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Introduction. In this lecture we study diophantine approximations to

numbers represented as values of Siegel's G-functions [1]. The G-

functions f(x) are defined as solutions of linear differential equa-
- co n

tions over having an expansion at zero f(x) = E 0 a x
n= n

n n
and lanl c f' denom{ao, ••• ,an} c f for a constant c f 2 1.

tions are important in the description of geometric objects (see §l

and [13]), and their values represent many classical constants (i.e.

periods of algebraic varieties). Siegel [1] introduced G-functions

and sketched a program of study of the arithmetic properties of values

of G-functions at rational (algebraic) points near the origin. Some

results along these lines were proved in [6]-[10], but under strong

(G,C)-assumptions on linear differential equations satisfied by G-

functions (the global nilpotence property, ... etc. see §l). In this

paper we prove the G-function results that Siegel sought, without any

additional assumptions.

Our main results are collected in §l. § 1 also contains a discus-

sion of G-functions, the (G,c)-property and its geometric and p-adic

senSe. Two of our key results are Theorems I and lIon the absence of

linear and algebraic relations between values of G-functions. The

basis of all of our proofs is the method of approximation of the

second kind presented in §§2-4. The proof of Theorem I is presented

in §S and the proof of Theorem II is given in §§6-7. Another important

result is Theorem III of §l, proved in 18, that any G-function is a

(G,C)-function. As a consequence of this result and [11], any G-function

*) This work was supported in part by the U.S. Air Force under the
Grant AFOSR-8l-0l90.
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is a solution of a Fuchsian linear differential equation with ration­

al exponents at regular singularities and the global nilpotence proper­

ties. For a discussion of the global nilpotence properties and the

Grothendieck conjecture, see [4].

Our results on the diophantine inequalities for values of G­func­

tions are particularly important for algebraic functions, when they im­

ply effective bounds on solutions of diophantine equations. The rele­

vant results for G­functions are formulated in §l as Theorems v.
The method of their proof is the technique of graded approx­

imations [3], [19]. These theorems imply an effective version of a

particular case of Schmidt's theorem [16], when algebraic numbers are

values of algebraic G­functions near the origin [24]. Our results

have the form of effective upper bounds on integral solutions of Norm­

form equations, particularly Thue equations [19], depending on an inte­

gral parameter. The uniform bounds for Thue equations are established

for the first time. We present a typical result of this form.

Theorem A: Let n 2 3 and F(x,y) e Z[x,y] be a polynomial of degree n

in y, irreducible over m[x,y]. Let all real branches y = y(x) of

F(x,y) =0 have power series expansions in x­
l
at x = 00 with integral

exponents (bounded from below) and with rational coefficients. Then

the Thue equation depending on an integer parameter N:

def n X
f(X,Y,N) = Y .F(N,y) = A

has at most finitely many rationally parametrized solutions. These

parametrized solutions have the form: y/x = P(N)/Q(N), A­fixed, for

p{x), Q{x) e m[x]. Parametrized solutions can be determined as ex­

ceptionally good rational approximations P{x)/Q{x) of a real branch

y = y{x) of F{x,y) =0 at x = oo­­and there are only finitely many such

exceptionally good approximations [18]. with the exception of para­

metrized solutions, the Thue equation (0.1) has only finitely many

integral solutions (X,Y,N) for a fixed A. For any e> 0, and N 2 Nl{e),

the non­parametrized solutions X, Y of (0.1) are bounded from above

as follows
1/ (n-2) - e

max(\XI,IYI) S YO(e)\A\ .

Here YO{e) > 0 is an effective constant depending on e > 0 and polyno­

mially on the height of the polynomial F{x,y).
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§L Siegel's G-functions.

Siegel had initiated in 1929 in [1] a program of study of arithme-

tic properties of values of analytic functions given as solutions of

linear differential equations with additional arithmetic conditions on

coefficients of their Taylor expansions. Two particular classes of

functions were singled out in [1]. The first class of E-functions con-

sists of entire functions f(x) = E:=O anxn/n: such that an m,
-- Il Il
lanl nand denom(aO'" .,an} n for n 2 nO(e) and such that f(x)

satisfies a linear differential equation over Typical E-functions

are the exponential function eX and Bessel functions J (x) with v m.
v

For E-functions Siegel had proved very strong transcendence and alge-

braic independence results using the method of approximating forms [1],

[2]. This method is essentially approximation technique to solu-

tions of linear differential equations [3]. The second class of func-

tions, considered by Siegel in [1], called G-functions, consists of

analytic functions f(x) = a xn with a m, la I / en andn=O n n n .;,
denom(ao, ... ,a

n}
en for some e 2 1, such that f(x) satisfies a linear

differential equation over m(x). These functions are much more import-

ant for applications in diophantine geometry. This chapter devoted

to the discussion of geometric obstructions to Siegel's pro-

gram to G-functions (expressed by p-curvature operators). We also

present our new G-function theorems that overcome these obstructions

and realize a large part of Siegel's program.

We use the standard notations of the algebraic number theory. For

an algebraic number a and a complete set (a
l

a, .•. ,a
d}

of numbers

algebraically conjugate to a, we denote by 101 = max(lall,···, ladl}

the size of a. AlSO den (a) denotes such a rational integer that

den(a)·a is an algebraic integer.

The product formula implies the following Liouville inequality:
d -d-l

lden(a) .a· lal I 2 1 where a lOis an algebraic number of degree d.

Also we denote by den(a
O""

,an} the cornman denominator of aO" .. ,an•

Definition 1.1 (Siegel): Let f(x) = E:=O anx
n

be a solution of a linear

differential equation over ili(x). f(x) is called a G-function of an m
and there exists a constant e > 0 such that lanl en and the common

denominator of ao, •.• ,a
n
is at most en.
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Remark 1.2: In fact, all coefficients an of the expansion of f(x) be-

long to a fixed algebraic number field

be achieved by considering simultaneously with f(x) =

all functions f(a) (x) = L
oo

0 a(a)xn with a(a ) = a(a)
n= n n n

imbeddings a: K reo Then the functions Sym(f(cr) (x): cr: K re), for

all symmetric combinations Sym of f(a) (x), are already G-functions with

K = m (i.e. one can replace m by m in the Definition 1.1 above).

K. The field K is generated
- d

by the coefficients of a linear differential equation from m(x) [dx]'

satisfied by f(x) and by first few an' For the purposes of this paper

we can and will assume that K m. Such a reduction to K = m case can
00 n

Ln=O anx K[ [x] ]

for isomorphic

Obviously, algebraic functions are G-functions, because, by Eisen-

m, the common denominator of aO, .•. ,a
n
di-

A, B. Also, the class of G-func-

stein's theorem, for an algebraic function f(x) with the expansion
00 n

f(x) = E 0 a x with an= n n
vides A.Bn for appropriate

tions is closed under integration, addition, multiplication and differen-

tiation. In particular, solutions of Picard-Fuchs equations, includ-
a l , · · .,a +1

ing hypergeometric lF (b b
m

Ix)-functions with rational a., b.
m+ m 1"'" m a, J

also belong to the class of G-functions.

In [1], Siegel, while solving the problem of diophantine approxima-

tions to values of E-functions at algebraic points, made an indica-

tion that something similar could be done for values of G-functions.

First of all, because G-functions have a finite radius of convergence

and, obviously, their values at rational points are not necessarily

irrational, there are natural restrictions on values of G-functions un-

der consideration. Siegel proposed such conditions on (rational) points

x, close to the origin for x Ixl < Iql-e or even Ixl <
1/2+e

exp(- Loq l q ] ) for e .> 0 and large q, !ql 2 qO(e).

However, Siegel did not formulate any theorem on irrationality,

measure of irrationality (or non-algebraicity of a bounded degree) for

values of G-functions. Instead, he remarked that such theorems could

be obtained, and gave a few examples: one concerning values of Abelian

integrals and another dealing with values of particular hypergeometric

functions. In fact, there are serious obstacles to any immediate

attempts to extend Siegel's theory from E-functions to G-functions. The

reason for this lies in the necessity fo bound the denominators of the

coefficients of the expansion of a G-function f(x) at points x = t,
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distinct from zero. To see the reason for this "global" condition

on f(x), we review briefly Siegel's method.

Siegel's method is based on construction of a system of approxi­

mating forms, or pad' approximations. These forms are constructed in

the following way. Let fl(x) = f(x), ... ,fn(x) be a system of G­func­

tions satisfying a system of the first order linear differential equa­

tions over tU (x) :

(1.1)

-+
f = (fl(x), ..• ,fn(x» and A = A(x) M(n,tU(x». Typically, fi(x)

= where f(x) satisfies a scalar linear differential equa­

tion over tU(x) of order n.

An approximating form for fl(x), ... ,fn(x) (or a remainder function

in approximation problem for fl(x), ... ,fn(x» has the form:

Here p. (x) are polynomials P. (x) tU[x] of degrees at most D: i = l, ... ,n;
a,

where L(x) has a zero at x = 0 of order at least nO - [ D] for some

E: > O.

Since f. (x): i = l, ... ,n are G­functions, one can always find

Pi(x) with integral coefficients of sizes at most i = l, ... ,n

for a constant Cl > 0 (depending only on fl, ... ,fn). This is achieved

using the Thue­Siegel lemma [1], [5] being a version of Dirichlet's

box principle.

Siegel's theory of approximating forms (developed by him for E­

functions) predicts the existence of n linearly independent forms in

fl(x), •.• ,fn(x):

(1.2) (x) PI,; (x)fl(x) +... + P ,(x)f. (x),
L n,:..

where
1 k i d k i

L. (x) =­,.D(x) . (dx) L (x) , i
k .•

1, ... ,n

and 0 = k o <... < kn and kn eO + C2. Here D(x) is a (polynomial) de­

nominator of the elements of the matrix A = A(x). In (1.2) all

P .. (x) (i,j l, •.. ,n) are polynomials (from tU[x]). Let now the common
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denominators of the coefficients of the polynomials P .. (x) (i,j=l, .•• ,n)
D ),1

are not too big (like C
2
for C

2
> 0). Then from the system (1.2) of n

linearly independent forms one can immediately get (see the discussion

in [3]) a nontrivial lower bound for a linear form in numbers

... ,fn(xo) with arbitrary integral coefficients

Iql = max(lqll,···, \qn l ) 2 qo and A> 0 for a rational Xo very close

to the origin.

However, the sizes of the denominators of coefficients of P .. (x)
),1

should grow as - k i: for large k
i"

Indeed, to differentiate L(x) k

times we need to iterate the equation (1.1) k times. We get

(1. 3)
d k

(dX) - - 0 (mod 11--9..dx - A (x)").

Here, in general, k: does not divide the coefficients of polynomial
k

entries of D(x)

However, one sees that Siegel's method can be applied to G-func-

tions fl(x), •.. ,fn(x) satisfying equations (1.1), if the following

additional (G,C)-assumption is imposed:

(G,C)-Assumption: We call functions f
l
(x),. " ", f

n
(x) (G,C)-functions,

if they are G-functions, and,for a differential equation (l.l),that they

satisfy, the common denominator of all coefficients of polynomial en-

tries of matrices k = O,l, .•. ,N grows not faster than
N "

C
2
for a constant C

2•
This kind of assumption was first proposed by Galockin [6]. (G,C)-

assumption is correct for algebraic functions and solutions of Picard-

Fuchs equations (because of their p-adic behavior, see later). This

(G,C)-assumption is explicit in all nontrivial result s on G-functions

obtained since 1929 (Galockin [6], Vaananen [7], Flicker [8], Bombieri

[9], authors [10]).

It turns out, however, that the general G-function theory, as

Siegel hoped for, and is similar to the E-function theory can

be constructed without any use of additional (G,C)-function assump-

tions. To see why this is so remarkable, one should realize that

(G,C)-function assumption is an important p-adic condition and, unlike
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G-function assumption has a direct geometric sense after reduction

(mod pl. One can visualize this by introducing p-curvature operators

(Cartier, Grothendieck, Deligne, Katz, Dwork, see [11], [12], [13]):

,t.
p

= (..£.. I-A) P (mod p)'dx •

In fact, (mod p), V is a linear operator and, in the notations
p

of (1.3), [11]:

,I, _ A (mod p ) ,
- p

Then the (G,c)-function assumption implies, in particular, that

the operators V are nilpotent for almost all prime p. Moreover,
p

the (G,c)-assumption can be reformulated in terms of the relation between

the p-adic radius of convergence of solutions of (1. 1) at a "generic

point ttl for almost all p [9]. According to Bombieri [9], equation

t, converge for ord (x-t)
p

Then any equation of "arithmetic type" satisfies (G,C)-assump-

(1.1) is of "arithmetic type" if L: c log p < 00, where all solutionsp p
of (1.1), expanded at a "generic" point x

[9] •

Obviously, the global nilpotence of (1.1) (i.e. the condition that

W
p
is nilpotent for almost all p) is a very restrictive arithmetic

condition. It is widely suspected that all globally nilpotent equa-

tion in Dwork's phrase, "come from Geometry" [12]. The most known

among these equations is the class of picard-Fuchs equations for per-

iods of algebraic varieties.

The G-function condition is, on the contrary, local and requires

only power series expansion of one solution at (and not

generic) point. That is why the fulfillment of Siegel's program for

G-functions is so important.

Our proof of G-function theorems relies on Pade approximation

theory, but this time we are using approximants of the second kind

or Germanic polynomials (in the sense of Mahler [14]).

We present one of our main results on G-functions, that follow

Siegel's program. The proof of this Theorem I is given in §5.

Theorem I: Let fl(x), .•. ,fn(x) be G-functions with rational coeffi-

cients in their Taylor expansions, satisfying a first order linear
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differential system (1.1) over m(x), and such that functions 1,

f
l
(x), ... ,fn(x) are linearly independent over m(x). Then for any £ > 0

and arbitrary rational r = alb with (rational) integers a and b

such that \bl£ 2 c3Ial(n+l}(n+E:), r i' 0, the numbers 1, fl(r), ... ,fn(r)

are linearly independent over m; and for arbitrary rational integers

HO,Hl, ... ,Hn we have

with H = max(IHol, .•• , IHnl), when H 2 h o' Here c
3
= C3 ( f

l
, ..• ,f

n,£)
> 0,

h O hO(fl, •.. ,fn,£,r) > 0 are effective constants.

In general, we have

Ml Ml
with A = -n loglblilogibia I, whenever Ibl 2 c41al and H 2 hI in

the notations above, with effective constants c
4
= c

4(fl,
... ,f

n,n)
> 0

and h l = hl(fl, ... ,fn,n,r) > O.

The method of proof of Theorem I, and other similar results, is

not based, like in Siegel's method for E-functions, on direct construc-

tion of approximating forms to l,fl(x), ... ,fn(x). Rather we constuct

approximations of the second kind tOf1(x), .•. ,fn(x). This

system of approximations takes the fOllowing form:

R. (x) Q(x).f. (x) - P. (xl: i = L, ... ,n,
J. J. J.

where Pl(x), ... ,Pn(x), Q(x) are polynomials in x of degrees at most

D, and such that

D
ord OR. (x) 2 D + - - cD:

x= J. n

i = l, ... ,n.

It is much easier to control denominators of derivatives of re-

mainder functions R. (x) for approximations of the second kind:
J.

1 k d k
R. k = -k,D(X) • (-d) R. (x) ,
J.,. X J.

than for Pade-type approximants of the first kind. On the other hand

there is a well-known duality principle that expresses pade(-type)

approximants of the first kind in terms of contiguous (-type)
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approximants of the second kind, and vice versa [14]. This duality

principle was axiomatized by Mahler [lS) in his studies of integral

points and successive minima of convex bodies in archimedian and non-

archimedian metrics. (It is, in fact, one of the versions of

Khintchine's transference principle, that corresponds to reciprocal

parallelepipeds, see [16].) The duality principle allows us to pass

from the remainder functions R. k to a system of approximating forms

with controllable denominators of coefficients of polynomial approxi-

mants. This is the key to proof of Theorem I and other similar

results.

If one looks only on linear independence (irrationality) state-

ments for values of G-functions, then restrictive conditions of Theorem

I on r = alb can be considerably relaxed. We give an example of only

one such result, where the (G,C)-assumption is not used.

Theorem II: Let fl(x), ••• ,fn(x) be G-functions satisfying matrix

first order linear differential equations (1. 1) over and such that

functions 1, fl(x), ... ,fn(x) are algebraically independent over

Then for any t 2 1 there exists an effective constant C
s

cs(fl, •.. ,fn,t) > 0 such that for any algebraic number S 0 of degree

t, it follows from

(1.4)

that numbers

4n
--}4n+llsI < exp(-cS(log\S\ ),

are not related by an algebraic relation of degree t over m(S)'

The duality between approximants of the first and the second

kind enables us to settle a longstanding problem (10) on the relation-

ship between G-functions and (G,c)-functions. It turns out that every

G-function is, in fact, a Such a result fulfills

another part in Siegel's program:

Theorem III: Let fl(x), •.. ,fn(x) be a system of G-functions satisfying

a system of first order linear differential equations (1.1) over

If fl(x), .•• ,fn(x) are linearly independent over then the func-

tions fl(x), •.• ,fn(x) are (G,C)-functions.
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proof of Theorem III is presented below in §8. We remark that

the condition of linear independence of fl(x), ••. ,fn(x) is clearly

necessary, even in the case of scalar linear differential equations,

when fi(x) = f(i-l) (x): i = l, ... ,n. E.g. one can consider n = 2 and

the linear differential equation f" - f' = 0 (two solutions: f = 1 and

f = eX). The function f =1 is a G-function, but the (G,C)-assumption

is clearly false for the equation flO - f' = O.

Theorem III also implies that every equation of order n having

a G-function solution (that does not satisfy an equation of order n-l

over (ii(x» is of "arithmetic type".

OUr novel approach to G-functions, used in proofs of Theorems 1­

III, opens an opportunity to apply Pade approximations to the study

of globally nilpotent linear differential equations. This new method

is the basis of our results on the Grothendieck conjecture. These re-

sults are presented in [4].

It is known that bounds on linear forms in values of G-functions

can be obtained in non-archimedian, as well as in achimedian metric,

provided the (G,C)-assumption is met, see [7J, [9J. Thus, we can use

Theorem III to obtain results on simultaneous approximations in several

metrics. However, it is easier to use directly the proofs of Theorems

I and II. To formulate the kind of results we obtain, let us denote

for an arbitrary G-function f(x) = 0 a x
n

(a K: n = 0,1, ... ) and
n= n n

a place v of K, by f(v) (x) the function defined on the completion

Because f(x) is a G-function, every function

X K is a
v

and it can be different from the value of f(x),

corresponding to v. E.g. for the one (i-th) archimedian place
(.) (Vi)

the imbedding a: » a: of K e. ll::, f (x)

non-archimedian place v, f(v) (x) is defined on
(v)

K. E.g. the value of f (x) at

K

v. corresponding to
(i) n

0 an x. For a

the completion K
v
of

v-adic number from Kv
K c K •v
nonzero radius of convergence in Kv'

In these notations results of Theorems I and II hold for any func-

tion f(v) (x). Namely, we have

even when x

f(v) (x) has a

of

Remark: If in Theorem II we consider K containing m(S} and the field

of coefficients of expansions of fi(x): i = 1, ... ,n, then the results
(v) (v).

of Theorem II holds for functions f
l

(x), ..• ,f
n

(x) of

fl(x}, ... ,fn(x). One has only to replace lsI in (l.4) by Isl v and
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. (v) (v)
(complex) numbers fl(g), •.. ,fn(g) by ones: f

l
(g), ••• ,fn (g)

from K
v'

The constant c
3
then depends on v as well. Similarly, in

Theorem I, under the assumptions la/bl
v

c
3

(v) (v)
the v-adic numbers l,f

l
(r), ..• ,f

n
(r) are linearly independent over

<II and \HO + Hlfl (r) + .•• + Hnfn(r) Iv > H-n-e: with H "" maxClHO\"'" \HnP

2 h
O

and c
3,

h
O
depending on v.

The results of Theorem II form is the kind of result Siegel had

expected. One hopes, however, to go beyond the fulfillment of

Siegel's program and to attempt to remove the condition (1.4) or, at

least, to weaken it considerably. Though we cannot yet report an

ultimate progress here, some progress has been achieved. We report

one such result.

Theorem IV: Let fl(x), ... ,fn(x) be G-functions satisfying matrix

first order linear differential equations (1.1) over m(x), and such

that fl(x), •.• ,fn(X) are algebraically independent over m(x). Then

for any d 2 1 and e: > 0 there exists c 6 = c
6(fl,

•.• ,fn,d,e:) > 0 such

that for any algebraic number g F 0 of degree d, from

l+e:
Ig \ < exp(-c6(10g log H(g)} ),

it follows that

are not related by an algebraic relation of degree dover <II(S)'

For applications of diophantine inequalities to diophantine

equations one needs a version of Theorem I, when fl(x), ••• ,fn(X) do

not satisfy any more a first order system of linear differential equa-

tions (1.1), but instead are solutions of linear differential equations

of an arbitrary order over m(x). Such results for functional diophan-

tine approximations correspond to KOlchin's type problems [17] and

to analogs of Schmidt's theorem [16] for solutions of linear differen-

tial equations proved in [18J, [19]. Similar results for E-functions,

particularly for sums of exponential functions were proved by authors

using methods of graded approximations [3]. We use methods of

graded approximations to prove results close to the best possible
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for values of G-functions satisfying linear differential equations of

an arbitrary order. One of our results is the following.

Theorem V: Let (x), ... ,fn(x) be G-functions with rational number

coefficients of Taylor expansions, satisfying linear differential equa-

tions over m(x). Then for any > 0 and a rational number r = alb,
n(n-l-+'e)

with integers a and b such that Ibl 2 c71al '

c 7 = c7(fl, ... ,fn,e)
> 0 we have the following lower bound for linear

forms in fl(r), ... ,fn(r). For arbitrary non-zero rational integers

Hl,···,Hn and H = max(\Hll, ... , \Hn ! ) , if Hlfl(r) +... + Hnfn(r) F 0,

then

provided that H 2 ca with c a = ca(fl, ... ,fn,r, c) > 0, and effective

c 7 > 0, ca > O.

Under the same assumptions on r, for linearly independent over

m(x) functions 1, (x), ... ,fn(x) and arbitrary rational integers

q, ql, ... ,qn we have:

and

provided that lql ... qn\ > c g and Iq\ > c g' Here 11·11 is the distance to

the nearest integer, and c g = cg(fl, ... ,fn,r,c) > 0 is an effective

constant.

In all results above we can also explicitly exhibit the dependence

of constants c
a'

and c g on r, namely on Ibl. This is of particular

importance in our applications to algebraic functions, where r = lib

with varying b. For example, under the assumptions of Theorem IV we

have for rational integers Hl, ... ,Hn:

n
with A = -(n-l)loglb\/loglb/a \' H = max(IHol, ... , IHn !> provided that

H2 C10(fl, .. ·,fn,e).

proof of Theorems V is based on graded approximation

methods developed by authors [19]-[20]. The essence of these methods
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consists in simultaneous approximations of all elements of graded sub­

modules in picard­Vessiot extensions of generated by linear dif­

ferential equations satisfied by fl(x), ... ,fn(x). Namely, let under

the assumptions of Theorem IV, functions f. (x) satisfy scalar linear

differential equations over m(x) of orders k
i:

i = l, ,n. We intro­

duce auxiliary variables . (j = l, ... ,k;; i l, ,n) and,J
c. = (c. l""'c. ): i = l, ... ,n.a ,

Definition 1.2 (Of graded approximations): Let Pi(x\c): i = l, ... ,n

be polynomials in x of degrees at most D and in C = (cl, .•. ,cn),
homogeneous in each group of variables C. (c. l'···'c. k ): j i

) J, J, j

of degree N, and in variables C. = (c. 1'" .,c. k ) of degree
a , a , i

N­l: i = l, ... ,n. Let the remainder function

- n - k i (j­l)
R(xlc) = E4=1 p.(xlc).(E. lC' .' (xj ]

J=

D
N+k.­l'

( )

has a zero at x = 0 of order at least t, for any choice of

C=(cl, ... ,cn). If t L nD ­ eD and

N+k.­2

( k. -1 )

then Pi(xlc) are called approximants and R(Xlc) is called a re­

mainder function in the e­graded approximation problem with weight

D of level N.

Using the specialization of the remainder functions R(X\C) and

their x­derivatives, we prove Theorems IV­V, applying a version of

Siegel's theorem, similar to our E­function results in [20].
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§2. approximants of the second kind.

In this chapter we study approximations of the second

kind to a system of functions satisfying linear differential equations

with rational function coefficients. We start our presentation with

Mahler's [14] definition of Pad$ approximants of the first and the

second kind to an arbitrary system f1(X), ... ,fm(x) of functions given

by formal power series expansion at x = o.

Definition 2.1: For m functions f1(x), ... ,fm(x) given by formal

power series at x = 0 and m non-negative integers n
l,
... ,n

m,
we con-

sider m polynomials Al(x), ... ,Am(X) of degrees of at most nl, ... ,nm,
respectively, such that the function

has a zero at x = 0 of the order of at least

m
(n i + 1) - 1.

The polynomials Ai (x) are called approximants of the first

kind and are denoted by A. (x\nl, ... ,n ): i l, •.. ,m. The function
m

R(x) is called the remainder function and is denoted by R(x\nl, ... ,nm).

Definition 2 •.2: Let fl(x), ... ,fm(x) be a formal power series and

nl, ..• ,nm be non-negative integers. We say that the system of polyno-

mials ... is the system of approximants of the

second kind to the system of functions fl(x), ... ,fm(x) with weights

nl, .•• ,n
m,

if the following conditions are satisfied:

i) the polynomialsGtl(x), .. are not all

ii) deg Ol, (x) 1 '..l' n
J
. = a - n; for a = n1+ ... +nm '

J= ,
i L, ...

iii) the order of zero of the functiona
k
(x) f (x) - a (x) f

k
(x) at

m 1, 1,
x 0 is at least n i + 1 = a + k,1, = l, ... ,m.

We denote approximants of the second kind with weights

nl, ... ,n as follows:Ol. (x) =a. (xlnl, ... ,n ), i = l, ... ,m.
m a m

Mahler [14] was the first to establish important duality relations

between approximants of the first and the second kind. These
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relations are a part of a more general duality principle from geometry

of numbers (transference principles), see [21], [15], [16]. Mahler's

relations [14] between approximants of the first and the second

kind can be represented in the matrix form as follows. We denote

m
(A; (x\n l + 0J'l,···,nm + 6, », ' 1;• Jm

Then for (normalization) constants cl' ... ,c
m:

(Jex
with cr n

l
+••. + n

m.
We refer the reader to [22] for further study of the relationship

of approximants of the first and the second kind.

For arithmetic applications, approximants are not always con­

venient to use because of difficulties connected with denominators of

their coefficients. That is why it is useful to apply Pade­type

approximations, that are very similar to approximations, with the

difference that the order of zero of the remainder function is not the

maximal possible. The theory of such pade­type approximations is

sufficiently developed, cf. [23].

We start with the introduction of new useful notations.

Definition 2.3: Let gi(x), i = l, ... ,n be functions regular at x = 0

and let M,D and DO be nonnegative integers. Let Q(x) be a non­zero

polynomial of degree of at most DO' Then for every i = 1, ... , n there

exists a unique polynomial

of degree of at most 0, such that ord o(Q(x)g. (x) ­ P. (x» 2 0+1.
x=

To describe explicitly the polynomial [Q·gilD we need the following

simple lemma:
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Lemma 2.4: Let g, (x) = ZOO b ,xm, i
DO m l. m=O m,l.

Q(x) L 0 q x. Then for i = l, ... ,n,
m= m D m

has the form Pl.' (x) LOP ,x, wherem= m, l.

l, ... ,n, and let

the polynomial P, (x)
l.

(2.1) p .
m, l.

m 0, •.. ,D.

In particular, if Q(x) has algebraic integer coefficients and a

P, (x) divides 6 , and the height of 6 P, (x) is bounded by
l. D Dl.

(D+l)HQC , where ,: m D, i = l, ... ,n} CD'D D m,l.

height HQ, and 6
D
is a common denominator of algebraic numbers

b " m = O, ... ,D; i = l, ... ,n, then the common denominator of coeffi­
m, l.
cients of

proof of Lemma 2.4: First of all we notice that for an arbitrary poly­

nomial P(x) = ZD 0 P x
m,

we have the following expansion of Q(x)·g. (x)m= m . l.
­ p(x): ZOO 0 Xm(L k qk·b, ­ p}. This and Definition 2.3

m= K+1,=m, ;SDO 1" l. m

imply the expression (2.1) for the coefficients of P, (x) = [Q.g,] .
l. l. D

The second part of Lemma 2.4 follows immediately from (2.1).

2.5: Let D, DO and M

be a non­zero polynomial of degree

(i L, ... ,n) for n

be non­negative integers. Let Q(x)
def

at most DO and let P, (x) = [Q.g,]
l. l. D

functions gl(x), ... ,gn(x) regular at x = O. If

we now have

(x) 2 D + M + 1

for every i = l, .•. ,n, then the system of polynomials

(Q(x):Pl(x), ... ,Pn(x»is called a system of approximants of

the second kind with weights DO and D and order M of approximation.

According to Dirichlet's box principle, approximations

of the second kind with weights DO and D and order M of approxima­

tion exist whenever DO 2 nM. We say briefly that the system

(Q:Pl, ... ,P
n)

of approximants (of the second kind) has

parameters (DO,D,M).

We study now the approximations (of the second kind) to a

system of functions satisfying linear differential equations. This

system of functions is denoted by fl(x), ... ,fn(x). We assume that all

functions fl(x), ... ,fn(x) are regular at x = 0 and satisfy the
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following system of first order matrix linear differential equations

(2.2)

i = l, ... ,n. Here A.. (x) are rational functions (i,j = 1, ... ,n) and
J.,J

we denote by D(x) the (polynomial) common denominator of rational

functions A.. (x) (i,j = l, ... ,n). Let d = max(deg(D)-l, deg(DA.. );
J.,J J.,)

i,j = l, ... ,n}. In applications, functions f l (x), ... ,fn(x) are G-

functions and A.. (x) e lD(x) ,i,j = 1, ... ,n.
l.,)

Theorem 2.6: Let fl(x), ... ,fn(x) satisfy a system of equations (2.2).

Let (Q(x);Pl(x), ... ,Pn(x» be approximants to a system of functions

fl(x), ... ,fn(x) with parameters (DO,D,M). Let k 2 0 and M 2 k(d+l).

Let us define

<k> 1 k d k
(2.3) Q (x) = k: ·D(x) . (dx) Q(x),

and def [Q<k>(x).fi(X)] (D+kd): i = l, ... ,n. In these notations,

the polynomials (Q<k>(x);pfk>(x), ... are approxi-

mants to a system of functions fl(x), ... ,fn(x) with parameters

(DO + kd,D + kd,M - k(d+l».

proof: For k = 0, see Definitions 2.3 and 2.5. Let us assume that
<k> <k> <k>for all k < K and polynomials Q (x) and Pi (x) [Q (x)'fi (x)] (D+kd)'

i = 1, ... ,n,

(2.4 )

the function

has a zero at x = 0 order of at least D + M - k + 1, i = l, ... ,n. We

differentiate the equations (2.4) and take their linear combinations

with appropriate polynomial coefficients. We have
dx

k:D(X)-kQ<k>(x). Thus

(2.5) Q<K>(x) = _ (x).Q<K-l>(x) + 1. D(x ) .J! (Q<K- l > (x » .
K K

also, for i = l, ... ,n we have:

d
d = dd (Q<k>(x».f. (x)
x J. X J.

(2.6)

Thus, from (2.5) and (2.6) it follows that
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(2. 7)

Here, in (2.7),

n (1<-1>
- 2:

J
' -_ l A..R. (x ) ]

J
Q(1<>{x) . (x) - P. v{x).

P. TT (x) = - J.&-K:.llD I (x) . P?-l> (x) + l D(x) . (-9.. (p (x»
K dx a

n <K-l>
- 2:. 1 A. . (x) P . (x) J,

J= J

and P. K{x) is a polynomial in x of degree at most D + (K-l)d + d

= 0 + Kd; i = 1,. , , ,n. Since, by the induction hypothesis,

ordx=oRi>{X) 2 D + M - k + 1 for k 0, •.. ,K-l, we get from (2. 7) :

(2.8) ordx=O (Q<1<> (x) .

for i = 1, ... , n.

(x) - P. K (x) 2 0 + M - K + 1

If M 2 K{d+l), then ord o(Q<1<>(X)f. (x) - P. (x» 2 D + Kd + 1;
x=

i = l, ... ,n. Because the degree of Q<k>{x) is always at most 0 0 + kd,

the degree is at most D + kd, and the degree of P. (x) is at

most 0 + Kd, we see that P. (x) is the unique polynomial of the form
<1<>

[Q (x).fi(x»)D+Kd' i = l,.,.,n.

This identification and (2,8) prove Theorem 2.6 for k = K.

We can express the formula for iterations of approximants

from Theorem 2.6 in the matrix form as follows:

corollary 2.7: Under the assumptions of Theorem 2.6 in the matrix
n n

notations, A = {A.. (x» .. 1 and I = Co .. ) .. 1 we have the following

recurrences. For M2 k(d+l) the polynomials and

functions Ri>{X) (i = l, ... ,n) satisfy

Q<k> (x) k d k <k> = Q<k> (x) . f. (x) _p<k.> (x) ,= D{x) kl' (dx) Q{x) ,Ri (x) a,

<k> <k> t k 1 d k t
{Pl (x)'''''Pn (x) =D(X) 'kl'{dx'I-A) .(Pl{x)" .. ,Pn{x» r

(2.9)
<k> <k> t k 1 d k t

{R
l

(x) , ... ,R
n

(x) = D(x) 'kl' (dx' I-A) . {Rl (x) , ... ,Rn (x) ,
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Here the differential operator I - A acts on n-tuples of func-

t · d t. th . t'an . e operator.

(k) d k
Let us put Q (x) = (dx) Q(x) and let us define

(k) (k) t def d k t
(P l (x)""'Pn (xj ) (dx· I-A) .(P1(x), •.. ,Pn(x»,

(2.10)
(k ) (k ) t def d k t

(Rl (x) , ... ,Rn (x» (dx'I-A) .(Rl(x), •.. ,Rn(X» ,

where R. (x) = Q(x)f. (x) P. (x): i l, ... ,n. This means that, induc-
a, (0)

tively, P. (x) == P. (x) , (x) _ R. (x) (i 1 ) d, ... ,n an

(k+l) ( ) = :x (Ri
k)

(x) )
n (k)R. x - 2: j =l A.. ·R. (x) ,

J
(2.11)

(k+l) ( ) = :x(Pt) (x)
n (k)P. x - 2: j =l A.. ·P. (x)

J

for i = l, ••• ,n and k 2 O. Since fl(x), ... ,fn(x) satisfy the system

(2.2), it follows from (2.11) that

(2.12 ) Q (k ) (x) • f. (x) _ P (x)

for i = l, ... ,n and any k 2 O. It follows from (2.10) that

(x) is a polynomial in x of degree at most D + kd. Also,
. . <k> 1 k (k)

to (2.3), Q (x) == k7 D(x).Q (x). The order of zero of
...!.. k (k). • .
k! D(x) 'Ri (x) l, •.. ,n) at x = a at least D + M + 1 - k, as

follows from (2.10). Since is the only polynomial of degree

D + kd such that Q<k>(X)f. (x) - has a zero at x = 0 of order

at least D + M + 1 - k for k(d+l) M, we get the identification

2.7 is proved.

i 1, .•• ,n.

a

l, ... ,n. Corollary

§3. Linear independence of approximations of the second kind.

In this chapter we prove linear independence of a system of Pade

approximations of the second kind, constructed in Corollary 2.7 using

the iteration of linear differential equations (2.2). This will allow
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us to construct in §4 a system of n + 1 independent simultaneous ra­

tional approximations to numbers fl(xO), ... ,fn(xO)' whenever Xo I °
and Xo is not a singularity of the system (2.2), i.e. D(X

O)
I 0. For

.­
this we need a statement of linear independence of a system of Pade

approximants constructed in Theorem 2.6:

Theorem 3.1: Let fl(x), ,fn(x) satisfy a system of equations (2.2)

and let functions l,fl(x), ,fn(x) be linearly independent over

Let (Q(x);Pl(x), .•. ,Pn(x» be approximants to a system of func­

tions fl(x), ... ,fn(x) with parameters (D,D,M). Let for k 2 0, the
. <1<> <1<> <1<> '(Q (x);P

l
(x)""'P

n
(x» be pade approximants defined

as in Theorem 2.6 (see formulas (2.9». Let

<1<>. <1<> <1<>
lI(x) = det((Q (x);P l (x)'''''Pn (x»: k = O,l, ... ,n).

Then for a sufficiently large M, M 2 c
13

the determinant lI(x) is not

identically zero. Here c
13

is a constant depending only on the system

of linear differential equations (2.2) and on the orders of zeroes

of fl(x), ... ,fn(x) at x = 0.

proof: This result is dual to the well known results for approximating

forms (i.e. for pade­type approximants of the first kind). In our

proof we use the arguments from [5, Chapter 11, Lemma 2]. Assume that

lI(x) =0. Let ;, n be the integer such that the first ;, columns

sk = (Q<1<>(x); •.. (0 k n) are linearly independent

over but the (;,+l)­st column is linearly dependent over on

them. We denote by F the matrix formed by the first £ columns sk

(0 k £­1) and by Rand S we denote the matrices formed by the

first ;, rows and n + 1 ­ £ last rows of F, respectively. We assume,

without loss of generality, that R is non­singular. Then, as is

proved in [5, ch. 11, Lemma 2], the degrees of the numerators and de­
-1

nominators of the rational function elements of the matrix SR are

bounded by c
14,

where c
14

depends only on the system (2.2). Denote by

G the;, x (n+l) matrix with £ rows (f. (x),O, ..• ,­15'+l ., .•. ,0):
a, a, , J

i = 1, ... ,;,; and let GO and G
l
denote the matrices formed by the first

£ columns and n + 1 ­ ;, last columns of G, respectively. Then for

the £ x £ matrix T def G.F we have T.. Q<j­l>(x)f. (x) _
a , J a

-1 -1
i,j 1, ... ,£ and T GOR + G1S, so that TR = GO + G1SR In view
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of Definitions 2.3,2.5 and Theorem 2.6, all elements of T have orders

of zero at x = 0 at least D + M + 1 - /-. At th,e same time all (poly-

nomial) elements of R have degrees in x at most D + (J,-l)d. Hence

det(TR- l) is a function in x with an order of zero at x = 0 of at

least /- (D+M+l- /--D- (/--1) d) = /- [M- (/--1) (d+l) }. On the other hand,
-1

det(GO + G1SR ) i O. since 1, (x), ... ,fn(x) a:re linearly independent

over lI:(x). Also the degrees of all rational functions elements of

SR-
l
are bounded by C

l S
. This implies that the order of zero at x = 0

-1
of det(GO + G1SR ) is bounded by c 1 6' where c

16
depends only on c

l S
and f

l
(x) , ••• ,f

n
(x). Hence, for dM- (L-l) (d+l») > c

16'
or for a

sufficiently large M, /::, (x) is not identically

§4. Simultaneous rational approximations to values of G-functions.

In this chapter we use Theorem 3. 1 on Li.near independence of

type approximations constructed in Theorem 2.6, to exhibit linearly

independent simultaneous rational approxima tion:s to 1, f
l
(x

O)
s ••• , f

n
(x

O)
for X

o
'I 0 and X

o
distinct from the singulariti,es of the system (2.2).

Theorem 4.1: Under assumptions of Theorem 3.1 let, additionally,

X
o
'I 0 and D(X

O)
'I 0 (i.e. X

o
is distinct from the singularities of

the equations (2.2». Then there exist Ln t eqezs k
O
" ' " k

n
such that

n(n+l) .
o k O <... < k n D - nM +2 (d-l) and such that the

n+l forms in the variables YO""'Yn:

<k j> n <k i>
Q (xO)·yo + Ei=l Pi (xO)Yi: i O, ... ,n

are linearly independent.

proof: From the definition of /:;, (x) and the upper' bounds of Theorem 2.6

on the degrees of Q<k>(x), i = L, ••• ,n, it follows that /:;,(x)
n (n+l)

is a polynomial in x of degree of at most D + nD + 2 d. On the

<k> <k> <k> <k>other hand, t:. (x) = det( (Q (x) ;P
l

(x)-Q (x)·· f
1
(x) , ••• 'Pn (x)

- Q<k>(x).f (x»: k = O,l, ... ,n). Since ordn x=
. n(n-l)

l, ... ,n, we have ordx=O/:;'(x! 2 n(M+D)- 2 . Hence,

A (x) = xa·/::,o (x) , where lI
0
(x) is a polynomial of

n(n+1ldegree of at most D - nM + 2 (d-l)-n. Thus for any Xo 'I 0, there
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exists a t, 0 t D - nM + (d-l)-n, such that 6 (t) (x
O)

0

but 6 (s) (x
O)

= 0: 0 s < t.

Let us introduce the following linear forms in n + 1 variables

(4.1)

From the definition of 6(x) we obtain

(4.2) O,l, ... ,n,

where 6 .. (x) is the algebraic complement in 6(X). We consider the

system of linear differential equations conjugate to (2.2):

(4.3)

dz
O

dx

dz ,
a

dx

0,

i 1, ... , n

O, ... ,n and substituting x = xO'

<k+k''>m / (X7Z(X». Differentiating

with initial conditions zi(x
O)

= Y
i,

i = O,l, ... ,n. Since Xo is not

a singularity of (2.2), such a solution Z = z. (x), i = O, •.. ,n exists.
k

<k> - <k> -We have t (X7Z) = k: ·m (m7z) and

<k> ( -) def (k) ( ) n 1 ()
m X7Z = Q x 'ZO+Ei=l Pi,k x zi'

(k) d k 1 1 t
According to (2.9), Q (x) (d) Q(x),(Pl,k(x), ... ,Pn,k(X»

(dd . I-A) k. (P
l
(x) , ... , P (x) t. Substituting z , (x) from (4.3)

x n d <k> _
we see after differentiation that dxm (X1Z(X» m<k+l>(x7Z(X».

d k' <k> -
consequently, (dx) m (X7Z(X»

(4.2) t times with zi = zi(x), i

we obtain from D(X
O)

0,

n+t <5> - s
Yi = Es=O t (X07Y)'6i, i = O,l, ••. ,n
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there exist n + 1 linearly independent forms. Theorem 4.1 is proved.

Theorem 4.1 is applied in §5 to the proof of one of our key results,

Theorem I on the linear independence of values of G-function formulated

in §L

§5. proof of Theorem I.

To prove Theorem I we construct the system (Q(x);Pl(x), •.• ,Pn(x»

of approximants of the second kind to functions fl(x), ... ,fn(x)

with parameters (D,D,[(1_ 5)D]) for 5, lin> 5 > 0 and a sufficiently
n

large D. This construction is achieved using Thue-Siegel lemma. Then

we apply results of Theorem 2.6 and statement on linear independence

from Theorem 4. L

Following the formulation of Theorem I we consider G-functions

satisfying differential equations (2.2) over i.e. A.. (x)

and D(x) Z[x]. Also all coefficients of Taylor expansions of G-

functions fl(x), •.. ,fn(x), satisfying equations (2.2) at x = 0 are

assumed to be rational integers.

system of G-functions such that

the common denominator 6 of
mm16 ·a .\ CO(k = o.a , ... ,m) form

and i = l, ... ,n. Then for 5,

Lemma 5.1: Let fl(x), ••. ,fn(x) be a

f. (x) = 0 a .xm,a . and form= m,
[ao ., ••• ,a .: i = l, ... ,n} we have

some Co > 1 and all m = 0,1, ...
1; > 5 > 0, and an arbitrary positive integer D, there exists a system

(Q(x);Pl(x), .•. ,P (x» of approximants of the second kind to
n 1

fl(x), •.. ,f (x) with parameters (D,D,[(--5)D]) such that Q(x) Z[x]
n n 2

and the height of Q(x) is at most D(1-5n)/5n'C6n+1-5n) (1-5n)D/5n .

Proof of Lemma 5.1: In the proof we use Dirichlet's box principle in

the form of Thue-Siegel's lemma [5]:

Lemma 5.2: Let M, N be rational integers with N > M > 0 and let

u .. (1 i M, 1 j N) denote rational integers with absolute values

at most U (2 1). Then there exist rational integers xl, ... ,x
N
not

all 0, with absolute values at most (NU)M!(N-M), such that

u ..x. = 0 (1 i M).
J

Following Definition 2.3, for a given D, and D + 1 undetermined
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D m ( ) d__ef [Q. f;] D'coefficients qm(O m D) of Q(x) = Zm=O , we put Pi x •

i = l, •.. ,n. Then the condition that are

approximants of the second kind of fl(x), .•. ,fn(x) with parameters

(D,D,[(l/n-s)D]) is equivalent to the following: ord O(Q(x)f. (x) -
X=

P. (x» 2 D + [(lin - S)D] + 1 for all i = l, .•. ,n. The last condition,

in view of the definition of P. (x), is equivalent to the system of
a,

linear equations:

(5.1)
D 1

qk·am-k,i = 0: m = D + 1, ... ,D + [(; - S)D],

i l, .•. ,n. This is a system of at most n.[(l/n-s)DJ equations in

D + 1 unknowns qm (0 m D). The common denominator of all coef-

ficients of equations (5.1) divides 6
D+M,

M = [(lin - S)DJ. According

to the assumptions of Lemma 5.1, L ·a . are rational integers
D+M D+M

(m D + M) i = l, ••• ,n of absolute value at most Co . Hence, accord-

ing to Lemma 5.2, there exists a nonzero polynomial Q(x) Z[x] of

h . ht t t D(1-5n)/sn c(n+l-sn) (1-5n)D/sn2 t' f' 11 thamos . 0 ' sa y i.nq a e con-

ditions of Lemma 5.1.

From the discussion in Lemma 2.4 and Theorem 2.6, we obtain

Lemma 5.3: Let functions fl(x), •.. ,fn(x) satisfy all assumptions of
00 m.

Lemma 5.1 and let f. (x) = Z 0 a .x, = l, ... ,n be a solution of a
a, m= m,

system (2.2) of differential equations with \a . I c
m
lm,

(m = 0,1, ... ,; i = l, ... ,n) for SOme C
l

> L Let (Q(x);Pl(x), ... ,Pn(x»)

be the system of approximants of the second kind with parameters

(D,D,[(l/n - 5)DJ) constructed in Lemma 5.1. If for k 2 0,

kd < [(lin - S)DJ, then Q<k>(x) Z[x], and the common denominator

of the coefficients of polynomials \Tl[xJ (i = 1, ... ,n) is
D+kd . -1

bounded by Co . Also, for = l, ... ,n and Ixl < C
l

we have

C

1< H(D(X»kH(Q(X»'2D+kd'Cl=1

where M = [(l/n-s)DJ and H(D(x», H(Q(x) are the heights of the poly-

nomial D(x), Q(x), respectively.

proof: According to Theorem 2.6 we have
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<k> k 1 d k <k> <1<>
Q (x) = D(x) 'k:' (d) Q(x), Pi (x) = [Q (x).fi(x)] (D+kd)

D(x) E Z[x], Q<1<>(x) E Z[x] and deg(Q<1<>(x)) D + kd,

H(Q<1<>(X)) H(D(X))k. H(Q(X)).2
DTdk. Thus, if Q<1<>(x) =

then = xjLmino(D+kd,j)q<1<>.a. ., This establishes the
]= m= m

bound for the denominators Similarly, according to LemmaS 2.4 and

<1<> <1<> ex> m D+kd <1<>Theorem 2.6 Q (x) f. (x) - P. (x) = z: 1 kX . L. 0 q. a .. .m=D+M+ - ]=]

upper bounds on H(Q<1<>(X)) and on a . prove Lemma 5.3.

We use Lemmas 5.1 and 5.3 to prove Theorem I. Under the assump-

tions of Theorem I, put

For a fixed 5, l/n(n+l) > 5 > 0, we consider the approximants

(Q(X);Pl(X), ... ,Pn(x)) to flex) , ... ,fn(X) with parameters (D,D,[(l/n-5)D])

constructed in Lemma 5.1. Applying Theorem 4.1 we find an integer k.,
]

o k. D - nM + n(n+l) (d-l)/2 and M = [(1/n-5)D], such that
d.> n <1<.>

HO·Q ] (r) + L. 1 H.P. ] (r) O. Since H. are rational integers and
a D+k·d <1<.>

r = alb, we obtain a non-zero rational integer I = ] (HO·Q ] (r)
n <1<.> ] D+k·d

+ L'-l H,P. ] (r)}. Thus III 2 1. On the other hand, I ].
-k.

<1<.> n <1<'> <k.> ]
(t· Q ] (r) - L. 1 H,(Q ] (r)f,(r) - P. ] (r))}.

a,

Now let &n2 e for e<1/(d+2). Then for any k D - nM + (d-l)

and D 2 c
17

(n,d,5), we can combine estimates of Lemma 5.3 with an

upper bound of H(Q(x)) from Lemma 5.1 to obtain

(n+l)D(5.2)
e

1 2.. 1 2e
(1+---"")D

n n . Irl n n'C l

whenever \rl c 18, c
18

= c
18

(n,d,e). Similarly, Lemma 5.3 implies

under the same assumptions on k:

J.!!±llD DE: (l+dC)D

(5. 3 ) IQ<1<> (r) \ Co e . H(D (x)) n . 2 n

We choose now the weight D as the smallest integer
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D 2 c 17(n,d,&) such that

(5.4)
D+k.d <k.> <k.>

H.n.$L'lbl J .max(IQ J (r)f.(r)-p. J (r)l:
"k . a a,

J

(5.5)

1
i l, ... ,n} <2"'

-D-k.d <k.>
Then III 2 1 implies It I 2 Ibl J IQ J (r) 1-1/2. We can

represent the bound (5.4) in a form J

1 1
D (2eo+d&o-n)D

H,c191al .\bl < 1,

e 1
where c 19 = c 19(n,D(x),e) and &0 < Then for any H, an

o • t h I I (1+l/n-2ito) Ibl (2 eO+dE:O-1/n) < -1D 2 c 17 exa.s s w enever a. c19.

The lower bound

-(l+cOd)D
1.e12 Ibl

for c 20 = c 20(n,D(x),c) > 0, together with the definition of D in

(5.4), implies the assertions of Theorem I.

§6. The duality between approximants

of the first and second kind.

0, ... s n,&. 0' i,j(6.1)

In this chapter we extend the duality principle (see 62) to exhibit

the relationship between approximants of the second kind and

approximants of the first kind to the system of functions 1,

fl{x), •.. ,fn{x). We make our exposition a local one, associated with

a nonsingular point X
o
F O,and we construct n + 1 linearly independent

approximating forms to 1,fl(xd, .•• ,fn(xO)' For this we start with a

system (Q(x):pl(x), ••• ,Pn(x» of approximants with parameters

(D,D,M) and with Xo F 0 satisfying all assumptions of Theorem 4.1. We

let and define rational functions Lp,j(P,j=o, .•. ,n)

in X
o
as solutions of the system of linear equations

n <k i >
Lp,j'Pp (xO)

where 0 k O <... < k
n

D - nM + n{n+l) (d-l)/2 as in Theorem 4.1.
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D, we deduce
<ki >

ord o(P. (xO»xO= J

obtainThus we

d f <k.>
If we put V(xO) det(P

j
(xO): i,j = O,l, ... ,n), then v(x

o)
0 by

Theorem 4.1 and L . = R '(XO)/v(x
O),

where R . (x
O)

is a determinant
<s..> P,J P,J P,J

from P (Xo), q P constructed by Cramer's rule from equations (6.1).
q <k'>

Let = min(ordx =O(PO (xO», i = O, ... ,n}. Since
o

from Theorem 2.6 that, whenever M2Jt"(d+l), we have

2 for all j = l, ... ,n and i = O,l, ... ,n.

(6.2)

(p,j O, ... ,n).

Let us denote, for simplicity, fO(x
O)
=1. If we put

w
J'

L .. f (x
O):

j = O, ... ,n, then we have an identity
p=O p, J p

(6.3)

i,j O,l, ... ,n.

Let us define S (n-l) (M+D) (n-l).){:' and let us put

def -sv j = wj.v(Xo).x
o

for j = O,l, ... ,n. According to the estimate of
n

ord _O(R .(xO» (p,j O, .•. ,n) in (6.1) we have v
J'

= Mp,J'(Xo)'x O- p, J

fp(xo) (j = O, ... ,n), where Mp,j(XO) (p,j = O, ..• ,n) are polynomials

We can use (6.3) to estimate from below the order of zero of v.
J

at Xo = 0: ordx =o(v
J,)

2 min(ordx =o(v(xo» , ord O(R .(xo)·o 0 x o= p, J
<k.> <k.>

(Po (XO)fp(XO)-P
p

(xo»): i = O, ..• ,n; p = l, ... ,n} - - S. using

the estimates above in (6.1), we obtain ord o(v.) 2 M + D -Jr,
xo= J

j = O, ... ,n. Thus we deduce the following

Theorem 6.1: Let f
l
(x), ... ,fn(x) be solutions of (2.2), regular at

x = 0, linearly independent with 1 over Let (Q(X);Pl(X), ... ,Pn(X»

be a system of approximants of fl(x), ... ,fn(x) with parameters

(D,D,M) and let X
o

0 and D(XO) f O. Then for a sufficiently large
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J

(x
O
) , · •• s f

n
(x

O
) ,

such that
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M, M 2)C(d+1), there are n+1 linearly independent
n

OM .(xO)f (xO): j = O, ... ,n in fO(xo) :; 1,p= p, J p
polynomial coefficients M . (x

O)
(p, j = 0, ... s n)

p, J

deg (M . (xO» D - (n-1)M +J(nd+n-l),
Xo P,J

with

E Z [x] ,

<1<.>
P. :L (x)
J

Then Fl(X), ... ,Fm(X)

a system of linear

ordx =0 (vj) .L D + M -X,
o

<1<.>
p,j = O, ••• ,n. D - nM + n(n+l) (d-l)/2. Moreover, if Q :L (x)

<1<.>
:L (x) E m[x] and the common denominator of coefficients of

is = 1, ... ,n; i = 0, ... ,n), while the heights of po1y-

<1<i> <1<.>
nomials Q (x), P. :L (x) are bounded by H(j=l, •.. ,n;i=O, .•• ,n), then

J n n
we can assume that M . (xO) e Z[xO] and H(M .(x

O
» ·H (p,j=O, ••• ,n).

P,J P,J
The first two inequalities of Theorem 6.1 follow directly from the

preceeding discussion. The linear independence of forms v.: j = O, .•• ,n
J

follows from q(xO) I ° and equations (6.1) using Theorem 4.1, proved

in §4. The last part of Theorem 6.1 is also obvious if one replaces

M ( ) b n M ( ) in the definition of v. above (p,J' = O, •.• ,n).p, j X o y . p , j X o J

§7. proof of Theorem II.

Following Siegel's method of approximating forms [1), [2] we can

apply Theorem 6.1 on the existence of Pade approximants of the first

kind to the proof Theorem II from §l on the absence of algebraic rela-

tions between values of G-functions at algebraic points. In fact,

Theorem II is not the best result of this kind that we can prove. We

present a complete proof of II to show how approximants

can give a proof of G-function theorem that Siegel [1] had envisioned.

proof of Theorem II: In this theorem we use a separate numeration of

constants, starting from c
17

(do not confuse that with constants from

the proof of Theorem I). Let N be a sufficiently large positive

integer. We consider a new system of G-functions
i i

(f11(X) ••• fnn(X): 0 < i l + •.. + in N}. Let us denote functions in

this system by Fl(X), ... ,F (x), m = (N+n) - 1.m n
are linearly independent over m(x) and satisfy
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differential equations of type (2.2), but with n replaced by m,

and with the same common denominator D(x) of its rational function coef­

ficients. If CO' C
l
denote constants introduced in Lemmas 5.1 and 5.3,

respectively, for a system fl(x), ... ,fn(x), then the corresponding con­
N

stants for a new system Fl(X), ... ,Fm(X) can be taken as Co and Cl• This

means that for F.(x) = L
oo

OA .x; and the common denominator of
J s= s , J r

A .: s = O, ... ,r and j = l, ... ,m we have: A . 1< cNo
r

(s=O, •.. ,r)
s,J r S,J

and we have IA . I < cS

l for s > sO(N) and j = l, ... ,m. Hence, for 11m
s,J

> 5 > 0, we obtain a system (Q(x);Pl(x), ,Pm(x» of approximants

of the second kind of functions Fl(X), ,Fm(X) with parameters

(D,D,[(1/m­8)D], satisfying all the conditions of Lemmas 5.1 and 5.3
N

but with n replaced by m, Co replaced by Co and by F
j

(j = l, ... ,m), with D 2 D2(Fl,
... ,F

m).
We apply Theorem 6.1 to this

system (Q(x); Pl(x), ... ,Pm(x» of Pade approximants of Fl(x), ... ,Fm(X),

by choosing Xo = g, for small lsi. This way we get a system of m + 1

linearly independent forms u. = L
m

0 S . (g)F (g): j = O, ... ,m in
J p= P,J p

Fo(l;) = 1, Fl (I;), ... ,F (1;). Here S . (x) Z[x], the degrees of poly­
m P,J 2

nomials S .(x) are bounded by D.(1/m+8(m (d+l)­l») + c
17'

and heights
p, J 2

by exp(c l sDN/5), when 8m (d+l) < 11m, c
17

= c
17(fl,

•.. ,f
n,N,5)

> 0,

CIS clS(CO,n) > 0, D 2 D3 (Fl, ... ,Fm) and p,j = O,l, ... ,m. According

to Theorem 6.1, the functions Lm 0 S .(x)F (x) have zeroes at x = 0
p= P,J P

of orders at least D + (1/m­8)D ­ 5mD ­ c 19' c
19

= c
19(fl,

... ,f
n,N,8)

> 0 for j = O, ... ,m. Hence we obtain the following upper bounds on

(7.1)
D(1+1/m­ 5(m+l»­c19Iu j I < exp{ c 2ODNIc) . Ig \ '

u. ,

L, ••• ,m').among u., linearly independent from L (g) l, ... ,m+l­m', a
J a

For a determinant R(g) formed from the coefficients of these m + 1

j = O, ... ,m and c 20 c
2 0(CO,c l,n)

> O. Let us assume that there is a

nontrivial algebraic relation p P(I;,fl(I;), ... ,fn(I;» = 0 of degree

t' t in fl(I;), ... ,fn(l;) with coefficients from Z[I;], not all zeroes,

... ,xn) Z[xO""'Xn]. Multiplying P by monomials.
f 1) . (N­t'+n)1 (I; ... n (I; : + ... + in N­t', we m n non­

trivial linearly independent forms L (1;) in 1,Fl(I;), ... ,F (1;) (a m')a n
with coefficients from 7;[1;]. Hence, there are m+l­m' linear forms
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linearly independent forms in 1, Fl(S),'" ,Fn(S), R(S) F 0 and R(S) is

a polynomial in S with rational integer coefficients of height at
n n-l

most exp{c
2 1DN

/&}, and of degree in g at most c 22N D{l/m

+ &(m
2(d+l)-l)}

+ c
23,

where c
2 1

= c
21(CO,C l,n,t') > 0, c 22 = c 22(n,t')

> 0, c
23

= c
23(fl,

... ,f
n,N,S)

> 0 and N 2 No(n,t). Bounds (7.1) implies

the following upper bound:

(7.2) I { n/ } I ID(l+l/m-& (m+2»IR(g) < exp c 24DN s i - e:, ,

where c
24

= c
24(CO,Cl,n,t) > 0, N 2 N

l
(n,t), D 2 D4(fl, ... ,fn,N). On

the other hand, we can apply the Liouville theorem [ 5 J to bound from

below IR(s) I in terms of H(g)-the height of g. By choosing a suf-
o -3n

ficiently large N and & = c 25 N , c 25 = c 25(CO,C l,n,d,t) > 0,

we obtain from Liouville's theorem: 10glR(S) I > -c
26(N

4n+
log H(S)/N),

for c
26

= c
26(CO,C l,n,d,t)

> 0 and N 2 N
2(n,d,t).

The contradiction

between the two bounds proves Theorem II.

Conditions on le:,I from Theorem II can be considerably relaxed,

without strengthening the assumptions of Theorem II. For example,

using our results of §8, that G-functions satisfy (G,c)-property, we

can replace the exponent 4n/(4n+l) in the bound on le:.I in Theorem II

can be substituted by n/(n+l). The case of algebraic relations be-

tween l,fl(x), ... ,fn(x) can be treated similarly to Theorem II. Also

one gets lower bounds on polynomials in fl(S)," .,fn(S) with coeffi-

cients from III (S), similar to bounds of linear forms in Theorem I.

§8. The proof of (G,c)-property of an arbitrary G-function.

The global (G,C)'-function assumption of §l describes p-adic (for

almost all p) properties of linear differential equations satisfied

by G-functions. It is tempting to assume that local G-function condi-

tion for a single solution of a linear differential equation implies

the (G,c)-property for the linear differential equation. Such a con-

jecture was suggested by the authors in [10]. It turns out that this

local-global conjecture is true. Namely, if a linear differential

equation of order n Over has a G-function solution f(x), which

does not satisfy a linear differential equation of a smaller order, then

the linear differential equation satisfy (G,C)-property. See Theorem
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III of §l. (Note that the condition on f(x) is essential, because one

can always construct reducible linear differential equations of order

n without the (G,c)-property and having a G-function solution f(x),

arising from a linear differential equation of order less than n.)

The global result on G- and (G,C)-functions,that we prove below,is a

counterpart of the Grothendieck conjecture that also relates local and

global properties of linear differential equations, see [4]. Our me-

thods of proof are based on pade-type approximations of the second

kind and on duality principles from §6.

We start with a more detailed formulation of (G,c)-property of §l.

First of all, we have a system of first order matrix linear differential

equations

(8.1)
-t

Lf o

- A with I = (8 .. . l' A = (A.. '-1 and

In a coordinate form (8.1) is

def d
for L = dx' I

f = (f l (x), ... , f n
(x)) .

d -t -t
dx f = Af or

(8.2)

n
A.. (x) f. (x): i = 1, ... ,n.

J

Here A.. (x) (i,j l, ... ,n) are rational functions, that we assume to

belong to m(x). We also denote by D(X) the common denominator of all

rational functionsA .. (x) (i,j= l, ... ,n), Le. D(x) Z[x] and

D(x).A .. (x) (i,j = 1, ... ,n) are polynomials with rational integer coef-

ficients.

Differentiating linear differential equations (8.1) we obtain for

an arbitrary m 2 0 the following relation in the differential ring
d

Q(x) [dx1:

(8.3)
d m d
(d) . I ;: Am (mod m(x) [dx1 .L).

Here A = (A.. 1 is an element of Mn(m(X)). Here AO = I and
m

A
l

= A. The recurrent formulas, connecting the matrices Am (m 2 0) are

the following:

(8.4)
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It follows from (8.4) that

A.. (X).D(X)m E Z[x]: i,j = l, ... ,m.
,m

The relation (8.3) means that for an arbitrary solution

f (fl(x), ... ,fn(x» of (8.2) we have the following formula

(8.5) (x) ,

i = 1, ••• , nand m 2 O.

The (G,C)-assumption of §l or, equivalently, the (G,C)-property

of a linear differential equation (8.1) means the following:

(G,C): There exists a constant C 2 1 such that the common denomi-

nator D
N
of the coefficients of the polynomials

1 m
----;. D(x) .A.. (x): i, j
m:

1, •.. ,n

N
and m = 1, ... ,N is bounded by C for any N 2 1.

Let us start with a given solution f(x)

(8.1) such that f i (x) are G-functions and

(8.6) m
a ,x
m, a . E III (m = 0,1, ... )

for i = l, ... ,n. We denote by the common denominator of

(a
O
., ••• ,a .: i = l, •.. ,n). According to the definition of G-func-, m,

tions, there exist two constants Co > 1 and C
l
> 1 such that

(k=O,l, ... ,m)

(8.7) and

for any m 2 0 and i = l, •.• ,n. (We note that 6
m

E Z and

E Z: k = O, ... ,m and i = 1, ... ,n.) We put, as above,

d = max(deg(D(x» -·1, d",g(D(x)l" . (:l';): i,j L, ... ,n}. We use results
1··i

of §4 and approximants of second kind constructed there. Thus,

let D be a sufficiently large integer and let lin > 0 > O. Summariz-

ing Theorem 4.1 and 4.3 we obtain the following

corollary 8.1: Under the assumptions above, there exists a system
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(Q(x):P
l
(x), ... ,Pn(x» of Pade approximants of the second kind to

f
l
(x), ... ,fn(x) with parameters (D,D,[(l/n-o)D]) such that the follow-

ing conditions are satisfied. Let k L 0 and kd < [(l/n-o)D]. Then

Q<k>(x) E Z[x] and the common denominator of the coefficients of
K

polynomials p?>(x) E IIHx] (i = L, •.. ,n); k = O, ••• ,K is bounded by
D+kd 1. <k> <k> <k>. "

Co . The system (Q (x):P
l

(x)""'P
n

(x» 1.S a system of Pade

approximants to fl(x), ... ,fn(x) with parameters (D+kd,D+kd;[(l/n-o)D]

- k(d+l». The heights of the polynomials Q<k>(x): ...

are bounded as follows

<k> k D k
H(Q (x) H(D(x» .H(Q(x».2 (d+2) ;

(8.8)

i = l, ... ,n. Here H(D(x» and H(Q(x» are the heights of the pOlyno-

mials of D(x) and Q(x), respectively, with

(8.9)

proof: All statements of corollary 8.1 are combinations of Theorems

4.1, 4.3 and Theorem 2.6. AlsO the bound for the height H(Q(x» in

(8.9) is contained in Theorem 4.1. We have to establish only the

inequalities (8.8). The second inequality in (8.8) is a direct conse-

quence of the representation (2.1) of the coefficients of the poly-

nomial p?>(x) = [Q<k>(x).f. (x)] ( d) in terms of the coefficients
<k 1. 1. D+k

of Q >(x) and the expansion of (x) at x = 0: see the bounds (8.7).

To prove the first inequality in (8.8) we need the definition (2.3):
<k> 1 k d k <k>

Q (x) = . (di) Q(x). This expression implies: H(Q (x»

.H7Q(x». This proves the inequalities (8.8) and

Corollary 8. L

approximants of the second kind described in

The denominator of the coefficients of polynomials
K

l, ... ,n): k O, ... ,K divides the denominator 6D+Kd of

Remark 8.2:

p?>(x) (i
1.

( a .: 0 m D + Kd, imja,
We apply the Pade

L, .•. ,n}.

Corollary 8.1 to study the denominators of the coefficients of the

polynomials .. (x): i,j = l, ... ,n for m L O.
m: 1.J,m

According to Theorem 3.1, the determinant
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<k> <k> <k>11 (x) = det«Q (x)""'P
n

(x»: k = O,l, ... ,n)

is not identically zero, provided that D is a sufficiently large in­

teger. For our purposes we need a slightly different determinant (a

lower left (n­l)x(n­l) minor of lI(x»:

(8.10) u(x) = det(pij­l>(X): i,j = 1, ... ,n).

We have to prove that for sufficiently large D, u(x) is not

identically zero. The proof of this statement is very similar to that

of Theorem 3.1.

Lemma 8.3: Let fl(x), ,fn(x) satisfy a system of equations (8.2) and

let functions fl(x), ,fn(x) be linearly independent over Let

(Q(x):Pl(x), ... ,Pn(x» be approximants to a system of functions

fl(x), ... ,fn(x) with parameters (D,D,M). Let for k 2 0, the polyno­
. <k> 0.> <k> ,­(Q (x)""'P

n
(x» be Pade approximants defined as

in Theorem 2.6 (see formulas (2.9». Let

vex) = ..r , J 1, ... ,n).

Then for a sufficiently large M, M 2 c
2l,

the determinant u(x) is

not identically zero. Here c
2 l

is a constant depending only on the

system of linear differential equations (8.2) and on the orders of

zeroes of f
l
(x), .•. ,fn(x) at x O.

that the first 1, columns sk

are linearly independent over

Proof: Let us assume that vex) =O. Let 1, n­l be the integer such
<k­l> <k­l> t

(P
l

(x)""'Pn (x» (k=l, ... ,n)

but the 1,+1 columns is linearly

dependent on them over We denote by F the matrix formed by the

first 1, columns sk (k = 1, ... ,1,) and by Rand S we denote the

matrices formed by the first 1, rows and n ­ 1, last rows of F, res­

pectively. We can assume without loss of generality that R is a non­

singular matrix. Then, as it was proved in [5, Chapter 11, Lemma 2J

the degrees of the numerators and denominators of the rational function
-1

elements of the matrix S.R are bounded by c
22,

where c
22

depends only

on the system (8.2). Let us denote by G the 1, X n matrix with 1,

rows (fi(x),o, ... ... ,0): i = 1, ... and let GO and Gl denote

i
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the matrices formed by the first t columns and n-t last columns of

G t · 1 h f h . def h, respec y. T en or t e txt T = G·F we ave

T <j-l> ( ) f () <j-l> f () .. 1 1"=Pl X"X Pi s ••• ,1,. Aso
-1 -1 .

T = GOR + GIS, so that T·R = Go + Gl·S.R . to Definitions

2.3 and 2.5 and Theorem 2.6, all elements of T have orders of zeroes

at x = 0 at least D + M + 1 - 1,. The polynomial elements of R have
-1

degrees in x at most D + (t-l)d. Hence det(TR ), as a function of

x, has a zero at x = 0 of order at least teD + M + 1 - t}
-1

L(D + (t-l)d} = L(M - (t-l) (d+l)}. On the other hand, det(GO+G1SR )

i 0, because functions (x), ... ,fn(x) are linearly independent over

On the other hand, the degrees of all rational function elements

of S.R-
l
are bounded by c

22
This implies that the order of zero at

-1 -1
x = 0 of det(TR ) = det(GO+G1SR ) is bounded by c

23'
where c 23 de-

pends only on c
22

and (x), ... ,fn(x). consequently, for

L(M - (1,-1) (d+l)} > c
23'

or, equivalently, for a sUfficiently large M,

the determinant vex) is not identically zero. Lemma 8.3 is proved.

In particular, the determinant vex) in (8.10) is non-zero for

Pade approximants of the second kind from Corollary 8.1, whenever D

is sufficiently large.

For further exposition we need an auxiliary statement on the
d

iterated action of the differential operator L = dxI - A. We consider

here and everywhere below the action of L and its powers on n x n

matrices of functions. For convenience we denote

(8.11)
(m} m d m

L (dx I - A) \jJ).

We need the following identity:

Lemma 8.4: Let, as above, the matrix Am be defined as in (8.3). Then

for an arbitrary n x n matrix \jJ and m 2 0 we have

(8.12)
m m k d m-k (k}

>,_ () • (-1) • (-) ( \jJ ) = A • .
-k=O k dx m

proof: The identity (8.12) is obviously correct for m O. Let us

assume that it is true for a given m 2 0 and let us prove it for m + 1.

We have for an arbitrary matrix \jJ,
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It follows from (8.11) that

(8.13)

Let us substitute here 1jI(1} for W.
1jI(m+l} (1jI(1})(m}. Thuswehave

m (m)(_l)k(...9..)m-k( (k+l}) = A ,,,ell.
k dx 1jI m"

we can also differentiate (8.12) with respect to x once and

obtain:

(8.14)

where A' = ...9.. (A ). We note that w(l}m dx m
(8.13) from (8.14). We get

d
(dx)1jI - A1jI. Let us substract

+ AmA)1jI.

Since + = (m;l) , we get

(_l)k(...9..)m+l-k(", (k}) = (A' + A A)"'.
-k=O k dx m m

From (8.4) it follows that A 1 = A' + A A. This proves Lemma 8.4.
m+ m m

We need also an elementary algebraic number lemma:

Lemma 8.5: Let D(x) e Z[x] and P(x) e Z[x]. Then for arbitrary non-

negative integers sand t the polynomial

1 s+t d s -t
--;-'D(X) . (-d) • (D(x) .p(x»s. x

has (rational) integral coefficients.

proof: We have

1 s+t d s -t
--;-. D (x) • (-d ) • (D (x) • P (x)s : x

s s+t 1 d i - 1, 1 d s - i= 0 D(x) '-;-;-(-d) (D(x) j . ( .),' (dx) (p(x».x .

1 d k
Since P(x) e Z[xj, for any k 2 0 we have (dx) (p(x» e Z[x]. Thus,
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to prove Lemma 8.5, it is sufficient to prove that for any non-negative

integers i and t the polynomial

1 i+.t d i -.t
-:-;-.D(x) . (-d) (D(x) )x

has integral coefficients. To show this, let us put D(x)

Then

1 i+.t d i -.t r <L
-:-;-.D(X) . (-d) (c ·n· l(x-a.) )a : x J= J

n
c·n·l(x-a.).

J= J

i i+t nr i+J,
= -:-;-·c . ·_l(x-a.) '};;k k -' k •... k I

a : J- J 1+"'+ i ' r'

- 1, r d k J. -1,
x c n. (-) «x-a.) )

J=l dx J

; r' (-1,) ••• (-1,-k .+1)nr ]
c ·nj=l(x-aj) .Ek l + ... +k =i j=l

r J
-J,-k.

x (x-a.) ]
J

i .t+k . -1 k. i-k.
c ·L:

k l
+ ... ( ) (-1) J. (x-aj) J

For any indices jl, ... ,jt: 1 jl <... < jt r, c.a. ···a. is an
. J l J t

algebraic integer. Thus we conclude that )i(D(X)-.t) is
x

a polynomial with (rational) integer coefficients. Lemma 8.5 is proved.

We return to the system of approximants
<k> <k> <k) .(Q (x)""'Pn (x»: k 2 0, constructed corollary 8.1. We

assume from now on that fl(x), ... ,fn(x) are linearly independent over

Let us use now the recurrence formula from Corollary 2.7:

<k> <k> t
(P l (x)""'Pn (x)

(8.15)
1 k d k t

= D (x) • (dxI - A) • (p1 (x) r » .. ,Pn (x) .

These formulas (8.15) are true whenever kd < [(l/n-&)DJ. Follow-

ing our agreement (8.11) on notations, we put

[k ] (k} t
(P l (x)""'Pn (x»

(8.16 )
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consequently for kd <

(8.17) = k:.D(X)-k.p'?<>(x): i i , ... ,n.

We note that (x) are rational functions, and not necessarily
a,

polynomials.

Let us introduce an appropriate n x n matrix

(8.18) def ( (j -1) () . .t = Pi x :

It is clear from the definition (8.16) that

( (k+t) ( ) (k+t)(, »t
Pl x ""'Pn x

d k (t) (t) t
= (dX I-A) • (P

l
(x), ... 'P

n
(x)) •

Thus, we get from (8.18),

(8.19) ,I,(m} = (p(,m+j-l) (x)'. ,. 1 )f , •.• ,n.

Let us use the identity from Lemma 8.4. We obtain

Let (m+n-l)d <

( , 1)' () -m-j+l <m+j-l> ( )m+J- .·D x 'P
i

x

Let us put for any k L 0,

(8.20)

(8.21)

(m). (_l)k. = A .•,.
11:=0 k dx f m f

(m+j-l)
Then Pi (x) =
for i,j = l, ... ,n, according to (8.17).

P (k ) d_!::f D()k+n-l (k)
k:' x 'W'

Thus, for k m we obtain:

P (k ) = (-!"D ()k+n-l (k+j-l) ( ). ' .
k : x 'P i x •

(8.22 )

1, ... , n)

(J]s+ i - 1 ) : . ( )n- j. <k+j-l>( ).
k ' D x P. x . i,j.

Thus we have, according to (8.20):

1, ... ,n).

We can rewrite this identity as
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(8.23)

m (_l)k. 1 . ( )m+n-l. (...!!)m-k( ( )-k-n+l
(m-k) D x dx D x

X p(k}) = -L'A .D(X)m+n-l. w.m

The identity (8.23) is the key element in the establishment of

the bounds on the common denominator D
N
of the coefficients of the

polynomials (x): i,j = l, ..• ,n and m = l, ..• ,N.m: 1.J,m
According to the definition of matrix W in (8.18) and according

to (8.17) we obtain

n-l
det(D(x) .W) l>(x): i,j

'V (x) .D(X)n(n-l)/2 .
k=l

L, ... ,n)

n-l
Thus, according to Lemma 8.3, det(D(x) ·W) is non-zero for a

sufficiently large D. We note now that in (8.23) in the left hand side

we have a matrix with polynomial entries. Likewise, in the right hand
m n-lside of (8.23), the matrices Am·D(X) and D(x) 'W have polynomial

entries. If we denote by Den(p,m) the common denominator of coefficients

of all polynomial entries in the matrix p(k} for all k = O, •.. ,m. It

follows, from Lemma 8.5, that the left hand side of (8.23) is a matrix

with entries that are polynomials with rational coefficients, whose

common denominator divides Den(p,m).

Let us invert now the matrix

(8.24) P def ()n-l= D x 'W'

According to (8.17) and (8.18), P is a matrix with polynomial entries.

These polynomials have rational coefficients, whose common denominator,

according to Corollary 8.1 and Remark 8.2, divides Here

d · 'd d I I I I D+(n-l}d d i t1.V1. es an Co ' accor 1.ng 0
n-l

formula (8.7) and Remark 8.2. Thus l·D(X) ·W) has poly-
n- n-

nomial entries with rational integer coefficients, and

(8.25) (n-l) d'

P = (P.. : i,j = L, ... ,n) and
1.,J

l, ... ,n) according to (8.17).

P.. in P and put
1.,J

To invert the matrix P, we write

(i,j =
1.

denote by M. . (x) the minor of
1.,J

P ..
1.,J

Let us



N. . (x)
J.,J
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i+j
(-1) .M.. (x) for i,j = 1, ... ,n. Then

J.,J

Thus the rnatrix

(8.26)

satisfy

(8.27)

-1p

N

P·N

(N. . (x)/det(P)J.,J

(N. . (x): i, j
J.,J

det (p). 1.

i,j

L, ... ,n)

l, ... ,n).

We see that the matrix N has as all its elements polynomials

with rational coefficients, whose common denominator divides We

can also estimate the sizes of polynomial entries of the matrix N

using Corollary 8.1. According to (8.8) and (8.9), the sizes of poly-

nomials P .. are bounded as
J.,J

(8.28) H(P.. )
J.,J

i,j = l, ... ,n

where c
24

( 6 ) depends

(8.29)

on n, 6, cO' c 1 and D(x)

C
2 S

( 6 ) · D
H(N .. (x) e

J.,J

only.

i,j

consequently,

1, ... , n,

for c
2 S

( 8 ) depending on n, 8, CO' C
l

and D(x).
n

Finally, all elements of the matrix

integral coefficients. Similarly, according to

is a polynomial with integral coefficients.

the bounds (8.7) and (8.29), we obtain

are polynomials with
n

(8.27), l'det(p)n-
Taking into account (8.25)

(8.30)
n

1.N.. (x)n- J.,J
i,j = l, .... ,n.

n
we mUltiply now both sides of identity (8.23) by n-

Here l' are (rational) integers. We get:
n-

m k 1 m+n-l d m-k -k-n +1 [k ]
(m_k):·D(X) . (dx) X(D(x) . XP ).

(8.31)
n 1 m n }= ,D(x) .A . l·det(p)

m. m n-
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According to the definition, Den(P;m) is the common denominator

of coefficients of polynomial entries of p(k} for k = O, ... ,m. Based

on this we prove the following crucial

Proposition 8.6: The common denominator of coefficients of polynomial

entries . (x) of the matrix for
m. m: m

m = O, ••• - n (or (m+n-l)d < [(l/n-a)D]) is bounded by
c
28

(,S) . D
e Here c

28
( a ) is an effective constant that depends only on

n, CO' Cl and D(x) .

proof: First of all we estimate Den(p;m). From the expression (8.22)

and Corollary 8.1, Remark 2 we deduce that Den(p;m) divides

6D+(m+n-l)d·
Here

for any k 2 o. If we denote B [(l/n-a)D]/d-n, then Den(p;m) di-

vides 6D+(B+n-l)d for any m B. Let us denote the polynomial

(cf. the right hand side of (8.31», by c(x) (C(x) is independent of

m). It follows from (8.30) that C(x) is a polynomial with rational

integer coefficients of sizes bounded by

c (a).D
(8.32) H(C(x» e 26 .c(l/n-a)D

o

On the other hand, according to the definition of Den(p;m), accord-

ing to Lemma 8.5 and because is a matrix from Mn(Z[X]), the

matrix in the left hand side of

(8.33)

m k 1 m+n-l
.6D+ (B+n- l ) d · (m_k):·D(X)

X .N
dx n-l

1 m
= .A (x).C(x),m. m

has polynomial entries with integral coefficients. consequently, from

(8.33) it follows that every polynomial entry . (x).C(x)
1 m:

(i,j = l, ... ,n) of (x) .C(x) has rational integer coefficients.m: m
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We can use the Gauss lemma [21] in the following form:

Gauss Lemma 8.7: Let f(xl, .•. ,x
m)

be a polynomial with rational inte­

ger coefficients and g(xl, ... ,x
m)

be a polynomial with rational coef­

ficients. If f.g has integral coefficients, then the common denomina­

tor of coefficients of g(xl, •.. ,x
m)

divides the least common multiplier

of coefficients of the polynomial f(xl, ... ,x
m).

From Lemma 8.7 it follows that the common denominator of coef­

ficients of the polynomial .. (x): i,j = l, ... ,n and m B
m.

divides the least common multiplier of the coefficients of C(x). In

particular, this common denominator is bounded by the height of the

C(x). From the bound on H(C(x» in (8.32) we deduce proposition 8.6.

If we now fix 5, lin> 6 > 0, proposition 8.6 implies the (G,C)­

property as formulated above. One has to substitute B = [(1/n­5)D]/d­n

for N with fixed o(l/n > 5 > 0). Then the constant C in the defi­
c28(0) 2dl(1In­o)

nition of (G,c)­property can be chosen as e for a

sufficiently large N. This proves Theorem III from §l.

The crude estimates of proposition 8.6 can be considerably improved

to exhibit C in terms of CO' nand d only.
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