− 2k with Fourier expansion of the form∑

m

λm q
−m +O(1).

Consider the function hλ := Rk−1(gλ) which belongs to M̂ !
0 (SL2(Z)).

Theorem 8.2. The following identity holds:

Gk,λ(τ1, τ2) = ΦM2(Z)(v
+(τ1, τ2), hλ).

Here

ΦM2(Z)(v
+(τ1, τ2), hλ) = lim

t→∞

∫
Ft

hλ(τ) Θ(τ ; τ1, τ2) y−2dx dy. (8.1)

Proof. We verify that the function ΦM2(Z)(v
+(τ1, τ2), hλ) satisfies conditions (i)

to (v) listed at the introduction.

Firstly, we verify property (i). Let Tm ⊂ SL2(Z)\H× SL2(Z)\H be the
Hecke correspondence. We recall that Tm is defined as

Tm = {(τ1, τ2) ∈ SL2(Z)\H×SL2(Z)\H | τ2 =
aτ1 + b

cτ1 + d
for some

(
a b
c d

)
∈Mm}.

For a relation λ consider a divisor

Dλ :=
∑
m

λmTm.

Denote by Sλ the support of Dλ. It follows from properties (i) and (iv) of
Green’s function given at the introduction that the singular locus of Gk,λ is
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equal to Sλ. It follows from Theorem B1 ([2, Theorem 6.2, p. 24]) that the
limit (8.1) exists for all τ1, τ2 ∈ H×H\Sλ; moreover, it defines a real analytic
function on this set. Next, we apply the argument given in [2] to our setting.
The function hλ has Fourier expansion

hλ(τ) =
∑
n∈Z

n�−∞

c(n, y) e(nτ).

Fix v+ = v+(τ1, τ2) for some τ1, τ2 ∈ H × H. For each t > 1 the set Ft
can be decomposed into two parts Ft = F1 ∪ Πt where Πt is a rectangle
Πt = [−1/2, 1/2]× [1, t]. It suffices to show that the limit

lim
t→∞

∫
Πt

hλ(τ) ΘM2(Z)(τ ; v+) y−2dx dy

exists for all (τ1, τ2) /∈ Sλ. This can be seen from the following computation:∫
Πt

hλ(τ) ΘM2(Z)(τ ; v+) y−2 dx dy

=

∫
Πt

∑
n∈Z

∑
`∈M2(Z)

c(n, y) e(nτ) e
(
q(`v+)τ + q(`v−)

)
y−1 dx dy

=

1/2∫
−1/2

t∫
1

∑
n∈Z

∑
`∈M2(Z)

c(n, y) e
(
nx− q(`)x

)
exp
(
−4π q(`v+) y

)
y−1 dx dy

=

t∫
1

∑
`∈M2(Z)

c
(
q(`), y

)
exp
(
−4π q(`v+) y

)
y−1 dy.

Properties (i) and (iv) follow from Theorem B1 ([2, Theorem 6.2, p. 24]).

Property (ii) is obvious since the function Θ(τ ; τ1, τ2) is SL2(Z)-invariant
in the variables τ1 and τ2.

Property (iii) formally follows from the property of theta kernel given
in Proposition 8.1 and the fact that the Laplace operator is self adjoint with
respect to the Petersson scalar product. More precisely, we have

∆τ1ΦM2(Z)(hλ, v
+(τ1, τ2)) = lim

t→∞

∫
Ft

hλ(τ)∆τ1Θ(τ ; τ1, τ2)y−2dx dy.

Using Proposition 8.1 we arrive at

∆τ1ΦM2(Z)(hλ, v
+(τ1, τ2)) = lim

t→∞

∫
Ft

hλ(τ)∆τΘ(τ ; τ1, τ2)y−2dxdy.
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It follows from Stokes’s theorem that∫
Ft

hλ(τ)∆τΘ(τ ; τ1, τ2)y−2dxdy −
∫
Ft

∆hλ(τ)Θ(τ ; τ1, τ2)y−2dxdy

=

1/2∫
−1/2

(hλ L0(Θ)− L0(hλ) Θ)y−2dx

∣∣∣∣∣∣∣
y=t

.

This expression tends to zero as t tends to infinity. Since gλ ∈ Fk,2−2k it
follows from Proposition 5.1 that ∆hλ = k(1 − k)hλ. Thus, we see that the
theta lift ΦM2(Z)(hλ, v

+) satisfies the desired differential equation

∆τiΦM2(Z)(hλ, v
+(τ1, τ2)) = k(1− k)ΦM2(Z)(hλ, v

+(τ1, τ2)) (i = 1, 2).

It remains to prove (v). To this end we compute the Fourier expan-
sion of ΦM2(Z)(hλ, v

+(τ1, τ2)). This can be done using Theorem B2. We se-
lect a primitive norm zero vector m := ( 1 0

0 0 ) and choose m′ := ( 0 0
0 1 ) so

that (m,m′) = 1. For this choice of vectors m, m′ the tube domain H de-
fined by equation (3.3) is isomorphic to H × H and the map between H × H
and the Grassmannian Gr+(M2(Z) is given by

(τ1, τ2)→ v+(τ1, τ2).

The lattice K = (M ∩m⊥)/m can be identified with

M ∩m⊥ ∩m′⊥ =

{(
0 b

c 0

)∣∣∣∣ b, c ∈ Z
}
.

Set xi = <(τi) and yi = =(τi) for i = 1, 2. The subspace w+(τ1, τ2) ∈ Gr+(K)
is equal to

R

(
0 y1

y2 0

)
.

Suppose that the function gλ has Fourier expansion

gλ =
∑
n∈Z

a(n)e(nτ).

It follows from Proposition 5.4 that

hλ(τ) =
∑
n∈Z

c(n, y) e(nτ)

where

c(n, y) = a(n) y1/2 nk−1/2Kk−1/2(2πny) exp(2πny).

We write

c(n, y) =
∑
t≥0

b(n, t)y−t
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for some complex numbers b(n, t). We can rewrite equality (3.4) as

ΦM (v+, hλ) =
1√

2|mv+ |
ΦK(w+, h) +

√
2

|mv+ |
∑
`∈K

∑
n>0

e((nl,m′′v))×

×
∞∫

0

c
(
q(`), y

)
exp
(
−πn2/4q(mv+)y − 4πq(`w+)y

)
y−3/2dy

=
√
y1y2ΦK(w+(τ1, τ2), fK) +

1
√
y1y2

∑
`∈K

∑
n>0

e((nl, u))×

×
∞∫

0

c
(
q(`), y

)
exp
(
−πn

2y1y2

y
− πy (`, v)2

y1y2

)
y−3/2dy, (8.2)

where u = <
(

0 τ1
τ2 0

)
and v = =

(
0 τ1
τ2 0

)
. We choose a primitive norm zero

vector r = ( 0 1
0 0 ) ∈ K. It follows from [2, Theorem 10.2] that

ΦK(w+, hλ)=
∑
t

b(0, t)(2r2
w+)t+1/2π−t−1Γ(t+ 1)(−2πi)2t+2B2t+2/(2t+ 2)!

=
∑
t

b(0, t)(y2/y1)t+1/2π−t−1Γ(t+ 1)(−2πi)2t+2B2t+2/(2t+ 2)!.

(8.3)

In the case where `w+ 6= 0 it follows from [2, Lemma 7.2] that∫
y>0

c(`2/2, y) exp(−πn2/2ym2
v+ − πy`

2
w+)y−3/2dy

=
∑
t

2b(`2/2, t)(2|mv+ | |`w+ |/n)t+1/2K−t−1/2(2πn|`w+ |/|mv+ |).

(8.4)

In case `w+ = 0 it follows from [2, Lemma 7.3] that∫
y>0

c(`2/2, y) exp(−πn2/2ym2
v+ − 2πy`2w+)y−3/2dy

=
∑
t

b(`2/2, t)(2m2
v+/πn

2)t+1/2Γ(t+ 1/2). (8.5)

Substituting formulas (8.3) to (8.5) into (8.2) we obtain

ΦM (v+(τ1, τ2), hλ) = −
∑
t

yt+1
2

yt1
b(0, t)(−4π)t+1ζ(−2t− 1)

t!

(2t+ 1)!

+ 4
∑
t

(y1y2)−tb(0, t)(4π)−tζ(2t+ 1)
2t!

t!

+ 4
∑
t

∑
(c,d)∈Z2

(c,d) 6=(0,0)

∑
n>0

(y1y2)−tb(cd, t)n−2t−1×

× e(ncx1 + ndx2)|ncy1 + ndy2|t+1/2K−t−1/2(2π|ncy1 + ndy2|). (8.6)



CM values of higher Green’s functions 19

We see from (8.6) that ΦM (v+(τ1, τ2), hλ)→ 0 as y1 →∞. This finishes the
proof. �

Remark 8.3. The Fourier expansion of higher Green’s functions is computed
using a different method by Zagier in an unpublished note [15]. Also, we
should say that Theorem 8.2 could be deduced from the results of Bruinier
on theta lifts of real analytic Poincaré series [4].

9. CM values as regularized Petersson products

Now we can analyze the CM values of Gk,λ using the see-saw identity (6.2).

Let z1, z2 ∈ H be two CM points lying in the same quadratic imaginary
field Q(

√
−D). Let v+(z1, z2) be a two-dimensional positive definite subspace

of M2(R) defined as

v+(z1, z2) = R<
(

z1z2 z1
z2 1

)
+ R=

(
z1z2 z1
z2 1

)
. (9.1)

In the case where z1 and z2 lie in the same quadratic imaginary field the
subspace v+(z1, z2) defines a rational splitting of M2(Z) ⊗ Q. So, we can
consider two lattices

N := v+(z1, z2) ∩M2(Z) and M := v−(z1, z2) ∩M2(Z).

The Grassmannian Gr+(N) consists of a single point N ⊗ R and its
image in Gr+(M2(Z)) is v+(z1, z2).

Since the lattice N has signature (2, 0) the theta lift of a function

f ∈ M̂ !
1 (SL2(Z), ρN ) is just a number, which is equal to the regularized inte-

gral

ΦN (f) =

∫
SL2(Z)\H

〈f(τ),ΘN (τ)〉 y−1 dx dy. (9.2)

Here ΘN is the usual (vector valued) theta function of the lattice N . The
matrix TM2(Z),N = (ϑ0,ν)ν∈N ′/N becomes a vector in this case, given by

ϑ0,ν(τ) =
∑

m∈M ′∩(−ν+M2(Z))

e(−τm2/2).

Till the end of this section we will simply write ϑν(τ) for ϑ0,ν(τ).

Theorem 9.1. Suppose given two CM-points z1, z2 and a lattice N ⊂M2(Z) as
above. Let λ be a relation for S2k(SL2(Z)) and let gλ ∈M !

2−2k(SL2(Z)) be the
corresponding weakly holomorphic modular form defined in Proposition 1.1.
Then, if (z1, z2) /∈ Sλ we have

ΦM2(Z)(v
+(z1, z2), Rk−1(gλ)) = ΦN (f),

where f = (fν)ν∈N ′/N ∈M !
1 (SL2(Z), ρN ) is given by

fν = [ gλ, ϑν ]k−1.
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Proof. For (z1, z2) /∈ Sλ the constant term (with respect to e(x)) of the
product

〈Rk−1(gλ)(τ),Θ(τ ; z1, z2)〉
is equal to ∑

`∈M2(Z)

y c
(
q(`), y

)
exp(−2πy`2v+)

where c
(
q(`), y

)
are the Fourier coefficients of Rk−1(gλ). This constant term

decays as O(y2−k) as y →∞. Thus,

ΦM2(Z)(v
+(z1, z2), Rk−1(gλ)) = lim

t→∞

∫
Ft

Rk−1(gλ)(τ) Θ(τ ; z1, z2) y−2dx dy.

It follows from the see-saw identity (6.2) that

ΦM2(Z)(v
+(z1, z2), Rk−1(gλ)) = lim

t→∞

∫
Ft

〈Rk−1(gλ)ϑ,ΘN 〉y−1 dx dy.

By Proposition 5.2,

Rk−1(gλ)ϑν = (−1)k−1[gλ, ϑν ]k−1 +R(

k−2∑
s=0

bsR
s(gλ)Rk−2−s(ϑν)) (9.3)

where bs are some rational numbers. For ν ∈ N ′/N denote

ψν(τ) :=

k−2∑
s=0

bsR
s(gλ)Rk−2−s(ϑν).

Using identity (9.3) we write

lim
t→∞

∫
Ft

〈Rk−1(gλ)ϑ,ΘN 〉y−1 dx dy

= (−1)k−1 lim
t→∞

∫
Ft

〈[gλ, ϑ]k−1,ΘN 〉y−1 dx dy

+ lim
t→∞

∫
Ft

〈R(ψ),ΘN 〉y−1 dx dy.

It follows from Proposition 5.3 that

lim
t→∞

∫
Ft

〈R(ψ),ΘN 〉y−1 dx dy = lim
t→∞

∫ 1/2

−1/2

〈ψ(x+ it),ΘN (x+ it)〉t−1 dx = 0,

which finishes the proof �

10. Algebraicity of weight one Petersson products

Theorem 10.1. Let N be an even lattice of signature (2, 0) and let f ∈M !
1 (ρN )

be a modular form with zero constant term and integer Fourier coefficients.
There exists an even lattice P of signature (2, 1) and a function h ∈M !

1/2(ρP )

such that

1. There is an inclusion N ⊂ P .
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2. The lattice P contains a primitive norm zero vector.

3. The function h has rational Fourier coefficients. Moreover, 720h has
integer Fourier coefficients.

4. The constant term of h is zero.

5. We have TP,N (h) = f for the map TP,N defined in Theorem 6.2.

Proof. We adopt the method explained in [2, Lemma 8.1].

Consider two even unimodular definite lattices of dimension 24, say
three copies E8⊕E8⊕E8 of the E8 root lattice and the Leech lattice Λ24. We
can embed both lattices into 1

16Z
24 (equipped with the standard Euclidean

norm). To this end we use the standard representation of E8 in which all
vectors have half integral coordinates, the standard representation of the
Leech lattice and the norm doubling map defined in [7, Chapter 8, p. 242]

Denote by M1 and M2 the negative definite lattices obtained from
E8 ⊕ E8 ⊕ E8 and Λ24 by multiplying the norm by −1 and assume that they
are embedded into 1

16Z
24. Denote by M the negative definite lattice 16Z24.

The theta functions of the lattices M1 and M2 are modular forms of level 1
and weight 12 and their difference is 720∆, where

∆(τ) = q − 24q2 + 252q3 +O(q4)

is the unique cusp form of level 1 and weight 12.

Consider the function g in M !
−11(SL2(Z), ρN⊕M ) defined as

g := res(N⊕M1)/N⊕M (f/∆)− res(N⊕M2)/N⊕M (f/∆).

The maps

res(N⊕Mi)/N⊕M : M !
−11(SL2(Z), ρN⊕Mi

)→M !
−11(SL2(Z), ρN⊕M )

for i = 1, 2 are defined as in Lemma 2.1. It is easy to see from the defini-
tions (2.5) and (6.1) that

TN⊕M,N (g) = TN⊕M,N

(
res(N⊕M1)/N⊕M (f/∆)− res(N⊕M2)/N⊕M (f/∆)

)
= TN⊕M1,N (f/∆)− TN⊕M2,N (f/∆)

=
f

∆
(Θ̄M1

− Θ̄M2
)

= 720f.

Suppose that g has Fourier expansion

gµ(τ) =
∑
m∈Q

cµ(m) e(mτ), µ ∈ (N ′ ⊕M ′)/(N ⊕M).

By construction, the constant term of g is zero. Consider the following finite
set of vectors in M ′

S := {` ∈M ′|c(0,`+M)(q(`)) 6= 0},
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where (0, `+M) denotes an element in (N ′ ⊕M ′)/(N ⊕M). Note that this
set is finite and does not contain the zero vector. We claim that there exists
a vector p ∈M such that

1) the lattice N ⊕ Zp contains a primitive norm 0 vector;

2) (p, `) 6= 0 for all ` ∈ S.

Indeed, condition 1) is equivalent to the property that there exists a vector
n ∈ N ⊗Q such that q(p) = −q(n). Condition 2) is equivalent to the require-
ment that p avoids finitely many hyperplanes H` := {w ∈M⊗Q | (w, `) = 0}.
Since the dimension of M is 24 we know that all numbers in −162Z≥0 are
represented by (M, q). Moreover, for k ∈ 162Z≥0 the points

Xk :=

{
s

−q(s)
| s ∈M, q(s) = −k

}
are uniformly distributed on the unit sphere S23 as k tends to infinity. Namely,
for a continuous function f : S23 → R we have

lim
k→∞

1

|Xk|
∑
x∈Xk

f(x) =

∫
S23

f(y) dµ(y),

where µ is the normalized Lebesque measure. Therefore, for a sufficiently
large k ∈ 162Z≥0 the set Xk \ (∪`∈SHl) is non-empty. In particular, this
condition holds for some k represented by (N ⊗ Q, q). Then each point in
Xk \ (∪`∈SHl) corresponds to a vector p satisfying conditions 1) and 2).

Consider the lattice P := N ⊕ Zp. It follows from Theorem B1 that
the subvariety Gr+(P ) of Gr+(N ⊕M) is not contained in the singular lo-
cus of ΦN⊕M (v+, g). Moreover, the restriction of ΦN⊕M (v+, g) to Gr+(P ) is
nonsingular at the point Gr+(N).

Define h := 1
720TN⊕M,P (g). The constant term of h is zero and h has

rational (with denominator bounded by 720) Fourier coefficients. We have

TP,N (h) =
1

720
TP,N

(
TN⊕M,P (g)

)
=

1

720
TN⊕M,N (g) = f.

This finishes the proof. �

Corollary 10.2. Let f,N, h, P be defined as in Theorem 10.1. Then

ΦN (f) = ΦP (Gr+(N), h) = −4 log |ΨP (Gr+(N), h)|,
where ΨP ( · , h) is the meromorphic infinite product defined in Theorem B3.

Remark 10.3. By abuse of notation we write

log |ΨP ( · , h)| = 1

n
log |ΨP ( · , nh)|

where n is an integer big enought such that nh has integer Fourier coefficients
and therefore the meromorphic infinite product ΨP ( · , nh) is well defined.

Proof. The corollary follows immediately from the Theorem 10.1 and the
see-saw identity of Theorem 6.2. �
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Theorem 10.4. Let N be an even lattice of signature (2, 0) and let f ∈M !(N)
be a modular form with zero constant term and rational Fourier coefficients.
Then

ΦN (f) = logα

for some α ∈ Q.

Proof. We recall that if a weakly holomorphic modular form has rational co-
efficients then the denominators of the coefficients are bounded. Therefore
we may assume that the Fourier coefficients of f are integers. Let P and h
be as in Theorem 10.1. Since the constant term of h is zero, we know from
Theorem B3 that there exists an integer m ∈ Z\{0} such that Ψm

P (v, h) is
a meromorphic function on the complex manifold Gr+(P )/Aut(P, P ′). The
theory of Shimura varieties of orthogonal type implies that the complex vari-
ety Gr+(P )/Aut(P, P ′), the point in this variety defined by Gr+(N), and the
meromorphic function Ψm

P (v, h) can be defined over a certain number field.
Therefore, the value ΨP (Gr+(N), h) is algebraic. Below we give a more de-
tailed proof of this statement, which uses only the theory of modular curves.

Recall that by Theorem 10.1 the lattice P has signature (2, 1) and con-
tains a primitive vector of norm 0. It is easy to see that the rational quadratic
space (P ⊗Q, q) is isomorphic to the space

V =

{(
x1 x2

x2 x3

)
| x1, x2, x3 ∈ Q

}
of symmetric 2 × 2 matrices with rational coefficients equipped with the
quadratic form q(v) = −a det(v) for some a ∈ Q>0. Indeed, let p be a nonzero
element of P such that q(p) = 0. The dimension of the orthogonal subspace p⊥

is 2 and a simple computation shows that its signature is (1, 0, 1) (i.e every
Sylvester basis of this quadratic space over R contains 1 vector of positive
norm, no vectors of negative norm, and 1 vector of zero norm). To see this
we consider a basis (p, p′, p′′) of P ⊗R such that p′ is in p⊥. In this basis the
Gram matrix of the symmetric bilinear form β associated to q takes the form(

0 0 β(p,p′′)

0 β(p′,p′) β(p′,p′′)

β(p′′,p) β(p′′,p′) β(p′′,p′′)

)
.

The determinant of this matrix is negative since the signature of P ⊗ R is
(2, 1). Therefore we see that β(p′, p′) > 0. Let r be a vector of P ⊗ Q in p⊥

such that q(r) > 0. Then r⊥ is an isotropic quadratic space of signature (1,1).
Therefore, r⊥ has a basis (p, s) such that q(p) = 0, q(s) = 0, and β(p, s) = −a
for some a ∈ Q>0. Note that (p, r, s) is a basis of P ⊗Q and

q(x1 p+ x2 r + x3 s) = −adet

(
x1 x2

x2 x3

)
, x1, x2, x3 ∈ Q.

Therefore, the quadratic space (P ⊗Q, q) is isomorphic to V .

Next, we observe that SL2(Q) acts on V by

v 7→ gvgt, v ∈ V, g ∈ SL2(Q) (10.1)
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and preserves the quadratic form q. Moreover, there exists a natural number n
such that the lattice

U =

{(
x1 x2

x2 x3

)
| x1, x2, x3 ∈ nZ

}
is contained in P and the dual of P , the lattice P ′, is contained in the dual
of U

U ′ =

{(
y1 y2

y2 y3

)
| y1, y2, y3 ∈

1

2an
Z
}
.

Therefore, the group Aut(P, P ′) contains the principal congruence subgroup
of level 2an2

Γ2an2 =
{
g ∈ SL2(Z)|g ≡ ( 1 0

0 1 ) mod 2an2
}
.

Now we consider the Grassmannian Gr+(P ) in more detail. We have
explained in Section 8 that Gr+(P ) is isomorphic to a tube domain. Since
the signature of P is (2, 1), this tube domain is isomorphic to the upper
half-plane H. The isomorphism is given by mapping τ ∈ H to the two-
dimensional vector subspace of V ⊗ R spanned by the vectors <

(
τ2 τ
τ 1

)
and

=
(
τ2 τ
τ 1

)
. The corresponding action of SL2(Q) on H induced by (10.1) is given

by linear-fractional transformations. Moreover, the point Gr+(N) in Gr+(P )
corresponds to a CM point τN ∈ H. By Corollary 10.2 we have

ΦN (f) = −4 log |ΨP (τN , h)|,
where ΨP (τ, h) is a meromorphic modular function on H for a congruence
subgroup of SL2(Z) and some unitary character. Theorem 4.1 of [3] says that
this character has finite order. Part 4 of Theorem B3 implies that ΨP (τ, h)
has rational Fourier coefficients with bounded denominators. Thus, it follows
from the q-expansion principle and the theory of complex multiplication that
α := ΨP (τN , h) is an algebraic number. �

Remark 10.5. Regularized Petersson products of weight one modular forms
are studied in detail in [8] and [14]. In particular, the field of definition of α
and its prime factorization are discussed in these papers.

11. Proof of Theorem 1.3

Proof. Let gλ be the weakly holomorphic modular form of weight 2− 2k de-
fined by Proposition 1.1. Consider a function hλ = Rk−1(gλ). In Theorem 8.2
we show that

Gk,λ(τ1, τ2) = ΦM2(Z)(v
+(τ1, τ2), hλ) (11.1)

for (τ1, τ2) ∈ H× H \ Sλ.

Let v+(z1, z2) be the two-dimensional positive definite subspace ofM2(R)
defined in (9.1). In the case where z1 and z2 lie in the same quadratic imag-
inary field the subspace v+(z1, z2) defines a rational splitting of M2(Z) ⊗ R.
So, the lattice N := v+(τ1, τ2) ∩M2(Z) has signature (2, 0).
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It follows from Theorem 9.1 that

ΦM2(Z)(v
+(z1, z2), Rk−1(gλ)) = ΦN (f), (11.2)

where f = (fν)ν∈N ′/N ∈M !
1 (SL2(Z), ρN ) is given by

fν = [ gλ, ϑν ]k−1.

Let P and h be as in Theorem 10.1. Corollary 10.2 implies that

ΦN (f) = ΦP (Gr+(N), h) = −4 log |ΨP (Gr+(N), h)|.

Thus, from the theory of complex multiplication we know that

ΦN (f) = log |α| (11.3)

for some α ∈ Q. The statement of the theorem follows from equations (11.1)
to (11.3). �
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