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Introduction, In this lecture we study diophantine approximations to
numbers represented as values of Siegel's G-functions [1l]. The G-
functions f(x) are defined as solutions of linear differential equa-
tions over @(x) having an expansion at zero f(x) = 2::0 anxn with a, €@
and T;;T < cg, denom{ao,...,an} < cg for a constant c . > 1. These func-
tions are important in the description of geometric objects (see 81
and [13]), and their values represent many classical constants (i.e.
periods of algebraic varieties). Siegel [1] introduced G-functions
and sketched a program of study of the arithmetic properties of values
of G-functions at rational (algebraic) points near the origin. Some
results along these lines were proved in [6]-[10], but under strong
(G,C)-assumptions on linear differential equations satisfied by G-
functions {(the global nilpotence property,... etc. see 8l). 1In this
paper we prove the G-function results that Siegel sought, without any
additional assumptions,

our main results are collected in 81, B8 1 also contains a discus-
sion of G-functions, the (G,C)-property and its geometric and p-adic
sense, Two of our key results are Theorems I and II on the absence of
linear and algebraic relations between values of G-functions. The
basis of all of our proofs is the method of padé approximation of the
second kind presented in 882-4. The proof of Theorem I is presented
in 85 and the proof of Theorem II is given in 886-7. BAnother important
result is Theorem III of 81, proved in 88, that any G-function is a

(G,C)~function. As a consequence of this result and [11], any G-function

*) This work was supported in part by the U.S. Air Force under the
Grant AFOSR-~81~-0190.
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is a solution of a Fuchsian linear differential equation with ration-
al exponents at regular singularities and the global nilpotence proper-
ties. For a discussion of the global nilpotence properties and the
Grothendieck conjecture, see [4].

Our results on the diophantine inequalities for values of G-func-
tions are particularly important for algebraic functions, when they im-
ply effective bounds on solutions of diophantine equations. The rele-
vant results for G-functions are formulated in 81 as Theorems V.

The method of their proof is the technique of graded Padé approx-
imations [3], [19]. These theorems imply an effective version of a
particular case of Schmidt's theorem [16], when algebraic numbers are
values of algebraic G-functions near the origin [24]. Our results
have the form of effective upper bounds on integral solutions of Norm-
form equations, particularly Thue equations [19], depending on an inte—
gral parameter. The uniform bounds for Thue equations are established

for the first time. We present a typical result of this form.

Theorem A: Let n > 3 and F(x,y) € Z[x,y] be a polynomial of degree n
in y, irreducible over @[x,y]. Let all real branches y = y(x) of
F(x,y) = 0 have power series expansions in x_l at X = » with integral
exponents (bounded from below) and with rational coefficients. Then

the Thue equation depending on an integer parameter N:
def X
(0.1) £(X,Y;N) = Y.F(N3) =3

has at most finitely many rationally parametrized solutions. These
parametrized solutions have the form: ¥/X = P(N)/Q(N), A-fixed, for
P(x), Q(x) € ®[x]. Parametrized solutions can be determined as ex-
ceptionally good rational approximations P(x)/Q(x) of a real branch
y = y{(x) of F(x,y) = 0 at x = o»--and there are only finitely many such
exceptionally good approximations [18]. With the exception of para-
metrized solutions, the Thue equation (0.1) has only finitely many
integral solutions (X,Y;N) for a fixed A. For any e > 0, and N > Nl(e),
the non-parametrized solutions X, Y of (0.1) are bounded from above
as follows

max (|X|, |¥]) < vo(e) (a) 72)7C
Here yo(e) > 0 is an effective constant depending on € > 0 and polyno-

mially on the height of the polynomial F(x,y).
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Bl, Siegel's G-functions.

Siegel had initiated in 1929 in [l] a program of study of arithme-
tic properties of values of analytic functions given as solutions of
linear differential equations with additional arithmetic conditions on
coefficients of their Taylor expansions. Two particular classes of
functions were singled out in [l1]. The first class of E-functions con-
sists of entire functions f(x) = ZZ:O anxn/n: such that a, e @,

T;;T £ n® ana denom{ao,...,an} < n® for n > no(e) and such that f£(x)
satisfies a linear differential equation over @ (x). Typical E-functions
are the exponential function e* and Bessel functions J (x) with v € Q.
For E-~functions Siegel had proved very strong transcengence and alge-
braic independence results using the method of approximating forms [1],
[2]. This method is essentially Padé approximation technigue to solu-
tions of linear differential eguations [3]. The second class of func-

tions, considered by Siegel in [1], called G-functions, consists of

; . o n . = n
analytic functions féx) = .0 3 with a, ¢ o, |ani < ¢ and

denom{ao,...,an} < ¢ for some C > 1, such that f£(x) satisfies a linear
differential eguation over é(x). These functions are much more import~

ant for applications in diophantine geometry. This chapter is devoted
to the discussion of geometric obstructions to Siegel's pro-

gram to G-functions (expressed by p-curvature operators). We also
present our new G-function theorems that overcome these obstructions
and realize a large part of Siegel's program.

We use the standard notations of the algebraic number theory. For
an algebraic number a and a complete set {al = a,...,ad} of numbers
algebraically conjugate to o, we denote by [a| = max{lall,...,iad}}
the size of a. Al1so den{a) denotes such a rational integer that
den(a)+a is an algebraic integer,

The product formula implies the following Liouville inequality:
‘den(a)d.a-TaTd-lg > 1 where a # 0 is an algebraic number of degree { d.

Also we denote by den{a_,...,a_} the common denominator of o ,a .
0 n

0’ n

Definition 1.1 (Siegel): Let f£(x) = Ez—O anxn be a solution of a linear

differential equation over @(x). f(x) is called a G-function of an € ﬁ
and there exists a constant C > 0 such that ‘an‘ < cn and the common

R . n
denominator of ao,...,an is at most C .,
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Remark 1.2: In fact, all coefficients a, of the expansion of f(x) be-
long to a fixed algebraic number field K. The field K 1is generated
by the coefficients of a linear differential equation from Q(x)[ ],

satisfied by f£(x) and by first few ay- For the purposes of this paper
we can and will assume that K = . Such a reduction to XK = @ case can

be achieved by considering simultaneously with £(x) = bl anxn€IQ{x3]

(c)(x) =5 alo),m with g(a ) = alo) fzjoisomor hic
n=0 °n ¢ n 2

imbeddings g: K > €. Then the functions Sym(f(G)
(o)

all functions f
{X): o K» g}, for
all symmetric combinations Sym of £ (%), are already G-functions with
=@ (i.e. one can replace o by @ in the Definition 1.1 above).
Obviously, algebraic functions are G-functions, because, by Eisen-
stein's theorem, for an algebraic function f(x) with the expansion
£(x) =5 _, 0
vides A.B" for appropriate integers A, B. Also, the class of G-func-

n . = . .
a x with a, € 0, the common denominator of a sa di-

tions is closed under integration, addition, multiplication and differen-

tiation., In particular, solutlogs of Picard-Fuchs equations, includ-
SRR |

m+1 m(b ..y b
m

also belong to the class of G~functions,

ing hypergeometric |¥) -functions with rational a; bj

In [1], Siegel, while solving the problem of diophantine approxima-
tions to values of E-functions at algebraic points, made an indica-
tion that something similar could be done for values of G-functions,
First of all, because G~functions have a finite radius of convergence
and, obviously, their values at rational points are not necessarily
irrational, there are natural restrictions on values of G-functions un-
der consideration. Siegel proposed such conditions on (rational) points
X, close to the origin for x ='§, 1x} < 1q1_€ or even {x} <
exp (- loglq]l/2+€) for ¢ > 0 and large q, |g| > qo(e).

However, Siegel did not formulate any theorem on irrationality,
measure of irrationality (or non-algebraicity of a bounded degree) for
values of G-functions, Instead, he remarked that such thecrems could
be obtained, and gave a few examples: one concerning values of Abelian
integrals and another dealing with values of particular hypergeometric
functions., 1In fact, there are serious obstacles to any immediate
attempts to extend Siegel's theory from E-functions to G-functions. The
reason for this lies in the necessity fo bound the denominators of the

coefficients of the expansion of a G-function f£(x) at points x = t,
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distinct from zero, To see the reason for this "global" condition
on f(x), we review briefly Siegel's method,

Siegel's method is based on construction of a system of approxi-
mating forms, or Padé approximations. These forms are constructed in
the following way. Let fl(x) = f(x),...,fn(x) be a system of G-func-
tions satisfying a system of the first order linear differential equa-

tions over ®(x):

(1.1) Ed}—{ FARE LS
%= (£1(x),...,£ (x)) and A = A(x) € M(n,R(x)). Typically, £, (x)

d ., i~
(E;)l 1f(x), where f(x) satisfies a scalar linear differential equa-

tion over @(x) of order n.
An approximating form for fl(x),...,fn(x) (or a remainder function

in Padé-type approximation problem for fl(x),...,fn(x)) has the form:
L(x) = Pl(x)fl(x) +...+ Pn(x)fn(x).

Here Pi(x) are polynomials Pi(x) e @[x] of degrees at most D: i = 1,...
where L{x) has a zero at X = 0 of order at least nD - [eD] for some
€ > 0.

Since fi(x): i=1,...,n are G-functions, one can always find
nD/ € _
1 :
fn). This is achieved

Pi(x) with integral coefficients of sizes at most C i=1,...,n

for a constant Cl > 0 (depending only on fl,...,
using the Thue-Siegel lemma [1], [5] being a version of Dirichlet's
box principle.

Siegel's theory of approximating forms (developed by him for E-
functions) predicts the existence of n 1linearly independent forms in

fl(x),...,fn(x):

(1.2) Li(x) = Pl,i(x)fl(x) +.. .+ Pn,i(x)fi(x)’
where L ki 4 ki
Li(x) =‘§T?-D(x) '(Eg) L{x), i=1,...,n

1

and 0 = ko <owo X kn and kn~S eD + C Here D(x) is a (polynomial) de-

o
nominator of the elements of the matrix A = A(x). In (1.2) all

Pj i(x) (1,5 = 1,...,n) are polynomials (from ®@[x]). Let now the common
3
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denominators of the coefficients of the polynomials Pj i(x) (i,j=1,...,n)
are not too big (like Cg for C2 > 0)., Then from the s;stem (1.2) of n
linearly independent forms one can immediately get (see the discussion
in [3]) a nontrivial lower bound for a linear form in numbers

fl(xol...,fn(xo) with arbitrary integral coefficients

=X
|9, £, (xg) +...+ @ £ (x)] > |a] 7,
lq| = max(|q1|,...,|qn|) > 4, and ) > O for a rational X, very close
to the origin.
However, the sizes of the denominators of coefficients of Pj i(x)
b

should grow as - ki: for large ki' Indeed, to differentiate L(x) k

times we need to iterate the equation (l.l1) k times. We get

(1.3) )" - a0 =0 (moa L - A@)").

U}

Here, in general, k! does not divide the coefficients of polynomial
entries of D(x)k-Ak(x).

However, one sees that Siegel's method can be applied to G-func-
tions fl(x),...,fn(x) satisfying equations (1l.1), if the following

additional (G,C)-assumption is imposed:

(G,C)-Assumption: We call functions fl(x),...,fn(x) (G,C)~functions,

if they are G-functions, and,for a differential equation (1l.1),that they
satisfy, the common denominator of all coefficients of polynomial en-
tries of matrices ﬁ% D(x)k.Ak(x): k =0,1,...,N grows not faster than
CN for a constant C,.

’ This kind of aisumption was first proposed by Galodkin [6]. (G,C)~-
assumption is correct for algebraic functions and solutions of Picard-
Fuchs equations (because of their p-adic behavior, see later). This
(G,C)-assumption is explicit in all nontrivial results on G-functions
obtained since 1929 (Galodkin [6], Vdananen [7], Flicker [8], Bombieri
[9], authors {[10]).

It turns out, however, that the general G-function theory, as
Siegel hoped for, and which is similar to the E-function theory can
be constructed without any use of additional (G,C)-function assump-
tions. To see why this is so remarkable, one should realize that

(G,Cc)-function assumption is an important p-adic condition and, unlike
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G-function assumption has a direct geometric sense after reduction
(mod p). One can visualize this by introducing p~curvature operators
(Cartier, Grothendieck, Deligne, Katz, Dwork, see [11], [12], [13]):

= (L. P
¢P = dx.I A)T (med p).

In fact, (mod p), ¢p is a linear operator and, in the notations
of (1.3), [111:

Vo= -a,(mOd P).

Then the (G,C)-function assumption implies, in particular, that
the operators ¢p are nilpotent for almost all prime p. Moreover,
the {(G,C)-assumption can be reformulated in terms of the relation between
the p-adic radius of convergence of solutions of (1.1) at a "generic
point t* for almost all p [9]. According to Bombieri [9], equation
(1.1) is of "arithmetic type" if Zp ep log p < », where all solutions
of (1.1), expanded at a "generic" point x = t, converge for ordp(x—t)
> ep. Then any equation of "arithmetic type" satisfies (G,C)~assump-
tions [9].

Obviously, the global nilpotence of (1.1) {(i.e. the condition that
wP is nilpotent for almost all p) is a very restrictive arithmetic
condition. It is widely suspected that all glcbally nilpotent egua-
tion in Dwork's phrase, "come from Geometry” [12]. The most known
among these equations is the class of Picard-Fuchs equations for per-
iods of algebraic varieties.

The G-function condition is, on the contrary, local and requires
only power series expansion of one solution (not n) at one (and not
generic) point., That is why the fulfillment of Siegel's program for
G- functions is so important.

our proof of G~function theorems relies on Padé approximation
theory, but this time we are using padé approximants of the second kind
or Germanic polynomials (in the sense of Mahler [141).

We present one of our main results on G-functions, that follow

Siegel's program, The proof of this Theorem I is given in 85,

Theorem I: Let fl(x),...,fn(x) be G-functions with rational coeffi-

cients in their Taylor expansions, satisfying a first order linear
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differential system (1l.,1) over Q(x), and such that functions 1,
fl(x),...,fn(x) are linearly independent over Q(x). Then for any ¢ > 0
and arbitrary rational r = a/b with (rational) integers a and b

such that |b‘€ > c3|a\(n+l)(n+€), r # 0, the numbers 1, fl(r),...,fn(r)
are linearly independent over @; and for arbitrary rational integers

HO’Hl""’Hn we have

€

2 a -n-

‘HO + Hlfl(b) +.. .+ ann(b)l > H s
with H = max(]Ho},...,iHn}), when H > ho. Here c = c3(f1,...,fn,e) > 0,
hO = ho(fl,...,fn,e,r) > 0 are effective constants,

in general, we have

a a -
|Hy + B E ) 4.+ H E ()| > M C

1"1'b
with A = -n log|b|/log|b/a"* |, whenever [b| > ¢,|a|™" and B > h in
the notations above, with effective constants c,y = c4(fl, .,fn,n) > 0

and hl = hl(fl,...,fn,n,r) = 0,

The method of proof of Theorem I, and other similar results, is
not based, like in Siegel's method for E-functions, on direct construc-
tion of approximating forms to 1,fl(x),...,fn(x). Rather we constuct
padé-type approximations of the second kind tofl(x),...,fn(x). This

system of Padé-type approximations takes the following form:

def .
Ri(x) = Q(X)'fi(x) - Pi(x): i=1...,n,
where Pl(x),...,Pn(x), Q(x) are polynomials in x of degrees at most

D, and such that

iy
ordx=ORi(x) > D + n €Dz
i=1,...,n.
It is much easier to control denominators of derivatives of re-
mainder functions Ri(x) for Padé—type approximations of the second kind:

1 x ,d.k
Ri’k = k:D(x) .(dx) Ri(x),

than for Padé—type approximants of the first kind. On the other hand
there is a well-known duality principle that expresses Padé(—type)

approximants of the first kind in terms of contiguyous Padé (-type)
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approximants of the second kind, and vice versa {[14]. This duality
principle was axiomatized by Mahler [15] in his studies of integral
points and successive minima of convex bodies in archimedian and non-
archimedian metrics. (It is, in fact, one of the versions of
Khintchine's transference principle, that corresponds to reciprocal
parallelepipeds, see [16].) The duality principle allows us to pass
from the remainder functions Ri,k to a system of approximating forms
with controllable denominators of coefficients of polynomial approxi-
mants. This is the key to proof of Theorem I and other similar
results.

If one looks only on linear independence (irrationality) state-
ments for values of G-functions, then restrictive conditions of Theorem
I onr = a/b can be considerably relaxed. We give an example of only

one such result, where the (G,C)-assumption is not used.

Theorem II: Let fl(x),...,fn(x) be G-functions satisfying matrix

first order linear differential equations(l.1) over @(x), and such that
functions 1, fl(x),...,fn(x) are algebraically independent over ﬁ(x).
Then for any t > 1 there exists an effective constant cg =
cs(fl,...,fn,t) > 0 such that for any algebraic number £ # 0 of degree

£ t, it follows from
4n

(1.4) lg| < exp(-c (log{g|}*™h),

that numbers
1£,(8),..., £ (8)

are not related by an algebraic relation of degree { t over Q(g£).

The duality between padé approximants of the first and the second
kind enables us to settle a longstanding problem [10] on the relation-
ship between G-functions and (G,C)-functions. It turns out that every
G-function is, in fact, a (G,C)-function! Such a result fulfills

another part in Siegel's program:

Theorem III: Let fl(x),...,fn(x) be a system of G-functions satisfying
a system of first order linear differential equations (1l.1l) over 5(x).
If fl(x),...,fn(x) are linearly independent over ﬁ(x), then the func-

tions fl(x),...,fn(x) are {(G,C)-functions,
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proof of Theorem III is presented below in 88. wWe remark that
the condition of linear independence of fl(x),...,fn(x) is clearly
necessary, even in the case of scalar linear differential equations,

when £, (x) = g(1-1)

(x): i =1,...,n. E.g. one can consider n = 2 and
the linear differential eguation f*" - f£f' = 0 (two solutions: f = 1 and
f = ex). The function £ = 1 is a G-function, but the (G,C)~-assumption
is clearly false for the equation f" - f£' = 0,

Theorem III also implies that every equation of order n having
a G-function soclution (that does not satisfy an equation of order n-1
over @(x)) is of "arithmetic type".

Our novel approach to G-functions, used in proofs of Theorems I-
IIT, opens an opportunity to apply Padé approximations to the study
of globally nilpotent linear differential equations. This new method
is the basis of our results on the Grothendieck conjecture, These re-
sults are presented in [4].

It is known that bounds on linear forms in values of G-functions
can be obtained in non-archimedian, as well as in achimedian metric,
provided the (G,C)-assumption is met, see [7], [9]. Thus, we can use
Theorem III to cobtain results on simultaneous approximations in several
metrics, However, it is easier to use directly the proofs of Theorems
I and II. To formulate the kind of results we obtain, let us denote
for an arbitrary G-function f(x) = 2: a %" (an € K:n= 0,1,...) and

(v) =0 "n

a place v of K, by £ (%) the function defined on the completion

of X corresponding to v. E.g., for the one {i-th) archimedian place
. v I3

v, corresponding to the imbedding a & a(l) of K&y T, £ . (x) =
Zw a(i)xn
n=Q n

the completion Kv of K. E.g. the value of £

f(V)
(v)

. For a non-archimedian place v, (x) is defined on

(X} at x ¢ Kv is a
v-adic number from Kv and it can be different from the wvalue of f(x),

even when X € K Kv' Because f(x) is a G-function, every function

v . .
f( )(x) has a nonzero radius of convergence in Kv’

In these notations results of Theorems I and II hold for any func-

(v)

tion f (x)., Namely, we have

Remark: If in Theorem II we consider K containing @(g) and the field

of coefficients of expansions of fi(x): i=1,...,n, then the results
(v)
1

fl(x),...,fn(x). One has only to replace || in (1.4) by ]g!v and

cf Theorem II holds for functions £ (x),...,fév)(x) instead of
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(v}
£, (&)

from Kv. The constant ¢, then depends on v as well., Similarly, in

3
Theorem I, under the assumptions \a/b]v < c max(|z¢],]b[)g/(n*'l)(nyw)-1

the v-adic numbers 1,f{v)(r),...,fév)(r) are linearly independent over

(complex) numbers £,(£),...,£ (£) by v-adic ones: f{v){g),...,
3

-n—-¢ .
@ and §HO + Hlfl(r) S ann(r)\v > H with H = max{;HO),...,}H 1)

> hO and c

37 hO depending on v, :
The results of Theorem IT form is the kind of result Siegel had
expected, One hopes, however, to go beyond the fulfillment of
Siegel's program and to attempt to remove the condition (1.4) or, at
least, to weaken it considerably. Though we cannot yet report an
ultimate progress here, some progress has been achieved. We report

one such result,

Theorem IV: Let fl(x),...,fn(x) be G-functions satisfying matrix

first order linear differential eqguations (1l.1l) over @(x), and such
that £, (x),...,£ (x) are algebraically independent over R(x). Then
for any d > 1 and ¢ > 0 there exists c

= c6(f .,,fn,d,e) > 0 such

6 1’
that for any algebraic number £ # 0 of degree  d, from

| < exp(-c,(log log H(5)}'HE),

it follows that

£18), .., £ (5)

are not related by an algebraic relation of degree  d over Q(£).

For applications of diophantine inequalities to diophantine
equations one needs a version of Theorem I, when fl(x),...,fn(x) do
not satisfy any more a first order system of linear differential equa-
tions (1.1), but instead are solutions of linear differential equations
of an arbitrary order over R(x). Such results for functional diophan-
tine approximations correspond to Kolchin's type problems [17] and
to analogs of Schmidt's theorem [16] for solutions of linear differen-
tial equations proved in [18], [19]. Similar results for E-functions,
particularly for sums of exponential functions were proved by authors
using methods of graded Padé approximations [3]. We use methods of

graded padé approximations to prove results close to the best possible
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for values of G~functions satisfying linear differential equations of

an arbitrary order. One of our results is the following.

Theorem V: Let fl(x),...,fn(x) be G-functions with rational number
coefficients of Taylor expansions, satisfying linear differential egqua-
tions over Q(x). Then for any e > 0 and a rational number r = a/b,

with integers a and b such that |b]| > c7§a}n(n~l+e),

c7 = c7(fl" .,fn,e) > 0 we have the following lower bound for linear
forms in fl(r),...,fn(r). For arbitrary non-zero rational integers
Hl""’Hn and H = max(\Hll,...,\Hn|), if Hlfl(r) +o. .+ ann(r) #0,

then
—l‘Hl~a,

\Hlfl(r) +,. .+ ann(r)| > |Hl v Hn|
provided that H > g with c
c7 > 0, c8 > 0,

Under the same assumptions on r, for linearly independent over

g = c8(fl,...,fn,r,e) > 0, and effective

®(x) functions 1, fl(x),...,fn(x) and arbitrary rational integers

q, qu---3qn we have:
1+
fay---q S,Uql.fl(r) ..+ qn:fn(r)}} S 1
and
1+
la| S et @] - flag ] > 1,

provided that |ql...qn\ > g and |q| > cy. Here I-]l is the distance to

the nearest integer, and c_ = c9(fl,...,fn,r,e) > 0 is an effective

9
constant.

In all results above we can also explicitly exhibit the dependence

of constants ¢ and ¢ on r, namely on |b|. This is of particular

8"’ 9
importance in our applications to algebraic functions, where r = 1/b
with varying b, For example, under the assumptions of Theorem IV we

have for rational integers Hl""’Hn'

-n _iA-€
{Hlfl(r) +.. .+ ann(r)k > 1b1 .H N
with ) = —(n—l)loglb\/loq‘b/an‘, H = max(‘Hoy,...,\Hn})provided that
H> clo(fl,...,fn,e).
proof of Theorems v is based on graded Padé approximation

methods developed by authors [19]-[20]. The essence of these methods
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consists in simultaneous approximations of all elements of graded sub-
modules in Picard-Vessiot extensions of L (x) generated by linear dif-
ferential equations satisfied by fl(x),...,fn(x). Namely, let under

the assumptions of Theorem IV, functions fi(x) satisfy scalar linear

differential equations over Q(x) of orders ki: i=1,...,n, We intro-
duce auxiliary variables Ci 3 (7 = l,...,ki; i=1,.,.,n) and
- L
e = (ci,l""’ci,n): i=1,...,n.
Definition 1.2 (0Of graded padé approximations): Let Pi(x\E)z i=1,...,n
be polynomials in x of degrees at most D and in ¢ = (El,...,En),
homogeneous in each group of variables c. = {C. .,...,C. Y: 3 A i
3 j,1 J,kj
of degree N, and in variables c; = (Ci,l""’ci,k.) of degree
N-1: i = 1,...,n. Let the remainder function
k, :
-y _ oh - i (3-1)
R(x|c) Zizl Pi(x1c)‘{2j=l ci,j'fi (%)}

has a zero at x = 0 of order at least t, for any choice of

E="(<_31,---,<_3n). If t > nD - ¢D and

N4k, -2
( )
K, -1
n i D
T . -
235 P T Nk —1’

( i")
k. -1 ’Tn—l L -1

then Pi(xla) are called Padé approximants and R(xiE) is called a re-
mainder function in the e-graded Padé approximation problem with weight
D of level N.

Using the specialization of the remainder functions R(XQE) and
their x-derivatives, we prove Theorems IV-V, applying a version of

Siegel's theorem, similar to our E-function results in [20].
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§2. Pradé-type approximants of the second kind.

In this chapter we study Padé—type approximations of the second
kind to a system of functions satisfying linear differential eguations
with rational function coefficients., We start our presentation with
Mahler's [14] definition of Padé approximants of the first and the
second kind to an arbitrary system fl(x),...,fm(x) of functions given

by formal power series expansion at x = O,

Definition 2.1: For m functions fl(x),...,fm(x) given by formal
power series at x = 0 and m non-negative integers nl,...,nm, we con-
sider m polynomials Al(x),...,Am(x) of degrees of at most nl,...,nm,

respectively, such that the function
R(x) =R (X)), (x) +...+ Amfm(x)

has a zero at x = 0 of the order of at least

m
Zi=l (ni + 1) - 1.

The polynomials Ai(x) are called Padé approximants of the first
kind and are denoted by Ai(x\nl,...,nm): i=1,...,m. The function

R(xX) is called the remainder function and is denoted by R(x\nl,...,nm).

Definition 2,2: Let fl(x),...,fm(x) be a formal power series and

n cesDy be non-negative integers. We say that the system of polyno-

1’°
mials (a&(x),...,a;(x)) is the system of Padé approximants of the

second kind to the system of functions fl(x),...,fm(x) with weights

n ceesD s if the following conditions are satisfied:

1)
i) the polynomialsﬁzi(x),...,Clm(x) are not all zero;
m

i1) deg 0 (x) < i1, g ™y

=0 -n for g = +...+n

nl m °’

i=1,...,m;
iii) the order of zero of the functionézk(x)fz(x) - Oe(x)fk(x) at

X = 0 is at least ;T_l n, +1=g+1; kg =1,...,m

We denote Padé approximants of the second kind with weights

n .,nm as follows:Cﬂé(x) =CZ£(x|nl,...,nm), i=1,...,m

170"
Mahler [14] was the first to establish important duality relations

between Padé approximants of the first and the second kind. These
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relations are a part of a more general duality principle from geoOmetry
of numbers (transference principles), see [21], [15], [16]. Mahler's
relations [14] between Padé approximants of the first and the second

kind can be represented in the matrix form as follows. We denote

A(x|ng,...,n0)

(B (x|n; + +oos ) g
R L R S R R R P

m
(%(X‘nl - Gjlx'--:nm - 6jm))i,j=l'

Lz(x\nl,...,nm)

Then for {(normalization) constants ¢ [

1777 %"t

g
c.X 0
£ .

A(x}nl,...,nm) -Q(x{n nm) =

17
0 cmx
with ¢ = nl F.o. .+ nm.

We refer the reader to [22] for further study of the relationship
of Padé approximants of the first and the second kind.

For arithmetic applications, padé approximants are not always con-
venient to use because of difficulties connected with denominators of
their coefficients. That is why it is useful to apply padé-type
approximations, that are very similar to padé approximations, with the
difference that the order of zero of the remainder function is not the
maximal possible. The theory of such pPadé-type approximations is
sufficiently developed, cf. [23].

We start with the introduction of new useful notations.

Definition 2.3: Let gi(x), i=1,...,n be functions regular at x = 0

and let M,D and D, be nonnegative integers. Let Q(x) be a non-zero

polynomial of degree of at most D Then for every i = 1,..,, n there

o
exists a unique polynomial
def
[Qg,l, = p;(x)
of degree of at most D, such that ordx_o(Q(x)gi(x) - Pi(x)) > D+1.
To describe explicitly the polynomial [Q-gi]D we need the following

simple lemma:
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Lemma 2.4: Let gi(x) = Zm 0 b ixr, i=1,...,n, and let
Lemma e.5 _ m,
0 m
™ i = i P =
Q(x) 5 —0 94X - Then for i 1,...,n, the polynomial i(x) [Qgi]D

D m
has the form Pi(x) == Zm=0 pm,ix , where

(2.1) Pm,i = Zk+,e,=m, qk'bz,i’

®<p,

m=0,...,D,

In particular, if Q(x) has algebraic integer coefficients and a
height < HQ, and AD is a common denominator of algebraic numbers
m,i’ m=0,...,Dy i = 1,...,n, then the common denominator of coeffi-
cients of Pi{x) divides &D’ and the height of ADPi(x) is bounded by

(D+1)HQCD, where max{AD-bm’i: m¢D,i=1,...,n} < CD.

Proof of Lemma 2.4: First of all we notice that for an arbitrary poly-

nomial P(x) = 22=O

m -
0¥ {Zk+z=m,ng0 QY b, ;7 Pyl

pmxm, we have the following expansion of Q(x)'gi(x)

- P(x): Ei: This and Definition 2.3

imply the expression (2.1) for the coefficients of Pi(x) = [Q-gi]D.

The second part of Lemma 2.4 follows immediately from (2.1).

Definition 2.5: Let D, D, and M be non-negative integers. Let Q(x}

[¢]
be a non-zeroc polynomial of degree at most DO and let Pi(x) dgf {Q-gi]D
(i =1,...,n) for n functions gl(x),...,gn(x) regular at x = 0, If

we now have
ordxzo(Q(x).gi(x)—Pi(x)) >D+ M+ 1

for every i = 1,...,n, then the system of polynomials

(Q(x);Pl(x),...,Pn(x))is called a system of Padé—type approximants of

the second kind with weights D0 and D and order M of approximation.
According to Dirichlet's box principle, Padé~type approximations

of the second kind with weights D0 and D and order M of approxima-

tion exist whenever DO > nM. We say briefly that the system

(Q:;P

parameters (DO,D,M).

l,...,Pn) of Padé-type approximants (of the second kind) has

We study now the Padé approximations (of the second kind) to a
system of functions satisfying linear differential equations. This
system of functions is denoted by fl(x),...,fn(x). We assume that all

functions fl(x),...,fn(x) are regular at x = 0 and satisfy the
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following system of first order matrix linear differential equations

d n
(2.2) ax Si(¥) = 3y By (E ),
i=1,...,n. Here Ai j(x) are rational functions (i,j = 1,...,n) and
3

we denote by D(x) the (polynomial) common denominator of rational
functions Ai j(x) (i,3 = 1,...,n). Let d = max{deg(D)-1, deg(DAi j)r

s >
i,j = 1,...,n}. In applications, functions fl(x),...,fn(x) are G-

functions and Ai j(x) € P(x),i,i = 1,...,n.
Ll

Theorem 2,6: Let fl(x),...,fn(x) satisfy a system of equations (2.2},
Let (Q(x):Pl(x),...,Pn(x)) be padé approximants to a system of functions
fl(x),...,fn(x) with parameters (DO,D,M). Let k¥ > 0 and y > k{d+1).

Let us define

(2.3) e = Zo™ o,

k:
<k> def [Q<k

> . .
and Pi (X)'fi(x)](D+kd)‘ i=1,...,n. In these notations,

(%)
the polynomials (Q<k>(x);p§k>(x),...,P;k>(x)) are Padé;type approxi-
mants to a system of functions fl(x),,..,fn(x) with parameters

(D0 + kd,D + kd,M - k(d+l)).

Proof: For k = 0, see Definitions 2.3 and 2.5. Let us assume that

. <k> <k> _ <k> s
for all k¥ < K and polynomials Q (x) and Pi (x) = [Q (x) fi(x)](D+kd)’
i=1,...,n, the function
£
(2.4) R () 98F 0>k ) - ().
i i i
has a zero at x = 0 order of at least D+ M~ k + 1, i = 1,...,n, We

differentiate the egquations (2.4) and take their linear combinations
with appropriate polynomial coefficients. We have (éi)kQ(x) =
x!D(x) KoK

{x). Thus
2.5) e = - L b 0.0 P60+ 2o S @ 6.
also, for 1 = 1,...,n we have:

4 <> - WCS S

ax Ry T(3) = (@77 (x)) - £, (%)
(2.6)

<> n 4 <k>
+Q (x)-2j=1 Ai’j(X)fj(x) -G Py T =)

Thus, from (2.5) and (2.6) it follows that
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CEL)p gy ED XK-1>

K (x)) -

(x) + KD(x) {-—<R
(2.7)
A gK-1>

- .
j=1 ,JJ

K> _
(%)} =Q (x) - £, (x) Pi’K(x).

Here, in (2.7),

) = - Eop 0 2T g 4+ 2o 01 S e e

n <K-1>

- R (X)P (x)1,

and Pi K(x) is a polynomial in x of degree at mest D + (K~1)d + 4
2

=D+ Kd; L = 1,,,.,n. Since, by the induction hypothesis,

ordx 0 §k>(x) >D+M-%k+ 1 for k =0,...,K-1, we get from (2.7):
> -
(2.8) ordsz(Q (x).fi(x) - Pi’K(x)) >D+ M K+ 1
for i = 1,...,n.
If M > K(d+l), then ordx=o( (x)f (x) - P, K(x)) > D+ Kd + 1;

i =1,...,n., Because the degree of Q<k>(x) is always at most D, + kd,

0

the degree P$k>(x) is at most D + kd, and the degree of Pi K(x) is at
b4

most D + K4, we see that P (x) is the unigue polynomial of the form
<K> £,

Q™7 () £, ()],

This identification and (2.8) prove Theorem 2.6 for k = K.

i= l,...,n.

We can express the formula for iterations of radé approximants

from Theorem 2,6 in the matrix form as follows:

corollary 2,7: Under the assumptions of Theorem 2.6 in the matrix
notations, A = (A ( )) j=1 and I = (5l 3): =1 we have the following
recurrences, For M‘z k(d+l) the polynomials 0<K>(x), P<k>(x) and

functions R<k>( ) (1 =1,...,n) satisfy

¥ = p - ¥ kI ) = e £ 0P ),
> &>t k1 & _ .k t
IR A PR TE R P SLNC R CO PP OB
(2.9)
&> <k> _ a £
e, 2 e Fap e (G’ )R ()
and p<k>( ) = [Q<k>(x).fi(x)]D+kd, i=1,...,n
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Here the differential operator éi I - A acts on n~tuples of func-

tions and .t is the transposition operator,

(k)

Proof: Let us put Q (x) = ( ) Q(x) and let us define

e e, e et 9 L e @, e ) ©
(2.10)

@ e, r w0y et LR e 0, Lr )"
where Ri(x) Q(x)fl(x) - P (x): 1 =1,...,n. This means that, induc-
tively, pf ) (x) = P, (%), R(o)(x) =R, (x) (i=1,...,n) and

(k+1) (k) n (k)

R O T N CON IR NS WRE g COp

(2.11)
{(k+1) _ (k) _ (k)
P, (x) = (P (x)) 23 -1 By 5 j {x)

for i = 1,...,n and k¥ > 0. Since fl(x),...,fn(x} satisfy the system

{2.2), it follows from (2.11) that
(k)

(2.12) R,
i

® =e® g 00 - 2 0

for i = 1,...,n and any k > 0. It follows from (2,10) that

k' D(x) ik)(x) is a polynomial in x of degree at most D + kd. Also,
according to (2.3), Q<k> X) = —7 D(x ) (k)(x). The order of zero of

1

%' D(X) (k) (x) (1 =1,...,n) at x = 0 is at least D+ M + 1 - k, as

follows from (2.10). Sjince P<k>

£ D + k4 such that Q<k>

(x) is the only polynomial of degree
(£, (x) - BT
at least D+ M+ 1 - k for k(d+l}.g M, we det the identification

{x} has a zero at x = 0 of order

<k> 1 ( )

(x) = *r D(X) (%),

i=1,.,.,n. Thus R (x) = ~—-D(x)

> kﬁ k-Rj(_k)(x): i=1,...,n, Corollary

2.7 is proved.

83. Linear independence of padé approximations of the second kind.

In this chapter we prove linear independence of a system of pade
approximations of the second kind, constructed in Corollary 2.7 using

the iteration of linear differential eguations (2.2). This will allow
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us to construct in 84 a system of n + 1 independent simultaneous ra-
tional approximations to numbers fl(xo),...,fn(xo), whenever X, #0
and X, is not a singularity of the system (2.2), i.e. D(xo) # 0., For
this we need a statement of linear independence of a system of Padé

approximants constructed in Theorem 2.6:

Theorem 3.1: Let fl(x),...,fn(x) satisfy a system of equations (2.2)
and let functions l,fl(x),...,fn(x) be linearly independent over T (X).
Let (Q(x);Pl(x),...,Pn(x)) be Padé approximants to a system of func-

tions fl(x),...,fn(x) with parameters (D,D,M). Let for k > 0, the

<k> <k> <&k>

polynomials (Q (x);Pl (x),...,Pn (x)) be Pade approximants defined

as in Theorem 2.6 (see formulas (2.9)). Let

<k>

a(x) = det (@9 () 6%

(x);-‘-;P§k>(x)): k = 0;110--:n)-

Then for a sufficiently large M, M > cy the determinant A(xX) is not

3

identically zero. Here 3 is a constant depending only on the system
of linear differential equations (2.2) and on the orders of zeroes

of fl(x),...,fn(x) at x = 0.

Proof: This result is dual to the well known results for approximating
forms (i.e. for Padé-type approximants of the first kind). In our
proof we use the arguments from [5, Chapter 11, Lemma 2]. Assume that
A(X) = 0. Let 4 < n be the integer such that the first 2 columns

IR SN <k
s, = (@7 (x); T (x),... 00

over T(x), but the (g+l)-st column is linearly dependent over T (x) on

>(X))t (0 < k < n) are linearly independent

them. wWe denote by F the matrix formed by the first g columns Sy
(0 <k < g-1) and by R and S we denote the matrices formed by the
first 4 rows and n + 1 - 5 last rows of F, respectively. We assume,
without loss of generality, that R is non-singular, Then, as is
proved in [5, Cch. 11, Lemma 2], the degrees of the numerators and de-
nominators of the rational function elements of the matrix SR_l are

, where c

bounded by c depends only on the system (2.2). Denote by

14 14
G the 2 X (n+l) matrix with s rows (fi(x)’o""’_6i+l,j""’0):
i=1,...,4; and let GO and Gl denote the matrices formed by the first
4 columns and n + 1 - p last columns of G, respectively. Then for
. def j~-1 j-1
the 4 X 4 matrix T g G.F we have Ti 5 = Q<J >(x)fi(x) - sz >(x),
Ed

Lo -1 -
i,j=1,...,4 and T = GOR + G48, so that TR = GO + GlSR 1. In view
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of Definitions 2.3,2.5 and Theorem 2.6, all elements of T have orders
of zero at x = 0 at least D+ M+ 1 - 2. At the same time all (poly-
nomial) elements of R have degrees in x at most D + (g-1)d. Hence
det(TR_l) is a function in x with an order of zero at x = 0 of at
least 4 {D+M+1l-g ~D—(z 1)a} = g[M-(2-1) (d+1)}. on the other hand,

det(G + G SR ) # 0, since l’fl(x)""’fn(X) are linearly independent
over m(x). Also the degrees of all rational functions elements of

.SR_l are bounded by c This implies that the order of zero at x = 0

15°
of det(GO + GlSR ) is bounded by 016’ where cls
and fl(x),...,fn(x). Hence, for g{M-(g-1)(a+1)] > Clgr OF for a

depends only on cl5

sufficiently large M, A(X) is not identically =zero.

B4, Simultaneous rational approximations to values of G-functions.

In this chapter we use Theorem 3.1 on linear independence of padé
type approximations constructed in Theorem 2.6, to exhibit linearly
independent simultaneous rational approximations to l,fl(xo),...,fn(xo)

for X, # 0 and X, distinct from the singularities of the system (2.2).

Theorem 4,1l: Under assumptions of Theorem 3.1 let, additionally,

%y # 0 and D(xo) # 0 {i.e. X, is distinct from the singularities of

the equations (2.2)). Then there exist integers k

0""’kn such that
0 <Ky <ok <D= oM+ IlJ—“«'t—ll(cal 1) and such that the following
n+l forms in the variables Ygreees¥ s
Q<k3>(x Yoy + oo p<ki>(x )y.: i =0 n
o a1 By 0’¥y?

are linearly independent.

Proof: From the definition of A(x) and the upper bounds of Theorem 2.6

<k>

on the degrees of Q (%), P (x), i=1,,...,n, it follows that A (x)

+1
is a polynomial in x of degree of at most D + nD + Eig——ld. On the

other hand, A(x) = det((Q (x); P<k>(x) -0 (x) »fl(x),...,9<k>(x)

>(x)-fn(x)): k = 0,1,...,n), Since ordx=0(P§k>(X)-Q (x)- £, (%))

>M+D+1~-%, 1i=1,...,n, we have ord A(x) > n(M+D)—BiE:il. Hence,
if A(x) £ 0, we have A(X) x° A (X)), where Ag (x) is a polynomial of

degree of at most D - nM + Eigilg(d—l)—n. Thus for any X5 # 0, there
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exists a t, 0 t <D - nM+ Eigi;l(d 1)-n, such that 5 )(xo) # 0
but A( )(XO) = 0 0<s ¢,

Let us introduce the following linear forms in n + 1 variables

zo,...,zn:
-, def
(4.1) ¢z %8 ez, + 5T PPz,
i= l i i
From the definition of A (X) we obtain
_ on <3> = -
(4v2) A(x)zl = zj':O 2 (Z).Al] (X): i= 0;1}”':11’

where Aij(x) is the algebraic complement in A{(x). We consider the

system of linear differential equations conjugate to (2.2):

ax ’
(4.3)
dzi
ax = -3 =1 A..(x)z,, i=1,...,n
with initial conditions zi(xo) =y, i=20,1,...,n. Since xO is not

a singularity of (2.2), such a solution z = zi(x), i=20,...,n exists,

X
We have z<k>(x;§) = 2é¥l—-m<k>(m:§) and

m<k>(X7E)d§f (k )(X) ZO+22 1 Pi’k(x)zi.
(k) 1

According to (2.9), 0 (x) = ( ) Q(x),(P (x),...,Pi k(X))t

= (Jl-I—A)k-(P (x),...,P (x))t. Substituting z, = z,(x) from (4.3)
<k> N

we see after dlfferentlatlon that E—m (x;z(x)) = n<k+1> (x:z (%) ).
Consequently, C—— k! <k>(x;§(x)) = m<k+k >(X;E(x)). Differentiating

(4.2) t times with z, = zi(x), i 0,...,n and substituting x = Xqs

we obtain from D(xo) # 0,

_ O+t s> .z s L,
Yi = ZS =0 ¢ (x O‘Y)'Ai’ i=20,1,...,n

with Ai = Ai(xo)~~rational in x for arbitrary variables y = (yo,...,y Y.

0’
<s>

Hence, among the n + t forms z<s>(xo;§) =Q (% )yo + Z P (x ). Yy

i=1"1

in variables yo,yl,...,yn: s = 0,...,n+t;n+t < D - nM + Eigill(d—l),
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there exist n + 1 linearly independent forms. Theorem 4.1 is proved.
Theorem 4.1 is applied in B5 to the proof of one of our key results,
Theorem I on the linear independence of values of G-function formulated

in 81,

85. Proof of Theorem I.

To prove Theorem I we construct the system (Q(x);Pl(x},...,Pn(x))
of pPad€ approximants of the second kind to functions fl(x),...,fn(x)
with parameters (D,D,[(ﬁ—5)D]) for 3, 1/n > g > 0 and a sufficiently
large D. This construction is achieved using Thue-Siegel lemma. ‘Then
we apply results of Theorem 2.6 and statement on linear independence
from Theorem 4.1,

Following the formulation of Theorem I we consider G-functions
satisfying differential equations (2.2) over Q(x), i.e. Ai,j(x) € Q(x)
and D(x) € E[x]. Also all coefficients of Taylor expansions of G~
functions fl(x),...,fn(x), satisfying equations (2.2) at x = 0 are

assumed to be rational integers,

Lemma 5.1: Let fl(x},...,fn(x) be a system of G-functions such that

o

£, =  x™ , i
3 () Tm=0 m,i* *3m,i € @ and for the common denominator A of

: m
{ao EEEEL 1,...,n} we have ‘Am'ak i| < Co(k = 0,1,...,m) for
y 2 E

some CO >1and all m = 0,1,,.. and i = 1,,..,n, Then for g,

% > & > 0, and an arbitrary positive integer D, there exists a system
(Q(x):Pl(x),...,Pn(x)) of pPadé approximants of the second kind to
fl(x),...,fn(x) with parameters (D,D,[(ifa)D]) such that Q(x) € Z[x]

(1-6n)/6n_ (n+1-sn) (1-0)D/gn”

and the height of Q(x) is at most D 0

Proof of ILemma 5.1: In the proof we use Dirichlet's box principle in

the form of Thue~Siegel's lemma [5]:

Lemma 5.2: Let M, N be rational integers with ¥ > M > 0 and let
uij(l < i <M 1<K 3 < 0N) denote rational integers with absolute values

at most U (> 1). Then there exist rational integers xl,...,xN not
all 0O, with absolute values at most (NU)M/(N-M), such that
N

. u,.x, = 0 (1 i M).
Ta1 %i5% lgigm

Following Definition 2.3, for a given D, and D + 1 undetermined
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coefficients qm(O £ m << D) of Q(R) = zﬁ=0 qum, we put Pi(x) dgf [Q-fi]D,

i =1,...,n. Then the condition that (Q(x);Pl(x),...,Pn(x)) are Padé
approximants of the second kind of fl(x),...,fn(x) with parameters
(D,D,[(1/n-5)D]) is equivalent to the following: ordx=o(Q(x)fi(x) -
Pi(x)) > D+ [{(L/n - §)D] + 1 for all i = 1,...,n. The last condition,
in view of the definition of Pi(x), is equivalent to the system of
linear equations:

D

(5.1 k=0 %" Pm-x,1

1
=0:m=D+1,...,D 4+ {¢; - 8)DI1,

i=1,,..,n, This is a system of at most n.[(1/n-3)D] eguations in
D + 1 unknowns qm (0 { m < D). The common denominator of all coef-
ficients of equationg (5.1) divides Apim’ M= [(l/n - §)D]. According

to the assumptions of Lemma 5.1, A are rational integers
D+M
0 -
ing to Lemma 5.2, there exists a nonzero polynomial Q(x) € E{x] of

(1-§n)/sn o(n+l-gn) (1-sn)D/sn?
.Cy ,

-a_ .
D+M m, 1

(m<{ D4+ M) i=1,...,n of absoclute value at most C Hence, accord-

height at most D satisfying all the con-
ditions of Lemma 5.1,

From the discussion in Lemma 2.4 and Theorem 2.6, we obtain

Lemma 5,3: Let functions fl(x),...,fn(x) satisfy all assumptions of
Lemma 5.1 and let fi(x) = 2:=0 am’ixm, i=1,...,n be a solution of a
system (2.2) of differential equations with \ah’i| < CT

(m=0,1,...,; i =1,...,n) for some c1 > 1. Let (Q(x);Pl(x),...,Pn(x))
be the system of padé approximants of the second kind with parameters
(D,b,[(1/n - §)D]) constructed in Lemma 5.1. If for k > O,

kd < [(1/n - §)D], then Q<k>(x) € T[x], and the common denominator Dy

of the coefficients of polynomials P§k>(x) € @[x] (i =1,...,n) is
bounded by cE*kd. Also, for i = 1,...,n and |x| < czl we have
c
a_ 1
109 @ £, (0)-2T (%) | < 7D (x))*B(Qx)) - 2PR L
i i cl-l
D+M+1-k
X |c %] /(1={xc, |),

where M = [(1/n-3)D] and H(D(X)), H(Q(x)) are the heights of the poly-

nomial D(X), Q(x), respectively.

Proof: According to Theorem 2,6 we have
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<k> _ k1 4.k <k> _ e n k> .
Q (x) = D(x) T (Ggg) Q) PUTU(x) = [Q (X)-fi(X)](D+kd)- Since
D(x) € 2[x], 0 (x) € 2[x] and deg (@ (x)) < D + kd,

1O @0) < HEE) S rEE) 27K, mus, if 0% = YT,
then pU> (x) = pOrkd (I gmin(DHkd, 3) > . 1nis establishes the

i j=0 m=0 m j-m,i
bound for the denominators gk. Similarly, according to Lemmas 2.4 and
<k> o <k ) m _D+kd <k>
Theorem 2.6 Q (x)fi(x) Pi (x) = zm=D+M+1—kx -Zj=0 3 am—j,i'

<k>

Upper bounds on H(Q (x)) and on a, ; prove Lemma 5.3,

B
We use Lemmas 5.1 and 5.3 to prove Theorem I. Under the assump-
tions of Theorem I, put

4 = H0 + Hlfl(r) +...+ ann(r).

For a fixed §, l/n(n+l) > § > 0, we consider the Padé approximants
(Q(x);Pl(x),...,Pn(x)) to fl(x),...,fn(x) with parameters (D,D,[(1/n-g)D])
constructed in Lemma 5.1. Applying Theorem 4.1 we find an integer kj’

0Lk, <D-nM+ n(ntl)(d-1)/2 and M = [(1l/n-§)D], such that

> n <k.>
H..Q I (r) + %, u,p, J (r) # 0. Since H. are rationsl integers and
6] i=1 "i i i D+Hk. .
r = a/b, we obtain a non-zero rational integer I = gk ‘b 3 [HO'Q ] (r)
n 3> 3 D+kyd
+ 5y BB (r)}. Thus {I| > 1. On tie other hand, I = @ksb .
j> _n <kj> _ < j>
{2-Q (r) - ¥;_; H(©Q (r)£, (r) - p, I (N}
2
Now let gn = ¢ for e<1/(d+2). Then for any k < D - nM + E—(g--tl)-(d—l)
and D > cC (n,d,s), we can combine estimates of Lemma 5.3 with an

17
upper bound of H(Q(x)) from Lemma 5.1 toc obtain

De de
—  (1+—)D
0@ ) - PP | <HEE) M2 P
(5.2) Bl (g2 Zep  (as2ep
x Cg Cy - x| s
whenever |r| < C1gs C1g = Cig (n,d,e). Similarly, Lemma 5.3 implies
under the same assumptions on k:
@ —(——ln:l D %: (1425 p
(5.3) |Q (r)| < Co -H(D(x)) -2

We choose now the weight D as the smallest integer
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D> cl7(n,d,6) such that

D+k_ 4 <X > <k.>
(5.4) Henep -|p| J omax{je T (mf (m)-p, P (x)]:

. 1
i=1,...,0} < 5

~D-k_.d

3 ;. kD>

.5& -|e 3 ()} lf2. We can
3

Then {I]| > 1 implies |z} > {b]

represent the bound (5.4) in a form

1 1
{1+~-2¢ D (2¢.+de -—)D
D n 0 ¢] 0 n
(5.5) He-c)gla| - |b| <1,
- - I S
where Cig = clg(n,D(x),e) and €& =4 < (2] " Then for any H, an
integer D > c,, exists whenever |a‘(l+l/n_2eo).\b‘(2€0+d€0_1/n) < CI;'
The lower bound
-(l+¢0d)D
f2} 2 |e| 20
for S0 = czo(n,D(x),e) > 0, together with the definition of D in

(5.4), implies the assertions of Theorem I.

86. The duality between Padé-type approximants

of the first and second kind.

In this chapter we extend the duality principle (see 82) to exhibit
the relationship between Pad&-type approximants of the second kind and
Padé-type approximants of the first kind to the system of functions 1,
fl(x),...,fn(x). We make our exposition a local one, associated with
a nonsingular point %, # O0,and we construct n + 1 linearly independent
approximating forms to 1,fl(xOL...,fn{xo). For this we start with a
system (Q(x):Pl(x),...,Pn(x)) of padé approximants with parameters
{D,D,M) and with Xq # 0 satisfying all assumptions of Theorem 4.1. We

let P§k>(xo) dng<k>(x0), and define rational functions LP j(p,j=0,...,n)

>

in X, as solutions of the system of linear equations

n P
P (x = & .y 1,3 = 0,...,n,

6.1 L . .
( ) z}.>=0 P,sJ P 0) i,]

where 0 < kg <...< k <K <D - nM+ n(n+l) (d-1)/2 as in Theorem 4.1.
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def <k;>

If we put v(xo) = det(?. {x i,j = 0,1,...,n), then v(x } # 0 by

ol

Theorem 4.1 and L, ., = R (x )/v(x ), where R (x ) is a determinant
P-3 3 P,

from P;kl (x Y, g £ P constructed by Cramer's rule from equations (6.1).
i (x, ), i =20,...,n}. Since B £ D, we deduce
- <k >
from Theorem 2.6 that, whenever M.2J((d+l), we have ordX _0(pj (xo))
o=

> f for all j =1,...,n and i = 0,1,...,n. Thus we obtain

Let B = mln{orde=0( 0

n
ordxo=0(v(x0)) > B8 + n{M+D+1l) - i ki'

(6.2)

n
Ordx0=0(Rp,j(x0)) > B + (n-1) (M+D+1) - Zion ki’

(P,] = 0,...,n).

Let us denote, for simplicity, fo(xe} I1f we put
wj = Z;:O Lp,j'fp(xo): j = 0,...,n, then we have an identity
<k, > n <k >
Py (xo)-wj = 5i’j + zp=l Lp,j(PO (xo)fp(xo)
{6.3)
<ki>

- PP (XO)): i,i = 0,1,...,n.

Let us define £ = (n-1) (M+D)- (n-1)}K and let us put

def -&

v, = L. b4 X
] wj v ( ) o
ordx —o(R (x ) (P,3 = 0,...,n) in (6.1) we have v, = Zp—O My,3 %ol

fp(xO) (j = 0,...,n), where M (x ) (p,3 = 0,...,n) are polynomials

for j = 0,1,...,n. According to the estimate of

in XO' We can use (6.3) to estimate from below the order of zero of vj
at Xg = 0z ordx =0(vj) > mln{ordx =O(V(xo)), ordx =0(Rp,j(x0)'
0 0 0
<ki> <ki>

(PO (Xo)fp(xo)--PP (xo))): i=0,...,n; p=1,...,n} - B -~ %. Using
the estimates above in (6.1), we obtain ord =o(vj) >M+ D -K,

j = 0,...,n, Thus we deduce the following

Theorem 6.1: Let fl(x),...,fn(x) be solutions of (2.2), regular at
x = 0, linearly independent with 1 over C(x). Let (Q(x);Pl(x),...,Pn(x))
be a system of padé approximants of fl(x),...,fn(x) with parameters

(D,D,M) and let X, # 0 and D(xo) f 0. Then for a sufficiently large
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M, M 2]{(d+l), there are n+l linearly independent forms vj =
n . . _ :
Zp=0 Mp’j(xo)fp(xo): i =0,...,n in fo(xo) =1, fl(xo),...,fn(xo), with

polynomial coefficients M (=

b, O) (p,j = 0,...,n) such that
»

degxo(Mp’j(xO)) <D - (n~1)M +X (nd+n-1),
ordezo(vj) >D+ M —]K R

<k >

P,j = 0,...,n. Here ¥ < D - nM + n(n+l)(d-1)/2. Moreover, if Q (%)

e

<k
€ T[xl, Pj (x) € Q[x] and the common denominator of coefficients of

<k.> .
Pj 1" (x) is »(J = 1,...,n; i = 0,...,n), while the heights of poly~-
k> <k.>
nomials @ Y (x), Pj 1" (x) are bounded by H{j=1l,...,n;i=0,...,n), then
n _n .
we can assume that Mp,j(xo) € Z[xO] and H(Mp,j(xo)) < ® -H {(p,3=0,...,n).
The first two inequalities of Theorem 6.1 follow directly from the
preceeding discussion. The linear independence of forms vj: j=20,...,n
follows from v(xo) # 0 and eguations (6.1l) using Theorem 4.1, proved
in 84, The last part of Theorem 6.1 is also obvious if one replaces

n
M .(x b .M
,3( O) Y ® S

5 j(xo) in the definition of Vj above (p,J = 0,...,n).

£

87. prroof of Theorem II.

Following Siegel's method of approximating forms [1l], [2] we can
apply Theorem 6.1 on the existence of padée approximants of the first
kind to the proof Theorem II from 81 on the absence of algebraic rela-
tions between values of G~functions at algebraic points. In fact,
Theorem IT is not the best result of this kind that we can prove. We
present a complete proof of Theorem II to show how pPadé approximants

can give a proof of G-function theorem that Siegel [1] had envisioned.

Proof of Theorem II: In this theorem we use a separate numeration of

constants, starting from ¢ (do not confuse that with constants from

17
the proof of Theorem I). Let N be a sufficiently large positive

integer. We consider a new system of G-functions

i i

{fll(x)...fnn(x): 0 < il +, .. F in < N}. Let us denote functions in
- ; _ N+n,

this system by Fl(x),...,Fm(x), m = { n ) 1. Then Fl(x),...,Fm(x)

are linearly independent over Q(x) and satisfy a system of linear
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differential equations of type (2.2), but with n replaced by m,
and with the same common denominator D{x) of its rational function coef-

ficients, 1If co, C., denote constants introduced in Lemmas 5.1 and 5.3,

1
respectively, for a system fl(x),...,fn(x), then the corresponding con-

stants for a new system F (x),...,Fm(x) can be taken as Cg and Cl' This

means that for F (x) = z —OAs jxf and the common denominator Ar of
Nr
As,j s = O,.,.,r and § = 1,...,m we have: ]ArAs 3§ < cO (5=0,...,r)

and we have ‘As,j‘ < Ci for s > sO(N) and j = 1,...,m. Hence, for 1/m
> 8 > 0, we obtain a system (Q(x);Pl(x),...,Pm(x)) of Padé approximants
of the second kind of functions Fl(x),...,Fm(x) with parameters
(D,D,[{(1/m-§)D], satisfying all the conditions of Lemmas 5.1 and 5.3

but with n replaced by m, C., replaced by Cg and fi by Fj

o

177"
system (Q(x); P, (x),...,P (X)) of Padé approximants of F_(x),...,F (%),
1 m 1 m

(j = 1,...,m), with D > Dz(F ,Fm). We apply Theorem 6.1 to this

by choosing Xy = g, for small |g\. This way we get a system of m + 1
. . m . .

linearly independent forms uj = p~0 p J(g)F (): 3 = 0,...,m in

F (g) =1, F (g),... ¥ (g) Here Sp . (X} € Z[x], the degrees of poly-

nomlals Sp j(x) are bounded by D- {1/m+5(m {(a¢+1)-1)] + 95 and heights

by exp{clBDN/a}, when 5m {8+1) < 1/m, ¢y =¢ 7(f1,...,fn,N,5) > 0,
C1g = cls(co,n) >0, D> Dy (F ,.,.,F ) and p,j = 0,1,...,m, According

to Theorem 6,1, the functions z (x)F_(x) have zeroces at x = 0
p=0 p,J P

of orders at least D + (1/m-§)D - gmD - c = C19(f1”"’fn’N’6)

€19’ ©19
> 0 for j = 0,...,m, Hence we obtain the following upper bounds on

D(1+l/m—-5(m+l))—c19
(7.1) la| < explc, DN/s)-|¢] ,

j = 0,...,m and ¢ czo(co,cl,n) > 0. Let us assume that there is a

20 ©
nontrivial algebraic relation p dgf P(g,fl{g},...,fn(g)) = 0 of degree
t' < tin fl(g),...,fn(g) with coefficients from Z[£], not all zeroces,

Péxo,xl,...,§n) € z[xo,...,xn]. Multiplying P by monomials
1 !
l(%) .. fnn(g): il +.. .+ in < N-t', we obtain m' degt (N E +n) non-

trivial linearly independent forms La(g) in l,Fl(g),...,Fn(g) (o < m')

with coefficients from B[£]. Hence, there are m+l-m' linear forms u, ,

g

among uj, linearly independent from La(g) (B =1,...,mtl-m', a = 1,...,m"'),.

For a determinant R(£) formed from the coefficients of thesem + 1
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linearly independent forms in 1, Fl(g),...,Fn(g), R(E) # 0 and R(g) is

a polynomial in £ with rational integer coefficients of height at

most exp{czzDNn/s}, and of degree in £ at most c22Nn"lD(l/m

+ 5(m2(d+l)-l)} + C 3 where ¢ n,t'} > 0, ¢ = czz(n,t')

2 21 = ©21(C0 Cys 22

> 0, Chy = c23(f1,...,fn,N,§) > 0 and ¥ > No(n,t). Bounds (7.1) implies

the following upper bound:

{7.2) ‘R(g)‘ < exp{c24DNn/5}.}g‘D(l+l/m-5(m+2)),

where Chy = c24(co,cl,n,t) > 0, N> Nl(n,t), D > D4(fl""’fn’N)' On

the other hand, we can apply the Liouville theorem [ 5] to bound from

below |R(£)| in terms of H(g)-the height of g§. By choosing a suf-
A . -3n
ficiently large N and putting g = Cyg N » Cyp 25(CO

we obtain from Liouville's theorem: log|R(g)}| > —c26(N By log H(g)/N),

= C ,Cl,n,d,t) > 0,

‘for Chg = C26(CO’C1’

between the two bounds proves Theorem II.

n,d,t) > 0 and N > Nz(n,d,t). The contradiction

Conditions on |g| from Theorem II can be considerably relaXed,
without strengthening the assumptions of Theorem II. For example,
using our results of B8, that G-functions satisfy (G,C)-property, we
can replace the exponent 4n/(4n+l) in the bound on jg] in Theorem II
can be substituted by n/(n+l). The case of algebraic relations be-
tween l,fl(x),...,fn(x) can be treated similarly to Theorem II. Alsc
one gets lower bounds on polynomials in fl(g),...,fn(g) with coeffi-

cients from Q(£), similar to bounds of linear forms in Theorem I.

88. The proof of (G,C)-property of an arbitrary G-function.

The global (G,C)-function assumption of 81 describes p-adic (for
almost all p) properties of linear differential equations satisfied
by G-functions. It is tempting to assume that local G-function condi-
tion for a single solution of a linear differential equation implies
the (G,C)-property for the linear differential eguation. Such a con-
jecture was suggested by the authors in [10]. It turns out that this
local-global conjecture is true. Namely, if a linear differential
equation of order n over R(x) has a G-function solution f£(x), which
does not satisfy a linear differential equation of a smaller order, then

the linear differential equation satisfy (G,C)-property. See Theorem
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III of El, (Note that the condition on £(x) is essential, because one
can always construct reducible linear differential equations of order
n without the (G,C)-property and having a G-function solution £(x),
arising from a linear differential equation of order less than n.)
The global result on G- and (G,C)-functions,that we prove below is a
counterpart of the Grothendieck conjecture that also relates local and
global properties of linear differential equations, see [4]. Our me-
thods of proof are based on Padé-type approximations of the second
kind and on duality principles from 86,

We start with a more detailed formulation of (G,C)-property of 81.

First of all, we have a system of first order matrix linear differential

equations
(8.1) Lt =0
def d n n
fo = —_ - i = = nd
f rkL ax I A with I (Bi,j)i,j=l’ A (Ai,j(x))i,j=l a
f = (fl(x),...,fn(x)). In a coordinate form (8.1) is
2 gt _ At or
dx
(8.2)
d n .
an fi(x) = zj:l Ai,j(x)fj(x): i=1,...,n.
Here Aij(x) (i,j = 1,...,n) are rational functions, that we assume to

belong to @(x). We also denote by D(x) the common denominator of all

rational functions Aij(x) (i,j= 1,...,n), i.e. D(x) € Z[x] and
D(x)-Aij(x) (i,j = 1,...,n) are polynomials with rational integer coef-
ficients.

Differentiating linear differential equations (8.1) we obtain for
an arbitrary m > 0 the following relation in the differential ring

Q(X)[éi :

d.m d
(8.3) (dx) I = Am(mod Q(x)[dx]-L).
n . =
Here Am = (Ai,j;m(x))i,j=l is an element of Mn(Q(x)). Here AO = I and
Al = A. The recurrent formulas, connecting the matrices Am (m > 0) are

the following:

d
. 4 = . —_— .
(8.4) Am+l Am A+ dx Am
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It follows from (8.4) that

m ..
Aij,m(x)-D(x) € Z{x]: i, = 1,...,m.

The relation (8.3) means that for an arbitrary solution
f = (£ (x),...,£ (x)) of (8.2) we have the following formula

(8.5) (d—i)mfi(x) = 0

j=l Aij ’m(x) ‘ fj (X) »

i=1,...,nandm> 0.

The (G,C)-assumption of Bl or, eguivalently, the (G,C)~property
of a linear differential eguation (8.1l) means the following:

(G,C): There exists a constant C > 1 such that the common denomi-

nator DN of the coefficients of the polynomials

1 m C s
o D(x) -Aij’m(x): i,j=1,...,n

and m = 1,...,N is bounded by CN for any N > 1.
Let us start with a given solution f(x) = (fl(x),...,fn(x)) of

(8.1) such that fi(x) are G~functions and

o0 m
.6 . =3 , , = se e
(8.6) fl(x) Zm:O am’lx , am,l ER (m 0,1 }

for i = 1,...,n. We denote by &m the common denominator of

{ao FERRRTL S i=1,...,n}, According to the definition of G~func-
2 3

tions, there exist two constants CO > 1 and Cl > 1 such that
m m
[Am| < Co» lAmak,i‘ < o (k = 0,1,...,m)
(8.7) and
a Cm
1 m,i‘ < 1

for any m > 0 and i = 1,,,.,n, (We note that Am € T and

Am'ak,i € Z: k =0,.,.,mand i = 1,...,n,) We put, as above,

d = max{deg(D(x)) - 1, deg(D(x)Aij(x): i,3 = 1,....n}. We use results
of 84 and padé approximants of the second kind constructed there. Thus,
let D be a sufficiently large integer and let 1/n > § > 0. Summariz-
ing Theorem 4.1 and 4.3 we obtain the following

Corollary 8.1: Under the assumptions above, there exists a system
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(Q(x);Pl(x),...,Pn(x)) of padé approximants of the second kind to
fl{x),...,fn(x) with parameters (D,D,[{(1/n-3)D]) such that the follow-
ing conditions are satisfied. ILet k > 0 and kd < [(1/n-§)D]. Then
Q<k>(x) € Z[x] and the common denominator @ of the coefficients of
polynomials P (x) € Q[x] (1 =1,...,n); k =0,...,K is bounded by
Cg+kd. The system (Q (x) P (x),...,P<k>(x)) is a system of padé
approximants to fl(x),...,f (x) with parameters (D+kd D+kd [(1/n-5)D]
- k{d+1)). The heights of the polynomials Q< >(x), P (x),... <k>( X}

are bounded as follows

H(Q<k>(x)) < H(D(X))k-H(Q(x))-2D(d+2)k'
(8.8)
§k>

5T (x) < (+1)c)-m@Y ),

i=1,...,n, Here H(D(X)) and H(Q(x)) are the heights of the polyno-

mials of D(x) and Q(x), respectively, with

2
(8.9) HQ(x)) < D(l-ﬁn)/an.cén+l—cn)(l—an)D/(an ).

Proof: Aall statements of Corollary 8.1 are combinations of Theorems
4,1, 4.3 and Theorem 2.6, Also the bound for the height H(Q(x)) in
(8.9) is contained in Theorem 4.1, We have to establish only the
inequalities (8.8). The second inequality in (8.8) is a direct conse-
quence of the representation (2.1) of the coefficients of the poly-
nomial P (x) {Q<k>{x)'fi(x)](n+kd) in terms of the coefficients

of Q<k>(x) and the expansion of f,(x) at x = 0: see the bounds (8.7).
To prove the first inequality in (8.8) we need the definition (2.3):

<k>(x) =L D(x) )kQ(x). This expression implies: H(Q<k>(x)) <

H(D(x) ) 25eg(o(x))

Corollary 8.1.

H(Q(x)). 1This proves the inequalities (8.8) and

Remark 8.2: The denominator mK of the coefficients of polynomials

<k> o . o :
(x) (i =1,...,n); k =0,...,K divides the denominator AD+Kd of
{am it 0<{m<D+Kd, i =1,.,.,n}.
3y

We apply the pPadé approximants of the second kind described in
Corollary 8.1 to study the denominators of the coefficients of the

: 1 .
polynomials ;F-D(x)m. i,i=1,...,n for m > 0.

A,.. (X}
ij,m
According to Theorem 3.1, the determinant
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<k>

<k> . % =
1 ®),...,P X)) ko= 0,1,...,0)

Ax) = det ((0%(x);p

is not identically zero, provided that D is a sufficiently large in-
teger, For our purposes we need a slightly different determinant (a

lower left (n-1)x{(n-1) minor of A(x)):

=1

(8.10) o(x) = det(Pi (x): i,5 = 1,...,n).

We have to prove that for sufficiently large D, v(x) is not
identically zero. The proof of this statement is very similar to that

of Theorem 3.1.

Lemma 8.3: Let fl(x),...,fn(x) satisfy a system of equations (8.2) and
let functions fl(x),...,fn(x) be linearly independent over T(x). Let

(Q(x):Pl(x),...,Pn(x)) be padé approximants to a system of functions

fl(x),...,fn(x) with parameters (D,D,M). Let for k > 0, the polyno-
<k> <k>(x) <k>
l 2

mials (Q (x):pP ...,131,1 (%)) be padé approximants defined as

in Theorem 2.6 (see formulas (2.9)). Let

<g-1>

v(x) = det(Pi (%x): 1,3 = 1,...,n).

Then for a sufficiently large M, M > c the determinant ¢ (%) is

21’

not identically zero. Here SO is a constant depending only on the

system of linear differential equations (8.2) and on the orders of

zeroces of fl(x},...,fn(x) at x = 0,

Proof: Let us assume that ¢(x) = 0. Let g < n-1 be the integer such
that the first 4 columns S = (Pik"l>(x),...,Pik_l>(x})t (k=1,...,n)

are linearly independent over £ (x), but the g+1 columns is linearly
dependent on them over £(x). We denote by F the matrix formed by the
first g c¢olumns Sy (k = 1,...,4) and by R and S we dencte the
matrices formed by the first 3 rows and n - 4 last rows of F, res-
pectively. We can assume without loss of generality that R is a non-
singular matrix. Then, as it was proved in [5, Chapter 11, Lemma 2]
the degrees of the numerators and denominators of the rational function
depends only

elements of the matrix S.R-l are bounded by c,,, where c

22 22
on the system (8.2). Let us denote by G the £ X n matrix with g

rows (fi(x),O,...,—fl(x),O,...,O): i=1,...,4: and let GO and Gl denote

b
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the matrices formed by the first 4 columns and n-g last columns of

. . def
G, respectively. Then for the g X g matrix T = G+F we have
j~1 j~1 .
T, .= Py ) - 2O 0): 1,5 = 1,...,4. Also
i3 1 i ll 1 1
T = GyR + G;S, so that T-R © = Gy + G SR . According to Definitions

2.3 and 2.5 and Theorem 2.6, all elements of T have orders of zerces
at x = 0 at least D+ M+ 1 - 3. The polynomial elements of R have
degrees in x at most D 4+ (g-1)d. Hence det(TR—l), as a function of

X, has a zero at x = 0 of order at least 4{D + M + 1 -~ 3} ~

2{D + (4-1)d} = 4(M - (4-1)(d+1)). on the other hand, det(Go+GlSR_l)
£ 0, because functions fl(x),...,fn(x) are linearly independent over
C(x). On the other hand, the degrees of all rational function elements

of S-R—l are bounded by c¢ This implies that the order of zero at

22°

X = 0 of det(rrR‘l) = det (G +G SR_l) is bounded by c,,, where c,. de-

1 23

pends only on ¢ and fl(x),...,fn(x). Consequently, for

2iM - (z—l)(d+l?? > Cypys OF, equivalently, for a sufficiently large M,
the determinant ¢ (X} is not identically zero. Lemma 8.3 is proved.

In particular, the determinant g¢(x) in (8.10) is non-zero for
Pade approximants of the second kind from Corollary 8.1, whenever D
is sufficiently large.

For further exposition we need an auxiliary statement on the
iterated action of the differential operator L =-é§1 -~ A. We consider
here and everywhere below the action of 1 and its powers on n X n

matrices ¢y of functions, For convenience we denote

¢{m} dsf

(8.11) Moy

= Z 1 - .

We need the following identity:

Lemma 8.4: Let, as above, the matrix Am be defined as in (8.3). Then

for an arbitrary n x n matrix y and m > O we have

m m

(8.12) (- (e (R )

) = A b
Proof: The identity (8,12) is obviously correct for m = 0. Let us
assume that it is true for a given m > 0 and let us prove it for m + 1.

We have for an arbitrary matrix vy,

m k, d.mk, [k}

B ob) (L)) = Ay



Let us substitute here w[l} for . It follows from (8,11l) that

w{m—kl} _ (W[l}){m]. Thus we have

d Y= -k {k+1} {1}
(8.13) zk )( n* = (¥ =A¥ .
We can also differentiate (8.12) with respect to x once and
obtain:
m k 4 m+i-k  {k}, _ _, 4a
(8.14) 5 () -1 RIS U R T
where A' = 'i(A ). We note that 1{;{1} = (-‘q')w - Ay Let us substract
m dx “'m dx '

(8.13) from (8.14), We get

k, d m+l-k, {k)}

Zk ()(l) (3! (v )
_ Z}n{wl m ) (- l)k+].(<fi)m+l k( {k}
lkl

= (Al + A 2)y.

: m m _ m+l
Since (k) + (k-l) = ), we get
m+l m+l k d m+1-k
) (-1) ) (w{ ]) = (Al + A Ay,
m
From (8.4) it follows that A =A' 4+ A A, This proves Lemma 8.4.
m+1 m m

We need also an elementary algebraic number lemmas:
Lemma 8.5: Let D(x) € Z[x] and P(x) € Z[x]. Then for arbitrary non-
negative integers s and 4 the polynomial

;l'nD( ST i S (o)t (x))

has (rational) integral coefficients.

Progcf: We have

=0 D)% o e )
8 s+ 1. d 4y 1 ,d.s-i
=TI, D& ( ) T h (s-1) ) (P{x)).

Since P(x) € Z[x], for any k > O we have "'" (—) (P(x)) € ZT[x]. Thus,
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to prove Lemma 8.5, it is sufficient to prove that for any non-negative
integers i and g the polynomial

1 i+p 4.1 -4

EICO R I R GICI M

has integral coefficients. To show this, let us put D(x) = c.ng’_l(x—aj).
Then

L ity 4 i -2 -2
) D(x) ’(dx) (c nj l(X d ) 7)
i i+g ¥ itg i,
F AR L PR C o 7 R > S R R
i: i=1 3j kl+"'+kr—l kl' kr'
ST -2
b ﬂjzl('d—x) ((x—aj) )
= ci nr (x~a )i+z z ﬂr (—z)'..(_z_kj+l)
j=1 3 kl+...+kr=1 j=1 kj.
-4-X.
3
X {(x~-0.)
¢ 3
i r z+kj—l kj i—kj
= C Iy ek =il 0k ) =1) '(x'aj) ’
1 r 3
For any indices jl,...,jt: 1< jl .< jt £ r, c.t, -++0. 1is an

i 3
1 t
algebraic integer. Thus we conclude that‘IT~D(x)l+zt~—) (D(x)"ﬁ) is

a polynomial with (rational) integer coefficients. Lemma 8.5 is proved.
We return to the system of Padé approximants

( (X) P (x),...,P<k>(x)) k > 0, constructed in Corollary 8.1l. We

assume from now on that fl(x},...,fn(x) are linearly independent over

T{x). Let us use now the recurrence formula from Corollary 2.7:

<k> <k> t
(BT ()., P (%))
(8.15)

1 s k t
k' D(X) (de - A) . (Pl(x))"')Pn(x))
These formulas (8.15) are true whenever kd < [(1/n-3)}D}. Follow-
ing our agreement (8.1l1l) on notations, we put
k k t
@ 0,20 o)
(8.16)

L -n e, e "
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consequently for kd < [(1/n-3)D],

(8.17) pgk](x) = k!.p(x) % <k>( x): i=1,...,n.

{x}

We note that Pi (x) are rational functions, and not necessarily

polynomials,

Let us introduce an appropriate n x n matrix
def {9~-1} ..
(8.18) y = (Pi (x): i, = 1,...,n).

It is clear from the definition (8.16) that

* ’

@ LR ) €

.

a4 ko {4} {2} t
= (g IR - (P7 (x),...,P " (X))

Thus, we get from (8,18),

(8.19) L (pg“‘*j'l}(x): i,y = 1,...,n).

Let us use the identity from Lemma 8.4. We obtain

(8.20) NG B GRT LT TLLE I S

Let (m+n-1)d < [(1/n-g)D]. Then P{m+j 1
(m+3-1) 1+ () T IFL pSHITE

(x)
{x} for i,j = 1,...,n, according to (8.17).
Let us put for any k > O,

(8.21) ok} def kl' D(x)k+n~l.w{k].

Thus, for k¥ { m we obtain:

B 1K)

1 k+n-1 _{k+j-1} .
Ger D) Py (x) 2

i,j =1,...,n)
(8.22)

e RN A (TR T I TSRO
Thus we have, according to (8.20):

m! k 4. .m-%k ~k-n+1 P{k}

m ¥ —
Tx=0 (m-k)ix: 1) - Ggg) T(ki-D(x) ) =h ¥

We can rewrite this identity as
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m k 1 m+n-1 d  m~k -k-n+1
oD T ™) g (D(x)
{8.23)
{k} 1. m+n-1
X P T) =R -D(x) ]

The identity (8.23) is the key element in the establishment of
the bounds on the common denominator DN of the coefficients of the

polynomials ;%-D(x)mok. (x): i, =1,...,nand m = 1,...,N.

ij,m
According to the definition of matrix ¢ in (8.18) and according

to (8.17) we obtain

det((x)™Hy) = M Tk D0 ) aee TP 1,5 = 1,0 ,m)
= o (x)-peo T2

Thus, according to Lemma 8.3, det(D(x)n_l-w) is non-zero for a
sufficiently large D. We note now that in (8.23) in the left hand side
we have a matrix with polynomial entries. Likewise, in the right hand
side of (8.23), the matrices Am-D(x)m and D{x)n-l-w have polynomial
entries. If we denote by Den{(P;m) the common denominator of coefficients

{x}

of all polynomial entries in the matrix P for all kx = 0,...,m. It

follows, from Lemma 8.5, that the left hand side of (8.23) is a matrix
with entries that are polynomials with rational coefficients, whose
common denominator divides Den(P;m).

Let us invert now the matrix

1

dgf D(x)n- .

(8.24) P

According to (8,17) and (8.18), P is a matrix with polynomial entries.
These polynomials have rational coefficients, whose common denominator,

according to Corollary 8.1 and Remark 8.2, divides ®, ;. Here Sﬁ_

D+ (n-1)d L

divides A and |® < <5 , according to

D+ (n-1)d n-1) < gy (n-1)al ;2
formula (8.7) and Remark 8.2. Thus Sn_l-P(= En_l'D(x) -y} has poly-

nomial entries with rational integer coefficients, and

(8.25) 20-118p4 (n-1ya°
To invert the matrix P, we write P = (Pi j: i,j =1,...,n) and
P, = (j-l):n(x)“’j.p§3’l>(x) (i,5 = 1,...,n) according to (8.17).
s

Let us denote by Mi

y 2

j(x) the minor of Pi 5 in P and put
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i+j P
N, .{x) = (-1 M, .(x) for i,j =1,...,n. Then
1500 = D 1,500 3

2

-1

P = (Ni Ax)/det{P) : i, = 1,...,n).
23
Thus the matrix
def .

(8.26) N “E (N, .(x}: i,3 =1,...,n)

1,3
satisfy
(8.27) P-N = det(p)-1I.

We see that the matrix N has as all its elements polynomials
with rational coefficients, whose common dencominator divides ﬁn—l' We
can also estimate the sizes of polynomial entries of the matrix N

using Corollary 8.1. According to (8.8) and (8.9), the sizes of poly-

nomials P, , are bounded as
3
c,,(8)D
(8.28) H(P, .) < e : i, =1,...,n
1,3
where c24(5) depends on n, §, Cys Sy and D(x) only. Consequently,
¢, 5(8)-D
(8.29) H(N, .(x)) < e :t i, =1,...,n,
1,
for c25(5) depending on n, g, CO’ Cl and D(x).

Finally, all elements of the matrix gg_l

‘N are polynomials with
integral coefficients. Similarly, according to (8.27), Sﬁ_l'det(P)
is a polynomial with integral coefficients. Taking into account (8.25)

the bounds (8.7} and (8.29), we obtain

c, (8):D
n 26
H(E%_lodet(P))_g e s
(8.30)
H(E® N, . (x)) ec27(6)D- i, =1 n
n-1"51, 4 < : 1,3 PRRE

n
We multiply now both sides of identity (8.23) by sh_l.Den(P;m)-N.

Here gﬁ_l, Den(P:m) are (rational) integers. We get:

).

m k 1 m+n-1 4. .m-k ~%k-n+1 _{x}
gk=o(—l) 'Den(P;m)'TE;ETT'D(x> -CE;) (D (x) xP
(8.31)
n 1 m n ) .
D ;N =-;?D(x) .Am-{gn_l.det(P)} Den(P;m).
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According to the definition, Den(P;m) is the common denominator
;s ; . k
of coefficients of polynomial entries of P{ } for k = 0,...,m. Based

on this we prove the following crucial

Proposition 8.6: The common denominator of coefficients of polynomial

entries 4%-D(x)m‘A. . {x}) of the matrix-jqu(x)m»A for
m! i,j,m m! ™
m=0,...,[{l/n-§)D]/4d - n {or (m+n-1)d < [(1/n-)D]) is bounded by
Cpg(8)-D .
. Here c28(5) is an effective constant that depends only on

n, g, CO, Cl and D(x).

Proof: First of all we estimate Den(P;m). From the expression (8.22)

and Corollary 8.1, Remark 2 we deduce that Den(P;m) divides

Abt (min-1)a:  Here
k
lay | < ¢
for any k > 0. If we denote B def [(1/n-g)D]/d-n, then Den(P;m) di-
vides AD+(B+n—1)d for any m < B. Let us denote the polynomial
D .det(P)- 4
®n-1 D+ (B+n-1)d

(cf. the right hand side of (8.31)), by C(x) (C(x) is independent of
m). It follows from (8.30) that C(x) is a polynomial with rational
integer coefficients of sizes bounded by

(8)-D 029(5)-D

.

€26

(8.32) H(C(x)) < e -cél/n'“Dg e

On the other hand, according to the definition of Den(P:m), accord-
ing to Lemma 8.5 and because sg—l'N is a matrix from Mh(z[x]), the

matrix in the left hand side of

m k 1 m+n-1
B0 Ay (Bin-1ya” Tmeryr D)
(8.33) x (dix)m'k(n(x)"k'ml'p{k}).:Dz_l-N

= ;nl—..-D(X)m-Am(X)-C(X),

has polynomial entries with integral coefficients. Consequently, from
(8.33) it follows that every polynomial entry ;%-D(x)m.Ai j_m(x)'C(X)
. K] 1

(i, = 1,...,n) of ;%D(X)m-Am(x)-C(x) has rational integer coefficients.



50

We can use the Gauss lemma [21] in the following form:

Gauss Lemma 8.,7: Let f(Xl""’xm) be a polynomial with rational inte-
ger coefficients and g(xl,...,xm) be a polynomial with rational coef-
ficients, If f.9 has integral coefficients, then the common denomina-

tor of coefficients of g{x .,xm} divides the least common multiplier

17"
of coefficients of the polynomial f(xl,...,xm).
From Lemma 8.7 it follows that the common denominator of coef-

ficients of the polynomial ;%-D(x)m:A (x): 1,7 =1,...,n and m < B

divides the least common multiplier o;’1£2 coefficients of C(x). 1In
particular, this common denominator is bounded by the height of the
C(x). From the bound on H(C(x)) in (8.32) we deduce Proposition 8.6.
If we now fix 3, 1/n > s > 0, proposition 8.6 implies the (G,C)-
property as formulated above. One has to substitute B = [{l/n-g§)D}/d-n
for N with fixed 5(1/n > g > 0). Then the constant ¢ in the defi-
L cog(6)2d/(1/n~8)
nition of (G,C)-property can be chosen as e for a
sufficiently large N. This proves Theorem III from 81,
The crude estimates of Proposition 8.6 can be considerably improved
to exhibit ¢ in terms of CO’ n and 4 only.

References.

[1] C.L. Siegel, Uber einige Anwendungen diophantischer Approxi-
mationen, Abh. Preuss. Akad. Wiss. Phys. Math. K1. 1, 1929.

[2] C.L. Siegel, Transcendental Numbers, Princeton University
Press, Princeton, 1949.

[3} G.V. Chudnovsky, Contributions to the Theory of Transcenden-
tal Numbers, Mathematical Surveys and Monographs, 19, American
Mathematical Society, 1984, Chapter 5.

[4] D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé appro-
ximations to the Grothendieck conjecture on linear differential
equations, see next paper, this volume.

[5] A. Baker, Transcendental Number Theory, Cambridge University
Press, Cambridge, 1979.

[6] A.L. Galoéhkin, Lower bounds of polynomials in the values of
a certain class of analytic functions, Math. Sb. 95 (1974), 396-
417.

[7} K. Viinanen, On linear forms of certain class of G-functions

and p-adic G-functions, Acta Arith. 36 (1980), 273-295.



[8]
{e]

[10]

[11]
[12]
[15]
[14]
[15]
[16]
[17]

[18]

[19]

f20)
[21]
[22]
[23]
[24]

51

Y.Z. Flicker, On p-adic G-functions, J. London Math. Soc.
15 (1977), 395-402,

E. Bombieri, On G-functions, in Recent Progress in Analytic
Number Theory (ed. by H. Halberstam and C. Hooly), Academic Press,
N.Y., v.2, 1981, 1-67.

G.V. Chudnovsky, Measures of irrationality, transcendence
and algebraic independence.Recent progress, in Journees Arithme-
tiques 1980 (ed. by J.V. Armitage), Cambridge University Press,
1982, 11-82.

N. Katz, Algebraic solutions of differential equations,
Invent. Math., 18 (1972), 1-118.

T. Honda, Algebraic differential equations, Symposia
Mathematica v.24, Academic Press, N.Y., 1981, 169-204.

B. Dwork, Arithmetic theory of differential equations,
ibid., 225-243,

K. Mahler, Perfect systems, Composito Math. 19 (1968), 95~
1686.

K. Mahler, An analogue to Minkowski's geometry of numbers
in a field of series, Ann. of Math. 42 (1941), 488-522.

W.M. Schmidt, Diophantine Approximations, Lecture Notes
Math. v. 785, Springer, 1980,

E.R. Kolchin, Rational approximations to solutions of algeb-
raic differential equations, Proc. Amer. Math. Soc. 10 (19589),
238-244.

D.V. Chudnovsky, G.V. Chudnovsky, Rational approximations to
solutions of linear differential equations, Proe. Nat'l. Acad.
Sci. USA 80 (1983), 5158-5162.

D.V. Chudnovsky, G.V. Chudnovsky, Padé approximations to
solutions of linear differential equations and appliecations to
diophantine analysis, Lecture Notes Math, v. 1052, Springer,
1984, 85-167.

G.V. Chudnovsky, On some applications of diophantine appro-
ximations, Proc, Nat'l., Acad. Sci. USA 81 (1984), 1926-1930.

J.W.S8. Cassels, An Introduction to Diophantine Approximati-
ons, Cambridge University Press, Cambridge, 1957.

J. Nuttal, Asymptotics of diagonal Hermite-Padé polynomials,
J. Approximation Theory, 1985 (in press).

C. Brezinski, Padé—type Approximations and General Orthogo-
nal Polynomials, Birkhauser, Boston, 1980.

G.V. Chudnovsky, The Thue-Siegel-Roth theorem for values of
algebraic functions, Proc. Japan. Academy, Ser. A 59 (1983),
281-284.



