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Preface

Multiple zeta values (MZVs for short) are real numbers of the form

(0.1) ζ(s1, s2, . . . , sℓ) =
∑

n1>n2>···>nℓ⩾1

1

ns11 n
s2
2 · · ·nsℓℓ

,

where all the exponents si are integers greater than or equal to 1, and we make the
assumption s1 ⩾ 2 to ensure that the series converges. For ℓ = 1, these are nothing
but the values at integers s ⩾ 2 of the Riemann zeta function

ζ(s) =
∑

n⩾1

1

ns
.

Euler proved in 1735 that, when s is even, ζ(s) is a rational multiple of πs. Thanks
to Lindemann’s proof of the transcendence of π a century and a half later, it follows
that all the numbers ζ(2), ζ(4), . . . are transcendental. For example,

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, etc.

The values of the Riemann zeta function at odd integers are much more mysterious.
Indeed, a folklore conjecture asserts that they are all “new” transcendental numbers:

Transcendence conjecture. The numbers π, ζ(3), ζ(5), ζ(7), . . . are alge-
braically independent over Q.

Being algebraically independent over Q means that, for each integer k ⩾ 0,
there exists no non-zero polynomial P ∈ Q[x0, . . . , xk] such that

P (π, ζ(3), . . . , ζ(2k + 1)) = 0,

and in particular that the numbers ζ(3), ζ(5), . . . are transcendental. This conjec-
ture seems completely out of reach: at the time of writing, the best we know is
that ζ(3) is irrational (Apéry, 1978) and that there are infinitely many irrational
numbers among the remaining values at odd integers (Ball and Rivoal, 2001). Nei-
ther the transcendence of ζ(3), let alone its algebraic independence with π, nor the
irrationality of ζ(5) have been proved!

The case ℓ = 2 was also considered by Euler, back in his 1776 article Med-
itationes circa singulare serierum genus (“Meditations about a singular type of
series”) [Eul76]. In an attempt to find a closed formula for ζ(3), he looked for lin-
ear relations with integer coefficients among the numbers π3, π2 log 2, and (log 2)3.
This led him to the discovery of remarkable identities involving double zeta values,
the simplest being ζ(3) = ζ(2, 1).

After more than two centuries of oblivion, multiple zeta values were indepen-
dently rediscovered in the 1990s by Hoffman and Zagier. It was soon realized that
these numbers appear in a wealth of different contexts, including Witten’s zeta
functions, Kontsevich’s deformation quantization, Vassiliev knot invariants, and
the theory of mixed Tate motives. Most of these topics share a physics flavour and,
roughly at the same time, the physicists Broadhurst and Kreimer found that a lot
of Feynman amplitudes in quantum field theory can be expressed as linear combi-
nations of multiple zeta values. The next two decades saw extensive work by a host
of mathematicians, including Brown, Cartier, Deligne, Drinfeld, Écalle, Goncharov,
Hain, Hoffman, Kontsevich, Terasoma, Zagier, and many others. Although major
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progress was made, fundamental questions remain open and multiple zeta values
are still nowadays an active and rapidly moving field of research

The product of two multiple zeta values is a linear combination, with integral
coefficients, of multiple zeta values. For instance, the identity

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

was already known to Euler. Said differently, the Q-subvector space Z ⊆ R spanned
by all multiple zeta values is an algebra. Contrary to the algebra generated by Rie-
mann zeta values, which according to the transcendence conjecture should simply be
a polynomial algebra in ζ(2), ζ(3), ζ(5) . . . , multiple zeta values satisfy a plethora of
relations that endow Z with a rich combinatorial structure. One can argue that the
main goal of the theory is to understand all linear relations among these numbers.

To make this more precise, we attach to each multiple zeta value ζ(s1, . . . , sℓ)
the integer s1 + · · · + sℓ, which is called the weight. Let Zk ⊆ Z be the vec-
tor subspace generated by multiple zeta values of weight k, with the convention
that Z0 = Q and Z1 = {0}. Based on a mix of numerical evidence and pure
thought, Zagier conjectured “after many discussions with Drinfeld, Kontsevich,
and Goncharov” that there is a direct sum decomposition

Z =
⊕

k⩾0

Zk,

and that the dimension of each graded piece is given by a Fibonacci-like sequence

(0.2) dimQZk = dk.

Precisely, (dk)k⩾0 is defined by the initial terms d0 = d2 = 1 and d1 = 0, and the
recurrence relation dk = dk−2 + dk−3 for all k ⩾ 3, so that the generating series is

(0.3)
∑

k⩾0

dkt
k =

1

1− t2 − t3 .

This would imply that the dimension of Zk grows like a constant multiple of rk,
where r = 1.3247 . . . is the real root of x3 − x− 1, which is much smaller than the
number 2k−2 of multi-indices (s1, . . . , sℓ) of weight k for which (0.1) converges.

Plan. The goal of these notes is to give a reasonably self-contained proof of
the following results towards Zagier’s conjecture:

Theorem A (Deligne–Goncharov [DG05], Terasoma [Ter02]). The integers dk
are upper bounds for the dimensions of Zk:

dimQZk ⩽ dk.
Theorem B (Brown [Bro12]). Each multiple zeta value can be written as

a Q-linear combination of multiple zeta values with only 2s and 3s as exponents.
That is, the following family generates the Q-vector space Z:

(0.4) {ζ(s1, . . . , sℓ) | si ∈ {2, 3}}.
In fact, Hoffman conjectured that (0.4) forms a basis of Z. By a simple count-

ing argument, equality (0.2) would follow from this. Theorem B addresses the
“algebraic” part of this conjecture, which suffices to deduce Theorem A. It is also
worth mentioning that, taking these results for granted, the algebraic independence
of the numbers π, ζ(3), ζ(5), . . . is a consequence of Zagier’s conjecture. In a sense,
we have “linearized” the transcendence conjecture. On the negative side, let us
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emphasize that, despite the progress made thus far, we still do not know a single k
for which the dimension of Zk is bigger than one!

Surprisingly enough, the proofs of these easy-to-state theorems use the machin-
ery of motives. Kontsevich noticed that multiple zeta values of weight k admit a
representation as iterated integrals

(0.5) ζ(s1, . . . , sℓ) =

∫

∆k

ω0(t1) · · ·ω0(ts1−1)ω1(ts1)ω0(ts1+1) · · ·ω1(tk),

where ω0(t) = dt/t and ω1(t) = dt/(1− t) are differential forms on P1 \ {0, 1,∞},
and the integration domain is the simplex

∆k = {(t1, . . . , tk) ∈ [0, 1]k | 1 ⩾ t1 ⩾ t2 ⩾ · · · ⩾ tk ⩾ 0}.
This integral representation exhibits multiple zeta values as periods of algebraic
varieties. In the words of Deligne [Del13, p. 3], “whereas the notion of infinite sum
is unfamiliar (étrangère) to algebraic geometry, the study of integrals of algebraic
quantities is one of its sources.” Thanks to the identity (0.5), “algebraic geometry,
and more precisely the theory of mixed Tate motives, is useful for the study of
multiple zeta values”

Usually, the philosophy of motives represents a powerful tool to predict all
algebraic relations between periods. However, when it comes to proving them, one
is confronted with the problem that even the first step in this program—getting
a category of motives with all the desired properties—remains conjectural. In
contrast, for mixed Tate motives over a number field, there is an unconditional
theory that relies ultimately on Borel’s deep results about the K-theory of number
fields. This gives good control over the group governing the symmetries of multiple
zeta values. Using this group, one can construct a pro-algebraic variety, together
with an action of Gm, in such a way that the Hilbert–Poincaré series of its graded
algebra of functions H coincides with (0.3). The raison d’être of this construction
is the existence of a surjective map H → Z compatible with the weight; we shall
refer to elements of H as “motivic multiple zeta values”. The existence of such
a map immediately implies Theorem A. To prove Theorem B, one exploits the
motivic coaction, a new structure of H, invisible at the level of numbers, that
allows one to get relations among motivic multiple zeta values in a systematic way.
A variant of the Grothendieck period conjecture asserts that the algebras H and Z
are isomorphic, from which Zagier’s conjecture would follow.

Outline. Let us now give a more detailed description of the contents of each
chapter. The word cloud on the next page should also give a quick idea of the main
concepts involved.

Chapter 1 lays out what could be called the “minimal theory” of multiple zeta
values. We first define them as infinite series and prove that the product of two
multiple zeta values is a linear combination of multiple zeta values by decomposing
the indexation domain. This so-called stuffle product makes Z into a Q-algebra,
conjecturally graded by the weight. We discuss Zagier’s conjecture for the dimen-
sion of the graded pieces, as well as refinements due to Hoffmann, and Broadhurst
and Kreimer. That progress has been made towards these conjectures relies very
much on the existence of the integral representation (0.5). We prove that the de-
composition of the product of two simplices yields a new algebra structure on Z,
the shuffle product. Comparing the stuffle and the shuffle product, one gets many
relations among multiple zeta values but not all of them. As we explain in the
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last section of the chapter, to conjecturally describe the full algebraic structure,
one needs to introduce a regularization process that assigns a finite value to the
divergent series ζ(1, s2, . . . , sℓ).

The goal of Chapter 2 is to show that multiple zeta values are periods of alge-
braic varieties. To begin with, we briefly recall the definition of singular cohomology
of a differential manifold and de Rham’s theorem, which says that it can be com-
puted using analytic differential forms. Grothendieck’s breakthrough was to realize
that, if we are dealing with algebraic varieties, then algebraic differential forms
suffice; this gives rise to algebraic de Rham cohomology and the period isomor-
phism. After introducing these concepts, we give a first interpretation of multiple
zeta values as periods of the moduli spaces M0,n of stable genus zero curves due
to Goncharov and Manin. We then move to mixed Hodge structures (a first ap-
proximation to the notion of motive), discuss a number of examples, and compute
the extension groups of Q(0) by Q(n). We end the chapter with a discussion of
the problem of finding a geometric construction of these extensions, as well as a
potential application to irrationality proofs following Brown.

Chapter 3 introduces iterated integrals, a second way to interpret multiple zeta
values as periods. We first present the basic definitions and tackle the question
of which iterated integrals are homotopy invariant. We then recall the notions of
affine group scheme and Hopf and Lie algebras, which will be extensively used in
the sequel. We define the pro-unipotent completion of a group and we construct
it, under some finiteness assumptions, following work of Quillen. One of the main
results of the chapter is Chen’s π1-de Rham theorem, which roughly says that
functions on the pro-unipotent completion of the fundamental group of a differential
manifold M are given by homotopy invariant iterated integrals. A consequence,
due to Hain, is that when M underlies an algebraic variety, this pro-unipotent
completion carries a mixed Hodge structure. The general formalism being settled,
we specialize everything to P1\{0, 1,∞}. Multiple zeta values are iterated integrals
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along the straight path from 0 to 1. Since the endpoints do not belong to the
space, this forces us to work with tangential base points. The last section contains
a detailed analysis of all the structures carried by the pro-unipotent completion of
the fundamental group of P1 \ {0, 1,∞}, including Goncharov’s coproduct that will
be a fundamental tool in the proof of Brown’s theorem.

In Chapter 4, we study the category of mixed Tate motives over Z. The first
section contains a crash course in the tannakian formalism. We then sketch a con-
struction of Voevodsky’s triangulated category of mixed motives over a field k. It
is unknown how to extract an abelian category with good properties from it. How-
ever, it was observed by Levine that, when k is a number field, Borel’s computation
of the rational K-theory of k enables one to extract an abelian category of mixed
Tate motives over k, which is moreover tannakian. Even for k = Q, this category
is too large for the purposes of studying multiple zeta values. To remedy this, one
defines the subcategory of mixed Tate motives over Z. We determine the structure
of its Tannaka group and show, after Deligne and Goncharov, that it contains a pro-
object whose Hodge realization is the pro-unipotent completion of the fundamental
group of P1 \ {0, 1,∞}.

Finally, in Chapter 5 we pull everything together to prove the main results. In
the first section, we construct the graded algebra H of motivic multiple zeta values
and a surjective map H → Z compatible with the grading. Using the structure of
the Tannaka group of the category of mixed Tate motives over Z, we show that the
graded piece Hk is of dimension dk. The existence of the above map then implies
the upper bound for the dimensions of Zk in Theorem A. We then present the proof
of Theorem B, following closely Brown’s original paper, and a few consequences.
Namely, we explain how to deduce the fact that all periods of mixed Tate motives
over Z are polynomials expressions in 1/2πi and multiple zeta values, as well as the
fact that Zagier’s conjecture implies the algebraic independence of π, ζ(3), ζ(5), . . . .

The book is supplemented by an appendix were we give an introduction to
some of the notions and techniques from homological algebra (abelian categories,
triangulated categories and t-structures, derived functors, filtrations and spectral
sequences, sheaf cohomology...) that are used in the main body.

Warning. Before continuing, we should warn the reader that there are two
competing conventions for multiple zeta values in the literature, sometimes in the
same paper! Other authors, including Brown, define ζ(s1, . . . , sℓ), for integers si ⩾ 1
and sℓ ⩾ 2, as the sum

∑

1⩽n1<n2<···<nℓ

1

ns11 n
s2
2 · · ·nsℓℓ

.

In fact, one needs to fix conventions for the order of composition of paths, the
definition of iterated integrals, and the expression of multiple zeta values as iter-
ated integrals. Things get simpler if they are compatible. We have chosen those
conventions for which the monodromy of a local system is a group morphism.

Prerequisites. The difficulty of the exposition increases as the notes progress.
In Chapter 1, besides a couple of digressions, the emphasis is mainly on combinato-
rial aspects and very little background is required. From Chapter 2 on, we assume
some familiarity with algebraic varieties, the language of schemes and cohomology
of sheaves, at the level of any introductory book, for instance Hartshorne’s [Har77].
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Chapter 3 contains a crash course on algebraic groups and Lie and Hopf algebras,
with an emphasis on unipotent groups and nilpotent Lie algebras, which will play
an important role in the sequel. Finally, in Chapter 4 we freely use basic notions
from category theory and homological algebra, most of which are gathered in the
appendix for the convenience of the reader. We have done our best to present all
the materials in the most clear and accessible way, but occasionally we were un-
able to prevent the text from being sketchy. Unfortunately, Borel’s theorem about
the K-theory of number fields is used as a black box.

Notation and conventions.

• By an algebraic variety over some field k, we mean a reduced separated
scheme of finite type over k.

• Given a set S and functions f : S → C and g : S → R⩾0, the notation
f = O(g) means that there exists a real number C ⩾ 0 such that the
inequality |f(x)| ⩽ Cg(x) holds for all x ∈ S.

• The word positive means strictly bigger than 0 and the word negative
strictly smaller than 0, so non-negative means bigger than or equal to 0.

• We denote by ⌊x⌋ the floor of a real number x. That is, ⌊x⌋ is the largest
integer smaller than or equal to x. Similarly, ⌈x⌉ denotes the ceiling of x,
that is, the smallest integer greater than or equal to x.

• If R is a ring and S is a set, then ⟨S⟩R denotes the R module generated
by S. If S is an “abstract” set, then ⟨S⟩R is a free R-module, while
if M is an R-module and S ⊂ M , then ⟨S⟩R means the submodule of M
generated by S. For instance, ⟨x, y⟩Q is a Q-vector space of dimension 2.
When the ring R is understood, the subindex will usually be omitted.

• If R is a commutative ring and S is a set, then R[S] denotes the com-
mutative associative R-algebra generated by S, and R⟨S⟩ denotes the
associative R-algebra generated by S. As before, these may have two
different meanings depending on the nature of S.

• If R is a commutative ring and S is a set, then RJSK denotes the com-
pletion of R[S] with respect to the ideal generated by S, and R⟪S⟫ the
completion of R⟨S⟩, again with respect to the ideal generated by S.
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the École polytechnique, and the IMPAN at Warsaw.

The first author thanks the Clay Mathematics Institute for making the sum-
mer school possible. Moreover, he wants to acknowledge support from the MINECO



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 9

grants MTM2013-42135-P, MTM2016-79400-P, PID2019-108936GB-C21 and PID2022-
142024NB-I00 during the preparation of these notes.

The second author was first introduced to the subject at the master course Mul-
tizêtas et groupe fondamental given by Francis Brown in Jussieu during the spring
of 2012. Later that summer he participated at the Alpbach workshop Multiple zeta
values, organized by Joseph Ayoub and Sergey Gorchinsky. Finally, he wants to
acknowledge support by the SNSF grants 200021-150099 and 200020-162928 and by
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1. Classical theory of multiple zeta values
(by J. I. Burgos Gil, J. Fresán, and U. Kühn)

In this chapter, we introduce multiple zeta values and begin to study their basic
properties. These are the real numbers

ζ(s1, . . . , sℓ) =
∑

n1>n2>···>nℓ⩾1

1

ns11 n
s2
2 · · ·nsℓℓ

associated with tuples of integers s = (s1, . . . , sl) satisfying si ⩾ 1 and s1 ⩾ 2, so
that the series converges. The sum of the exponents w = s1 + · · ·+ sℓ is called the
weight and ℓ is referred to as the length. Of great importance is that multiple zeta
values cannot only be written as infinite series as above, but also as integrals

ζ(s1, . . . , sℓ) =

∫

1⩾t1⩾···⩾tw⩾0

dt1 · · · dtw
t1 · · · ts1−1(1− ts1)ts1+1 · · · (1− tw)

.

These representations give two different ways of writing the product of ζ(s) and ζ(s′)
as a linear combination with integral coefficients of multiple zeta values or, in more
algebraic terms, of showing that the Q-vector space Z ⊆ R generated by multiple
zeta values has an algebra structure. From the series representation one obtains the
stuffle product, whereas the integral representation gives the shuffle product. Com-
paring these two products yields many relations among multiple zeta values. Not
all of them, however, can be obtained by this method: since a product of multiple
zeta values has weight at least 4, Euler’s identity ζ(3) = ζ(2, 1) does not arise in
this manner. A way to accommodate this and other relations is to introduce a regu-
larization process that assigns a finite value to the divergent series corresponding to
multi-indices with s1 = 1. There will be, in fact, two kinds of regularizations, mod-
elled on the stuffle and the shuffle product. Conjecturally, all relations among mul-
tiple zeta values come from comparing them. A few good references for the material
of this chapter are the survey articles by Cartier [Car02], Waldschmidt [Wal12],
and Zudilin [Zud03], as well as Chapter 3 of Zhao’s book [Zha16].

1.1. Riemann zeta values. The Riemann zeta function is one of the most
famous objects in mathematics. One often hears that it encodes all arithmetic
properties of prime numbers: our task is to extract them!

Definition 1.1. The Riemann zeta function is defined, on the half-plane of
complex numbers s with Re(s) > 1, by the absolutely convergent series

(1.2) ζ(s) =
∑

n⩾1

1

ns
.

It admits a meromorphic continuation to the whole complex plane with a single
pole at s = 1 (see, for example, [Tit86, Chap. II], where no less than seven different
methods to obtain this continuation are explained). The Riemann zeta function
still keeps many mysteries. The most impenetrable of them is undoubtedly the
Riemann hypothesis (the conjecture that all the non-trivial zeros of ζ(s) lie in the
line Re(s) = 1/2), which has many far-reaching consequences for the study of the
distribution of prime numbers in analytic number theory. The aim of this book is
to glimpse at other aspects of this function, namely the question:

which numbers do we get when evaluating ζ(s) at integers s?
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1.1.1. Even zeta values. The story in fact began 120 years before Riemann’s
article [Rie59], with Euler’s solution to the so-called Basel problem, which asked
for the computation of the special value

ζ(2) =
∑

n⩾1

1

n2
=
π2

6
.

For the prehistory of the Riemann zeta function, we refer the reader to Weil’s
beautiful account [Wei89]. In fact, Euler proved much more than this.

Theorem 1.3 (Euler, 1735). The values of the zeta function at even positive
integers are given by the formula

ζ(2k) = (−1)k−1
(2π)2k

2(2k)!
B2k (k ⩾ 1).(1.4)

Here B2k are rational numbers, called Bernoulli numbers and defined by the
power series identity

(1.5)
t

et − 1
= 1 +

∑

k⩾1

Bk
tk

k!
.

Note that the function

f(t) =
t

et − 1
+

1

2
t =

t(1 + et)

2(et − 1)

is even, i.e. satisfies f(t) = f(−t). Hence, the Bernoulli numbers satisfy B1 = −1/2
and Bk = 0 for all odd integers k ⩾ 3. The first few are easily computed:

k 2 4 6 8 10 12

Bk
1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730

Proof of Theorem 1.3. The key ingredient is an identity for the cotangent
function, also due to Euler (see Exercise 1.17): for x ∈ C \ Z, the equality

(1.6) π cot(πx) =
1

x
+
∑

n⩾1

2x

x2 − n2

holds. For 0 < |x| < 1, we can expand the quotient inside the summation sign as a
geometric series. Since the resulting double series is absolutely convergent, we can
then interchange the order of summation to obtain

(1.7) π cot(πx) =
1

x
− 2

∑

k⩾1

ζ(2k)x2k−1.

Besides, the identities

1

et − 1
=

e−
t
2

e
t
2 − e− t

2

and − 1

e−t − 1
=

e
t
2

e
t
2 − e− t

2

,

along with the definition (1.5) of Bernoulli numbers and the fact that they vanish
for odd k ⩾ 3, imply the equality

e
t
2 + e−

t
2

e
t
2 − e− t

2

=
2

t
+ 2

∑

k⩾1

B2kt
2k−1

(2k)!
.
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Therefore, formula (1.6) can be rewritten as

(1.8) π cot(πx) = πi
e

2πix
2 + e−

2πix
2

e
2πix

2 − e− 2πix
2

=
1

x
+
∑

k⩾1

(2πi)2kB2k

(2k)!
x2k−1,

and we conclude by identifying the coefficients in (1.7) and (1.8) term by term. □

Remark 1.9.

i) Euler’s formula (1.4) implies the equality

Q[ζ(2), ζ(4), . . . ] = Q[π2]

of subrings of the ring of real numbers.

ii) The Riemann zeta function satisfies the functional equation

(1.10) π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s),

where Γ is the gamma function; see [Tit86, (2.1.13)]. Using that Γ(s) has
a simple pole of residue (−1)k/k! at all non-positive integers s = −k and
this functional equation, we derive from Euler’s formula the values of the
Riemann zeta function at negative integers:

ζ(−k) = (−1)k
Bk+1

k + 1
(k ⩾ 1).

In particular, ζ(s) vanishes at s = −2k for all k ⩾ 1; these are the “trivial
zeros”. One can also compute the value ζ(0) = −1/2 on noting that ζ(s)
has a simple pole of residue 1 at s = 1.

1.1.2. Odd zeta values. By contrast, despite the many efforts of the mathe-
matical community, nobody has been able to give closed-form expressions for the
values of the Riemann zeta function at odd positive integers s = 3, 5, . . . in terms
of previously known numbers like π. This led to the following conjecture:

Conjecture 1.11 (Transcendence conjecture). The numbers

π, ζ(3), ζ(5), . . .

are algebraically independent over Q. That is, for each integer k ⩾ 0 and each
non-zero polynomial P ∈ Q[x0, . . . , xk], one has P (π, ζ(3), . . . , ζ(2k + 1)) ̸= 0.

This conjecture seems completely out of reach of the current techniques in tran-
scendence theory. The transcendence of π was proved by Lindemann in his 1882
paper [Lin82]. Combined with Euler’s formula (1.4), it implies that the num-
bers ζ(2k) are transcendental for all k ⩾ 1. But, when it comes to the values at
odd integers, we do not even know whether ζ(3) is transcendental, not to speak of
its algebraic independence with π, or if ζ(5) is irrational. The few known results,
at the moment of writing, are summarized below. The Bourbaki seminar [Fis04]
contains an excellent survey of the developments prior to 2004.

• Apéry proved the irrationality of ζ(3) in 1978; see [Apé79] for a short
announcement and [vdP79] for a more detailed account. Different proofs
by Beukers [Beu79, Beu87], Nesterenko [Nes96], Sorokin [Sor98], and
Prévost [Pré96], among others, are now available, but none of them seems
to generalize in any way to other odd zeta values such as ζ(5).
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• Rivoal [Riv00] and Ball and Rivoal [BR01] proved the inequality

dimQ⟨1, ζ(3), ζ(5), . . . , ζ(n)⟩ ⩾ 1

3
log(n)

for all odd integers n ⩾ 3; see also the exposition in [Col03]. In particular,
infinitely many odd zeta values ζ(2k + 1) are irrational. A proof “by
elementary means” of this corollary was recently given by Sprang [Spr18]
building on ideas of Zudilin [Zud18]; see also [FSZ19] and [Fis21]

• Zudilin [Zud01] proved that out of the four numbers ζ(5), ζ(7), ζ(9), ζ(11)
at least one is irrational.

Brown has suggested in [Bro16] a common geometric framework for these
irrationality proofs. The approach is based on the study of periods of the moduli
spaces M0,n of curves of genus zero with n marked points (see Section 2.9.3).

Digression 1.12. Despite their “simplicity”, special values of the Riemann
zeta function are linked to much interesting mathematics. For instance, K-groups
and regulators explain why the values at even integers are easier to understand
than those at odd integers. The material on the Dedekind zeta function and the
class number formula that we mention in what follows is covered, for example, in
Neukirch’s book [Neu99, Chap. VII, §5].

Let F be a number field and OF its ring of integers. The Dedekind zeta function
of F is defined, on the half-plane Re(s) > 1, by the absolutely convergent series

ζF (s) =
∑

a

1

N(a)s
,

where a runs through all non-zero ideals of OF and N(a) denotes the cardinal of
the finite field OF /a. In particular, ζQ agrees with the Riemann zeta function (1.2).

The Dedekind zeta function extends to a meromorphic function on the complex
plane, with a simple pole at s = 1. Its residue is given by the class number formula

lim
s→1

(s− 1)ζF (s) =
2r1(2π)r2hFRF

wF
√
|dF |

,

where r1 (resp. r2) denotes the number of real (resp. pairs of conjugate complex)
embeddings of F , hF is the class number, wF is the number of roots of unity
contained in F , and dF stands for the discriminant.

The remaining term RF is defined using the Dirichlet regulator map

ρ : O×F −→ Rr1+r2

u 7−→ (log ||u||v)v.
Here v runs over all archimedean places of F , and we write

||u||v =

{
|σ(u)|, if v = σ is a real place,

|σ(u)|2, if v = {σ, σ} is a complex place.

The product formula
∏
v ||u||v = 1 implies that ρ lands in the hyperplane of points

whose coordinates sum to zero. In fact, Dirichlet showed that the image of ρ is a
lattice in Rr1+r2−1, that is, a subgroup of the form Zv1⊕· · ·⊕Zvr1+r2−1 for linearly
independent vectors v1, . . . , vr1+r2−1 (Dirichlet’s unit theorem). By definition, the
covolume of such a lattice is the Lebesgue measure of the set

{x1v1 + · · ·+ xr1+r2−1vr1+r2−1 | xi ∈ R, 0 ⩽ xi ⩽ 1} .
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The covolume of the lattice ρ(O×F ) is a real number RF , abusively called Dirichlet
regulator as well.

Borel generalized this picture to other values of the Dedekind zeta function.
The role of the units O×F is played by the higher K-groups Kn(OF ), certain finitely
generated abelian groups, whose definition is rather involved, that carry a lot of
information about the “hidden” arithmetic of F . Borel computed the rank of these
groups and defined, for each n ⩾ 2, the Borel regulator map

ρn : K2n−1(OF ) −→ Rdn , dn =

{
r1 + r2, if n is odd,

r2, if n is even.

Its image is again a lattice, whose covolume is a real number Rn also called Borel
regulator. Letting ζ∗F (1−n) denote the first non-vanishing coefficient in the Taylor
expansion of the Dedekind zeta function at s = 1− n, he proved the relation

ζ∗F (1− n) ∼Q× Rn.

(The notation ∼Q× means that the left-hand side and the right-hand side agree up
to a non-zero rational number.) The Dedekind zeta function satisfies a functional
equation similar to (1.10), from which it follows that ζF (n) is, up to some easy
factor involving the discriminant of F and powers of π, a rational multiple of Rn:

ζF (n) ∼Q×
πn(r1+2r2−dn)
√
|dF |

Rn.

When F = Q is the field of rational numbers, the K-group K2n−1(Z) has
rank 1 if n ⩾ 3 is odd, and 0 otherwise (see Section 4.3). Therefore, Rn = 1 holds
for even n. Thus, ζ(n) is a rational multiple of πn for even n, while it involves
the “mysterious” Borel regulator for odd n. This result will play a pivotal role
in the motivic approach to multiple zeta values. For more details, we refer the
reader to the original papers by Borel [Bor74] and [Bor77], the first author’s
monograph [BG02], or Soulé’s short survey [Sou10].

1.1.3. Double zeta values. In order to investigate possible relations among zeta
values, Euler looked at the algebraic structure of these numbers. The product of
two Riemann zeta values gives rise to a new kind of interesting sum:

(1.13)

ζ(s1) · ζ(s2) =


∑

n1⩾1

1

ns11


 ·


∑

n2⩾1

1

ns22




=
∑

n1,n2⩾1

1

ns11 n
s2
2

=
∑

n1>n2⩾1

1

ns11 n
s2
2

+
∑

n2>n1⩾1

1

ns22 n
s1
1

+
∑

n=n1=n2⩾1

1

ns1+s2
.
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The first two terms in the last line are called double zeta values and admit the
various representations

(1.14)

ζ(s1, s2) =
∑

n1>n2⩾1

1

ns11 n
s2
2

=
∑

n⩾2

1

ns1

(
1 +

1

2s2
+ · · ·+ 1

(n− 1)s2

)

=
∑

m,n⩾1

1

(n+m)s1ns2
.

With this notation, equation (1.13) can be rewritten as

(1.15) ζ(s1) · ζ(s2)︸ ︷︷ ︸
product of zeta values

= ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)︸ ︷︷ ︸
sum of zeta and double zeta values

.

This identity already appears in Euler’s work [Eul76, p. 144] under the name of
“prima methodus”.

Example 1.16. Taking s1 = s2 = 2, we get ζ(2)2 = 2ζ(2, 2) + ζ(4), and hence

ζ(2, 2) =
π4

120

by Euler’s formula (1.4). Similarly, one finds that the double zeta value ζ(2k, 2k)
is a rational multiple of π4k for all k ⩾ 1.

As we have seen, products of two Riemann zeta values are linear combinations
of zeta and double zeta values. To handle products of more factors, multiple zeta
values of higher length are needed. These new numbers satisfy many linear relations,
and one can argue that the main goal of the theory is to fully understand them.

⋆ ⋆ ⋆

Exercise 1.17. Prove that the logarithmic derivative of Euler’s product ex-
pansion for the sine function

sinπz

πz
=
∏

n⩾1

(
1− x2

n2

)

yields the identity

π cot(πx) =
1

x
+
∑

n⩾1

2x

x2 − n2 (x ∈ C\Z),

and deduce formula (1.7) in the proof of Theorem 1.3.

Exercise 1.18. Prove that the Taylor expansion of the logarithm of the gamma
function at z = 0 is given by

log Γ(1− z) = γz +
∑

n⩾2

ζ(n)
zn

n
,



16 J. I. BURGOS GIL AND J. FRESÁN

where γ is the Euler constant

γ = lim
n→∞

(
n∑

k=1

1

k
− log(n)

)
.

[Hint: use Weierstrass’s factorization formula for the gamma function.]

Exercise 1.19 (Tornheim sums). Given integers a, b, c ⩾ 0, the series

S(a, b, c) =
∑

m,n⩾1

1

manb(m+ n)c
,

is called a Tornheim sum, in reference to the article [Tor50].

i) Prove that S(a, b, c) converges if and only if the following inequalities hold:

a+ c > 1, b+ c > 1, a+ b+ c > 2.

ii) Show that the following Pascal triangle-like recurrence holds:

S(a, b, c) = S(a− 1, b, c+ 1) + S(a, b− 1, c+ 1).

iii) Deduce that S(a, b, c) is a linear combination with integral coefficients of
double zeta values. For example, the identity S(1, 1, 1) = 2ζ(2, 1) holds.

iv) Prove by direct computation the equality

S(1, 1, 1) = ζ(2, 1) + ζ(3),

and deduce Euler’s identity ζ(3) = ζ(2, 1). [Hint: use the equality

1

mn(m+ n)
=

1

m2

(
1

n
− 1

m+ n

)

to transform the sum over n into a telescoping series.]

1.2. Definition of multiple zeta values. It is now time to introduce the
main character of this book. We start with some terminology.

1.2.1. Multi-indices and multiple zeta values.

Definition 1.20. A multi-index

s = (s1, . . . , sℓ) ∈ Zℓ

is called positive if si ⩾ 1 for all i = 1, . . . , ℓ, and admissible if it is positive and,
in addition, satisfies s1 ⩾ 2. The weight of s is the sum s1 + · · · + sℓ, and ℓ is
called its length (it is also called depth in the literature). By convention, the empty
multi-index (ℓ = 0) will also be considered to be admissible of weight and length
both equal to 0. We will call si an entry of the multi-index s.

Lemma 1.21. Let s = (s1, s2, . . . , sℓ) be a non-empty admissible multi-index.
Then the following series converges:

ζ(s) = ζ(s1, s2, . . . , sℓ) =
∑

n1>n2>···>nℓ⩾1

1

ns11 n
s2
2 · · · nsℓℓ

.

Proof. In view of the inequality

ζ(s) ⩽ ζ(2, 1, . . . , 1︸ ︷︷ ︸
ℓ−1

),
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it suffices to show that ζ(2, 1, . . . , 1) converges. Using the estimate

n∑

k=1

1

k
⩽ 1 + log(n),

which is obtained by comparison with the integral
∫ n
1

dx/x, one gets:

(1.22)

ζ(2, 1, . . . , 1) =
∑

n1>n2>···>nℓ⩾1

1

n21n2 · · · nℓ

⩽
∑

n⩾1

1

n2

(
n∑

k=1

1

k

)ℓ−1

⩽
∑

n⩾1

(1 + log(n))ℓ−1

n2
.

The last series converges, as can be seen as follows: from the limit

lim
n→+∞

log(1 + log(n))

log(n)
= 0,

we deduce that there is an integer n0 such that the inequality (1+log(n))ℓ−1 <
√
n

holds for all n ⩾ n0. The tail of the last series in (1.22) is thus bounded by the
convergent series

∑
n⩾n0

n−3/2, so it is itself convergent. □

Definition 1.23. The multiple zeta value associated with an admissible multi-
index s = (s1, . . . , sℓ) is the real number

ζ(s) =
∑

n1>n2>···>nℓ⩾1

1

ns11 n
s2
2 · · · nsℓℓ

.

We shall adopt the convention ζ(∅) = 1.

Remark 1.24. Abusing notation, we will sometimes write

wt(ζ(s)) = wt(s) = s1 + · · ·+ sℓ,(1.25)

ℓ(ζ(s)) = ℓ(s) = ℓ.(1.26)

In particular, wt(1) = ℓ(1) = 0 for the empty multi-index. Strictly speaking, only
the weight and the length of the multi-index s, as opposed to the multiple zeta
value ζ(s), are well defined, since there are equalities ζ(s) = ζ(s′) for different
multi-indices. Conjecturally, when such an equality holds s and s′ have the same
weight, and hence (1.25) makes sense. By contrast, the length is only well defined
for multi-indices, as Euler’s relation ζ(2, 1) = ζ(3) already shows that the same
value can be represented by multi-indices of different lengths (see Exercise 1.19 or
Corollary 1.56 below).

Example 1.27. Let 2{n} = (2, . . . , 2) denote the admissible multi-index of
length n whose entries are all equal to 2. We compute the value of ζ(2{n}) using
the method of generating series and Euler’s product expansion for the sine function

(1.28)
sinπx

πx
=
∏

n⩾1

(
1− x2

n2

)
.
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Plugging the definition of ζ(2{n}) into the power series below, we get:

∑

n⩾0

ζ(2{n})(−x2)n =
∑

n⩾0

∑

m1>···>mn⩾1

(
− x

2

m2
1

)
. . .

(
− x2

m2
n

)

=
∏

m⩾1

(
1− x2

m2

)

=
∑

n⩾0

(−1)n
π2n

(2n+ 1)!
x2n.

The second equality above comes from the elementary observation that, in the
power series expansion of the infinite product, the terms of degree 2n correspond
bijectively to choices of n integers satisfying m1 > m2 > · · · > mn ⩾ 1. The third
equality is the combination of (1.28) and the power series expansion of the sine
function. Now, identification of the coefficients yields

(1.29) ζ(2{n}) =
π2n

(2n+ 1)!
.

Note the particular case ζ(2, 2) = π4/120 from Example 1.16.

1.2.2. The algebra of multiple zeta values.

Definition 1.30. We will write Z for the Q-subvector space of R generated
by all multiple zeta values:

Z = ⟨1, ζ(2), ζ(3), ζ(2, 1), ζ(4), . . . ⟩Q.
Given integers k, ℓ ⩾ 0, we also consider the following subvector spaces of Z:

Zk = ⟨ζ(s) | wt(s) = k ⟩Q,
FℓZ = ⟨ζ(s) | l(s) ⩽ ℓ ⟩Q,
FℓZk = ⟨ζ(s) | wt(s) = k, ℓ(s) ⩽ ℓ ⟩Q.

In particular, the equalities Z0 = Q and Z1 = {0} hold.

Remark 1.31. The subspaces FℓZ define an increasing filtration of Z:

Q = F0Z ⊆ F1Z ⊆ F2Z ⊆ · · · .
There is an obvious inclusion

FℓZk ⊆ FℓZ ∩ Zk
that is expected to be an equality (Exercise 1.101), but this is not yet known.

The identity (1.15) is the first indication that the Q-vector space Z has the
richer structure of an algebra. Recall that this simply means that Z is equipped
with a bilinear multiplication map Z × Z → Z.

Theorem 1.32. The multiplication of real numbers induces an associative com-
mutative algebra structure on Z that is compatible with the weight and the length
filtration in that there is an inclusion

Fℓ1Zk1 · Fℓ2Zk2 ⊆ Fℓ1+ℓ2Zk1+k2
for all non-negative integers ℓ1, ℓ2, k1, k2.
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The theorem says, in particular, that every product of multiple zeta values can
be written as a linear combination of multiple zeta values, hence the following:

Corollary 1.33. Every polynomial relation among Riemann zeta values ζ(k)
gives rise to a linear relation among multiple zeta values.

Thus, finding algebraic relations among zeta values amounts to finding linear
relations among multiple zeta values; this is a first interpretation of what we meant
by “linearizing the transcendence conjecture” in the preface.

1.2.3. Proof of Theorem 1.32. The result will directly follow from Lemmas 1.38
and 1.39 below. Before stating them, we need to introduce the notion of stuffle
multiplicities of multi-indices.

Construction 1.34. Given positive multi-indices

s = (s1, s2, . . . , sℓ), s′ = (s′1, s
′
2, . . . , s

′
ℓ′),

consider the set of all 2 × ℓ′′-matrices, for integers ℓ′′ from max(ℓ, ℓ′) to ℓ + ℓ′,
satisfying the following properties:

i) the entries of the first row are the numbers si, for 1 ⩽ i ⩽ ℓ, in this order,
plus some interlaced zeros;

ii) the entries of the second row are the numbers s′i, for 1 ⩽ i ⩽ ℓ′, in this
order, plus some interlaced zeros;

iii) no column has two zeros.

Each such matrix defines a new positive multi-index s′′ = (s′′1 , . . . , s
′′
ℓ′′) by adding

the two entries of each column.

An equivalent construction will be given in Exercise 1.46.

Example 1.35. For the multi-indices s = (2, 1, 1) and s′ = (2, 3), two possible
choices of such a matrix are (

0 2 1 1

2 0 3 0

)
,

from which we get the multi-index s′′ = (2, 2, 4, 1), and
(

2 1 1

2 0 3

)
,

which gives s′′ = (4, 1, 4). Observe that the length of the resulting s′′ varies.

Definition 1.36. Let s, s′, and s′′ be positive multi-indices. The stuffle mul-
tiplicity st(s, s′; s′′) is the number of times that the multi-index s′′ appears as an
outcome of the previous construction with inputs s and s′.

By definition, the stuffle multiplicity is a non-negative integer.

Example 1.37. In the easy case s = (2) and s′ = (2), all possible matrices are
(

2

2

)
,

(
2 0

0 2

)
,

(
0 2

2 0

)
,
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from which one gets multi-indices (4), (2, 2) and (2, 2). Hence, in this example the
stuffle multiplicity is equal to

st(s, s′; s′′) =





1, if s′′ = (4),

2, if s′′ = (2, 2),

0, otherwise.

From conditions i), ii), and iii) in Construction 1.34, we immediately deduce
the following properties of the stuffle multiplicity:

Lemma 1.38. Let s, s′, and s′′ be positive multi-indices satisfying the condition
st(s, s′; s′′) > 0. Then the following holds:

i) wt(s′′) = wt(s) + wt(s′);

ii) ℓ(s′′) ⩽ ℓ(s) + ℓ(s′);

iii) if s and s′ are admissible, then so is s′′.

The main reason to introduce the stuffle multiplicity is the following result,
which together with the previous lemma implies Theorem 1.32.

Lemma 1.39. Let s = (s1, s2, . . . , sℓ) and s′ = (s′1, s
′
2, . . . , s

′
ℓ′) be admissible

multi-indices. The following equality holds:

ζ(s) · ζ(s′) =
∑

s′′

st(s, s′; s′′)ζ(s′′).

Proof. Multiplying the series

ζ(s) =
∑

n1>···>nℓ⩾1

1

ns11 · · · nsℓℓ
and ζ(s′) =

∑

m1>···>mℓ′⩾1

1

m
s′1
1 · · · m

s′
ℓ′
ℓ′

,

one gets the equality

(1.40) ζ(s)ζ(s′) =
∑

n1>···>nℓ⩾1
m1>···>mℓ′⩾1

1

ns11 · · · nsℓℓ m
s′1
1 · · · m

s′
ℓ′
ℓ′

.

We now decompose the sum (1.40) according to the possible orderings of the terms
of the sequence n1, . . . nℓ,m1, . . .mℓ′ . For instance, if ℓ = ℓ′ = 1, we distinguish the
three cases n1 > m1, n1 = m1 and n1 < m1, which results in the decomposition

∑

n1⩾1
m1⩾1

1

ns11 m
s′1
1

=
∑

n1>m1⩾1

1

ns11 m
s′1
1

+
∑

n1⩾1

1

n
s1+s′1
1

+
∑

m1>n1⩾1

1

ns11 m
s′1
1

,

which was already obtained in formula (1.15). By construction, the number of times
that a given sum

ζ(s′′) =
∑

k1>···>kℓ′′⩾1

1

k
s′′1
1 · · · k

s′′
ℓ′′
ℓ′′

appears in this process is precisely the stuffle multiplicity st(s, s′; s′′). □
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Example 1.41. Let a, b, c be integers satisfying a, c ⩾ 2 and b ⩾ 1. We decom-
pose the product ζ(a, b)ζ(c) as:

ζ(a, b)ζ(c) =
∑

n1>n2⩾1
m⩾1

1

na1n
b
2m

c

=
∑

m>n1>n2⩾1

1

mcna1n
b
2

+
∑

m=n1>n2⩾1

1

na+c1 nb2
+

∑

n1>m>n2⩾1

1

na1m
cnb2

+
∑

n1>m=n2⩾1

1

na1n
b+c
2

+
∑

n1>n2>m⩾1

1

na1n
b
2m

c

= ζ(c, a, b) + ζ(a+ c, b) + ζ(a, c, b) + ζ(a, b+ c) + ζ(a, b, c).

More examples will be presented in the next sections.

⋆ ⋆ ⋆

Exercise 1.42. Let k ⩾ 2 be an integer. Prove that there are 2k−1 positive
multi-indices of weight k and that 2k−2 among them are admissible.

Exercise 1.43. It would have been possible, as Euler did in length two (see
Figure 1 below), to define multiple zeta values as

ζ⋆(s1, s2, . . . , sℓ) =
∑

n1⩾n2⩾···⩾nℓ⩾1

1

ns11 n
s2
2 · · · nsℓℓ

.

Find the relation between ζ(s1, s2, . . . , sℓ) and ζ⋆(s1, s2, . . . , sℓ).

Figure 1. Euler’s definition of double zeta values in [Eul76].

Exercise 1.44. Given an integer s ⩾ 2, we let s{n} = (s, . . . , s) denote the
admissible multi-index of length n with all entries equal to s.

i) Adapt the argument from Example 1.27 to prove the equality

∑

n⩾0

ζ(s{n})xn = exp


∑

k⩾1

(−1)k−1
ζ(sk)

k
xk


 .

ii) Deduce that the multiple zeta value ζ(s{n}) belongs to the subring

Q[ζ(s), ζ(2s), ζ(3s), . . . ] ⊂ R.
More precisely, consider an infinite collection of weighted variables (xk)k⩾1,
where xk is given weight sk. Then, for each n ⩾ 1, there exists a polyno-
mial with rational coefficients Pn(x1, . . . , xn), homogeneous of weight sn,
such that the equality

ζ(s{n}) = Pn(ζ(s), ζ(2s), . . . , ζ(ns))

holds. Combined with this, Euler’s formula (1.4) implies that the multiple
zeta value ζ(s{n}) is a rational multiple of πns for even s.
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iii) Some explicit formulas:

ζ(4{n}) =
(2π)4n

22n−1(4n+ 2)!
, ζ(6{n}) =

6(2π)6n

(6n+ 3)!
,

ζ(8{n}) =
(2π)8n

22n−2(8n+ 4)!

[
(
√

2 + 1)4n+2 + (
√

2− 1)4n+2

]
.

Despite its appearance, the last factor is rational since it is invariant under
the substitution

√
2 7→ −

√
2.

Exercise 1.45. Use the stuffle multiplicities to prove the equality

ζ(2k + 1)ζ(2{n−k}) =

n−k∑

i=0

ζ(2{i},2k + 1, 2{n−k−i})

+

n−k−1∑

i=0

ζ(2{i}, 2k + 3, 2{n−k−1−i})

for all integers n, k ⩾ 1.

Exercise 1.46. Let st(ℓ, ℓ′; r) denote the set of surjective maps

σ : {1, 2, . . . , ℓ+ ℓ′} −→ {1, 2, . . . , ℓ+ ℓ′ − r}
satisfying σ(1) < σ(2) < · · · < σ(ℓ) and σ(ℓ+ 1) < · · · < σ(ℓ+ ℓ′).

i) Determine the cardinality of st(ℓ, ℓ′; r) and show how to get from σ a
matrix satisfying the three conditions in Construction 1.34.

ii) Prove the identity

∑

s′′

st(s, s′; s′′)ζ(s′′) =

min(ℓ,ℓ′)∑

r=0

∑

σ∈st(ℓ,ℓ′;r)

ζ(s′′(σ)1, . . . , s
′′(σ)ℓ+ℓ′−r),

where ℓ = ℓ(s), ℓ′ = ℓ(s′) and s′′(σ) is the multi-index with

s′′(σ)k =





si, if σ−1(k) = {i} for i ⩽ ℓ,

s′j , if σ−1(k) = {ℓ+ j},
si + s′j , if σ−1(k) = {i, ℓ+ j}.

(By definition of st(ℓ, ℓ′; r), all possibilities for σ−1(k) are covered.)

1.3. Relations among double zeta values. We now undertake the task of
finding linear relations among multiple zeta values by elementary methods. Histor-
ically, one of the first techniques consisted in reordering multiple sums by means of
a partial fraction decomposition. In what follows, we show how this yields linear
relations among double zeta values.

1.3.1. Partial fraction decompositions. For integers a, b with b ⩾ 0, we shall
use the standard convention for binomial coefficients:

(1.47)

(
a

b

)
=
a(a− 1) · · · (a− b+ 1)

b!
.

In particular,
(
a
0

)
= 1 holds for all a and, if b > a ⩾ 0, then

(
a
b

)
= 0 holds.
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Lemma 1.48. Let i, j ⩾ 1 be integers. The following equality of rational func-
tions holds:

(1.49)
1

xiyj
=

i+j−1∑

r=1

[ (
r−1
i−1
)

(x+ y)ryi+j−r
+

(
r−1
j−1
)

(x+ y)rxi+j−r

]
.

Proof. We proceed by induction on i and j. The proof in the case i = j = 1
reduces to a simple checking. Assume that (1.49) holds for a given pair (i, j).
Differentiating with respect to x, we find that 1/xi+1yj is equal to

1

i

i+j−1∑

r=1

[
r
(
r−1
i−1
)

(x+ y)r+1yi+j−r
+

r
(
r−1
j−1
)

(x+ y)r+1xi+j−r
+

(i+ j − r)
(
r−1
j−1
)

(x+ y)rxi+j+1−r

]
=

1

i

i+j∑

r=2

[
(r − 1)

(
r−2
i−1
)

(x+ y)ryi+1+j−r +
(r − 1)

(
r−2
j−1
)

(x+ y)rxi+1+j−r

]
+

1

i

i+j−1∑

r=1

(i+ j − r)
(
r−1
j−1
)

(x+ y)rxi+j+1−r .

Thanks to the identities

(r − 1)
(
r−2
i−1
)

= i
(
r−1
i

)
and (r − 1)

(
r−2
j−1
)

= (r − j)
(
r−1
j−1
)
,

and taking the convention (1.47) into account, the previous expression becomes

i+j∑

r=1

[ (
r−1
i

)

(x+ y)ryi+1+j−r +

(
r−1
j−1
)

(x+ y)rxi+1+j−r

]
,

which agrees with the right-hand side of (1.49) for (i + 1, j). The induction step
from (i, j) to (i, j + 1) is completely symmetric. □

Corollary 1.50. Let p, q ⩾ 1 be integers. For any non-zero complex number a,
the following equality of rational functions holds:

(1.51)
1

up(u− a)q
= (−1)q

p−1∑

k=0

(
q+k−1
q−1

)

up−kaq+k
+

q−1∑

k=0

(−1)k

(
p+k−1
p−1

)

ap+k(u− a)q−k
.

Proof. Take y = u and x = a − u in equation (1.49). To transform the
resulting expression into (1.51), observe that the binomial coefficient

(
r−1
q−1
)

vanishes

unless q ⩽ r ⩽ p + q − 1, and hence the indexes r that actually contribute to the
sum can all be written as r = q + k for some k = 0, . . . , p− 1. The same holds for
the binomial coefficient

(
r−1
p−1
)
. □

1.3.2. Applications. A straightforward consequence of the partial fraction de-
composition from Lemma 1.48 is the shuffle relation

ζ(j)ζ(k − j) =

k−1∑

r=2

[(
r−1
j−1
)

+
(
r−1
k−j−1

)]
ζ(r, k − r)(1.52)

for any k ⩾ 4 and 2 ⩽ j ⩽ k − 2. Replacing the product in the left-hand side
of (1.52) with the stuffle formula (1.15) we get the linear identity

(1.53) ζ(j, k − j) + ζ(k − j, j) + ζ(k) =

k−1∑

r=2

[(
r−1
j−1
)

+
(
r−1
k−j−1

)]
ζ(r, k − r),

which is called a double shuffle relation. The reason for these names will become
apparent in Section 1.5.
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A more sophisticated application of partial fraction decompositions gives the
following result, essentially what Euler calls “tertia methodus” in [Eul76]. We refer
the reader to [Har18] for a modern exposition of his techniques.

Theorem 1.54 (Euler, 1776). Given integers p ⩾ 2 and q ⩾ 1, the following
equality holds:

ζ(p, q) =

q−2∑

k=0

(−1)k
(
p+k−1
p−1

)
ζ(q − k)ζ(p+ k)

+ (−1)q
p−2∑

k=0

(
q+k−1
q−1

)
ζ(p− k, q + k)

+ (−1)q−1
(
p+q−2
p−1

)[
ζ(p+ q) + ζ(p+ q − 1, 1)

]
.

Remark 1.55. The assumptions p ⩾ 2 and q ⩾ 1 ensure that all the terms in
the above formula are convergent series. Euler also allowed the case p = 1. Then
the sum contains divergent terms such as ζ(1) or ζ(1, 1) that need to be regularized;
see [Har18] for a rigorous treatment of Euler’s method.

Making q = 1 we immediately get:

Corollary 1.56 (Euler’s sum formula). If s ⩾ 3, then

ζ(s) =

s−2∑

j=1

ζ(s− j, j).(1.57)

In particular, the equality ζ(3) = ζ(2, 1) holds.

Proof of Theorem 1.54. We borrow the argument from Nielsen’s book; see
[Nie65, Chap. III, § 18, p. 48]. Recall the equality

(1.58) ζ(p, q) =
∑

n>m⩾1

1

npmq
=
∑

n⩾2

(
n−1∑

a=1

1

np(n− a)q

)

from (1.14). Applying the partial fraction decomposition from Corollary 1.50 to
each summand in the right-hand side of this equality and separating the terms
coming from k = p− 1 and k = q − 1 yields

n−1∑

a=1

1

np(n− a)q
=(−1)q

p−2∑

k=0

n−1∑

a=1

(
q+k−1
q−1

)

np−kaq+k

+

q−2∑

k=0

n−1∑

a=1

(−1)k

(
p+k−1
p−1

)

ap+k(n− a)q−k

+ (−1)q
(
q+p−2
p−1

) n−1∑

a=1

[
1

nap+q−1
− 1

ap+q−1(n− a)

]
.

The sum over n of the first two terms in the above expression converges, whereas
the sum of each individual summand of the third term diverges. We will show
below that the sum over n of the third term is also convergent.

Using identity (1.58), the sum over n of the first term can be written as

∑

n⩾2

(−1)q
p−2∑

k=0

n−1∑

a=1

(
q+k−1
q−1

)

np−kaq+k
= (−1)q

p−2∑

k=0

(
q+k−1
q−1

)
ζ(p− k, q + k).
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We next observe the equality

ζ(p)ζ(q) =
∑

n⩾2

n−1∑

a=1

1

(n− a)paq
,

which implies that the sum over n of the second term is equal to

∑

n⩾2

q−2∑

k=0

n−1∑

a=1

(−1)k
(
p+k−1
p−1

)

ap+k(n− a)q−k
=

q−2∑

k=0

(−1)k
(
p+k−1
p−1

)
ζ(q − k)ζ(p+ k).

For the last term, we use the identity

n−1∑

a=1

1

ap+q−1(n− a)
=

a<n/2∑

a=1

1

(n− a)ap+q−1
+

n−1∑

a>n/2

1

ap+q−1(n− a)
+





1

(n
2 )

q+p , if n is even,

0, if n is odd.

We note the equalities

∑

n⩾2
n even

1
(
n
2

)q+p = ζ(p+ q) and
∑

n⩾2

n−1∑

a>n
2

1

ap+q−1(n− a)
= ζ(p+ q − 1, 1).

We finally estimate the remaining term. For N ⩾ 3, one has:

N∑

n=2



n−1∑

a=1

1

n(n− a)p+q−1
−
a<n

2∑

a=1

1

(n− a)ap+q−1


 =

N∑

n>N+1
2

n−1∑

a=N−n+1

1

nap+q−1
.

Using the assumption p + q − 1 ⩾ 2, one sees that the last term converges to zero
as N goes to ∞. The theorem results from summing up all the computations. □

Corollary 1.59 (Nielsen). For each n ⩾ 2, the following equalities hold:

n−1∑

r=1

ζ(2r, 2n− 2r) =
3

4
ζ(2n),

n−1∑

r=1

ζ(2r + 1, 2n− 2r − 1) =
1

4
ζ(2n).

Proof. Following [Nie65, Chap. III, § 19, p. 49], we use the identity

(1.60)

p−1∑

r=2

ζ(r)ζ(p− r + 1) = pζ(p+ 1)− 2ζ(p, 1),

which results from the decomposition (1.15) of the product of two zeta values and
Euler’s sum formula (1.57). This will be combined with the equality

(2n− 2) [ζ(2n) + ζ(2n− 1, 1)] =

2n−4∑

k=0

(−1)k(k + 1)ζ(k + 2)ζ(2n− k − 2),
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which is obtained by applying Theorem 1.54 to p = 2 and q = 2n−2. Note that the
term ζ(k+2)ζ(2n−k−2) on the right-hand side is invariant under the substitution
k 7→ 2n− k − 4 and that it appears with multiplicity (−1)k(2n− 2). Therefore,

2 [ζ(2n) + ζ(2n− 1, 1)] =

2n−4∑

k=0

(−1)kζ(k + 2)ζ(2n− k − 2)

=

n−1∑

r=1

ζ(2r)ζ(2n− 2r)−
n−2∑

r=1

ζ(2r + 1)ζ(2n− 2r − 1).(1.61)

Summing and subtracting equations (1.61) and (1.60) for p = 2n− 1 yields the
recursion formulas

n−1∑

r=1

ζ(2r)ζ(2n− 2r) =
2n+ 1

2
ζ(2n) (n ⩾ 2),

n−2∑

r=1

ζ(2r + 1)ζ(2n− 2r − 1) =
2n− 3

2
ζ(2n)− 2ζ(2n− 1, 1) (n ⩾ 3).

The statement is proved by replacing the products of zeta values in the left-hand
sides with their expression (1.15) as sums of double zeta values. □

Remark 1.62. The previous corollary was rediscovered by Gangl, Kaneko, and
Zagier; see [GKZ06, Thm. 1] and Exercise 1.66.

1.3.3. Relations in low weight. We now show how to use the above results to
get linear relations among multiple zeta values of low weight.

Corollary 1.63. The following relations hold in Z:
i) in weight 3:

ζ(3) = ζ(2, 1);

ii) in weight 4:

ζ(4) = 4ζ(3, 1),

ζ(2, 2) = 3ζ(3, 1);

iii) in weight 5:

ζ(5) = −4ζ(4, 1) + 2ζ(2, 3),

ζ(3, 2) = −5ζ(4, 1) + ζ(2, 3);

iv) in weight 6:

ζ(6) = 4ζ(5, 1) + 4ζ(3, 3),

ζ(2, 4) =
13

3
ζ(5, 1) +

7

3
ζ(3, 3),

ζ(4, 2) = −4

3
ζ(5, 1) +

2

3
ζ(3, 3).

Proof. All the relations follow from Theorem 1.54 together with the decom-
position (1.15). We have already seen that the equality ζ(3) = ζ(2, 1) is the first
instance of Euler’s sum formula (1.57).
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Let us now derive the two relations in weight 4. On the one hand, Theorem 1.54
applied to p = q = 2 gives ζ(2)2 = 2ζ(4) + 2ζ(3, 1). Combining this with the
identity ζ(2)2 = 2ζ(2, 2) + ζ(4) from Example 1.16, we obtain

ζ(4) + 2ζ(3, 1) = 2ζ(2, 2).

On the other hand, by Euler’s sum formula, ζ(4) = ζ(3, 1) + ζ(2, 2), hence the
equalities ζ(4) = 4ζ(3, 1) and ζ(2, 2) = 3ζ(3, 1).

The remaining identities are left as an exercise. □

1.3.4. An upper bound for the dimension of F2Zk. Putting all the identities
of this section together, one gets upper bounds for the dimension of the Q-vector
space generated by zeta and double zeta values of a given weight. However, as we
will see in the next section, these bounds are not expected to be optimal in general
(see Remark 1.97).

Proposition 1.64. For each k ⩾ 4, the Q-vector space F2Zk spanned by zeta
and double zeta values of weight k is of dimension

dimQ F2Zk ⩽
⌈
k − 2

2

⌉
,

where ⌈x⌉ denotes the smallest integer greater than or equal to x.

Proof. The space F2Zk is generated by the k−1 elements ζ(k) and ζ(j, k−j)
for j = 2, . . . , k−1. Recall from Corollary 1.56 that they satisfy Euler’s sum formula

ζ(2, k − 2) + · · ·+ ζ(k − 1, 1)− ζ(k) = 0,

as well as the double shuffle relations (1.53)

ζ(j, k − j)+ζ(k − j, j) + ζ(k)

=

k−1∑

r=2

[(
r−1
j−1
)

+
(
r−1
k−j−1

)]
ζ(r, k − r) (j = 2, . . . , k − 2).

Since the latter are invariant under the substitution j 7→ k−j, it suffices to consider
the equations for j ⩽ k − j, that is, j ⩽ ⌊k2 ⌋.

One gets one equation from Euler’s sum formula, and ⌊k2 ⌋−1 equations from the

double shuffle relations. We claim that these ⌊k2 ⌋ equations are linearly independent.

As k−1−⌊k2 ⌋ = ⌈k−22 ⌉, this implies the statement. Indeed, by the convention (1.47),
the double shuffle relations take the form

k−1∑

r=j+1

arζ(r, k − r)− ζ(k) = 0 (j = 2, . . . , k − 2),

for positive integers ar. The matrix of relations is thus upper triangular with
non-zero entries in the diagonal, and hence invertible. □

⋆ ⋆ ⋆

Exercise 1.65. Derive the remaining relations of Corollary 1.63.
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Exercise 1.66 (Gangl–Kaneko–Zagier). Define the generating function of dou-
ble zeta values of weight k as the formal power series

Tk(X,Y ) =
∑

r+s=k
r,s⩾1

ζ(r, s)Xr−1Y s−1 .

i) Use the double shuffle relation (1.53) to prove the functional equation

Tk(X + Y,Y ) + Tk(X + Y,X)

= Tk(X,Y ) + Tk(Y,X) + ζ(k)
Xk−1 − Y k−1

X − Y
for all integers k ⩾ 3.

ii) Give an alternative proof of Corollary 1.59 using the above functional
equation for (X,Y ) = (1, 0) and (1,−1).

1.4. The Zagier and the Broadhurst–Kreimer conjectures. As we saw
in the previous section, there are many linear relations among multiple zeta values.
To get an intuition of what the structure of the algebra Z might be, one can start
by performing numerical experiments.

1.4.1. Numerical experiments. The first step is to use clever techniques to ac-
celerate the convergence of the infinite series defining multiple zeta values. With
these techniques, one can compute them with very high precision (for instance, 800
significant digits) in a reasonable amount of time; see [Bro96, §4] for a description
of such techniques, as well as [BBV10] for the state of the art some years ago.
Then we can apply lattice algorithms such as the LLL algorithm or the PSLQ algo-
rithm to find linear relations with integer coefficients among the computed multiple
zeta values. At a given precision, we will find many spurious relations (as we are
only working with rational approximations), but we can easily tell true relations
from spurious ones. The true relations should have small coefficients compared to
the inverse of the precision that was used. Moreover, the true relations will survive
after doubling the precision, say from 100 to 200 significant digits.

After extensive experimentation by many mathematicians, no non-trivial linear
relations among multiple zeta values of different weight have been found: all known
relations are homogeneous. Moreover, we can write a table with the “experimental”
dimension of each vector space Zk. Below, k is the weight, dexpk is the apparent

dimension of Zk given by the experiments, and 2k−2 is the number of admissible
multi-indices of weight k (Exercise 1.42), that is, the dimension Zk would have had
if there were no Q-linear relations at all.

k 2 3 4 5 6 7 8 9 10 11 12 13

2k−2 1 2 4 8 16 32 64 128 256 512 1024 2048

dexpk 1 1 1 2 2 3 4 5 7 9 12 16

Table 1.1. Experimental dimension

Of course, the experiments are not conclusive. There may exist linear relations
with “big” coefficients that we have not yet found; then the dimension of Zk would
be smaller than dexpk . In fact, there is not even a single value of k for which the
dimension of Zk is known to be strictly bigger than 1.
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Many of the relations obtained experimentally can be proved theoretically. For
instance, Euler’s sum formula (1.57) gives

ζ(3) = ζ(2, 1),

the expected relation in weight 3. In weight 4, there are four admissible multi-
indices but dexp4 = 1; we thus need to find three independent relations. Indeed,
from Corollary 1.63 and Example 1.140 below, we get

ζ(3, 1) =
1

4
ζ(4), ζ(2, 2) =

3

4
ζ(4), ζ(2, 1, 1) = ζ(4).

In weight 5, we expect six relations. In fact, by Corollary 1.63 and Exercise 1.147
below, there are linear relations

ζ(5) =
4

5
ζ(3, 2) +

6

5
ζ(2, 3), ζ(4, 1) = −1

5
ζ(3, 2) +

1

5
ζ(2, 3),

ζ(5) = ζ(2, 1, 1, 1), ζ(4, 1) = ζ(3, 1, 1),(1.67)

ζ(2, 1, 2) = ζ(2, 3), ζ(2, 2, 1) = ζ(3, 2).

However, given the lack of a theoretical proof, it is conceivable that experimen-
tal relations survive up to the number of significant digits that we have used but
fail with higher precision.

1.4.2. Does the weight define a grading? The fact that all known relations
among multiple zeta values are homogeneous led to the following:

Conjecture 1.68. The subspaces Zk ⊆ Z are in direct sum:

Z =
⊕

k⩾0

Zk.

As we already know the inclusion Zk1 · Zk2 ⊆ Zk1+k2 from Theorem 1.32, this
conjecture will be reformulated below as the statement that the weight defines a
grading on the Q-algebra Z.

Remark 1.69. Assuming Conjecture 1.68, we immediately deduce that all
multiple zeta values of positive weight are transcendental numbers. Indeed, let s
be an admissible multi-index of weight w > 0. If ζ(s) were algebraic, it would

satisfy a polynomial equation of the form
∑d
k=0 akζ(s)k = 0, where the ak are

rational numbers. But then one would have

adζ(s)d ∈ Zwd ∩
⊕

d′<d

Zwd′ ,

and hence ad = 0 since subspaces of different weights intersect only at 0.

1.4.3. Zagier’s conjecture. The conjectural dimension of the Q-vector spaces Zk
is given by a Fibonacci-like sequence of integers, namely the sequence {dk}k⩾0

recursively defined by the conditions

(1.70)
d0 = 1, d1 = 0, d2 = 1,

dk = dk−2 + dk−3.

These numbers fit together into the generating series
∑

k⩾0

dkt
k =

1

1− t2 − t3 .
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Indeed, 1− t2− t3 is invertible in QJtK, and the coefficients ak of the inverse power
series must satisfy the relations (1.70) for the equality (1 − t2 − t3)

∑
akt

k = 1 to
hold; they are thus equal to dk.

There is an overwhelming amount of numerical evidence for the following con-
jecture, stated by Zagier in [Zag94, p. 509] “after many discussions with Drinfel’d,
Kontsevich and Goncharov”.

Conjecture 1.71 (Zagier). The equality dimQZk = dk holds.

Hoffman [Hof97, Conj. C, p. 493] proposed a refinement of Zagier’s conjecture,
in which not only the dimension of Zk but also a particular Q-basis is postulated.
This conjecture is based on the observation that the equality

(1.72) dk = |{multi-indices of weight k with entries 2 and 3}|
holds because the numbers on the right-hand side also verify conditions (1.70).

Conjecture 1.73 (Hoffman). For each integer k ⩾ 2, the multiple zeta values
ζ(s1, . . . , sℓ) of weight k with si ∈ {2, 3} form a Q-basis of Zk.

This would imply the following representations of the spaces Zk:

Z2 = Qζ(2),

Z3 = Qζ(3),

Z4 = Qζ(2, 2),

Z5 = Qζ(2, 3)⊕Qζ(3, 2),

Z6 = Qζ(2, 2, 2)⊕Qζ(3, 3),

Z7 = Qζ(2, 2, 3)⊕Qζ(2, 3, 2)⊕Qζ(3, 2, 2).

Remark 1.74.

i) By the relations (1.67), we see that Z5 is generated by ζ(2, 3) and ζ(3, 2).
Thus, the first step towards the Zagier and the Hoffman conjectures would
be to prove that these numbers are Q-linearly independent.

ii) Having the right number of elements does not mean finding a basis. For
instance, one could have thought that the elements

ζ(2n1 + 1, . . . , 2nr + 1)ζ(2)k,

for r ⩾ 0, k ⩾ 0, and ni ⩾ 1, form a basis of Z, since their number in a
given weight agrees with the conjectural dimension (Exercise 1.103). But
Gangl, Kaneko, and Zagier [GKZ06, p. 74] discovered the relation

28ζ(9, 3) + 150ζ(7, 5) + 168ζ(5, 7) =
5197

691
ζ(12),

which disproves such an expectation (note that ζ(12) is a rational multiple
of ζ(2)6 thanks to Euler’s formula (1.3)).

1.4.4. Algebra generators of multiple zeta values. In the remainder of this sec-
tion, the word Q-algebra (without any further qualifier) is tacitly understood to
mean an associative commutative algebra with unit, i.e. a Q-vector space A en-
dowed with a bilinear multiplication A× A→ A that is associative, commutative,
and has a neutral element 1. A morphism of Q-algebras is a linear map f : A→ B
that sends 1 to 1 and preserves multiplication.
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Definition 1.75. A graded Q-algebra is a Q-algebra A, together with a direct
sum decomposition (called grading)

A =
⊕

k∈Z
Ak

into Q-vector subspaces Ak of A satisfying Ak ·Ak′ ⊆ Ak+k′ . Note that the unit of
the algebra then belongs necessarily to A0, hence a map η : Q→ A0.

A graded Q-algebra is said to be connected if Ak = 0 for all k < 0 and η is
an isomorphism. Moreover, A is said to be free if it is isomorphic to a polynomial
algebra Q[X1, . . . , Xn, . . . ] with Xi homogeneous of some degree; the Xi are then
called free algebra generators of A.

Definition 1.76. Let A =
⊕

k∈ZAk be a graded Q-algebra such that all Ak
are finite-dimensional. The Hilbert–Poincaré series of A is defined as

HA(t) =
∑

k∈Z
(dimQAk)tk.

If A is connected, then its Hilbert–Poincaré series has only non-negative degrees
and the constant coefficient is equal to 1. Moreover, the number of free algebra
generators in a given degree is well-defined, i.e. does not depend on the choice of
an isomorphism with a particular polynomial algebra (Exercise 1.108).

Lemma 1.77. Let A be a connected graded free Q-algebra such that all Ak
are finite-dimensional, and let Dk denote the number of free algebra generators in
degree k. Then the Hilbert–Poincaré series of A is equal to

(1.78) HA(t) =
∏

k⩾1

(1− tk)−Dk .

Proof. Let X1,1, . . . , X1,D1 , . . . , Xℓ,1, . . . , Xℓ,Dℓ
, . . . be a set of homogeneous

free algebra generators of A, with Xi,j of degree i ⩾ 1. It suffices to observe that
the coefficient of tk in the power series expansion of the product (1.78) agrees with
the number of monomials of degree k in the variables Xi,j , and hence with the
dimension of Ak since we are dealing with a free algebra. □

We now explain how to compute the number of algebra generators in terms of
the logarithm of the Hilbert–Poincaré series. Let us keep the assumptions on A
from Lemma 1.77, and write

(1.79) logHA(t) =
∑

n⩾1

cnt
n.

Recall that the Möbius function µ takes the value 1 (resp. −1) on square-free in-
tegers with an even (resp. odd) number of prime factors, and 0 on integers with
squared prime factors. In particular, µ(1) = 1. The Möbius inversion formula is
the statement that, if two sequences of complex numbers (an)n⩾1 and (bn)n⩾1 are
related by the equality an =

∑
d|n bd for all n ⩾ 1, then

bn =
∑

d|n

µ(d)an/d.
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Lemma 1.80. Let A be as in Lemma 1.77, let Dk denote the number of free
algebra generators in degree k, and let cn be the coefficient of tn in logHA(t) as
in (1.79). Then the following equality holds:

(1.81) Dk =
∑

d|k

µ(d)

d
ck/d.

Proof. Taking the logarithm of the identity (1.78) and using the formal power

series expansion − log(1− x) =
∑
n⩾1

xn

n , one gets

logHA(t) = −
∑

k⩾1

Dk log(1− tk) =
∑

k⩾1

Dk

∑

d⩾1

tkd

d
=
∑

n⩾1


∑

d|n

Dn/d

d


 tn.

Comparison of coefficients then yields

cn =
∑

d|n

Dn/d

d
=

1

n

∑

d|n

dDd,

and the equality (1.81) follows from the Möbius inversion formula applied to the
sequences an = ncn and bn = nDn. □

Let us specialize the above discussion to the algebra Z of multiple zeta values.
According to Zagier’s conjecture, its Hilbert–Poincaré series is given by

HZ(t) =
1

1− t2 − t3 .

Conjecture 1.82. Z is a connected graded free Q-algebra.

Assuming this and Zagier’s conjecture, we would like to compute the num-
ber Dk of free algebra generators in weight k. For this, we define a sequence of
integers (Pd)d⩾1 by the equality

∑

d⩾1

Pdt
d =

∑

d⩾1

dcdt
d = t

d

dt
logHZ(t) =

2t2 + 3t3

1− t2 − t3 .

Equivalently, it is the sequence uniquely determined by the conditions

P1 = 0, P2 = 2, P3 = 3,

Pd = Pd−2 + Pd−3

for all d ⩾ 4. Therefore, Lemma 1.80 gives

Dk =
1

k

∑

d|k

µ(k/d)Pd.

The first values of Pk and Dk are given in Table 1.2 below.

k 1 2 3 4 5 6 7 8 9 10 11 12 13

Pk 0 2 3 2 5 5 7 10 12 17 22 29 39

Dk 0 1 1 0 1 0 1 1 1 1 2 2 3

Table 1.2. Conjectural values of Dk for the algebra Z
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Recall that Hoffman’s conjecture 1.73 predicts that the set of multiple zeta
values ζ(s1, . . . , sℓ) with all entries si ∈ {2, 3} is a graded Q-basis of Z. It is then
only natural to try to extract from these elements a set of algebra generators; this
is done through the theory of Lyndon words.

Definition 1.83. Let X be the alphabet {a, b}, and let X∗ be the set of words
in X. We endow X∗ with the lexicographic order for which a < b. A Lyndon word
is a non-empty word w ∈ X∗ such that, for each non-trivial decomposition w = uv,
the inequality w < v holds.

For example, ab is a Lyndon word because ab < b, but none of the words
aa, ba, bb is Lyndon.

Every word in the alphabet {2, 3} can be seen as an admissible multi-index
with entries si ∈ {2, 3}, and hence defines a multiple zeta value.

Conjecture 1.84. The free Q-algebra generated by Lyndon words on the al-
phabet {2, 3} with the order 2 < 3 is isomorphic to Z. The isomorphism is given
by sending a Lyndon word to the corresponding multiple zeta value.

Assuming that the conjecture holds, the free algebra generators in weights up
to 13 are listed in Table 1.3 below.

weight generators weight generators

2 ζ(2) 8 ζ(2, 3, 3)

3 ζ(3) 9 ζ(2, 2, 2, 3)

4 ∅ 10 ζ(2, 2, 3, 3)

5 ζ(2, 3) 11 ζ(2, 2, 2, 2, 3), ζ(2, 3, 3, 3)

6 ∅ 12 ζ(2, 2, 2, 3, 3), ζ(2, 2, 3, 2, 3)

7 ζ(2, 2, 3) 13
ζ(2, 2, 2, 2, 2, 3), ζ(2, 2, 3, 3, 3),

ζ(2, 3, 2, 3, 3)

Table 1.3. First Lyndon words on the alphabet {2, 3}

For example, the other conjectural basis element in weight 5, namely the mul-
tiple zeta value ζ(3, 2), can be written as the polynomial expression

ζ(3, 2) =
5

9
ζ(2)ζ(3)− 11

9
ζ(2, 3).

See Exercise 1.104 for weight 6.
1.4.5. The Broadhurst–Kreimer conjecture. So far, we have only taken the

weight of multiple zeta values into account. A difficulty to add the length to the
picture is that it is only expected to induce a filtration and not a grading, as it is
already clear from the existence of relations among multiple zeta values associated
with multi-indices of different length such as ζ(3) = ζ(2, 1).

Definition 1.85.

i) A filtration on a Q-algebra A is an increasing sequence of vector subspaces

· · · ⊆ Fℓ−1A ⊆ FℓA ⊆ Fℓ+1A ⊆ . . .
indexed by ℓ ∈ Z and satisfying

FℓA · Fℓ′A ⊆ Fℓ+ℓ′A.
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A filtration is called separated if
⋂
ℓ FℓA = 0 and exhaustive if

⋃
ℓ FℓA = A.

A filtered Q-algebra is a Q-algebra endowed with a filtration.

ii) The graded algebra associated with a filtered algebra (A,F•) is defined as

GrF A =
⊕

ℓ∈Z
FℓA/Fℓ−1A.

Note that the compatibility of the product and the filtration guarantees
that GrF A has indeed an induced graded algebra structure.

iii) A filtered graded Q-algebra is a Q-algebra A with a filtration F•A and a
grading A =

⊕
k∈ZAk that are compatible in the sense that the equality

FℓA =
⊕

k∈Z
FℓAk

holds. Given such an algebra, we set

Ak,ℓ = GrFℓ Ak = FℓAk/Fℓ−1Ak

and form the associated bigraded algebra
⊕

k,ℓ∈ZAk,ℓ.

Remark 1.86. Let A be a Q-algebra endowed with an exhaustive filtration Fℓ
satisfying F−1A = {0}. If GrF A is a free graded algebra, then A is a free alge-

bra. Indeed, let Xi be homogeneous free algebra generators of GrF A, and pick
liftings Yi of Xi lying in the step of the filtration corresponding to the degree of Xi.
The free algebra Q[Yi] is then endowed with the filtration corresponding to the
degree, and the natural map Q[Yi]→ A is a morphism of algebras compatible with
the filtrations. It induces an isomorphism on F−1 since both F−1Q[Yi] and F−1A
vanish. Assume that Fℓ−1Q[Yi] → Fℓ−1A is an isomorphism. Then the leftmost
and rightmost vertical arrows in the commutative diagram

0 // Fℓ−1Q[Yi] //

��

FℓQ[Yi]

��

// GrℓQ[Yi] //

��

0

0 // Fℓ−1A // FℓA // GrℓA // 0

are isomorphisms, and hence so is FℓQ[Yi]→ FℓA by an elementary diagram chase.
Since the filtration is exhaustive, A is isomorphic to the free algebra Q[Yi].

Returning to the algebra of multiple zeta values, we see that the length defines
a separated and exhaustive filtration

FℓZ = ⟨ζ(s) | ℓ(s) ⩽ ℓ⟩Q.
Assuming Conjecture 1.68, Z is hence a filtered graded algebra, and

Zk,ℓ = FℓZk/Fℓ−1Zk
is the space of multiple zeta values of weight k and length ℓ that cannot be written
as linear combinations of multiple zeta values of smaller length.

Note that the associated bigraded algebra is not free, since ζ(2)2 vanishes in Z4,2

because of the relation ζ(2)2 = 5ζ(4)/2. To remedy this, we consider the quotient

Z◦ = Z/ζ(2) · Z
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by the ideal generated by ζ(2). This quotient is a graded filtered algebra as well.
Moreover, we equip Q[ζ(2)] with the filtration

F0 = Q ⊂ F1 = Q[ζ(2)],

and the grading that gives weight 2 to ζ(2).
The following is a refinement of Conjecture 1.82.

Conjecture 1.87.

i) GrF Z◦ is a free bigraded algebra.

ii) There is an isomorphism of filtered graded algebras Z◦ ⊗Q Q[ζ(2)]→ Z.
Definition 1.76 and Lemmas 1.77 and 1.80 extend to bigraded algebras. In

particular, if A =
⊕

k,ℓAk,ℓ is a connected free bigraded algebra, then

HA(x, y) =
∑

k,ℓ⩾0

(dimQAk,ℓ)x
kyℓ =

∏

k,ℓ⩾1

(1− xkyℓ)−Dk,ℓ ,

where Dk,ℓ is the number of free algebra generators in bidegree (k, ℓ).
Extensive numerical experiments support the following refinement of Zagier’s

conjecture, due to Broadhurst and Kreimer [BK97, § 2]:

Conjecture 1.88 (Broadhurst–Kreimer). Define integers (Dk,ℓ)k⩾3,ℓ⩾1 by the
product expansion formula

(1.89)
∏

k⩾3

∏

ℓ⩾1

(1− xkyℓ)−Dk,ℓ =
1

1−O(x)y + S(x)y2 − S(x)y4
,

where O(x) and S(x) are the formal power series

O(x) =
x3

1− x2 = x3 + x5 + x7 + x9 + · · · ,

S(x) =
x12

(1− x4)(1− x6)
= x12 + x16 + x18 + x20 + x22 + 2x24 + · · · .

Then Dk,ℓ agrees with the number of free algebra generators of GrF Z◦ of weight k
and length ℓ.

For shorthand, write BK0(x, y) for the power series expansion of

1

1−O(x)y + S(x)y2 − S(x)y4
.

Arguing as in Lemma 1.80, the numbers Dk,ℓ are given by the formula

(1.90) Dk,ℓ =
∑

d|gcd(k,ℓ)

µ(d)

d
· coefficient of x

k
d y

ℓ
d in log BK0(x, y),

where gcd(k, ℓ) denotes the greatest common divisor of k and ℓ.
Taking Conjecture 1.87 for granted, the multiplicative formula (1.89) becomes

equivalent to the following additive version, which is the one that is usually found
in the literature:

Conjecture 1.91 (Broadhurst–Kreimer). Let (dk,ℓ)k,ℓ⩾0 be the sequence of
non-negative integers defined by the generating series

∑

k,ℓ⩾0

dk,ℓx
kyℓ =

1 + E(x)y

1−O(x)y + S(x)y2 − S(x)y4
,
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where

E(x) =
x2

1− x2 = x2 + x4 + x6 + x8 + · · · .

Then dk,ℓ agrees with the dimension of the space of multiple zeta values of (precisely)
weight k and length ℓ, that is

(1.92) dk,ℓ = dimQZk,ℓ.
Remark 1.93. The power series E(x) “counts” even zeta values, while O(x)

counts odd zeta values. More interestingly, Zagier realized that S(x) agrees with
the generating series

S(x) =
∑

k⩾1

(dimQ Sk)xk,

where Sk stands for the Q-vector space of cusp modular forms of weight k for the
full modular group SL2(Z). It is a classical result that

dimQ Sk =





⌊ k12⌋, if k is even and k ̸≡ 2 mod 12,

⌊ k12⌋ − 1, if k ≡ 2 mod 12,

0, otherwise.

(see [Zag08, §1.3 and §2.1] for an elementary proof).

Let us denote by BK(x, y) the power series expansion of

1 + E(x)y

1−O(x)y + S(x)y2 − S(x)y4
.

Expanding the inverse of the denominator as a geometric series and collecting the
terms with lower powers of y, we obtain

BK(x, y) = 1 + [E(x) +O(x)]y + [(E(x) +O(x))O(x)− S(x)]y2

+ [(O(x)2 − 2S(x))O(x) + (O(x)2 − S(x))E(x)]y3 + · · · .

Remark 1.94. From this, we get dk,1 = 1 for all k ⩾ 2. Since F0Z = Q, the
Broadhurst–Kreimer conjecture holds in this case if and only if ζ(k) is irrational,
which is only known for even k and k = 3.

The first values of dk,2 and dk,3 are given in Table 1.4 below.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

dk,2 0 0 0 0 1 1 2 2 3 3 4 3 5 5 6 5 7

dk,3 0 0 0 0 0 0 0 1 1 3 3 6 6 9 8 14 13

Table 1.4. First values of dk,2 and dk,3

Similarly, we derive

log BK0(x, y) = − log(1−O(x)y + S(x)y2 − S(x)y4)

= O(x)y +

(
1

2
O(x)2 − S(x)

)
y2 +

(
1

3
O(x)3 −O(x)S(x)

)
y3 + · · · .
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Remark 1.95. Note that Dk,ℓ = 0 if k and ℓ have different parity. Indeed, in
this case the integers d contributing to formula (1.90) are all odd, so k/d and ℓ/d
have again different parity. However, it is clear from the above expression for the
series log BK0(x, y) that only monomials in which the degree of x and the degree
of y have the same parity appear.

Lemma 1.96.

i) If k is even, then Dk,2 = ⌊k−26 ⌋.
ii) If k is odd, then Dk,3 = ⌊ (k−3)

2−1
48 ⌋.

Proof. Specializing (1.90) to the case ℓ = 2, we get

Dk,2 = coeff. of xky2 − 1

2
coeff. of x

k
2 y in logBK0(x, y)

= coeff. of xk in

(
1

2
O(x)2 − S(x)

)
− 1

2
coeff. of x

k
2 in O(x).

Taking the equality O(x)2 =
∑

k⩾6
even

k−4
2 xk into account, we find the formula

Dk,2 =





k−4
4 − ⌊ k12⌋, if k ≡ 0 mod 4,

k−6
4 − ⌊ k12⌋, if k ≡ 2 mod 4 and k ̸≡ 2 mod 12,

k−2
4 − ⌊ k12⌋, if k ≡ 2 mod 12.

It is then a simple matter to check that this quantity agrees with ⌊k−26 ⌋. The proof
of the second assertion follows the same pattern (Exercise 1.107). □

Remark 1.97.

i) The numbers Dk,2 and Dk,3 are known to be upper bounds for the number
of generators of length 2 and 3 of the algebra of multiple zeta values. It
is proved in [Zag93, § 3] for ℓ = 2 and in [Gon98, Thm. 1.5] for ℓ = 3.
From this, we get the inequality

dimQ (FℓZk/Fℓ−1Zk) ⩽ dk,ℓ

in lengths ℓ = 1, 2, 3.

ii) In particular, for double zeta values we get

dimQ F2Zk − 1 ⩽ dk,2.

By contrast, Proposition 1.64 yields the upper bound

dimQ F2Zk − 1 ⩽

⌈
k − 4

2

⌉
.

The right-hand side of this last inequality agrees with the coefficient of
degree k of the power series (E(x)+O(x))O(x), while dk,2 is, by definition,
the coefficient of degree k in (E(x) + O(x))O(x) − S(x). Therefore, the
bound of Proposition 1.64 is not optimal for those integers k such that
there exists a non-zero cusp form of weight k.

iii) Brown [Bro21] reformulated the Broadhurst–Kreimer conjecture in terms
of the homology of a certain Lie algebra.
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1.4.6. Known results. Not much is known about these conjectures, especially
the one by Broadhurst and Kreimer. The goal of these notes is to explain in detail
the following two results towards Zagier’s and Hoffman’s conjectures. In spite of
their elementary formulation, this will carry us far away since the only known proofs
rely on the theory of motives.

Theorem 1.98 (Terasoma [Ter02], Deligne–Goncharov [DG05]). The num-
ber dk is an upper bound for the dimension of the Q-vector space of multiple zeta
values of weight k, that is,

dimQZk ⩽ dk.
Theorem 1.99 (Brown, [Bro12]). Every multiple zeta value can be written as

a Q-linear combination of those ζ(s1, . . . , sl) with all entries si ∈ {2, 3}.
Remark 1.100. As we will see at the very end of the text (Section 5.5.1), a

corollary of these two theorems is that Zagier’s conjecture implies the algebraic
independence of odd zeta values (Conjecture 1.11).

⋆ ⋆ ⋆

Exercise 1.101. Prove that, if the weight defines a grading on the algebra of
multiple zeta values (Conjecture 1.68), then the inclusion

FℓZk ⊆ FℓZ ∩ Zk
from Remark 1.31 is an equality.

Exercise 1.102. Prove that the sequence (dk)k⩾0 defined in (1.70) satisfies

lim
k→∞

(dk − κrk) = 0

where κ = r+1
2r+3 and r is the real root of x3 − x− 1.

Exercise 1.103. For each k ⩾ 0, let δk be the number of ordered sequences of
integers (s, n1, . . . , nr) such that r ⩾ 0, s ⩾ 0, ni ⩾ 1, and

k = 2s+ 2n1 + 1 + · · ·+ 2nr + 1.

Show that δ0 = 1, δ1 = 0, δ2 = 1 and δk = δk−2 + δk−3 for all k ⩾ 3. Therefore,
the equality δk = dk holds.

Exercise 1.104. Express the conjectural basis elements ζ(2, 2, 2) and ζ(3, 3)
of Z6 as polynomial expressions in ζ(2), ζ(3), ζ(2, 3).

Exercise 1.105. Assume that the numbers ζ(2), ζ(3), ζ(5), . . . are algebraically
independent, so that Q[ζ(2), ζ(3), . . . ] is a free graded algebra. Apply Lemma 1.80
to compute the dimensions of the graded pieces, and compare them to the conjec-
tural dimensions of multiple zeta values. Then find an example of a multiple zeta
value which is not expected to be in the algebra generated by Riemann zeta values.

Exercise 1.106. Show that either Hoffman’s or the Broadhurst–Kreimer con-
jecture implies Zagier’s conjecture.

Exercise 1.107. Prove the equality Dk,3 = ⌊ (k−3)
2−1

48 ⌋.
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Exercise 1.108. Let A =
⊕

k⩾0Ak be a connected graded free Q-algebra with

finite-dimensional graded pieces and I =
⊕

k>0Ak. Prove that the number of free
algebra generators in degree k of A is the dimension of the k-th graded piece of the
quotient I/I2.

Exercise 1.109. Consider the Q-algebra of formal power series A = QJtK
endowed with the exhaustive filtration given by

FℓA = t−ℓQJtK for ℓ ⩽ 0 and FℓA = A for ℓ ⩾ 0.

Prove that the associated graded algebra GrF A is free, but that A is not. This
shows that the assumption on F−1A from Remark 1.86 is necessary.

1.5. Integral representation of multiple zeta values. We defined multi-
ple zeta values as sums of infinite series. Using this representation, we proved that
the product of two multiple zeta values is a linear combination of multiple zeta
values with coefficients given by the stuffle multiplicities. We also derived some
linear relations among multiple zeta values by means of partial fraction decompo-
sitions. Kontsevich found a different representation in terms of integrals. This way
of writing multiple zeta values is central to the theory. From a combinatorial point
of view, it yields the shuffle product , a new structure from which many other linear
relations are obtained in a systematic way. More importantly from a conceptual
point of view, the integral representation shows that multiple zeta values are periods
of algebraic varieties and allow us to use algebro-geometric tools to study them.

1.5.1. Two examples.

Example 1.110. The identity

ζ(2) =

∫

1⩾t1⩾t2⩾0

dt1
t1

dt2
1− t2

=

∫ 1

0

(
1

t1

∫ t1

0

dt2
1− t2

)
dt1(1.111)

holds. Indeed, from the geometric series expansion

1

1− t2
=
∑

n⩾1

tn−12 ,

valid for 0 ⩽ t2 < 1, we get the equality

∫ t1

0

dt2
1− t2

=
∑

n⩾1

∫ t1

0

tn−12 dt2 =
∑

n⩾1

tn1
n
.

Plugging it into the integrand gives

∫ 1

0

(
1

t1

∫ t1

0

dt2
1− t2

)
dt1 =

∫ 1

0

∑

n⩾1

tn1
n

dt1
t1

=
∑

n⩾1

1

n

∫ 1

0

tn−11 dt1 =
∑

n⩾1

1

n2
.

Example 1.112. The identity

ζ(2, 1) =

∫

1⩾t1⩾t2⩾t3⩾0

dt1
t1

dt2
1− t2

dt3
1− t3
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holds. Indeed, this follows from the transformations

∫

1⩾t1⩾t2⩾t3⩾0

dt1
t1

dt2
1− t2

dt3
1− t3

=

∫

1⩾t1⩾t2⩾0

1

t1

∑

n⩾1

tn2
n

dt1 dt2
1− t2

=

∫

1⩾t1⩾t2⩾0

1

t1

∑

n,m⩾1

tn+m−12

n
dt1 dt2

=

∫

1⩾t1⩾0

∑

n,m⩾1

tn+m1

(n+m)n

dt1
t1

=
∑

n,m⩾1

1

(n+m)2n

= ζ(2, 1).

(Solve Exercise 1.141 to convince yourself that the exchange of the order of
integration and summation is justified in these two examples.)

Remark 1.113. As we will see in Section 3.8, the above integrals are instances
of the notion of iterated integral, but for the moment we will think of them just as
ordinary integrals over a simplex.

1.5.2. The integral representation. A piece of notation is needed to describe
the general integral representation of multiple zeta values.

Notation 1.114. Given a real number 0 ⩽ t ⩽ 1, we define

∆p(t) = {(t1, . . . , tp) ∈ Rp | t ⩾ t1 ⩾ t2 ⩾ · · · ⩾ tp ⩾ 0}.

Note that ∆0(t) is a singleton for all t. We endow ∆p(t) with the standard orienta-
tion given by the order of the variables. We will simply write ∆p = ∆p(1) for t = 1.
Furthermore, consider the measures

ω0(t) =
dt

t
and ω1(t) =

dt

1− t

on the open interval (0, 1).
If s = (s1, . . . , sl) ∈ Zl is a positive multi-index (recall from Definition 1.20

that this means si ⩾ 1 for all i), we write ri = s1 + · · ·+ si for each i = 1, . . . , l. In
particular, r1 = s1 and rl is the weight of s. For convenience, we also set r0 = 0.
Let ωs be the measure on the interior of the simplex ∆wt(s) given by

(1.115) ωs =

ℓ∏

i=1

ω0(tri−1+1)· · ·ω0(tri−1)︸ ︷︷ ︸
si−1 times

ω1(tri).
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For example, one has:

ω(2) =
dt1
t1

dt2
1− t2

,

ω(2,2) =
dt1
t1

dt2
1− t2

dt3
t3

dt4
1− t4

,

ω(2,1) =
dt1
t1

dt2
1− t2

dt3
1− t3

,

ω(1,3) =
dt1

1− t1
dt2
t2

dt3
t3

dt4
1− t4

.

The following result is attributed to Kontsevich.

Theorem 1.116. Let s = (s1, . . . , sℓ) be an admissible multi-index. The mul-
tiple zeta value ζ(s) is equal to the value of the absolutely convergent integral

(1.117) ζ(s) = ζ(s1, . . . , sℓ) =

∫

∆wt(s)

ωs.

In order to easily prove this theorem, we introduce the polylogarithm functions,
which will also be of use later in Chapter 3.

Definition 1.118. Let s = (s1, . . . , sℓ) be a positive multi-index and t a com-
plex number with |t| < 1. We define

Lis(t) = Lis1,...,sℓ(t) =
∑

n1>n2>···>nℓ⩾1

tn1

ns11 n
s2
2 · · · nsℓℓ

.

We call Lis the (multiple) polylogarithm function (of one variable).

Remark 1.119. Similarly, one can define multiple polylogarithms of several
variables as the absolutely convergent series

Lis(t1, . . . , tℓ) =
∑

n1>n2>···>nℓ⩾1

tn1
1 · · · tnℓ

ℓ

ns11 n
s2
2 · · · nsℓℓ

whenever the complex numbers ti satisfy |t1| < 1 and |ti| ⩽ 1 for i = 2, . . . , ℓ.

The following proposition is a straightforward consequence of basic results in
complex analysis.

Proposition 1.120. If s is a positive multi-index, then the function Lis is
holomorphic on the open unit disc |t| < 1. Moreover, if s is admissible, then Lis
can be extended continuously to the closed disc |t| ⩽ 1 and satisfies

Lis(1) = ζ(s).

For instance, Li1(t) is given by

(1.121) Li1(t) =
∑

n⩾1

tn

n
= − log(1− t) =

∫ t

0

dt1
1− t1

,

where
∫ t
0

denotes the integral along the straight path from 0 to t, and Li2(t) is the
primitive of Li1(t)/t that vanishes at t = 0:

(1.122) Li2(t) =
∑

n⩾1

tn

n2
= −

∫ t

0

log(1− t1)
dt1
t1
.



42 J. I. BURGOS GIL AND J. FRESÁN

These relations are among the simplest functional equations satisfied by polyloga-
rithms. They generalize as follows.

Proposition 1.123. The following identities hold for all |t| < 1:

∫ t

0

Lis1,...,sℓ(t1)
dt1
t1

= Lis1+1,...,sℓ(t),(1.124)

∫ t

0

Lis1,...,sℓ(t1)
dt1

1− t1
= Li1,s1,...,sℓ(t).(1.125)

Proof. Equation (1.124) simply follows from plugging the definition of the
polylogarithm in the integral and exchanging sum and integration:

∫ t

0

Lis1,...,sℓ(t1)
dt1
t1

=

∫ t

0

∑

n1>n2>···>nℓ⩾1

tn1
1

ns11 n
s2
2 . . . nsℓl

dt1
t1

=
∑

n1>n2>···>nℓ⩾1

tn1

ns1+1
1 ns22 . . . nsℓl

= Lis1+1,...,sℓ(t).

Similarly, equation (1.125) follows from the manipulations

∫ t

0

Lis1,...,sℓ(t1)
dt1

1− t1
=

∫ t

0

∑

n1>n2>···>nℓ⩾1

tn1
1

ns11 n
s2
2 . . . nsℓℓ

∑

m⩾0

tm1 dt1

=
∑

n0>n1>···>nℓ⩾1

tn0

n0n
s1
1 n

s2
2 . . . nsℓℓ

= Li1,s1,...,sℓ(t),

where we have written n0 = n1 +m+ 1 > n1. (In both cases, the exchange of the
summation and the integral signs is justified by the fact that we are integrating
holomorphic functions on a compact set.) □

With these preliminaries out of the way, Theorem 1.116 is a particular case of
the next result.

Theorem 1.126. If s is a positive multi-index and 0 < t < 1 a real number,
then the following identity holds:

Lis(t) =

∫

∆wt(s)(t)

ωs.

Proof. We proceed by induction on the weight of s. If wt(s) = 1, then s = (1)
and the statement is just formula (1.121). The inductive step follows from the
functional equations in Proposition 1.123. Indeed, let s = (s1, . . . , sℓ) be a positive
multi-index and assume that the result is true for all multi-indices of lower weight.
If s1 > 1, then we write s′ = (s1−1, . . . , sℓ). By the identity (1.124) and induction,

Lis(t) =

∫ t

0

Lis′(t1)
dt1
t1

=

∫ t

0

∫

∆wt(s′)(t1)

ωs′
dt1
t1

=

∫

∆wt(s)(t)

ωs.

The case s1 = 1 is similar, using equation (1.125) instead. □
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1.5.3. Shuffles. Since multiple zeta values are integrals along simplices, certain
combinatorial properties of the latter translate into relations among the former.
Let us first illustrate this with an example.

Example 1.127. The following equalities hold:

ζ(2)2 =

∫

1⩾t1⩾t2⩾0

dt1 dt2
t1(1− t2)

·
∫

1⩾u1⩾u2⩾0

du1 du2
u1(1− u2)

=

∫

1⩾t1⩾t2⩾0
1⩾u1⩾u2⩾0

dt1 dt2 du1 du2
t1(1− t2)u1(1− u2)

=

6∑

i=1

∫

Ui

dt1 dt2 du1 du2
t1(1− t2)u1(1− u2)

= ζ(3, 1) + ζ(3, 1) + ζ(2, 2) + ζ(3, 1) + ζ(3, 1) + ζ(2, 2)

= 4ζ(3, 1) + 2ζ(2, 2),

where the sets Ui, for i = 1, . . . , 6, are defined by

U1 = {1 ⩾ t1 ⩾ u1 ⩾ t2 ⩾ u2 ⩾ 0},
U2 = {1 ⩾ t1 ⩾ u1 ⩾ u2 ⩾ t2 ⩾ 0},
U3 = {1 ⩾ t1 ⩾ t2 ⩾ u1 ⩾ u2 ⩾ 0},
U4 = {1 ⩾ u1 ⩾ t1 ⩾ u2 ⩾ t2 ⩾ 0},
U5 = {1 ⩾ u1 ⩾ t1 ⩾ t2 ⩾ u2 ⩾ 0},
U6 = {1 ⩾ u1 ⩾ u2 ⩾ t1 ⩾ t2 ⩾ 0}.

The third equality comes from the decomposition

{(t1, t2, u1, u2) | 1 ⩾ t1 ⩾ t2 ⩾ 0, 1 ⩾ u1 ⩾ u2 ⩾ 0} =

6⋃

i=1

Ui,

and the fourth one from Theorem 1.116.

Remark 1.128. This expression of ζ(2)2 as a linear combination of double zeta
values is different from the one obtained by means of the series representation in
Example 1.16. Combining both, we recover one of the relations that was proved in
Corollary 1.63 using the method of partial fraction decompositions, namely:

ζ(4) = 4ζ(3, 1)

To generalize the previous example, we introduce the notion of shuffles.

Definition 1.129. Let r, s ⩾ 0 be integers. A shuffle of type (r, s) is a permu-
tation σ of the set {1, 2, . . . , r + s} satisfying

σ(1) < σ(2) < · · · < σ(r) and σ(r + 1) < σ(r + 2) < · · · < σ(r + s).

We denote by �(r, s) the set of all shuffles of type (r, s).

That is to say, a shuffle is a permutation that respects the ordering of two
distinguished subsets. The name comes from the way gamblers shuffle a deck of
cards in western saloons.
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Example 1.130. The set of shuffles of type (2, 2) consists of the permutations

�(2, 2) = {Id, (23), (243), (123), (1243), (13)(24)}.
Shuffles allow us to decompose a product of two simplices into a union of

simplices, and therefore to express a product of integrals over simplices as a linear
combination of integrals.

Proposition 1.131. Let r, s ⩾ 0 be integers and 0 < t < 1 a real number. For
each choice of µ

i
∈ {ω0, ω1} for i = 1, . . . , r + s, the following holds:

∫

∆r(t)

µ1(t1) · · ·µr(tr)
∫

∆s(t)

µr+1(tr+1) · · ·µr+s(tr+s)

=
∑

σ∈�(r,s)

∫

∆r+s(t)

µσ−1(1)(t1) · · ·µσ−1(r+s)(tr+s).

Proof. Using the decomposition

∆r(t)×∆s(t) =
⋃

σ∈�(r,s)

{
(t1, . . . , tr+s) | t ⩾ tσ−1(1) ⩾ · · · ⩾ tσ−1(r+s) ⩾ 0

}
,

together with the fact that the intersection of two simplices on the right-hand side
is a set of measure zero, we obtain∫

∆r(t)

µ1(t1) · · ·µr(tr)
∫

∆s(t)

µr+1(tr+1) · · ·µr+s(tr+s)

=

∫

∆r(t)×∆s(t)

µ1(t1) · · ·µr+s(tr+s)

=
∑

σ∈�(r,s)

∫

t⩾tσ−1(1)⩾···⩾tσ−1(r+s)⩾0

µ1(t1) · · ·µr+s(tr+s)

=
∑

σ∈�(r,s)

∫

∆r+s(t)

µσ−1(1)(t1) · · ·µσ−1(r+s)(tr+s),

where, in the last equality, we made the change of variables ti = tσ−1(i) to write

the set t ⩾ tσ−1(1) ⩾ · · · ⩾ tσ−1(r+s) ⩾ 0 as ∆r+s(t). □

1.5.4. Multi-indices and binary sequences. To exploit Proposition 1.131 to de-
rive relations among polylogarithms, and in particular among multiple zeta values,
we need a new piece of notation.

Definition 1.132. A binary sequence is an element α ∈ {0, 1}k. We say that α
has weight k, and length the number of 1s in the sequence. A sequence is called
positive if it ends in 1, and admissible if it ends in 1 and starts with 0.

We will use the following notation to go from multi-indices to binary sequences
and the other way around.

Notation 1.133. To each positive multi-index s = (s1, . . . , sℓ) we attach the
positive binary sequence

bs(s) = (0{s1−1}, 1, 0{s2−1}, . . . , 0{sℓ−1}, 1),
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where 0{s} means that the entry zero is repeated s times. By convention, the empty
binary sequence is admissible of weight and length both equal to zero. Clearly, bs
defines a bijection between the set of positive multi-indices and the set of positive
binary sequences which respects the weight and the length. Moreover, it restricts
to a bijection between the subsets of admissible objects on both sides.

If α = (ε1, . . . , εr) is a binary sequence, then we will set

ωα = ωε1 . . . ωεr .

In particular, if s is a positive multi-index, then

ωs = ωbs(s).

Moreover, if α is positive, then we set Liα(t) = Libs−1(α)(t), and if it is also admis-

sible, then we write ζ(α) = ζ(bs−1(α)).

1.5.5. The shuffle multiplicities.

Definition 1.134. Let α = (ε1, . . . , εr), α
′ = (εr+1, . . . , εr+s) and α′′ be binary

sequences of lengths r, s and t respectively. The shuffle multiplicity �(α, α′;α′′) is
the number of shuffles of type (r, s) that transform αα′ into α′′. That is,

�(α, α′;α′′) = |{σ ∈ �(r, s) | α′′ = (εσ−1(1), . . . , εσ−1(r+s))}|.
Clearly, �(α, α′;α′′) = 0 unless t = r + s.

The next result is the analogue of Lemma 1.38 for the shuffle multiplicity; it
follows directly from the definition as well.

Lemma 1.135. Let α, α′, and α′′ be binary sequences satisfying the condition
�(α, α′;α′′) > 0. Then the following holds:

i) wt(α′′) = wt(α) + wt(α);

ii) ℓ(α′′) = ℓ(α) + ℓ(α′);

iii) if both α and α′ are positive (resp. admissible), then so is α′′.

With this notation, Proposition 1.131 translates into the following result, which
is the analogue of Lemma 1.39 for the shuffle product.

Lemma 1.136. Let α and α′ be positive binary sequences. Then

Liα(t) Liα′(t) =
∑

α′′

�(α, α′;α′′) Liα′′(t).

Moreover, if α and α′ are admissible, then

ζ(α) · ζ(α′) =
∑

α′′

�(α, α′;α′′)ζ(α′′).

1.5.6. An involution. Another useful identity comes from exploiting the sym-
metry t 7→ 1− t in the integral representation of multiple zeta values.

Proposition 1.137. Let α = (ε1, . . . , εr) be an admissible binary sequence.
Write ω̃0 = ω1 and ω̃1 = ω0. Then the following holds:

∫

1⩾t1⩾···⩾tr⩾0

ωε1(t1) · · ·ωεr (tr) =

∫

1⩾t1⩾···⩾tr⩾0

ω̃εr (t1) · · · ω̃ε1(tr).
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Proof. The change of variables si = 1 − ti transforms the measure ω0(ti)
into ω1(si) = ω̃0(si), and the measure ω1(ti) into ω0(si) = ω̃1(si). Hence,

∫

1⩾t1⩾···⩾tr⩾0

ωε1(t1) · · ·ωεr (tr) =

∫

0⩽s1⩽···⩽sr⩽1

ω̃ε1(s1) · · · ω̃εr (sr).

The statement follows by setting si = tr−i on the right-hand side. □

Definition 1.138. For a binary sequence α = (ε1, . . . , εr), we write

τ(α) = (1− εr, . . . , 1− ε1).

(Note the reverse order.) If α is admissible, then so is τ(α).

From Proposition 1.137 and Theorem 1.116, we derive the following:

Corollary 1.139. If α is an admissible binary sequence, then

ζ(α) = ζ(τ(α)).

Example 1.140. In weight 4, this corollary gives the relation

ζ(4) = ζ((0, 0, 0, 1)) = ζ((0, 1, 1, 1)) = ζ(2, 1, 1),

which was stated without proof in Section 1.4.1.

⋆ ⋆ ⋆

Exercise 1.141. Justify the exchange of the integral and the summation sign
in the computations of Examples 1.110 and 1.112.

Exercise 1.142. Prove that the vector t(1 Li1(t) · · · Lin(t)) of polylogarithm
functions is a solution of the linear system of differential equations

d

dt




f1
f2
f3
...

fn−1
fn




=




0
dt
1−t 0

dt
t 0

. . .

0
dt
t 0







f1
f2
f3
...

fn−1
fn



.

Exercise 1.143. Show that there are
(
r+s
r

)
shuffles of type (r, s).

Exercise 1.144. Manipulating series, prove directly the equality

ζ(3) =

∫

1⩾t1⩾t2⩾t3⩾0

dt1
t1

dt2
t2

dt3
1− t3

and, more generally,

ζ(s) =

∫

1⩾t1⩾t2⩾···⩾ts⩾0

dt1
t1
· · · dts−1

ts−1

dts
1− ts

.

Exercise 1.145. Use Lemma 1.136 to check the shuffle relation (1.52) for the
product ζ(j)ζ(k − j).

Exercise 1.146. Find a formula for ζ(s)ζ(p, q) using shuffles.



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 47

Exercise 1.147. Check the identities

ζ(5) = ζ(2, 1, 1, 1), ζ(4, 1) = ζ(3, 1, 1),

ζ(2, 1, 2) = ζ(2, 3), ζ(2, 2, 1) = ζ(3, 2)

with the help of Proposition 1.137.

1.6. Quasi-shuffle products and the Hoffman algebra. In the previous
sections, we saw two methods to express a product of multiple zeta values as a linear
combination of multiple zeta values. The first one, using the series representation,
gives the product in terms of the stuffle multiplicities. The second one, using the
integral representation, gives the product in terms of the shuffle multiplicities. As
we saw in Examples 1.16 and 1.127, these two methods may give different linear
combinations for the same product of multiple zeta values, thus leading to linear
relations among them. The stuffle multiplicities are easily expressed in terms of
multi-indices as in Lemma 1.39, while the shuffle multiplicities are expressed more
conveniently using binary sequences as in Lemma 1.136. We now want to put a little
order to make the combinatorial structure of multiple zeta values clearer. To this
end, we will define the stuffle product and the shuffle product as products in certain
formal algebras that encode the stuffle and the shuffle multiplicities respectively.

1.6.1. Alphabets and the quasi-shuffle product.

Notation 1.148. Let A = {ai}i∈S be a countable (possibly finite) set. The
elements ai of A will be called letters, and A is called an alphabet. Let QA be
the Q-vector space with A as a basis. Let Q⟨A⟩ be the non-commutative polynomial
algebra over A, that is,

Q⟨A⟩ = ⟨ai1ai2 · · · ain |n ⩾ 0, ij ∈ S⟩Q
is the vector space with the set of words in the letters of A as a basis, along with
the concatenation product

(ai1 · · · ain) · (aj1 · · · ajm) = ai1 · · · ainaj1 · · · ajm .
We say that a word w = a1 · · · an has length ℓ(w) = n. We consider 1 as the empty
word and set ℓ(1) = 0.

Definition 1.149. Let A be an alphabet, and let

♢ : QA×QA −→ QA

be a commutative and associative product. We recursively define a new product ∗♢
on Q⟨A⟩ by setting 1 ∗♢ w = w ∗♢ 1 = w and

aw ∗♢ bv = a(w ∗♢ bv) + b(aw ∗♢ v) + (a♢b)(w ∗♢ v),

for letters a, b ∈ A and words w, v ∈ Q⟨A⟩. This product is extended to Q⟨A⟩
by Q-linearity and is called the quasi-shuffle product associated with ♢.

Theorem 1.150 (Hoffman [Hof00]). The vector space Q⟨A⟩ equipped with the
product ∗♢ is a commutative Q-algebra.

Proof. Let us check the commutativity

u1 ∗♢ u2 = u2 ∗♢ u1(1.151)

by induction on the sum of lengths ℓ(u1) + ℓ(u2). If either u1 or u2 is the empty
word, then (1.151) holds trivially. It thus suffices to consider the case u1 = aw
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and u2 = bv with letters a, b ∈ A and words w, v ∈ Q⟨A⟩. Then, by definition of
the product ∗♢ and the induction hypothesis, we get

u1 ∗♢ u2 − u2 ∗♢ u1 = (a♢b)(w ∗♢ v)− (b♢a)(v ∗♢ w).

Since ♢ is assumed to be commutative, (1.151) follows from induction. The proof
of the associativity is similar and is left as an exercise. □

We will next give two examples of quasi-shuffle products.
1.6.2. Stuffle product. Let Y be the alphabet with letters y1, y2, y3, . . . , together

with the product

♢1 : QY ×QY −→ QY, yi♢1yj = yi+j ,

which is commutative and associative. The product ∗♢1
on Q⟨Y ⟩ will be denoted

by ∗ and called the stuffle product . By definition, it is given by

(1.152) yiw ∗ yjv = yi(w ∗ yjv) + yj(yiw ∗ v) + yi+j(w ∗ v).

Example 1.153. We have yi ∗ yj = yiyj + yjyi + yi+j and

y2 ∗ y3y4 = y2(y3y4) + y3(y2 ∗ y4) + y5(y4)

= y2y3y4 + y3(y2y4 + y4y2 + y6) + y5y4

= y2y3y4 + y3y2y4 + y3y4y2 + y3y6 + y5y4.

Notation 1.154. A positive multi-index s = (s1, . . . , sℓ) defines a word

ys = ys1 · · · ysℓ .

In fact, the set of positive multi-indices and the set of words in the alphabet Y are
in bijection. We will use this bijection to identify both sets.

Lemma 1.155. The stuffle product is given by

ys ∗ ys′ =
∑

s′′

st(s, s′; s′′)ys′′ .

Proof. The proof proceeds by induction on the length of the multi-indices s
and s′. If one of them, say s, has length zero, then both sides of the equality to
be proven are ys′ , so it is true. Assume then that both s and s′ have length ⩾ 1,
and write s = (s1, . . . ) and s′ = (s′1, . . . ), so that the associated words are of the
form ys = ys1v and ys′ = ys′1w. Equation (1.152) yields

ys ∗ ys′ = ys1(v ∗ ys′) + ys′1(ys ∗ w) + ys1+s′1(v ∗ w).

The matrices that are used to compute the stuffle indices st(s, s′; s′′) in Defini-
tion 1.36 fall into three types, namely

(
s1 · · ·
0 · · ·

)
,

(
0 · · ·
s′1 · · ·

)
,

(
s1 · · ·
s′1 · · ·

)
.

Using the induction hypothesis, one sees that the matrices of the first type give rise
to the term ys1(v ∗ ys′), the matrices of the second type to the term ys′1(ys ∗ w),
and the matrices of the third type to the term ys1+s′1(v ∗ w). □
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Since the words of the alphabet Y are related to multi-indices and the product
of Q⟨Y ⟩ is the stuffle product, one may expect a morphism of Q-algebras

(Q⟨Y ⟩, ∗) −→ (Z, ·)
ys1 · · · ysℓ 7−→ ζ(s1, . . . , sℓ).

However, since multiple zeta values are only defined when s1 > 1, we need to restrict
the source of this map. Later, in Section 1.7 we will see how to extend it to the
whole (Q⟨Y ⟩, ∗) by means of a regularization process.

Definition 1.156. A word w = ys1 . . . ysℓ is called admissible if s1 > 1, i.e. if
it corresponds to an admissible multi-index. We will denote by Q⟨Y ⟩0 the vector
subspace of Q⟨Y ⟩ spanned by admissible words.

Proposition 1.157.

i) (Q⟨Y ⟩0, ∗) is a subalgebra of (Q⟨Y ⟩, ∗).
ii) There is a morphism of Q-algebras

Q⟨Y ⟩0 −→ Z
determined by the assignment

ys1 · · · ysl 7−→ ζ(s1, . . . , sl).

Proof. The first statement can be checked directly from the definition of the
product ∗. Alternatively, it follows from Lemma 1.155 and Lemma 1.38 iii). The
second statement follows from Lemmas 1.155 and 1.39. □

Since we have identified positive multi-indices with words in the alphabet Y ,
we will often just write ζ(w) instead of ζ(s1, . . . , sl) for w = ys1 . . . ysl . With this
notation, the equality

(1.158) ζ(w ∗ v) = ζ(w)ζ(v)

holds for all words w, v ∈ Q⟨Y ⟩0.
1.6.3. Shuffle product. Let X = {x0, x1} be the alphabet in two letters, along

with the trivial product a♢2b = 0 for all a, b ∈ X. We denote by � the correspond-
ing product ∗♢2 and call it the shuffle product . By definition, it is given by

xiw� xjv = xi(w� xjv) + xj(xiw� v).

Definition 1.159. We call H = (Q⟨X⟩,�) the Hoffman algebra.

Proposition 1.160. Given words xε1 . . . xεr and xεr+1
. . . xεr+s

on the alpha-
bet X, their shuffle product is equal to

xε1 . . . xεr � xεr+1
. . . xεr+s

=
∑

σ∈�(r,s)

xεσ−1(1)
. . . xεσ−1(p+q)

.

Proof. Exercise 1.172. □

Example 1.161. Here are two examples of shuffle products of words:

x0x1 � x0x1 = 2x0x1x0x1 + 4x20x
2
1,

x0x1 � x20x1 = x0x1x
2
0x1 + 3x20x1x0x1 + 6x30x

2
1.
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Notation 1.162. There is an obvious bijection between binary sequences and
words in the alphabet X that with a binary sequence α = (ε1, . . . , εr) associates
the word xα = xε1 . . . xεr . Using this bijection, we can transfer the shuffle multi-
plicity, as introduced in Definition 1.134, to words in the alphabet X. The resulting
multiplicity will be denoted by �(u, v;w).

With this notation, Proposition 1.160 can be rewritten as

(1.163) u� v =
∑

w

�(u, v;w)w.

Again, this equation hints at the existence of an algebra morphism from H to
the algebra of multiple zeta values. As was the case for the alphabet Y , one needs
to restrict the source of this map to the subspace that gives rise to convergent series.

Definition 1.164. A word in the alphabet X is said to be positive if it ends
in x1, and is said to be admissible if it ends in x1 and starts with x0.

Proposition 1.165. Let H1 (resp. H0) be the subspace of H generated by pos-
itive (resp. admissible) words, so that there are inclusions

H ⊃ H1 ⊃ H0.

Then the following properties hold:

i) (H0,�) and (H1,�) are subalgebras of (H,�).

ii) There is a morphism of Q-algebras

ζ : H0 −→ Z
given by the assignment

xα 7−→ ζ(α).

(Recall that the multiple zeta value corresponding to an admissible binary
sequence was defined as ζ(bs−1(α)) in Notation 1.133).

Proof. Exercise 1.173. □

Since we are identifying binary sequences and words in the alphabet X, we will
often write ζ(xα) instead of ζ(α). With this notation, Proposition 1.165 becomes

(1.166) ζ(w� v) = ζ(w)ζ(v)

for all words w, v ∈ H0.
1.6.4. Double shuffle relations. In the same way that positive multi-indices can

be translated into binary sequences, there is a natural map between Q⟨Y ⟩ and H.
This map does not transform the stuffle product on Q⟨Y ⟩ into the shuffle product
on H. To remedy this, we define a second product on H.

Definition 1.167. Setting zp = xp−10 x1, the stuffle product

∗ : H× H −→ H

is recursively defined as follows:

1 ∗ w = w ∗ 1 = w for w ∈ H,

xp0 ∗ w = w ∗ xp0 = wxp0 for p ⩾ 1 and w ∈ H,

zpw ∗ zqv = zp(w ∗ zqv) + zq(zpw ∗ v) + zp+q(w ∗ v) for w, v ∈ H.
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Proposition 1.168.

i) (H, ∗) is a commutative and associative Q-algebra.

ii) The map

(Q⟨Y ⟩, ∗) ↪−→ (H, ∗)
yi 7−→ zi = xi−10 x1

is an injective morphism of algebras with image the subalgebra H1.

Proof. Exercise 1.174. □

We will use this map to identify the algebras H1 and Q⟨Y ⟩.
Theorem 1.169. Let ζ : H0 → Z be the map from Proposition 1.165. Then,

ζ(w� v − w ∗ v) = 0.

Proof. This follows from equations (1.158) and (1.166). □

This theorem is a source of relations among multiple zeta values that are called
double shuffle relations. Nevertheless, it is clear that double shuffle relations are
not enough to describe all relations among multiple zeta values. For instance, we
do not obtain Euler’s relation in weight 3, and we can only produce one relation in
weight 4, while there are at least 3 independent relations. To obtain the remaining
relations, we will consider products with non-admissible words in the next section.

⋆ ⋆ ⋆

Exercise 1.170. Prove the identity

xr0 � xs0 = x0 . . . x0 � x0 . . . x0 =
(r + s)!

r!s!
xr+s0 .

Exercise 1.171. Prove the identity

a� wv = (a� w)v + w(a� v)− wav
for a letter a and words w and v in the alphabet X = {x0, x1}.
Exercise 1.172. Prove Proposition 1.160.

Exercise 1.173. Prove Proposition 1.165.

Exercise 1.174. Prove Proposition 1.168.

Exercise 1.175. Given a multi-index s and an integer M ⩾ 0, we set

ζM (s) =
∑

M>m1>m2>···>mℓ>0

1

ms1
1 . . .msℓ

l

.

i) Show that, if s is admissible, then limM→∞ ζM (s) = ζ(s).

ii) Recall that we identified words and multi-indices. Prove that the map

ζM : (H1, ∗) −→ Q

is a morphism of algebras, i.e. for all w, v ∈ H1 it satisfies

ζM (w ∗ v) = ζM (w)ζM (v).
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Exercise 1.176. Using the identification between words in the alphabet X
and binary sequences, we obtain a map

Li : H1 −→ C∞((0, 1))

that sends a word w ∈ H1 to the polylogarithm function Liw(t) from Defini-
tion 1.118. Prove that this map satisfies

Liw�v(t) = Liw(t) · Liv(t)

for all w, v ∈ H1, and hence is a morphism of algebras

Li : (H1,�) −→ (C∞((0, 1)), ·).
1.7. Regularization and the Ihara–Kaneko–Zagier theorem. In this

section, we discuss two regularization processes that can be used to extend the def-
inition of multiple zeta values to non-admissible words and derive relations among
them. Conjecturally, all relations can be obtained in this way. The exposition
follows the work of Ihara–Kaneko–Zagier [IKZ06].

1.7.1. The stuffle algebra as a polynomial ring. Recall from Definition 1.156
that Q⟨Y ⟩0 stands for the set of admissible words in the alphabet Y .

Theorem 1.177. The map of (Q⟨Y ⟩0, ∗)-algebras
φ : Q⟨Y ⟩0[T ] −→ Q⟨Y ⟩

T 7−→ y1

is an isomorphism.

Proof. We first show that the map φ is surjective, which amounts to proving
that any element w ∈ Q⟨Y ⟩ can be written as a polynomial in y1 with coefficients
in Q⟨Y ⟩0. The bijection between the sets of multi-indices and words in the alpha-
bet Y induces a grading by the weight wt and a filtration by the length ℓ on the
space Q⟨Y ⟩ given by

wt(ys1 · · · ysℓ) = s1 + · · ·+ sℓ,

ℓ(ys1 · · · ysℓ) = ℓ.

The surjectivity will follow by induction on ℓ, once we show that for each word
w ∈ FℓQ⟨Y ⟩ of length ℓ, there exist v1 ∈ FℓQ⟨Y ⟩0 and v2, v3 ∈ Fℓ−1Q⟨Y ⟩ satisfying

w = v1 + v2 ∗ y1 + v3.(1.178)

First observe that any word of length ℓ can be written as

w = y1 · · · y1︸ ︷︷ ︸
m

ys1 · · · ysℓ−m
= {y1}mys1 · · · ysℓ−m

with s1 ̸= 1 and m ⩾ 0. Using this, we will prove by induction on m, that w can be
written as in (1.178). For m = 0, we have w ∈ Q⟨Y ⟩0. Thus, we can choose v1 = w
and v2 = v3 = 0. For the induction step, we compute

{y1}m−1ys1 · · · ysℓ−m
∗ y1 = m · w +

ℓ−m∑

i=1

{y1}m−1ys1 · · · ysiy1ysi+1
· · · ysℓ−m

− v3

with v3 ∈ Fℓ−1Q⟨Y ⟩. Applying the induction hypothesis with respect to m, we
deduce that w can be written as in (1.178). It follows that φ is surjective.
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To prove the injectivity of φ, we write each non-zero P ∈ Q⟨Y ⟩0[T ] as

P = w1T
m + w2

for non-zero w1 ∈ Q⟨Y ⟩0 and w2 of degree less than m in the variable T . Then

φ(P ) = m!ym1 w1 + v2,

where all the words in v2 have less than m factors y1 in the front. Thus, φ(P ) ̸= 0
and the map φ is injective as well. □

1.7.2. The shuffle algebra as a polynomial ring. Mutatis mutandis, one can
prove the analogous result for the shuffle product. Recall the algebras H ⊃ H1 ⊃ H0

from Proposition 1.165.

Theorem 1.179.

i) The map of (H0,�)-algebras

ψ1 : H0[T ] −→ H1

T 7−→ x1

is an isomorphism.

ii) The map of (H1,�)-algebras

ψ2 : H1[U ] −→ H

U 7−→ x0

is an isomorphism.

Therefore, the map of (H0,�)-algebras

ψ : H0[T,U ] −→ H

T 7−→ x1

U 7−→ x0

is an isomorphism.

Proof. Exercise 1.214. □

1.7.3. Regularized zeta values. Using the previous theorems, we define the stuffle
and shuffle regularization maps. Recall the identification H1 = Q⟨Y ⟩ from Propo-
sition 1.168, and the isomorphism φ from Theorem 1.177.

Definition 1.180. The stuffle regularization map

regT∗ : H1 = Q⟨Y ⟩ −→ H0[T ] = Q⟨Y ⟩0[T ]

is defined as regT∗ = φ−1. The shuffle regularization maps

regT
�

: H1 −→ H0[T ], and regT,U
�

: H −→ H0[T,U ]

are defined as regT
�

= ψ−11 and regT,U� = ψ−1.

Theorems 1.177 and 1.179 allow us to extend the function ζ from Proposi-
tion 1.165 in a formal way.
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Definition 1.181. The stuffle regularized zeta map is the composition

ζT∗ : Q⟨Y ⟩ regT
∗−−−→ Q⟨Y ⟩0[T ]

ζ−→ Z[T ] ⊂ R[T ].

We denote by ζ∗ the composition of ζT∗ with the evaluation at T = 0.
The shuffle regularized zeta map, denoted by ζT

�
, is the composition

H1 regT
�−−−→ H0[T ]

ζ−→ Z[T ] ⊂ R[T ].

Similarly, we write ζT,U� for the composition

H
regT,U

�−−−−→ H0[T,U ]
ζ−→ Z[T,U ] ⊂ R[T,U ].

We denote by ζ� the composition of ζT,U� with the evaluation at T = U = 0. We
will also denote by ζ� its restriction to H1.

By identifying (Q⟨Y ⟩, ∗) with (H1, ∗), we will also consider ζT∗ as the linear map
from (H1, ∗) to R[T ] characterized by the conditions

ζT∗ (w) = ζ(w) ∈ R, if w ∈ H0,

ζT∗ (x1) = T,

ζT∗ (v ∗ w) = ζT∗ (v)ζT∗ (w).

In the same way, the map ζT
�

is characterized by linearity and the identities

ζT
�

(w) = ζ(w) ∈ R, if w ∈ H0,

ζT
�

(x1) = T,

ζT
�

(v� w) = ζT
�

(v)ζT
�

(w).

The maps ζ∗, ζ� and ζT,U� are determined by similar conditions. For future
reference, we single out the properties characterizing ζ�.

Proposition 1.182. The map ζ� : H→ R is the only linear map satisfying

ζ�(w) = ζ(w) ∈ R, if w ∈ H0,(1.183)

ζ�(x0) = 0, ζ�(x1) = 0,(1.184)

ζ�(v� w) = ζ�(v)ζ�(w).(1.185)

Corollary 1.186. The image of ζ� is equal to Z.
Proof. By Theorem 1.179, every element w ∈ H can be written as a finite

sum w =
∑
aij � xi0 � xj1 for some aij ∈ H0. Thanks to Proposition 1.182, the

equality ζ�(w) = ζ�(a00) holds, and hence ζ�(w) belongs to Z. □

Example 1.187. On the one hand, we have

ζT∗ (1, 2) = ζT∗ (y1y2)

= ζT∗ (y2 ∗ y1 − y2y1 − y3)

= ζ(2)T − ζ(2, 1)− ζ(3),

which yields ζ∗(1, 2) = −ζ(2, 1)− ζ(3). On the other hand,

ζT
�

(1, 2) = ζT
�

(x1x0x1)

= ζT
�

(x0x1 � x1 − 2x0x1x1)

= ζ(2)T − 2ζ(2, 1).
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Therefore, ζ�(1, 2) = −2ζ(2, 1). These are two different ways to assign a finite
value to the divergent series

∑
n>m⩾1

1
nm2 .

1.7.4. Comparing the shuffle and the stuffle regularizations. As we just saw in
the previous example, the regularizations ζT

�
(w) and ζT∗ (w) are in general different

from each other. In order to compare them, we introduce the formal power series

A(u) = eγuΓ(1 + u) = exp


∑

n⩾2

(−1)n

n
ζ(n)un


 ,

where γ is the Euler constant, and the second identity follows from the Taylor
expansion of the logarithm of the gamma function (Exercise 1.18). We write

(1.188) A(u) =
∑

k⩾0

γku
k.

Observe that γk is a linear combination, with rational coefficients, of multiple zeta
values of weight k. The first values are given in Table 1.5 below.

k 0 1 2 3 4 5

γk 1 0 ζ(2)
2 − ζ(3)3

ζ(2,2)
4 + 3ζ(4)

8 − ζ(2,3)6 − ζ(3,2)
6 − 11ζ(5)

30

Table 1.5. First values of γk

We define an R-linear map ϱ : R[T ] −→ R[T ] by the formula

(1.189) ϱ(Tn) =
dn

dun
(
A(u)eTu

)∣∣∣∣
u=0

= n!

n∑

k=0

γk
Tn−k

(n− k)!
,

so that the equality ϱ(eTu) = A(u)eTu holds when the map ρ is extended R-linearly
to formal power series.

Theorem 1.190 (Ihara–Kaneko–Zagier [IKZ06]). The identity

ζT
�

(w) = ϱ(ζT∗ (w))

holds for all words w ∈ H1.

Example 1.191. Since γ0 = 1 and γ1 = 0, we have ϱ(1) = 1 and ϱ(T ) = T .
Combining this with Example 1.187, we find

ϱ(ζT∗ (1, 2)) = ϱ(ζ(2)T − ζ(2, 1)− ζ(3))

= ζ(2)T − ζ(2, 1)− ζ(3).

Since, on the other hand, we get

ζT
�

(1, 2) = ζ(2)T − 2ζ(2, 1),

Theorem 1.190 recovers Euler’s relation ζ(2, 1) = ζ(3) from Corollary 1.56.

Proof of Theorem 1.190. The idea is to see the equality ζT
�

(w) = ϱ(ζT∗ (w))
to be proved as an identity of functions of the variable T . Let M > 0 be an integer,
and let w = ys1 · · · ysℓ be a word in the alphabet Y . We write

ζM (w) =
∑

M>m1>m2>···>mℓ>0

1

ms1
1 · · · msℓ

ℓ

.
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By Exercise 1.175, if w is admissible, then limM→∞ ζM (w) = ζ(w). We extend ζM
to a map Q⟨Y ⟩ → R by linearity. Then ζM satisfies the stuffle relation

ζM (w1)ζM (w2) = ζM (w1 ∗ w2),

using Exercise 1.175 again. From the approximation of the harmonic series

ζM (y1) = 1 +
1

2
+

1

3
+ · · ·+ 1

M − 1
= logM + γ +O

(
1

M

)

and the representation of ζT∗ (w) as a polynomial in ζ∗(1), it follows that there exists
an integer j ⩾ 0 such that the estimate

(1.192) ζM (w) = ζ logM+γ
∗ (w) +O(M−1 logjM)

holds for large enough M . Here, the notation ζ logM+γ
∗ (w) indicates the evaluation

of ζT∗ (w) at T = logM + γ.
Recall from Definition 1.118 the polylogarithm function Lis associated with a

positive multi-index s. Using the identification of positive multi-indices with words
in the alphabet Y and linearity, we attach a function Liw on the segment (0, 1) to
each element w ∈ H1. If w ∈ H0, then

lim
t→1−

Liw(t) = ζ(w).

Moreover, the equality

Liw(t) · Liw′(t) = Liw�w′(t)

holds for all w,w′ ∈ H1 and t ∈ (0, 1) by Exercise 1.176. From the equality

Liy1(t) = log

(
1

1− t

)
,

we see that there exists an integer j ⩾ 0 depending on w such that the estimate

(1.193) Liw(t) = ζ
log( 1

1−t )
� (w) +O

(
(1− t) logj

(
1

1− t

))

holds as t → 1−. As above, the notation ζ
log( 1

1−t )
� (w) stands for the evaluation

of ζT
�

(w) at T = log
(

1
1−t

)
. By explicit calculations,

Liw(t) =
∑

m1>m2>···>mℓ>0

tm1

ms1
1 · · · msℓ

ℓ

=
∑

m⩾1

( ∑

m>m2>···>mℓ>0

1

ms1ms2
2 · · · msℓ

ℓ

)
tm

=
∑

m⩾1

(ζm+1(w)− ζm(w))tm

= (1− t)
∑

m⩾2

ζm(w)tm−1,

where the last equality uses the vanishing ζ1(w) = 0 (an empty sum).
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To go further, we apply Lemma 1.194 below to the polynomials P (T ) = ζT∗ (w)
and Q(T ) = ϱ(ζT∗ (w)). We derive the equalities

Liw(t) = (1− t)
∑

m⩾2

ζm(w)tm−1

(1.192)
= (1− t)

∑

m⩾2

ζ logm+γ
∗ (w)tm−1 + (1− t)

∑

m⩾1

O

(
logjm

m

)
tm−1

(1.195)
= Q

(
log

1

1− t

)
+O

(
(1− t) logj

(
1

1− t

))
.

Comparing this expression for with Liw(t) the asymptotic expansion (1.193), we
get the identity ζT

�
(s) = ϱ(ζT∗ (s)) that we wanted to prove. □

The next lemma was used in the proof of Theorem 1.190.

Lemma 1.194.

i) Let P (T ) ∈ R[T ] and Q(T ) = ϱ(P (T )). Then there exists an integer j ⩾ 0
such that the estimate

∑

m⩾2

P (log(m) + γ)tm−1 =
1

1− tQ
(

log
1

1− t

)
+O

(
logj

(
1

1− t

))
(1.195)

holds as t→ 1−.

ii) As t→ 1−, the following estimate holds:

∑

m⩾2

logjm

m
tm−1 = O

(
logj+1

(
1

1− t

))
.(1.196)

Proof. Let us prove (1.196) first. Since

∑

m⩾2

tm−1

m
= −1− 1

t
log(1− t),

for j = 0 the left-hand side of (1.196) is of type O
(

log
(

1
1−t

))
as t → 1−, which

proves the statement in this case. We proceed by induction on j. Note the identity

logj+1(m) ⩽ cj

m∑

n=1

logj(n)

n

for m ⩾ 1 and j ⩾ 0, which easily follows from the integral

∫ m

1

logj(x)

x
dx =

logj+1(m)

j + 1
.
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Hence, for t < 1, we obtain

∑

m⩾1

logj+1(m)

m
tm−1 ⩽ cj

∑

m⩾1

tm−1

m

m∑

n=1

logj(n)

n

= cj
∑

n⩾1

logj(n)

n
tn−1

∑

r⩾1

tr−1

r + n− 1

< cj


∑

n⩾1

logj(n)

n
tn−1



(

1

t
log

(
1

1− t

))
.

From this, (1.196) follows by induction on j for all j ⩾ 0.
We now prove identity (1.195). By construction, ϱ is a linear map on R[T ], so

it suffices to do it for P (T ) = (T − γ)n. Thus, we set Q(T ) = ϱ((T − γ)n). Then,
from equation (1.189), we get

Q(T ) =
dn

dun

(
A(u)e(T−γ)u

)∣∣∣∣
u=0

=
dn

dun
(
Γ(1 + u)eTu

)∣∣∣∣
u=0

,

and hence the equalities

1

1− tQ
(

log

(
1

1− t

))
=

dn

dun

(
Γ(1 + u)

(1− t)1+u
)∣∣∣∣

u=0

=
dn

dun


∑

m⩾1

Γ(m+ u)

Γ(m)
tm−1



∣∣∣∣∣∣
u=0

=
∑

m⩾1

Γ(n)(m)

Γ(m)
tm−1,

where Γ(n)(m) is the n-th derivative of the Γ function evaluated at m. Besides, for
all n, we have the estimate

Γ(n)(m)

Γ(m)
= logn(m) +O

(
logn−1(m)

m

)
(1.197)

as m→∞. Using this and (1.196), we obtain

∑

m⩾1

Γ(n)(m)

Γ(m)
tm−1 =

∑

m⩾1

logn(m)tm−1 +O

(
logn

(
1

1− t

))

=
∑

m⩾1

P (log(m) + γ)tm−1 +O

(
logn

(
1

1− t

))
,

concluding the proof of the lemma. □

1.7.5. The extended double shuffle relations. We now introduce extended dou-
ble shuffle relations. We first recall the two commutative diagrams

(1.198) (H1,�)
regT

� //

ζT
� ))

(H0,�)[T ],

w 7→ζ(w)
T 7→T
��

R[T ]

(H1, ∗) regT
∗ //

ζT∗ ((

(H0, ∗)[T ].

w 7→ζ(w)
T 7→T
��

R[T ]
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Definition 1.199. Let (R, ·) be a Q-algebra and ZR : H0 → R a map. The
pair (R,ZR) satisfies finite double shuffle relations if ZR is a morphism of algebras
with respect to both the shuffle and the stuffle product on H0, that is, the equality

(1.200) ZR(w� v) = ZR(w) · ZR(v) = ZR(w ∗ v)

holds for all w, v ∈ H0.

A map ZR : H0 → R as above gives rise to maps

ZTR,� : (H1,�) −→ R[T ],

ZTR,∗ : (H1, ∗) −→ R[T ],

by composition with the regularization maps regT
�

and regT∗ . Since R is a Q-algebra
with a map from H0, we can define the formal power series

AR(u) = exp


∑

n⩾2

(−1)n

n
ZR(yn)un


 ,

and by analogy with ρ from (1.189), the linear map ϱR : R[T ] → R[T ] uniquely
determined by the equality of formal power series

(1.201) ϱR(eTu) = AR(u)eTu.

Definition 1.202. Assume that the pair (R,ZR) satisfies the finite double
shuffle relations. We say that (R,ZR) satisfies the extended double shuffle relations
if, in addition, the following equality holds for all words w ∈ H1:

ZTR,�(w) = ϱR(ZTR,∗(w)).(1.203)

In light of this definition, Theorems 1.169 and 1.190 can be rephrased as follows:

Theorem 1.204. The pair (R, ζ) satisfies the extended double shuffle relations.

This theorem is a source of new relations among multiple zeta values that
cannot be obtained by comparing the usual shuffle and stuffle products. For the
next result, see [IKZ06, Thm. 2].

Corollary 1.205. Let w1 ∈ H1 and w0 ∈ H0. Then

ζ�(w1 � w0 − w1 ∗ w0) = 0.

For example, since x1 � w − x1 ∗ w belongs to H0 for every word w ∈ H0

(Exercise 1.209), we deduce the so-called Hoffman relation

(1.206) ζ(x1 � w − x1 ∗ w) = 0,

which implies Euler’s sum formula (1.57) by Exercise 1.210.
1.7.6. The universal algebra satisfying the extended double shuffle relations. By

considering the quotient of H0 by all extended double shuffle relations, we obtain
an algebra REDS and a map ZEDS : H0 → REDS such that the pair (REDS, ZEDS)
satisfies the extended double shuffle relations. It is the universal pair in the fol-
lowing sense: for any (R,ZR) satisfying the extended double shuffle relations, there
exists a unique map φR : REDS → R such that the following diagram commutes:

H0 ZEDS//

ZR ##

REDS.

φR

��
R
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The following conjecture describes the combinatorial structure of the algebra
of multiple zeta values.

Conjecture 1.207. The map φR is injective. Equivalently, the algebra Z of
multiple zeta values is isomorphic to REDS.

Remark 1.208. The finite double shuffle relations are linear and homogeneous
with respect to the weight. Moreover, the extended double shuffle relations are also
homogeneous (Exercise 1.212). Since the coefficients of the power series AR are
polynomials in zeta values, the extended double shuffle relations are polynomial in
the mutliple zeta values. Since products of these numbers can be reduced to linear
combinations of multiple zeta values using either the shuffle or the stuffle product,
we can reduce the extended double shuffle relations relations to linear ones. Hence,
all possible relations among multiple zeta values are conjectured to be generated
by homogeneous linear relations.

⋆ ⋆ ⋆

Exercise 1.209. Show that x1�w−x1 ∗w belongs to H0 for all words w ∈ H0.

Exercise 1.210. Deduce Euler’s sum formula (1.57) from the Hoffman relation.

[Hint: take w = xp−10 x1.]

Exercise 1.211. Show that the coefficient γk in the power series (1.188) is a
polynomial in ζ(2), ζ(3), . . . , that is homogeneous of weight k.

Exercise 1.212. Use Exercise 1.211 to prove that the extended double shuffle
relations are homogeneous.

Exercise 1.213. Which identities do we get from the comparison of the regu-
larized multiple zeta values ζ∗(1, 1, 2) and ζ�(1, 1, 2)?

Exercise 1.214. Prove Theorem 1.179.

Exercise 1.215. Check the estimates

ζM (s) =

n∑

k=0

ak

(
logM + γ +O

(
1

M

))k

=
n∑

k=0

ak(logM + γ)k +O

(
1

M
logn−1(M)

)
.

Exercise 1.216. Prove the estimate (1.197).

Exercise 1.217. Use Corollary 1.205 to prove that the identity

ζ�(xm1 ∗ w) = 0

holds for all w ∈ H0 and m ⩾ 1.
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2. Periods of mixed Hodge structures

In this chapter, we introduce the first tools from algebraic geometry that will
be needed for the study of multiple zeta values. Our main goal is to show that all
these numbers can be obtained by integrating an algebraic differential form over a
topological cycle on an algebraic variety defined over the field of rational numbers.
The extra structures carried by cohomology will then give non-trivial information
about multiple zeta values. With this in mind, we begin by recalling the definition
of singular homology and cohomology of a topological space M in Section 2.1. It
is a classical theorem of de Rham that, whenever M is a differentiable manifold,
singular cohomology can be computed using differential forms. More precisely,
the map that sends a differential form to the integration functional on singular
homology induces an isomorphism between de Rham cohomology and singular co-
homology. If M underlies a complex algebraic variety X, this cohomology can even
be computed using differential forms with polynomial coefficients. As we explain
in Sections 2.2 and 2.3, it is isomorphic to algebraic de Rham cohomology by a
theorem of Grothendieck. A remarkable consequence is that, when X is defined
over Q, we get two different rational structures on the same complex vector space
that are not compatible. This is not bad news, quite the opposite: the comparison
between them produces an interesting class of complex numbers called periods; we
define them in various equivalent ways in Section 2.4. Then, in Section 2.5, we ex-
plain how to interpret multiple zeta values as periods of a cohomology group built
out of the moduli spaces M0,n of n ordered distinct points in P1 up to projective
equivalence, following Goncharov and Manin. Another important result relying on
the comparison isomorphism is that the cohomology of X is equipped with two
filtrations the interaction of which gives rise to a mixed Hodge structure, a notion
developed by Deligne at the beginning of the 70s. We explain the definition in
Section 2.6, and how to compute certain extension groups in the category of mixed
Hodge structures in Section 2.7. In Section 2.8, we sketch some of the ideas in the
proof that the cohomology of any algebraic variety carries a mixed Hodge structure
and we give many examples, in particular of Hodge structures of mixed Tate type.
Conjecturally, mixed Hodge structures of algebraic varieties over Q capture all al-
gebraic relations between periods. As an illustration, in the final Section 2.9 we go
back to the interpretation of ζ(2) as a period of a pair of algebraic varieties, we
take a closer look at the mixed Hodge structure on its cohomology, and we indicate
how the information we obtain may be used to prove “by pure thought” that ζ(2)
is a rational multiple of π2.

2.1. Singular homology and cohomology. We begin by briefly recalling
the definition of singular homology and cohomology of a topological space; for more
details, we refer the reader to Chapters 2 and 3 of Hatcher’s book [Hat02].

For each integer n ⩾ 0, let

∆n
st =

{
(t0, . . . , tn) ∈ Rn+1

∣∣
n∑

i=0

ti = 1 and ti ⩾ 0 for i = 0, . . . , n

}

be the standard n-dimensional simplex in Rn+1. For each integer i = 0, . . . , n+ 1,
there is a face map δi : ∆n

st → ∆n+1
st given by plugging a 0 at the i-th coordinate:

δi(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn).
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Remark 2.1. The standard simplex ∆n
st is homeomorphic to the simplex

∆n = {(t1, . . . , tn) ∈ Rn | 1 ⩾ t1 ⩾ t2 ⩾ · · · ⩾ tn ⩾ 0}
from Notation 1.114 (see Exercise A.240). The representation we use here is more
symmetric and enables one to write down the face maps in a uniform way. By con-
trast, working with ∆n is more convenient for decomposing a product of simplices
(see Section 1.5.3 and Example A.228).

Let M be a topological space. A continuous map σ : ∆n
st → M is called a

singular n-simplex on M . For each n ⩾ 0, let

Cn(M) =
⊕

σ : ∆n
st→M

Zσ

be the free abelian group generated by singular n-simplices on M . The elements
of Cn(M) are finite linear combinations with integral coefficients of continuous
maps σ : ∆n

st → M ; they are called singular n-chains on M , or simply singular
chains when n is clear from the context. For example, a singular 0-chain is a
linear combination of points of M , and a singular 1-chain is a linear combination
of paths γ : [0, 1] → M , once we identify the interval [0, 1] with the simplex ∆1

st

through the homeomorphism t 7→ (t, 1− t). That is,

C0(M) =
⊕

p∈M
Z p, C1(M) =

⊕

γ : [0,1]→M

Z γ.

To make the notation uniform in what follows, we also set Cn(M) = 0 for all n < 0.
For each n ⩾ 1, we define a boundary homomorphism

(2.2)

∂n : Cn(M) −→ Cn−1(M)

σ 7−→
n∑

i=0

(−1)i(σ ◦ δi).

This is well defined, since σ ◦ δi : ∆n−1
st → ∆n

st → M is a singular (n − 1)-simplex
on M , namely the restriction of σ to the face of ∆n

st where the coordinate ti vanishes.
We also set ∂n = 0 on Cn(M) for all n ⩽ 0. Thanks to the alternating signs in (2.2),
the boundary maps satisfy

∂n−1 ◦ ∂n = 0

for each integer n (Exercise 2.59), thus making

(2.3) (C∗(M), ∂∗) =
[
· · · ∂2−→ C1(M)

∂1−→ C0(M)
∂0−→ 0 −→ · · ·

]

into a chain complex of abelian groups in the sense of Definition A.13 v).

Definition 2.4. We call (C∗(M), ∂∗) the singular chain complex of M .

Elements in the kernel of the boundary map ∂n are called closed singular chains,
or more often cycles, and elements in the image of ∂n+1 are called boundaries.

Definition 2.5. Let n be an integer. The singular homology in degree n of M
is the n-th homology group

Hn(M,Z) =
Ker(∂n : Cn(M) −→ Cn−1(M))

Im(∂n+1 : Cn+1(M) −→ Cn(M))

of the singular chain complex of M . In other words, Hn(M,Z) is the quotient of
the abelian group of cycles by the subgroup consisting of boundaries.
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Example 2.6. In degree zero, H0(M,Z) is the direct sum of copies of Z indexed
by the set π0(M) of path-connected components of M . Indeed, any two points x
and y in the same component define the same element of H0(M,Z) since y − x is
the boundary of a path γ : [0, 1]→M satisfying γ(0) = x and γ(1) = y. Therefore,
choosing a point on each path-connected component we obtain a set of generators
of H0(M,Z). On the other hand, since [0, 1] is path-connected, the image of a
continuous map γ : [0, 1]→M is contained in a path-connected component, and this
implies that all elements in the previous set of generators are linearly independent.

The construction of singular homology is functorial. For each continuous map
of topological spaces f : M1 → M2, sending a singular n-simplex σ : ∆n

st →M1

on M1 to the singular n-simplex f ◦ σ : ∆n
st →M2 on M2 induces homomorphisms

(2.7) f∗ : Cn(M1) −→ Cn(M2)

that commute with the boundary maps ∂n (Exercise 2.60), and hence morphisms
of graded abelian groups, still denoted by

f∗ : H∗(M1,Z) −→ H∗(M2,Z).

Moreover, (f ◦g)∗ = f∗ ◦g∗ holds for all composable maps f and g, and the identity
of M induces the identity of H∗(M,Z).

Dualizing the definitions of singular chains and boundary maps, we find the
free abelian group of singular n-cochains

Cn(M) = HomZ(Cn(M),Z),

as well as coboundary maps

dn : Cn(M)→ Cn+1(M).

In particular, Cn(M) and dn are zero for all n < 0. Explicitly, dn maps a singular
n-cochain η : Cn(M)→ Z to the singular (n+ 1)-cochain that takes the value

(2.8) (dnη)(σ) = η(∂n+1σ)

on an (n+ 1)-singular chain σ on M . These coboundary maps satisfy

dn+1 ◦ dn = 0

for each integer n (Exercise 2.59), thus making

(2.9) (C∗(M),d∗) =

[
· · · −→ 0 −→ C0(M)

d0

−→ C1(M)
d1

−→ · · ·
]

into a cochain complex of abelian groups in the sense of Definition A.13 i).

Definition 2.10. We call (C∗(M),d∗) the singular cochain complex of M .

The elements of the kernel of dn are called cocycles, and the elements of the
image are called coboundaries.

Definition 2.11. Let n be an integer. The singular cohomology in degree n
of M is the n-th cohomology group

Hn(M,Z) =
Ker(dn : Cn(M) −→ Cn+1(M))

Im(dn−1 : Cn−1(M) −→ Cn(M))

of the singular cochain complex of M . In other words, Hn(M,Z) is the quotient of
the abelian group of cocycles by the subgroup consisting of coboundaries.
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Similarly as above, singular cohomology is functorial: from a continuous map
of topological spaces f : M1 →M2, we get a homomorphism

f∗ : Cn(M2) −→ Cn(M1)

by sending a singular n-cochain η : Cn(M2)→ Z on M2 to the singular n-cochain
on M1 obtained by composition with (2.7), namely η ◦ f∗ : Cn(M1) → Z. The
map f∗ commutes with the coboundaries dn (Exercise 2.60), and hence induces a
morphism of graded abelian groups

f∗ : H∗(M2,Z) −→ H∗(M1,Z)

that we still denote by the same symbol. This assignment satisfies (f ◦g)∗ = g∗ ◦f∗
for all composable maps f and g, and (IdM )∗ = IdH∗(M,Z).

Remark 2.12.

i) We defined singular homology and cohomology with integer coefficients,
but the same construction extends to any abelian group G by considering

Cn(M,G) =
⊕

σ : ∆n
st→M

Gσ,

Cn(M,G) = HomZ(Cn(M,G), G).

If G is a ring, then the resulting objects are G-modules and the unique
ring morphism Z→ G induces a morphism of G-modules

H∗(M,Z)⊗Z G −→ H∗(M,G).

By the universal coefficient theorem to be explained below, this map is an
isomorphism if G is a field k of characteristic zero:

H∗(M,k) ≃ H∗(M,Z)⊗Z k.

Most of the time, it will be enough for our purposes to work with rational
coefficients, that is, to take G = k = Q.

ii) Singular homology and cohomology are defined for any topological space.
When M underlies a differentiable manifold, we may use smooth maps in-
stead of continuous maps, that is, maps σ : ∆n

st →M admitting a C∞ ex-
tension to an open neighborhood of ∆n

st in Rn+1. It is a standard result of
differential geometry (see [War83, § 5.32] or [Lee13, Thm. 18.7]) that the
singular homology and cohomology groups remain the same when one con-
siders this restricted set of generators. In other words, the inclusion of the
subcomplex of C∗(M) built out of smooth chains is a quasi-isomorphism.

iii) Working with rational coefficients, we may identify singular cohomology
with the linear dual of singular homology

(2.13) Hn(M,Q) ≃ HomQ(Hn(M,Q),Q),

and think of cohomology classes as linear functionals on homology; this
will be useful to discuss periods. However, the isomorphism (2.13) cannot
hold integrally since the group Hom(Hn(M,Z),Z) is always torsion free,
while Hn(M,Z) may have torsion (see Exercise 2.62 for an example).

In the sequel, we will mainly consider the singular cohomology with rational
coefficients of complex algebraic varieties, which deserves the special name of Betti
cohomology. Namely, given an algebraic variety X defined over a subfield k of C,
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the set of complex points X(C) carries a natural topology coming from the eu-
clidean topology of C; it is usually called the classical or the analytic, or yet the
transcendental topology to distinguish it from the Zariski topology on X.

Definition 2.14. Let k be a subfield of C and let X be an algebraic variety
over k. The Betti cohomology H∗B(X) of X is the singular cohomology with rational
coefficients of the set of complex points X(C) equipped with the classical topology:

H∗B(X) = H∗(X(C),Q).

2.1.1. Properties of singular homology and cohomology. Singular homology and
cohomology enjoy several properties that are very useful to explicitly compute them
by “decomposing” a given topological space into simpler ones. We list some of them.

• Homotopy invariance. A continuous map f : M1 → M2 of topological spaces is
called a homotopy equivalence if there exists a continuous map g : M2 → M1 such
that the compositions g ◦ f and f ◦ g are homotopic to the identity maps on M1

and M2 respectively. This means that there exists a continuous map

H : M1 × [0, 1] −→M1

satisfying H(x, 0) = g(f(x)) and H(x, 1) = x for all x ∈M1, and similarly for f ◦g.
We then say that the topological spaces M1 and M2 have the same homotopy type.
When M has the same homotopy type as a point, we say that M is contractible.

If f : M1 →M2 is a homotopy equivalence, then the maps

f∗ : H∗(M1,Z) −→ H∗(M2,Z) and f∗ : H∗(M2,Z) −→ H∗(M1,Z)

are isomorphisms of abelian groups. This is a straightforward consequence of the
result that two homotopic maps induce the same morphisms in homology and co-
homology, which is for instance proved in [Hat02, Thm. 2.10 and p. 201].

• Mayer–Vietoris long exact sequence. For any cover M = U ∪ V of M by open
subspaces U and V , there is a long exact sequence

(2.15)

· · · Hn(U ∩ V,Z) Hn(U,Z)⊕Hn(V,Z) Hn(M,Z)

Hn−1(U ∩ V,Z) · · ·

α β

Letting ιU∩V,U : U ∩ V ↪→ U denote the inclusion, and similarly for other pairs of a
space and a subspace, the maps α and β are given by

α = (−(ιU∩V,U )∗, (ιU∩V,V )∗), β = (ιU,M )∗ + (ιV,M )∗.

The morphism connecting two lines is defined as follows: using barycentric subdi-
vision (see, for instance, [Hat02, p. 150]), each n-cycle σ on M can be written as
a sum σ = σ′ + σ′′ of n-chains σ′ and σ′′ on U and V respectively. The class [σ] is
then mapped to the class of ∂σ′ = −∂σ′′, which represents a well-defined element
of Hn−1(U ∩ V,Z). Dually, there is a long exact sequence in cohomology

(2.16)

· · · Hn(U ∩ V,Z) Hn(U,Z)⊕Hn(V,Z) Hn(M,Z)

Hn−1(U ∩ V,Z) · · ·

• Universal coefficients theorem. Singular homology and cohomology of a topo-
logical space with coefficients in an abelian group can be deduced from those with
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integer coefficients. It is in this sense that the integers are the universal coefficients.
The precise result is as follows (see [Hat02, Thm. 3.2 and Thm. 3A.3]). Let M be a
topological space and let G be an abelian group. For each n ⩾ 0, there are natural
short exact sequences

0 −→ Ext1(Hn−1(M,Z), G) −→ Hn(M,G) −→ Hom(Hn(M,Z), G) −→ 0,(2.17)

0 −→ Hn(M,Z)⊗G −→ Hn(M,G) −→ Tor1(Hn−1(M,Z), G) −→ 0,(2.18)

where Ext1(−, G) and Tor1(−, G) denote the Ext1 and Tor1 functors in the cat-
egory of Z-modules, defined as the right and left derived functors in degree one
of Hom(−, G) and −⊗G respectively (see Examples A.114 and A.124). The map

Hn(M,G) −→ Hom(Hn(M,Z), G)

is induced from the evaluation of a singular cochain on a singular chain, and

Hn(M,Z)⊗G −→ Hn(M,G)

from the product of a singular chain with integer coefficients by an element of G.
The existence of the exact sequences (2.17) and (2.18) can be proved using

spectral sequences as in Exercise 2.63. Moreover, they are (non-canonically) split.
For us, the main important consequence of the universal coefficients theorem is that
it gives isomorphisms of rational vector spaces

Hn(M,Q) = Hn(M,Z)⊗Q, Hn(M,Q) = Hom(Hn(M,Z),Q),

on noting that the functors Hom(−, G) and −⊗G are exact for G = Q, and hence
both Ext1(Hn−1(M,Z), G) and Tor1(Hn−1(M,Z), G) vanish.

• Künneth formula in homology. Singular homology is equipped with an external
product that induces an isomorphism

(2.19) Hn(M1 ×M2,Q) ≃
⊕

i+j=n

Hi(M1,Q)⊗Q Hj(M2,Q)

which is usually referred to as the Künneth formula. For it to be true as stated,
we need to consider homology with rational coefficients (see Exercise 2.68 for a
counterexample), but a more sophisticated formula involving Tor groups is true
with integral coefficients; see [Hat02, Thm. 3B.6].

The combinatorial structures involved in the construction of the external prod-
uct is very much related to those that we have already seen in the study of multiple
zeta values. Recall from Example A.36 that the tensor product of the chain com-
plexes C∗(M1) and C∗(M2) is the complex C∗(M1)⊗ C∗(M2) with degree n term

n⊕

k=0

Ck(M1)⊗ Cn−k(M2)

and differential ∂ given on elementary tensors of α ∈ Ck(M1) and β ∈ Cn−k(M2) by

∂(α⊗ β) = ∂α⊗ β + (−1)kα⊗ ∂β.

Our goal is to show that this tensor product is quasi-isomorphic to the complex
of singular chains of the product space M1×M2. For this, first note that a simplex
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in M1×M2 is given by a pair (σ, τ), where σ is a simplex in M1 and τ is a simplex
in M2. We define a deconcatenation map

(2.20)

F : C∗(M1 ×M2) −→ C∗(M1)⊗ C∗(M2)

(σ, τ) 7−→
n∑

k=0

(σ ◦ δn ◦ · · · ◦ δk+1)⊗ (τ ◦ (δ0)k)

for each (σ, τ) ∈ Cn(M1 ×M2). Explicitly, σ ◦ δn ◦ · · · ◦ δk+1 ∈ Ck(M1) is the k-th
front face of the simplex σ, given by

(σ ◦ δn ◦ · · · ◦ δk+1)(t0, . . . , tk) = σ(t0, . . . , tk, 0, . . . , 0︸ ︷︷ ︸
n−k

),

while τ ◦ (δ0)k ∈ Cn−k(M2) is the (n− k)-th back face of the simplex τ , given by

(τ ◦ (δ0)k)(t0, . . . , tn−k) = τ(0, . . . , 0︸ ︷︷ ︸
k

, t0, . . . , tn−k).

One can check that F is a morphism of chain complexes (Definition A.13), and
hence induces a morphism of homology groups

(2.21) Hn(M1 ×M2,Z) −→ Hn

(
C∗(M1)⊗ C∗(M2)

)
.

Second, there is a map

G : C∗(M1)⊗ C∗(M2) −→ C∗(M1 ×M2)

defined using shuffles (Section 1.5.3) and the non-standard simplices ∆k and ∆n−k

(see Remark 2.1). Given simplices α : ∆k →M1 and β : ∆n−k →M2, we set

(2.22) G(α⊗ β) =
∑

σ∈�(k,n−k)

(α⊗ β)σ,

where (α⊗ β)σ is the simplex ∆n →M1 ×M2 given by

(α⊗ β)σ(t1, . . . , tn) =
(
α(tσ(1), . . . , tσ(k)), β(tσ(k+1), . . . , tσ(n))

)

and we extend (2.22) by linearity to all singular chains. The map G is again a
morphism of chain complexes, and hence induces morphisms of homology groups

(2.23) Hn

(
C∗(M1)⊗ C∗(M2)

)
−→ Hn(M1 ×M2,Z).

The compositions F ◦G and G◦F are both homotopically equivalent to the identity,
which implies that (2.21) and (2.23) are isomorphisms inverse to each other. This
statement is a particular case of the Eilenberg–Zilber theorem. It can be proved in
a completely abstract way, without writing down explicit homotopies, by means of
the acyclic models theorem (see [Spa66, Chap. 5, § 3 Thm. 6] and Section A.1.12).

Theorem 2.24 (Eilenberg–Zilber [EZ53]). The functor M 7→ C∗(M) from the
category of topological spaces to the category of chain complexes of abelian groups
satisfies the following three properties:

i) There exists a natural transformation of functors

α : C∗(· × ·)→ C∗(·)⊗ C∗(·)
that is unique up to a natural homotopy.
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ii) There exists a natural transformation of functors

β : C∗(·)⊗ C∗(·)→ C∗(· × ·)
that is unique up to a natural homotopy.

iii) The natural transformations α and β are natural homotopy equivalences
that are inverse to each other.

In order to see that the maps F and G are candidates for the natural transfor-
mations α and β, one only needs to solve Exercise 2.65, which consists of a straight-
forward although cumbersome sequence of verifications. Then Theorem 2.24 implies
that F and G are homotopy equivalences inverse to each other, as claimed.

The last ingredient to prove the Künneth isomorphism as stated in (2.19) is
the general fact about tensor products of complexes that there is a natural map

(2.25)

n⊕

k=0

Hk(C∗(M1))⊗Hn−k(C∗(M2)) −→ Hn

(
C∗(M1)⊗ C∗(M2)

)
,

[σ]⊗ [τ ] 7−→ [σ ⊗ τ ]

which is well defined since α and β are closed (Exercise 2.66). The map (2.25)
is injective and becomes an isomorphism after tensoring by the field of rational
numbers (this follows from [Wei94, Thm. 3.6.3], using that every module over a
field is flat). It is only in this last step that rational coefficients are needed.

Remark 2.26. We emphasize again the similarities between the map F and
the deconcatenation coproduct that will be introduced later in Example 3.64, and
between the map G and the shuffle product from the same example.

• Künneth formula in cohomology. There is also a Künneth formula for singular
cohomology, but only under the assumption that at least one of the topological
spaces has finite-dimensional cohomology in all degrees:

(2.27) Hn(M1 ×M2,Q) ≃
⊕

i+j=n

Hi(M1,Q)⊗Q Hj(M2,Q).

The need of such a restriction is already clear in degree zero: if M1 and M2 are
infinite countable discrete spaces, then H0(M1 ×M2,Q) is isomorphic to Q[[x, y]],
whereas H0(M1,Q)⊗H0(M2,Q) is isomorphic to Q[[x]]⊗Q[[y]].

Assuming the finiteness condition, the Künneth formula (2.27) follows from
that in homology (Exercise 2.67). What always exists without any assumption is a
map from the right-hand side of (2.27) to the left-hand side, which is constructed
as follows. Dually to F in (2.20), there is a morphism of cochain complexes

(2.28) C∗(M1)⊗ C∗(M2) −→ C∗(M1 ×M2)

given in each degree n by mapping a tensor product η ⊗ ξ of cochains η ∈ Ck(M1)
and ξ ∈ Cn−k(M2) to the cochain in Cn(M1 ×M2) whose value at (σ, τ) is

η(σ ◦ δn ◦ · · · ◦ δk+1) · ξ(τ ◦ (δ0)k)

(the middle product takes place in Z). This map induces a morphism in cohomology

(2.29) Hn
(
C∗(M1)⊗ C∗(M2)

)
−→ Hn(M1 ×M2,Z).
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Besides, there is an injective homomorphism

(2.30)

n⊕

k=0

Hk(C∗(M1))⊗Hn−k(C∗(M2)) −→ Hn
(
C∗(M1)⊗ C∗(M2)

)
,

given by the same expression as in (2.25), that becomes an isomorphism rationally.
The composition of these two morphisms yields the map

(2.31)
⊕

i+j=n

Hi(M1,Z)⊗Hj(M2,Z) −→ Hn(M1 ×M2,Z).

• Cup-product. One of the advantages of working with cohomology rather than
homology is that combining the external product with the contravariant functori-
ality of cohomology one obtains a product in cohomology called the cup-product.
Namely, consider the diagonal embedding

diag : M −→M ×M.

x 7−→ (x, x)

Composing (2.28) with the morphism induced by diag by functoriality of singular
cochains, we get a cup-product

⌣ : Ck(M)⊗ Cℓ(M) −→ Ck+ℓ(M)

that maps η ⊗ ξ to the singular cochain whose value on σ ∈ Ck+ℓ(M) is

(η ⌣ ξ)(σ) = η(σ ◦ δn ◦ · · · ◦ δℓ+1) · ξ(σ ◦ (δ0)k)

On cohomology, this map induces the composition

Hk(M,Z)⊗Hn−k(M,Z) −→ Hn(M ×M,Z)
diag∗

−−−→ Hn(M,Z),

where the first arrow is (2.31). We still call it the cup-product .

• Cap-product. For all non-negative integers k ⩾ ℓ, there is a bilinear map

⌢ : Ck(M)× Cℓ(M) −→ Ck−ℓ(M)

defined on a simplex σ : ∆k
st →M and a cochain η : Cℓ(M)→ Z by the formula

σ ⌢ η = η(σ ◦ δn ◦ · · · ◦ δℓ+1) · σ ◦ (δ0)ℓ.

Using an explicit expression for the boundary of such a chain, namely

∂(σ ⌢ η) = (−1)ℓ
(
∂σ ⌢ η − σ ⌢ ∂η

)
,

one checks that the map ⌢ induces a bilinear map

⌢ : Hk(M,Z)×Hℓ(M,Z) −→ Hk−ℓ(M,Z),

which is still denoted by the same symbol and called the cap-product. By construc-
tion, the cup-product and the cap-product are related by the formula

ξ(σ ⌢ η) = (η ⌣ ξ)(σ)

for singular cochains η ∈ Ck(M) and ξ ∈ Ck−ℓ(M) and singular chains σ ∈ Ck(M).

• Finite-dimensionality of Betti cohomology. Let X be a quasi-projective algebraic
variety over a field k ⊂ C. Then the Betti cohomology H∗B(X) is a finite-dimensional
rational vector space. Indeed, let X ⊂ Pn be a projective compactification of X,
and write Z = X \X for the complement. By Exercise 2.71, we can embed Pn(C)
as a bounded semi-algebraic subset of RN for some big enough N , i.e. a finite
union and intersection of subsets of the form {f(x1, . . . , xN ) ⩾ 0}, where f is a
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polynomial with real coefficients. By a theorem of  Lojasiewicz [Loj64, Thm. 3],
there is a finite triangulation of Pn(C) that induces a triangulation both of X(C)
and Z(C). This implies that (X(C), Z(C)) is homeomorphic to a pair (K,K ′),
where K and K ′ are finite simplicial complexes (see [Hat02, p. 107] for the notion
of simplicial complex). After, if necessary, passing to a refinement of K, we may
assume that the intersection with K ′ of every simplex σ of K is either empty, all
of σ, or one of its faces. In that case, the set

K ′′ =
⋃

σ∈K
σ∩K′=∅

σ

is a finite simplicial complex homotopically equivalent to K \K ′. Therefore,

X(C) = X(C) \ Z(C)

has the same homotopy type as a finite CW complex, from which it follows that its
singular cohomology is finite-dimensional.

Remark 2.32. In fact, using Nagata’s compactification theorem [Con07], the
fact that every variety can be embedded as a closed subvariety of a smooth one, and
Grauert’s embedding theorem [Gra58], the argument carries over to any variety
(separated scheme of finite type) not necessarily quasi-projective over k.

• Poincaré duality. Let M be an oriented compact topological manifold of dimen-
sion n. For instance, the topological space X(C) associated with a smooth proper
variety X of dimension d over the field of complex numbers is an oriented com-
pact topological manifold of dimension 2d. Then the top degree homology of each
connected component Mα of M is free of rank 1, generated by the so-called funda-
mental class [Mα] of Mα, which can be obtained by choosing a triangulation of Mα

and using the orientation to turn it into a singular chain:

Hn(Mα) ≃ Z · [Mα].

The fundamental class of M is defined as the sum [M ] =
∑
α[Mα]. Poincaré

duality is the statement that, in each degree 0 ⩽ j ⩽ n, the cap product with the
fundamental class [M ] is an isomorphism

(2.33) [M ] ⌢ − : Hj(M,Z)
∼−→ Hn−j(M,Z).

Using the relation between the cup product and the cap product, as well as the
universal coefficients theorem, Poincaré duality can also be interpreted on the co-
homology with rational coefficients as the statement that the pairing

(2.34) Hj(M,Q)⊗Hn−j(M,Q) −→ Q

given by taking cup-product and evaluating the resulting element of Hn(M,Q) on
the fundamental class [M ] is perfect. Indeed, on singular cochains representing
cohomology classes, this operation is given by

(η ⌣ ξ)([M ]) = ([M ] ⌢ η)(ξ),

so if for a given η the left-hand side vanishes for all ξ, then η = 0 thanks to (2.33).
As usual, the perfect pairing (2.34) translates into an isomorphism

(2.35) Hj(M,Q) ≃ Hom(Hn−j(M,Q),Q).
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Example 2.36. Let M = C \ {0} be the punctured complex plane. Since M
is path-connected, H0(M,Z) is the free abelian group generated by the singular
simplex σ0 : ∆0

st →M that maps 1 ∈ ∆0
st to 1 ∈M . Using that M is homotopic to

the unit circle S1 and the Mayer–Vietoris long exact sequence, one shows that the
group H1(M,Z) is also free of rank one, generated by the singular simplex

σ1 : ∆1
st −→M, (t, 1− t) 7−→ exp(2πit),

and that all other homology groups vanish. Indeed, the inclusion S1 ↪→ M is
a homotopy equivalence (an inverse being given by z 7→ z/|z|), so it suffices to
compute H1(S1,Z). Let us cover S1 by two open arcs of circle U and V that
intersect along two small intervals. Since U and V are contractible, and U ∩ V has
the same homotopy type as two points, the vanishing of Hn(S1,Z) for all n ⩾ 2
follows from (2.15), which also yields a long exact sequence

0 −→ H1(S1,Z) −→ Z⊕ Z α−→ Z⊕ Z −→ Z −→ 0,

where the map α is given by the matrix
(−1 −1

1 1

)
. Therefore, H1(S1,Z) = Ker(α)

is isomorphic to Z, and is actually generated by the simplex σ1.

2.1.2. Relative homology and cohomology. There is also a relative version of
singular homology, in which chains are allowed to have a non-zero boundary as
long as it lies in a fixed subspace. If ι : N ↪→ M is the inclusion of a topological
subspace, then the morphism of chain complexes ι∗ : C∗(N)→ C∗(M) is injective.

Definition 2.37. The relative singular complex C∗(M,N) is the cone of i∗:

C∗(M,N) = cone(i∗).

Explicitly (see Remark A.28), this is the complex given by

Cn(M,N) = Cn−1(N)⊕ Cn(M)

in degree n, together with the differential

(2.38) ∂(a, b) = (−∂a, ∂b+ ι∗(a)).

Definition 2.39. Let n be an integer. The relative singular homology in de-
gree n of a pair (M,N) consisting of a topological space M and a subspace N ⊂M
is the n-th homology group of the relative singular complex C∗(M,N). We write

Hn(M,N ;Z) = Hn(C∗(M,N)).

Exercise 2.69 presents an alternative construction of relative homology in terms
of the quotient complex C∗(M)/C∗(N).

Remark 2.40. An element of Hn(M,N ;Z) is represented by a pair (σN , σM )
consisting of singular chains σN ∈ Cn−1(N) and σM ∈ Cn(M) which is closed
for the differential (2.38), i.e. satisfies ∂n−1σN = 0 and ∂nσM = −ι∗σN . Since ι∗ is
injective, the singular chain σN is determined by the latter condition, which implies
the former thanks to the relation ∂n ◦ ∂n−1 = 0. In other words, relative homology
classes are represented by singular chains in M which are not necessarily closed but
whose boundary is constrained to lie in the subspace N .

By design, C∗(M,N) fits into a short exact sequence of complexes

(2.41) 0 −→ C∗(M)
b−→ C∗(M,N)

a−→ C∗(N)[−1] −→ 0,
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where the map b sends b to (0, b), and the map a sends (a, b) to a. Above, the
shifted complex C∗(N)[−1] has Cn−1(N) as degree n term, with differential −∂n−1,
so that the relation Hn(C∗(N)[−1]) = Hn−1(N,Z) holds. The long exact sequence
in homology associated with this short exact sequence (see (A.41)) then reads

(2.42)

· · · Hn(M,Z) Hn(M,N ;Z) Hn−1(N,Z)

Hn−1(M,Z) Hn−1(M,N ;Z) · · · ,

and the connecting morphisms are given by

−ι∗ : H∗(N,Z) −→ H∗(M,Z),

the opposite of the maps induced by the inclusion ι : N ↪→M .

Remark 2.43. The reason why the negative sign appears in the connecting
morphism is explained in Remark A.86. Instead of looking at the short exact
sequence (2.41), we may consider the distinguished triangle

C∗(N)
ι∗−→ C∗(M) −→ C∗(M,N) −→ C∗(N)[−1]

(in the language of Section A.3) to obtain the long exact sequence of abelian groups

· · · Hn(N,Z) Hn(M,Z) Hn−1(M,N ;Z)

Hn−1(N,Z) Hn−1(M,Z) · · ·

ι∗

where the maps from Hn(N,Z) to Hn(M,Z) are not affected by a sign anymore.

Example 2.44. Consider M = C \ {0} and let N = {p, q} ⊆M be a subspace
consisting of two distinct points p and q. Let σ2 : ∆1

st →M be any continuous map
such that σ2((0, 1)) = p and σ2((1, 0)) = q. Then

∂σ2 = p− q ∈ C0(N),

so σ2 defines a relative chain. It follows from the long exact sequence (2.42) that the
only non-trivial relative homology group is H1(M,N ;Z), which has a basis given
by the chain σ1 from Example 2.36 and σ2 (see Figure 2). Indeed, for dimension
reasons the non-trivial part of the long exact sequence reads

(2.45) 0 −→ H1(M,Z) −→ H1(M,N ;Z)
∂−→ H0(N,Z) −→ H0(M,Z) −→ 0,

so the image of the generator σ1 of H1(M,Z) defines a non-zero class, and any
relative chain whose boundary is a generator of Ker(H0(N,Z) → H0(M,Z)), for
example σ2, completes σ1 to a Z-basis of H1(M,N ;Z).

In a similar way, one defines relative cohomology groups. Let ι : N ↪→ M be
the inclusion of a topological subspace, and ι∗ : C∗(M)→ C∗(N) the induced map
on cochain complexes. We consider the total complex

C∗(M,N) = Tot(ι∗) = cone(−ι∗)[−1],

as in Example A.35. Explicitly, this is the complex given in degree n by

Cn(M,N) = Cn(M)⊕ Cn−1(N)

together with the differential

d(a, b) = (da,−db+ ι∗(a)).
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0 1

σ1

p qσ2

Figure 2. A basis of H1(C \ {0}, {p, q};Z)

It fits into a distinguished triangle (see Section A.3.2)

C∗(M,N) −→ C∗(M)
ι∗−→ Cn(N) −→ C∗(M,N)[1].

Definition 2.46. Let n be an integer. The relative singular cohomology in
degree n of the pair (M,N) is the n-th cohomology group of the complex C∗(M,N).
We denote it by

Hn(M,N ;Z) = Hn(C∗(M,N)).

By construction, the relative singular cohomology groups sit into a long exact
sequence of abelian groups

(2.47)

· · · Hn(M,N ;Z) Hn(M,Z) Hn(N,Z)

Hn+1(M,N ;Z) Hn+1(M,Z) · · ·

ι∗

Remark 2.48. It is instructive to compare the definitions of relative homology
and cohomology. In the first case, we use the cone of the morphism ι∗, whereas in
the second case we use the total complex of ι∗. Both points of view are equivalent
according to Example A.35. The use of either the cone or of the total complex of
a morphism of complexes depends on whether we want the degree of the resulting
complex to agree with the degree of the source or the target complex.

2.1.3. Singular cohomology as sheaf cohomology. Under mild assumptions on
the topological space M , the singular cohomology groups H∗(M,Z) can be identified
with the sheaf cohomology groups of the constant sheaf. More precisely, let ZM be
the sheaf associated with the presheaf that assigns to each open subset V of M the
abelian group Z, with all restriction maps equal to the identity. Its sections are

ZM (V ) = {locally constant functions V −→ Z},
that is, those functions with the property that each point of V has an open neigh-
borhood on which they are constant.

Theorem 2.49. Assume that M is locally contractible and that every open
subset of M is paracompact. There is a canonical isomorphism

(2.50) H∗(M,Z) ≃ H∗(M,ZM ),
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where the left-hand side is the singular cohomology of M and the right-hand side is
the sheaf cohomology of ZM .

The proof of this result is presented in Section A.9.8 (see Theorem A.304). The

main idea is to introduce the sheaves C̃n on M associated with the presheaves of
singular cochains U 7−→ Cn(U). As n varies, they form a complex along with the

differentials dn : C̃n → C̃n+1. The construction of the isomorphism (2.50) then
relies on the following three properties of this complex:

i) The natural morphism (C∗(M),d∗) −→ (C̃∗(M),d∗) from the singular
chain complex to the complex of global sections is a quasi-isomorphism.

ii) All the sheaves C̃n are flasque, and hence hypercohomology can be com-

puted using global sections: H∗(M, C̃∗) ≃ H∗(M, C̃∗(M)).

iii) The map of sheaves ZM → C̃0 associated with the map of presheaves
that sends 1 to the singular 0-cochain (

∑
nx[x] 7→ ∑

nx) induces a

quasi-isomorphism ZM → C̃∗.

Using the universal coefficients theorem and the fact that tensoring by a field is
an exact operation, we deduce that the same result holds for the cohomology with
coefficients in a field of characteristic zero, for instance Q.

In the same spirit, relative cohomology, as introduced in Section 2.1.2, can
be written as the hypercohomology of a complex of sheaves. Indeed, let M be a
topological space satisfying the assumptions of Theorem 2.49, and let ι : N → M
be the inclusion of a closed subspace (see Remark 2.52 below for the general case).
Consider the direct image sheaf ι∗ZN on M whose sections on an open subset V are

(ι∗ZN )(V ) = ZN (V ∩N).

Note that this definition makes sense since V ∩ N is an open subset of N . The
stalks of the sheaf ι∗ZN are

(ι∗ZN )x =

{
Z, if x ∈ N,
0, if x /∈ N.

If N is locally contractible as well, then there is an isomorphism

H∗(N,Z) ≃ H∗(M, ι∗ZN ).

Indeed, the functor ι∗ is exact (Exercise A.323), so that we have ι∗ZN = Rι∗ZN ,
and hence H∗(M, ι∗ZN ) = H∗(N,ZN ) by Proposition A.278. Moreover, there is a
canonical map of sheaves ZM → ι∗ZN which is abstractly given by the adjunction
morphism (A.286) on noting that ZN = ι−1ZM , or more concretely by sending a
locally constant function on V to its restriction to V ∩N .

Theorem 2.51. LetM be a locally contractible topological space such that every
open subset of M is paracompact. Let ι : N →M be the inclusion of a closed locally
contractible subspace. There is a canonical isomorphism

H∗(M,N ;Z) ≃ H∗(M,ZM → ι∗ZN ).

Proof. Since the functor ι∗ is exact, it maps the quasi-isomorphism ZN → C̃∗N
to a quasi-isomorphism ι∗ZN → ι∗C̃

∗
N . Besides, the sheaves ι∗C̃

n
N are flasque, since

the restriction maps (ι∗C̃
n
N )(V ) → (ι∗C̃

n
N )(V ′) for open subsets V ′ ⊂ V are by

definition the restriction maps C̃nN (V ∩ N) → C̃nN (V ′ ∩ N), which are surjective
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as the sheaves C̃nN are flasque. To compute the hypercohomology group on the
right-hand side, we can therefore replace the complex of sheaves ZM → ι∗ZN with

the double complex of global sections C̃∗M (M)→ (ι∗C̃
∗
N )(M) = C̃∗N (N). Since the

source and the target are quasi-isomorphic to the singular cochain complexes C∗(M)
and C∗(N) respectively, we find:

H∗(M,ZM → ι∗ZN ) ≃ H∗(Tot(C∗(M)
ι∗−→ C∗(N))),

which is by definition the relative singular cohomology of the pair (M,N). □

Remark 2.52. If the subspace N is locally contractible but not closed, then the
functor ι∗ is not necessarily exact. A similar result still holds, upon replacing the
sheaf ι∗ZN with the complex of sheaves Rι∗ZN . That is, there is an isomorphism

H∗(M,N ;Z) ≃ H∗(M,ZM → Rι∗ZN )

Let N ⊂M be a closed subspace. Let U = M \N be the complementary open
subset, and let j : U ↪→ M denote the inclusion. Consider the extension by zero
sheaf j!ZU , which is the sheaf on M associated with the presheaf

(2.53) V 7−→
{
ZU (V ), if V ⊂ U,
0, otherwise.

The stalks of this sheaf are

(j!ZU )x =

{
Z, if x ∈ U,
0, otherwise.

Moreover, there is a canonical map of sheaves j!ZU → ZM given by the adjunction
morphism (A.299) on noting that ZU = j−1ZM (concretely, it is induced by the
map of presheaves from (2.53) to ZM that, for each open subset V ⊂ U , sends a
locally constant function V → Z to itself regarded as a function on V ⊂M). These
maps fit into an exact sequence of sheaves of abelian groups

(2.54) 0 −→ j!ZU −→ ZM −→ ι∗ZN −→ 0,

as is readily checked stalk by stalk.

Remark 2.55. Thanks to the exact sequence (2.54), the complex ZM → ι∗ZN
is quasi-isomorphic to the complex concentrated in degree zero j!ZU , and hence
relative cohomology can also be expressed as the cohomology of a single sheaf
rather than the hypercohomology of a complex of sheaves, namely

H∗(M,N ;Z) ≃ H∗(M, j!ZU ).

Moreover, combining (2.54) with Theorem 2.49, we recover the long exact se-
quence (2.47) of relative cohomology.

2.1.4. Cohomology with compact support and Poincaré duality. Once we have
interpreted singular cohomology as sheaf cohomology, we can apply Definition A.295
to define cohomology with compact support.

Definition 2.56. Let M be a locally contractible topological space such that
every open subset of M is paracompact. The singular cohomology with compact
support of M is the cohomology with compact support of the sheaf Z. We write

H∗c(M,Z) = H∗c(M,Z).

One defines similarly cohomology with compact support for other coefficients like Q.
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Remark 2.57. Another way to define cohomology with compact support is to
consider the complex CBM

∗ (M) of locally finite chains on a topological space M .
A locally finite chain is a product σ =

∏
α nασα of singular simplices (that is, an

element of the direct product over all simplices on M , as opposed to the direct sum
in the definition of singular chains) such that every point ofM has a neighborhood U
that only intersects σ at a finite number of σα. This gives rise to Borel–Moore
homology. Then the dual complex

C∗BM(M) = Hom(CBM
∗ (M),Z)

gives rise to cohomology with compact support. For example, let γn be the straight
path from en to en+1. Then

∏
n∈Z γn is a locally finite 1-chain on the topological

space M = C \ {0}, which defines a non-trivial class in the first Borel–Moore ho-
mology group of M . The local finiteness property is the key to integrate differential
forms with compact support along locally finite chains.

The cohomology with compact support allows us to extend Poincaré duality,
in the form given in (2.35), to non-compact topological manifolds.

Theorem 2.58 (Poincaré duality). Let M be an oriented topological manifold
of dimension n with a finite number of connected components. For each 0 ⩽ j ⩽ n,
there is a canonical isomorphism

Hj(M,Q) ≃ Hom(Hn−j
c (M,Q),Q).

⋆ ⋆ ⋆

Exercise 2.59. Prove that the boundary maps (2.2) in the definition of singular
homology satisfy ∂n−1 ◦ ∂n = 0 for all integers n ⩾ 1. Deduce that the coboundary
maps (2.8) in the definition of singular cohomology satisfy dn+1 ◦ dn = 0 for all
integers n ⩾ 0.

Exercise 2.60. Prove that the map f∗ from (2.7) is compatible with the bound-
ary maps, and hence defines a homomorphism in homology. Deduce the same result
for singular cochains.

Exercise 2.61. Use the Mayer–Vietoris long exact sequences (2.15) and (2.16)
and Example 2.36 to compute the homology and the cohomology of the Riemann
sphere P1(C).

Exercise 2.62. In this exercise, we compute the homology and the cohomology
of the real projective plane.

i) Let M be the Möbius band, defined as the quotient

M = [0, 1]× (0, 1)/ ∼,
where ∼ is the equivalence relation generated by (0, x) ∼ (1, 1− x). Prove
that the first homology group of M is generated by the singular simplex

σ : ∆1
st →M, σ(t, 1− t) = (t, 1/2),

and that the simplex

σ1(t, 1− t) =

{
(2t, 3/4), if t ⩽ 1/2,

(2t− 1, 1/4), if t ⩾ 1/2,

is closed and represents the same class as 2σ in H1(M,Z).
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ii) Let P2(R) be the real projective plane, viewed as the quotient

P2(R) = S2/ ∼
of the two-dimensional sphere S2 by the equivalence relation generated
by x ∼ −x. Show that P2(R) can be covered by an open subset homeo-
morphic to the unit disc in R2 and an open subset homeomorphic to the
Möbius band.

iii) Use the Mayer–Vietoris sequences in singular homology (2.15) and singu-
lar cohomology (2.16) to compute

Hi(P2(R),Z) =





Z, if i = 0,

Z/2Z, if i = 1,

0, if i = 2.

Hi(P2(R),Z) =





Z, if i = 0,

0, if i = 1,

Z/2Z, if i = 2.

iv) Use the universal coefficients theorem to explain the discrepancy between
homology and cohomology.

Exercise 2.63. The goal of this exercise is to sketch a proof of the universal
coefficients theorem. Let M be a topological space.

i) Apply the variant of Proposition A.210 for left exact contravariant func-
tors (that uses projective resolutions) to the chain complex C∗(M,Z) and
the functor Hom(·, G) to produce a spectral sequence

(2.64) Extp(Hq(M,Z), G) =⇒ Hp+q(M,G).

ii) Use the vanishing Extk(A,B) = 0 for all abelian groups A,B and all k ⩾ 2
(Exercise A.134), to prove that the spectral sequence (2.64) degenerates
at the term E2 and gives rise to short exact sequences

0 −→ Ext1(Hn−1(M,Z), G) −→ Hn(M,G) −→ Hom(Hn(M,Z), G) −→ 0.

iii) Let G = Z. Conclude that whenever Hn−1(M,Z) is torsion-free, the Ext
group vanishes and we get an isomorphism between Hn(M,Z) and the
linear dual of Hn(M,Z).

iv) Apply now the variant of Proposition A.210 for right exact covariant func-
tors and bounded above complexes (that uses again projective resolutions)
to the chain complex C∗(M,Z) and the functor ·⊗G to show the existence
of the exact sequence (2.18).

Exercise 2.65. Prove that the maps F and G defined in (2.20) and (2.22)
satisfy the following properties:

i) They are morphisms of chain complexes.

ii) They are functorial in M1 and M2, and hence define natural transforma-
tions of functors

α : C∗(· × ·)→ C∗(·)⊗ C∗(·) and β : C∗(·)⊗ C∗(·)→ C∗(· × ·).
Exercise 2.66. Prove that the map (2.25) is well defined.
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Exercise 2.67. Let M1 and M2 be topological spaces. Assume that Hi(M1,Q)
is finite-dimensional in all degrees i ⩾ 0. Combine the Künneth formula in homology
with the universal coefficients theorem to obtain an isomorphism

Hn(M1 ×M2,Q) ≃
⊕

i+j=n

Hi(M1,Q)⊗Q Hj(M2,Q).

Exercise 2.68. Compute the homology and the cohomology of P2(R)×P2(R)
and deduce that the Künneth formulas (2.19) and (2.27) do not hold with integral
coefficients instead of rational coefficients.

Exercise 2.69 (An alternative definition of relative homology). We keep the
notation from Section 2.1.2. Given a topological space M and a subspace N , show
that the boundary maps ∂n yield a complex

(2.70) · · · −→ Cn(M)

Cn(N)
−→ Cn−1(M)

Cn−1(N)
−→ · · ·

which is quasi-isomorphic to the relative singular homology complex C∗(M,N)
(see Exercise A.93). Therefore, one can also define the relative homology groups
of the pair (M,N) as the homology groups of the complex (2.70). Note that the
corresponding long exact sequence is (2.42) shifted by one.

Exercise 2.71. Let n ⩾ 0 be an integer. Prove that the map

[x0 : · · · : xn] 7−→
(
. . . ,

Re(xix̄j)∑n
m=0 xmx̄m

,
Im(xix̄j)∑n
m=0 xmx̄m

, . . .

)

induces a homeomorphism from complex projective space Pn(C) onto a closed

bounded semi-algebraic subset of R2(n+1)2 (see [HMS17, p. 62]).

2.2. Algebraic de Rham cohomology. Inspired by ideas of Atiyah and
Hodge, Grothendieck introduced the de Rham cohomology of algebraic varieties
over fields of characteristic zero in his paper [Gro66], which was written shortly
after Hironaka’s proof of the resolution of singularities. In this section, we explain
the definition of algebraic de Rham cohomology and compute it in a few examples.

2.2.1. Motivation: de Rham’s theorem in differential geometry. Before going
into Grothendieck’s construction, we give a quick review of the more familiar objects
in differential geometry. The reader is encouraged to consult the book by Bott and
Tu [BT82] for a very nice exposition of the subject.

Let M be a differentiable manifold of dimension d. We denote by TM its
tangent bundle and by T ∗M its cotangent bundle, which is by definition the dual
of TM ; they are both vector bundles of rank d over M . For each integer p ⩾ 0,
consider the p-th exterior power

π : ΛpT ∗M −→M

of the cotangent bundle and the sheaf EpM of real vector spaces of smooth sections
of ΛpT ∗M . For each open subset U of M , the sections of EpM are given by

EpM (U) = {C∞-maps f : U → ΛpT ∗M such that π ◦ f is the inclusion U ↪→M}.
In particular, E0M is the sheaf of smooth functions on M . Sections of EpM are called
smooth differential p-forms, or simply differential p-forms, and can be written in a
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local chart with coordinates x1, . . . , xd as

(2.72) ω =
∑

1⩽i1<i2<···ip⩽d

fi1,...,ip(x1, . . . , xd)dxi1 ∧ · · · ∧ dxip

for some C∞-functions fi1,...,ip(x1, . . . , xd) on the local chart. Write

Ep(M) = Γ(M, EpM )

for the real vector space of global sections of EpM , and set

E∗(M) =

d⊕

p=0

Ep(M).

When we want to emphasize that these are differential forms with real coefficients,
we write E∗(M,R) instead of E∗(M). The space of differential forms with complex
coefficients is defined as the complexification E∗(M,C) = E∗(M)⊗R C.

Definition 2.73. The exterior derivative

d: E∗M −→ E∗M
is the unique R-linear map of sheaves of degree 1 (i.e. that maps EpM to Ep+1

M ) that
satisfies the following two conditions:

i) If f is a smooth function, then df is given in local coordinates by

df =

d∑

i=1

∂f

∂xi
dxi.

ii) If α is a local section of EpM , then the equality

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

holds for every local section β of E∗M .

It follows from the definition (Exercise 2.121) that the exterior derivative sat-
isfies d2 = 0. Taking global sections, we thus get a complex

0 −→ E0(M)
d−→ E1(M)

d−→ · · · d−→ Ed(M) −→ 0

of real vector spaces, the de Rham complex of M .

Definition 2.74. The de Rham cohomology H∗dR(M) of M is the cohomology
of this complex. When we want to emphasize that the de Rham cohomology is a
real vector space, we write H∗dR(M,R) instead.

A classical theorem of de Rham asserts that singular cohomology with real
coefficients H∗(M,R) can be computed using differential forms. As was mentioned
in Remark 2.12 ii), if one replaces singular chains with smooth singular chains in
the definition of singular homology the resulting groups are the same. We denote
by Csm

∗ (M,R) the complex of smooth singular chains with real coefficients and, as
in Remark A.307, we define smooth singular cochains as the linear dual

Sn(M,R) = HomR(Csm
n (M,R),R).

The vector spaces Sn(M,R) form a complex that computes the singular cohomology
with real coefficients of M . At this point, the advantage of working with smooth
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chains is that we can integrate differential forms along them: given a smooth sim-
plex σ : ∆n

st →M and a differential form ω ∈ E∗(M), the integral
∫
σ
ω is defined as

(2.75)

∫

σ

ω =

∫

∆n
st

σ∗ω,

and extended linearly to all smooth singular chains. We thus get a map

(2.76) E∗(M) −→ S∗(M,R)

that associates with each differential form ω ∈ E∗(M) the integration functional

∫
ω : S∗(M,R) −→ R

σ 7−→
∫
σ
ω.

Lemma 2.77. The map (2.76) is a functorial morphism of complexes.

Proof. Functoriality means that, for any morphism f : M → M ′ of differen-
tiable manifolds, the diagram

(2.78)

E∗(M ′) //

f∗

��

S∗(M ′,R)

f∗

��
E∗(M) // S∗(M,R)

commutes. This amounts to the equality
∫

σ

f∗ω =

∫

f∗σ

ω,

which readily follows from the definition (2.75) of the integral along a chain. Being a
morphism of complexes means that the map (2.76) commutes with the differentials
on the de Rham and the singular chain complexes. This amounts to the equality

∫

σ

dω =

∫

∂σ

ω,

which is the content of the classical Stokes’s theorem. □

In view of the lemma, the morphism (2.76) induces a functorial linear map
∫

: H∗dR(M,R) −→ H∗(M,R),

which we still call the integration functional. De Rham’s theorem is the statement
that this map is an isomorphism or, equivalently, that the original morphism of
complexes (2.76) is a quasi-isomorphism.

Theorem 2.79 (de Rham). Let M be a differentiable manifold of dimension d.
For each 0 ⩽ j ⩽ d, the map

Hj
dR(M,R) −→ Hj(M,R)

that sends the class of a differential form ω to the integration functional
∫
ω is an

isomorphism. This isomorphism is functorial for maps of differentiable manifolds.
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Proof. Recall that Ep(M) is defined, for each p ⩾ 0, as the real vector space of
global sections of the sheaf EpM of smooth differential p-forms on M . The existence
of partitions of unity implies that all the sheaves EpM are fine, and hence acyclic (see
Example A.262 and Lemma A.263). Moreover, by the differentiable Poincaré lemma
(see e.g. [Lee13, Thm. 17.14] or Theorem 2.145 below for the holomorphic Poincaré
lemma, which is proven in the same way) the inclusion of sheaves RM → E0M that
sends a locally constant function to the corresponding C∞-function fits into an exact
sequence of sheaves

(2.80) 0 −→ RM −→ E0M −→ E1M −→ · · · .

Let S̃∗M be the complex of sheaves of smooth cochains on M , i.e. the sheaves as-
sociated with the presheaves U 7→ Sn(U,R), as explained in Remark A.307. The
map (2.76) induces a morphism of complexes of sheaves

∫
: E∗M −→ S̃∗M

that fits into a commutative diagram

RM //

!!

E∗M∫
��

S̃∗M .

For each integer 0 ⩽ j ⩽ d, taking the cohomology in degree j of these complexes
of sheaves we get a commutative diagram

Hj(M,RM ) //

''

Hj
dR(M,R).

��
Hj(M,R)

The horizontal arrow is an isomorphism by the exactness of (2.80) and the fact that
the sheaves EpM are acyclic; the diagonal arrow is an isomorphism by Theorem A.304
and Remark A.307. Thus, the vertical arrow is an isomorphism as well. The claim
about functoriality then follows from the commutativity of diagram (2.78). □

2.2.2. Kähler differentials. Remarkably enough, when M is the differential
manifold underlying a smooth affine complex algebraic variety X, it suffices to
consider differential forms with regular functions on X (as opposed to all C∞ func-
tions) as coefficients to capture all de Rham cohomology classes.

From now on, we will assume that the reader is familiar with the rudiments
of the language of schemes, as can be found in the first sections of Chapter II of
Hartshorne’s book [Har77]. We first introduce the notion of Kähler differentials,
the substitute for the differential forms (2.72) that will allow for a purely algebraic
definition of de Rham cohomology.

Let k be a field of characteristic zero and let A be a finitely generated reduced
k-algebra. Being reduced means that there are no non-zero nilpotent elements in A;
that is, if xn = 0 for some integer n ⩾ 1, then x = 0. The spectrum X = Spec(A)
is then an affine algebraic variety over k.
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Definition 2.81. Let M be an A-module. A k-linear derivation of A into M
is a k-linear map D : A→M satisfying the Leibniz rule

(2.82) D(ab) = aD(b) + bD(a)

for all elements a, b ∈ A.

Using (2.82), the k-linearity of D is equivalent to the condition D(r) = 0 for
all r ∈ k. In particular, elements of k are “constants” for the derivation.

Definition 2.83. The A-module of Kähler differentials Ω1
A/k is the quotient

of the free A-module generated by symbols da, for all a ∈ A, by the submodule
spanned by the elements

(2.84) dr, d(a+ b)− da− db, d(ab)− adb− bda

for all r ∈ k and all a, b ∈ A.

By construction, the map d: A→ Ω1
A/k that sends a to da is a k-linear deriva-

tion. It is in fact the universal k-derivation: for any k-linear derivation D : A→M ,
there is a unique morphism of A-modules φ : Ω1

A/k →M making the diagram

(2.85)

A
d //

D !!

Ω1
A/k

φ

��
M

commutative. The following example is at the base of many computations in alge-
braic de Rham cohomology.

Example 2.86. Set A = k[x1, . . . , xd]. Then Ω1
A/k is the free A-module gener-

ated by dx1, . . . ,dxd. Indeed, let D : A→M be any k-linear derivation. It follows
from the Leibniz rule (2.82) that the image by D of a polynomial f ∈ A is equal to

D(f) =

d∑

i=1

∂f

∂xi
D(xi),

where ∂f/∂xi ∈ A stands for the partial derivative of f with respect to xi. From this
it follows that the free A-module generated by dx1, . . . ,dxd, along with the k-linear
map f 7→∑

i ∂f/∂xi dxi, is the universal derivation.
More generally, if A is the k-algebra

(2.87) A = k[x1, . . . , xn]/(f1, . . . , fm)

for some polynomials f1, . . . , fm, then the A-module of Kähler differentials Ω1
A/k

has generators dx1, . . . ,dxn and relations

dfj =

n∑

i=1

∂fj
∂xi

dxi = 0

for j = 1, . . . ,m. In other words, it is given by the quotient

Ω1
A/k = (Adx1 ⊕ · · · ⊕Adxn)/(df1, . . . ,dfm).
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The first part of Example 2.86, where we found that the Kähler differentials of
affine space form a free module can be generalized to any smooth affine variety. In
general, we will only get locally free modules. Recall that an A-module M is said to
be locally free of some rank d if, for each maximal ideal m of A, the localization Mm

is a free module of rank d over the ring Am, i.e. it is isomorphic to A⊕dm .

Proposition 2.88. If X = Spec(A) is smooth of dimension d, then the module
of Kähler differentials Ω1

A/k is locally free of rank d.

Proof. Since we are assuming that k has characteristic zero, this follows
from instance from [Har77, Chap. II, Thm. 8.8]. Exercise 2.130 illustrates why
the smoothness condition is necessary for the statement to hold. □

By the jacobian criterion for smoothness, an algebra A of the form (2.87) is
smooth of dimension d if, for every prime ideal p of A, corresponding to a prime
ideal q of k[x1, . . . , xn], there exist

• elements g1, . . . , gn−d of the ideal I = (f1, . . . , fm) whose images in the
localization k[x1, . . . , xn]q generate I · k[x1, . . . , xn]q;

• indexes i1, . . . , in−d such that the jacobian determinant

det
(
∂gi/xij

)
1⩽i,j⩽n−d

does not belong to q.

In the case where I is locally generated by a single polynomial f , this simply means
that at least one partial derivative of f does not belong to q.

2.2.3. Algebraic de Rham cohomology of smooth affine varieties. In the remain-
der of this section, A denotes a k-algebra such that X = Spec(A) is a smooth variety
of dimension d. For each integer p ⩾ 0, let

ΩpA/k = ΛpΩ1
A/k

be the p-th exterior power of Ω1
A/k over A. In particular, Ω0

A/k = A and ΩpA/k = 0

for all p > d. For each 1 ⩽ p ⩽ d, the A-module ΩpA/k is the quotient of the

free A-module generated by the elements ω1 ∧ · · · ∧ ωp, with ωi ∈ Ω1
A/k, by the

submodule generated by the elements

ω1 ∧ · · · ∧ (aωi + bω′i) ∧ · · · ∧ ωp
− aω1 ∧ · · · ∧ ωi ∧ · · · ∧ ωp − bω1 ∧ · · · ∧ ω′i ∧ · · · ∧ ωp,

for all 1 ⩽ i ⩽ p and all a, b ∈ A, and by ω1 ∧ · · · ∧ ωp whenever two of the ωi are
equal. From this, we get the identity

ωσ(1) ∧ · · · ∧ ωσ(p) = sign(σ)ω1 ∧ · · · ∧ ωp
for each permutation σ ∈ Sp. We call algebraic differential forms of degree p, or
just p-forms, the elements of ΩpA/k. Since Ω1

A/k is locally free of rank d, the p-th

exterior power ΩpA/k is locally free of rank
(
d
p

)
.

As in the case of classical de Rham cohomology recalled in Section 2.2.1, the
derivation d: A→ Ω1

A/k extends in a unique way to k-linear maps

dp : ΩpA/k → Ωp+1
A/k

satisfying the following properties:

i) dp ◦ dp−1 = 0 for all p,
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ii) dp+q(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ for all p-forms α and q-forms β,

with d0 = d. Explicitly, every 1-form is a k-linear combination of elements adb, for
some a, b ∈ A, and one defines

d1(adb) = da ∧ db.

For p-forms, one sets

dp(ω1 ∧ · · · ∧ ωp) =

p∑

j=1

(−1)j+1ω1 ∧ · · · ∧ ωj−1 ∧ d1ωj ∧ ωj+1 ∧ · · · ∧ ωp.

It is straightforward to check that these maps are well defined (i.e. vanish on the
elements (2.84) defining relations on Ω1

A/k and its exterior powers) and satisfy the

above conditions i) and ii). This yields the algebraic de Rham complex

Ω∗A/k : A −→ Ω1
A/k −→ Ω2

A/k −→ · · · −→ ΩdA/k.

A p-form ω is said to be closed if dpω = 0, and exact if there exists a (p−1)-form η
satisfying dp−1η = ω.

Definition 2.89. The algebraic de Rham cohomology of X = Spec(A) is the
cohomology of the algebraic de Rham complex

H∗dR(X) = H∗(Ω∗A/k).

In other words, Hn
dR(X) is the quotient of the vector space of closed n-forms on X

by the subspace of exact n-forms.

Both the space of closed forms and the space of exact forms on X have in
general infinite dimension. However, we will prove below (Corollary 2.167) that
the k-vector space H∗dR(X) is finite-dimensional.

Example 2.90 (Punctured affine line). Consider the affine variety

Gm = A1
k \ {0} = Spec

(
k[t, s]/(ts− 1)

)
= Spec

(
k[t, t−1]

)
,

which is the algebraic analogue of the punctured complex plane from Example 2.36.
Set A = k[t, t−1]. By Example 2.86, the module of Kähler differentials Ω1

A/k is

generated by dt and ds, modulo the relation sdt+tds = 0 obtained by differentiating
the defining equation ts = 1. Since this relation amounts to ds = −t−2dt, the
module Ω1

A/k = Adt is free of rank one. The algebraic de Rham complex of X is

therefore the two-term complex

d: k[t, t−1] −→ k[t, t−1]dt.

tm 7−→ mtm−1dt

There is non-zero cohomology at most in degrees zero and one, given by

H0
dR(X) = Ker(d), H1

dR(X) = Coker(d).

Since only constant Laurent polynomials have zero derivative, we find that H0
dR(X)

is the one-dimensional k-vector space generated by 1. To compute the cokernel of d,
we note that tmdt = d(tm+1/(m+ 1)) lies in the image of d except for m = −1, in
which case the function 1/t does not admit a primitive among Laurent polynomials.
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It follows that H1
dR(X) is the one-dimensional k-vector space generated by the class

of dt/t. Here is the summary of our computation:

Hn
dR(Gm) =





k, if n = 0,

k[dtt ], if n = 1,

0, otherwise.

Example 2.91 (Affine elliptic curves). Let a, b ∈ k be such that 4a3 + 27b2 is
non-zero. Then the polynomial

f(x) = x3 + ax+ b

has no double roots, and hence the equation y2 = f(x) defines a smooth affine
plane curve X ⊆ A2

k. We will call X an affine elliptic curve since its projective

closure X ⊂ P2
k is an elliptic curve, from which X is obtained by removing the

point O = [0: 1 : 0] at infinity. From the point of view of schemes, the affine elliptic
curve X is the spectrum of the k-algebra

A = k[x, y]/(y2 − f(x)) ≃ k[x]⊕ k[x]y.

According to Example 2.86, the A-module of Kähler differentials is then given by

Ω1
A/k = (Adx⊕Ady)/(2ydy − f ′(x)dx),

where f ′ denotes the derivative of f . Since ΩpA/k vanishes for p ⩾ 2, the algebraic

de Rham complex of X is the two-term complex A → Ω1
A/k. It has non-zero

cohomology at most in degrees zero and one, given by

H0
dR(X) = Ker(d: A→ Ω1

A/k), H1
dR(X) = Coker(d: A→ Ω1

A/k).

To compute these spaces, we first give a more manageable presentation of Ω1
A/k.

The intuition for the computation below is that, in case k is a subfield of the
complex numbers, the complex points X(C) can be described as the quotient C/Λ
of the complex plane by the action by translation of a lattice Λ. Under the explicit
uniformization map that provides such an isomorphism, the differential form dz
on C corresponds to dx/y. However, it is not clear a priori that dx/y defines an
element of Ω1

A/k since the function y is not invertible in A. To show that dx is

indeed divisible by y in Ω1
A/k, we resort to the following trick. Since f has no

double roots, the polynomials f and f ′ are coprime. By Bézout’s identity, there are
polynomials P,Q ∈ k[x] satisfying Pf +Qf ′ = 1. We can then consider the 1-form

ω = Pydx+ 2Qdy ∈ Ω1
A/k.

Using the equalities y2 = f(x) in A and 2ydy = f ′(x)dx in Ω1
A/k, we find

yω = Py2dx+ 2Qydy = (Pf +Qf ′)dx = dx,

which shows that ω is the form dx/y. Similarly, the relation

f ′(x)ω

2
=
Pyf ′(x)dx

2
+Qf ′(x)dy = (Py2 +Qf ′(x))dy = dy

holds in Ω1
A/k. From the expression of the generators dx and dy in terms of ω,

we see that every element of Ω1
A/k can be written uniquely as (R + Sy)ω for some

polynomials R,S ∈ k[x]. In other words, there is an isomorphism Ω1
A/k ≃ Aω,

which shows that Ω1
A/k is free of rank 1 in this case.
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In terms of this presentation, the differential is given by the formula

(2.92) d(T + Uy) = T ′dx+ U ′ydx+ Udy = (U ′f + Uf ′/2 + T ′y)ω

for polynomials T,U ∈ k[x]. Note that the polynomial U ′f +Uf ′/2 has degree ⩾ 2
for every non-zero U . Therefore, the right-hand side of (2.92) vanishes if and only
if U = 0 and T ′ = 0. It follows that H0

dR(X) is the one-dimensional k-vector space
of constant polynomials.

To compute H1
dR(X), we need to find which of the forms (R+ Sy)ω are exact.

This is the case for all Syω, as we see by choosing U = 0 and a primitive of S for T .
It remains to check when Rω is exact. For this, we try to write xnω as a linear
combination of forms of the same shape with smaller n modulo the image of the
differential. For each m ⩾ 0, it follows from the equality

d
( 2xmy

3 + 2m

)
=
(
xm+2 + polynomial of degree ⩽ m

)
ω

that the class of xm+2ω in the cokernel of d is a k-linear combination of the classes
of ω, xω, . . . , xmω. Therefore, H1

dR(X) is spanned by ω and xω. On the other
hand, since U ′f + Uf ′/2 is either zero or has degree ⩾ 2, no linear combination
of ω and xω lies in the image of d. Hence, the classes of x and xω form a basis
of H1

dR(X). Here is the summary of our computation:

Hn
dR(X) =





k, if n = 0,

k[dxy ]⊕ k[xdxy ], if n = 1,

0, otherwise.

2.2.4. Algebraic de Rham cohomology of smooth varieties. Let us now turn to
the case where X is any variety over k, not necessarily affine. Gluing differential
forms on affine open subsets, we get a sheaf for the Zariski topology on X. The
following result is explained in [Har77, Chap. II, § 8].

Proposition 2.93. There exists a unique coherent OX-module Ω1
X/k whose

restriction to every affine open subset U of X is the OU -module associated with
the Kähler differentials Ω1

OX(U)/k, and such that the restriction maps between open

affine subsets are given by the restriction of differential forms.

Coherence is a finiteness property that allows, among other things, for vanishing
results, comparison theorems between algebraic and analytic cohomology, and so
on (see Section A.9.9). Many of the properties we have discussed in the affine
case globalize to arbitrary smooth varieties. In particular, if X is a smooth variety
of dimension d, then the sheaf Ω1

X is locally free of rank d and is equipped with
the universal k-derivation d: OX → Ω1

X . Let ΩpX denote the p-th exterior power
of Ω1

X . The differential d canonically extends to morphisms of sheaves of k-vector

spaces dp : ΩpX → Ωp+1
X satisfying dp+1 ◦ dp = 0. The resulting complex

(2.94) (Ω∗X ,d): OX d−→ Ω1
X

d−→ Ω2
X

d−→ · · ·
is called the algebraic de Rham complex . Observe that every term in this complex
is a locally free OX -module but the differential d is not OX -linear, only k-linear.
The default of OX -linearity is precisely measured by the Leibniz rule.
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Definition 2.95. Let X be a smooth variety over a field k of characteristic
zero. The algebraic de Rham cohomology of X is the hypercohomology of the
algebraic de Rham complex. We denote it by

H∗dR(X) = H∗(X,Ω∗X).

Recall from Section A.9.4 that the hypercohomology of Ω∗X is defined as the
cohomology of the complex of global sections of an acyclic resolution of Ω∗X , for
example Godement’s canonical resolution

Gd(Ω∗X) = Tot Gd∗(Ω∗X)

from Section A.9.3. That is, the algebraic de Rham cohomology of X can be
computed as the cohomology of a complex of k-vector spaces, namely

H∗dR(X) = H∗(Γ(X,Gd(Ω∗X))).

Remark 2.96. When X is affine, there is no need to use hypercohomology to
define algebraic de Rham cohomology. Indeed, as all coherent sheaves on an affine
variety are acyclic (Theorem A.311), the complex Ω∗X consists of acyclic sheaves, so
it is an acyclic resolution of itself. It follows that its hypercohomology agrees with
the cohomology of the complex of global sections (Ω∗X(X),d). This last complex is
called the global de Rham complex. In the affine case, the global de Rham complex
agrees with the complex of Kähler differentials

Ω∗X(X) = Ω∗X/k

by Proposition 2.93, and hence Definitions 2.89 and 2.95 agree for affine varieties.
In general, when X is not affine, the cohomology of the global de Rham com-

plex does not coincide with the algebraic de Rham cohomology. For example, the
global sections ΩpX(X) vanish for p > dimX, and hence so does the cohomology
of the global de Rham complex, while a variety will in general have non-trivial de
Rham cohomology up to degree 2 dimX. Most of the varieties we will deal with in
applications are affine, so we will often be able to use the global de Rham complex.

A tool to compute algebraic de Rham cohomology is to view it, as the hyper-
cohomology of any complex of sheaves, as the abutment of a spectral sequence

(2.97) Ep,q1 = Hq(X,ΩpX) =⇒ Hp+q
dR (X)

with differentials d1 : Ep,q1 → Ep+1,q
1 induced by d: ΩpX → Ωp+1

X . In this particular
context, this is called the Frölicher or Hodge–de Rham spectral sequence

In practice, to compute the algebraic de Rham cohomology of X and make the
Hodge–de Rham spectral sequence explicit, one chooses a cover of X by a finite
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collection of affine open subsets U1, . . . , Un, and forms the Čech double complex

(2.98)

...
...

⊕

i

Ω1(Ui) //

OO

⊕

i<j

Ω1(Ui ∩ Uj) //

OO

· · ·

⊕

i

O(Ui) //

OO

⊕

i<j

O(Ui ∩ Uj) //

OO

· · ·

where the vertical differentials are the differentials in the algebraic de Rham com-
plex, and the horizontal differentials

⊕

i0<···<iq

Ωp(Ui0 ∩ · · · ∩ Uiq ) −→
⊕

i0<···<iq+1

Ωp(Ui0 ∩ · · · ∩ Uiq+1
)

send a section α ∈ Ωp(Ui0 ∩ · · · ∩ Uiq ) to the element ∂α with factors

(∂α)i0,...,iq+1
=

q+1∑

r=0

(−1)r+1αi0,...,îr,...,iq+1
|Ui0∩···∩Uiq+1

.

Thanks to Remark 2.96, the algebraic de Rham cohomology of X is the cohomol-
ogy of the total complex associated with this double complex (Definition A.33).
Moreover, (2.97) is the spectral sequence associated with it as in Example A.205.

Example 2.99. Let X = P1
k be the projective line over k. We consider the

cover by the two affine open subsets

U0 = P1
k \ {0} = Spec(k[t]), U1 = P1

k \ {∞} = Spec(k[s]),

whose coordinates are related by s = 1/t on the intersection U0 ∩ U1. The only
non-zero terms in the double complex (2.98) are then

k[t]dt⊕ k[s]ds // k[t, t−1]dt

k[t]⊕ k[s] //

d⊕d

OO

k[t, t−1],

d

OO

where the horizontal differentials are given by

(fdt, gds) 7−→ (f(t) + g(1/t)t−2)dt, (f, g) 7−→ f(t)− g(1/t).

We leave as Exercise 2.124 for the reader to check that the cohomology groups of
the associated total complex are

(2.100) H0
dR(P1

k) = k, H1
dR(P1

k) = 0, H2
dR(P1

k) = k

[
dt

t

]
.

Alternatively, we can compute the algebraic de Rham cohomology of P1
k by

means of the spectral sequence (2.97). For this, we first note that the sheaf of Kähler
differentials Ω1

P1 is the line bundle OP1(−2), since the generator dt ∈ Ω1
P1(A1) has

a pole of order 2 at infinity. By the standard computation of the cohomology of
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line bundles on P1 [Har77, Chap. III, § 5], the sheaf OP1 has only non-vanishing
cohomology in degree zero and OP1(−2) has only non-vanishing cohomology in
degree one. Therefore, the spectral sequence reads

0 // H1(P1,Ω1
P1)

H0(P1,OP1) // 0

and all differentials vanish already at the first page. This yields isomorphisms

Hn
dR(P1) =





H0(P1,OP1), if n = 0,

0, if n = 1,

H1(P1,Ω1
P1), if n = 2.

Example 2.101. Let X be a smooth connected projective curve over an alge-
braically closed field k of characteristic zero. In this example, we will use without
proof a few results from the theory of algebraic curves, for which the reader can for
instance consult [Har77, Chap. IV]. The genus of X is defined as the dimension

g = dim H0(X,Ω1
X)

of the space of global sections of the sheaf of differential forms. Besides, since X is
projective and connected, the only global sections of OX are the constant functions:

H0(X,OX) = k.

Moreover, Serre’s duality implies (see [Har77, Cor. 7.13]) the equalities

dim H1(X,OX) = g, dim H1(X,Ω1
X) = 1.

The spectral sequence (2.97) computing H∗dR(X) is given by

H1(X,OX) // H1(X,Ω1
X)

H0(X,OX) // H0(X,Ω1
X)

and the lower horizontal map is zero since the differential of a constant function
vanishes. We shall show that the upper horizontal map is zero as well.

Let f : X → P1 be a non-constant rational function. Then f is surjective, and
the open subsets

U0 = X \ f−1(0) and U1 = X \ f−1(∞)

are affine and cover X. We work with this affine open cover. As explained after
Remark 2.96, the first page of the spectral sequence (2.97) can be computed using
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the commutative diagram with exact columns

0 0

H1(X,OX)

OO

d1 // H1(X,Ω1
X)

OO

OX(U0 ∩ U1)
d //

OO

Ω1
X(U0 ∩ U1)

OO

OX(U0)⊕OX(U1)

∂

OO

d // Ω1
X(U0)⊕ Ω1

X(U1)

∂

OO

H0(X,OX)
d1 //

OO

H0(X,Ω1
X)

OO

0

OO

0

OO

The zeroth cohomology groups are the kernels of the middle vertical arrows ∂, and
the first cohomology groups are the cokernels of the same maps. The differentials
denoted by d1 are just the induced maps. We have already discussed that the
lower d1 is zero and our task now is to prove that the upper d1 is zero.

To this end, we will use the residue map. For any Zariski open subset U of X
and any k-point P ∈ X \ U , there is a residue map

resP : Ω1
X(U) −→ k

satisfying the following properties (see [Ser88, § II.7]):

i) for each ω ∈ Ω1
X(U), the equality

∑
P∈X\U resP (ω) = 0 holds;

ii) for forms ω = dg, where g ∈ OX(U) is a regular function, the vanishing
resP (ω) = 0 holds for all k-points P of X \ U .

Building on these properties, we define the map φ : Ω1
X(U0 ∩ U1)→ k as

φ(ω) =
∑

P∈(X\U0)(k)

resP (ω) = −
∑

P∈(X\U1)(k)

resP (ω),

where the second equality follows from property i) of the residue map applied to
the open set U0 ∩ U1. Again by property i), but this time applied to the open
sets U0 and U1, the composition φ ◦ ∂ vanishes. Therefore, the map φ factors
through H1(X,Ω1

X) and gives rise to a commutative diagram

H1(X,OX)
d1 // H1(X,Ω1

X)
φ0 // k.

OX(U0 ∩ U1)
d //

OO

Ω1
X(U0 ∩ U1)

OO

φ

88

Ω1
X(U0)⊕ Ω1

X(U1)

∂

OO



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 91

The differential form df/f has simple poles whenever f has a zero or a pole. The
residue of df/f at a point is exactly the order of vanishing of f at the point. In
particular, it is positive if f has a zero, and negative if f has a pole. Since f is
non-constant, it has at least one zero. Since X \ U0 is the set of zeros of f , we
deduce φ(df/f) ̸= 0. Hence, the map φ0 is surjective. Since we already know that
the dimension of H1(X,Ω1

X) is one, φ0 is an isomorphism. By property ii) of the
residue, we deduce that the composition φ ◦ d vanishes. This implies the vanishing
of the upper differential d1 = 0. All in all, the spectral sequence (2.97) degenerates
at the page E1. From this we get that

H0
dR(X) = H0(X,OX) and H2

dR(X) = H1
dR(X,Ω1

X)

are both one-dimensional, and that the first de Rham cohomology group sits in the
exact sequence

0 −→ H0(X,Ω1
X) −→ H1

dR(X) −→ H1(X,OX) −→ 0.

In particular, dim H1
dR(X) = 2g. In the classical literature, elements of H0(X,Ω1

X)
are called differentials of the first kind.

In this particular example we have proved by hand that the Hodge–de Rham
spectral sequence (2.97) degenerates at the term E1. In fact, this is a general result
for smooth proper varieties, which is at the heart of the Hodge decomposition.

2.2.5. Some properties of algebraic de Rham cohomology.

Base change: Algebraic de Rham cohomology is compatible with extensions of the
field of definition.

Lemma 2.102. Let X be a smooth variety over a field k of characteristic zero,
let K be a field extension of k, and let XK = X ×Spec(k) Spec(K) denote the
extension of scalars. There is a canonical isomorphism

H∗dR(X)⊗k K ∼−→ H∗dR(XK).

This is proved either using the compatibility with field extensions of the coho-
mology of coherent sheaves and the spectral sequence (2.97), or the functoriality of
Godement’s canonical resolution as in [HMS17, Lem. 3.1.11].

Functoriality : Let U = Spec(A) and V = Spec(B) be smooth affine varieties
over k, and let f : U → V be a morphism between them. We still denote by f the
associated morphism of k-algebras B → A, which endows Ω1

A/k with the structure

of a B-module. Since the composition B → A → Ω1
A/k is a k-linear derivation, by

the universal property of Kähler differentials, there exists a morphism of B-modules

(2.103) f∗ : Ω1
B/k −→ Ω1

A/k.

Now let f : X → Y be a morphism between any smooth varieties over k. For each
Zariski open subset U of Y , gluing the maps (2.103) on affine open covers of U
and f−1(U) yields a morphism

Ω1
Y (U) −→ Ω1

X(f−1(U)) = (f∗Ω
1
X)(U),

and hence morphisms Ω∗Y (U)→ (f∗Ω
∗
X)(U) that are compatible with the differen-

tials. From this, we get morphisms of complexes of sheaves

Ω∗Y
f∗

−→ f∗Ω
∗
X −→ Rf∗Ω

∗
X .
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Proposition A.278 implies that the hypercohomologies H∗(Y,Rf∗Ω∗X) and H∗(X,Ω∗X)
are isomorphic, and hence the above morphisms induce a k-linear map

f∗ : H∗dR(Y ) −→ H∗dR(X).

Cup-product : The exterior product of differential forms gives rise to a cup-product

H∗dR(X)⊗H∗dR(X) −→ H∗dR(X)

in algebraic de Rham cohomology. Indeed, from the morphism of complexes

Tot(Ω∗X ⊗k Ω∗X) −→ Ω∗X

given by exterior product, we get a morphism of Godement resolutions

(2.104) Gd(Ω∗X ⊗k Ω∗X) −→ Gd(Ω∗X).

Since every module over a field is flat, tensoring by Ω∗X is an exact functor, and
hence the natural map

Ω∗X ⊗k Ω∗X −→ Gd(Ω∗X)⊗k Gd(Ω∗X)

is a quasi-isomorphism. Applying the Godement resolution again to the source and
the target, we obtain a quasi-isomorphism

(2.105) Gd(Ω∗X ⊗k Ω∗X) −→ Gd
(

Gd(Ω∗X)⊗k Gd(Ω∗X)
)
.

Composing the natural map from a complex to its Godement resolution, the inverse
of the quasi-isomorphism (2.105), and the product (2.104), we obtain morphisms

Gd(Ω∗X)⊗k Gd(Ω∗X) // Gd(Gd(Ω∗X)⊗k Gd(Ω∗X))

Gd(Ω∗X ⊗k Ω∗X)

∼

OO

// Gd(Ω∗X)

in the derived category. Taking the equality

H∗dR(X) = H∗(Γ(X,Gd(Ω∗X)))

into account, this morphism and composition with the map

H∗
(

Γ
(
X,Gd(Ω∗X)

))
⊗H∗

(
Γ
(
X,Gd(Ω∗X)

))

∼−→ H∗
(

Γ
(
X,Gd(Ω∗X)

)
⊗ Γ

(
X,Gd(Ω∗X)

))

−→ H∗
(

Γ
(
X,Gd(Ω∗X)⊗k Gd(Ω∗X)

))

induce the sought-after product in de Rham cohomology. A variant of the above
construction yields an external product

H∗dR(X)⊗H∗dR(Y ) −→ H∗dR(X × Y )

for smooth varieties X and Y over k.
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2.2.6. Relative de Rham cohomology. There is also a relative version of alge-
braic de Rham cohomology. For simplicity, we explain the construction only in the
affine case. Let X be a smooth affine variety over k, and consider a smooth closed
subvariety ι : Z ↪→ X, which is hence affine. There is a restriction morphism of
complexes ι∗ : Ω∗(X)→ Ω∗(Z). Let Ω∗(X,Z) denote the complex

Ω∗(X,Z) = Tot(ι∗) = cone(−ι∗)[−1].

Explicitly, it is given by

Ωn(X,Z) = Ωn(X)⊕ Ωn−1(Z)

with differential

d(α, β) = (dα, ι∗(α)− dβ).

By construction, there is a short exact sequence

0 −→ Ω∗(Z)[−1] −→ Ω∗(X,Z) −→ Ω∗(X) −→ 0

in the category of complexes of k-vector spaces, that induces a distinguished triangle

(2.106) Ω∗(X,Z) −→ Ω∗(X)
ι∗−→ Ω∗(Z) −→ Ω∗(X,Z)[1]

in the corresponding derived category (see Section A.3.2).

Definition 2.107. Let X be a smooth affine variety and Z ↪→ X a smooth
closed subvariety. The relative de Rham cohomology of the pair (X,Z) is the coho-
mology of the complex Ω∗(X,Z). We denote it by

H∗dR(X,Z) = H∗(Ω∗(X,Z)).

A relative de Rham class is represented by a pair of differential forms (α, β)
such that α is closed and the restriction of α to Z is equal to dβ. In general,
neither α nor β is determined by the other form. Taking the long exact sequence
associated with (2.106), one gets

· · · −→ Hn−1
dR (Z) −→ Hn

dR(X,Z) −→ Hn
dR(X) −→ Hn

dR(Z) −→ · · ·
where Hn

dR(X)→ Hn
dR(Z) is the restriction map, Hn

dR(X,Z)→ Hn
dR(X) sends (α, β)

to α, and Hn−1
dR (Z)→ Hn

dR(X,Z) sends β to (0, β).

Example 2.108. Set X = Gm = Spec
(
k[x, x−1]

)
, and let Z = {p, q} be the

closed subvariety of X consisting of two distinct k-points p and q, that is, the zero
locus of the polynomial (x− p)(x− q). Then Ω∗(Z) is concentrated in degree zero,
where it is equal to Ω0(Z) = k ⊕ k, and the map

ι∗ : Ω0(X) = k[x, x−1] −→ Ω0(Z) = k ⊕ k
is given by evaluation at p and q, that is, ι∗(f) = (f(p), f(q)). Therefore, the
complex Ω∗(X,Z) reads

(2.109)
d: k[x, x−1] −→ k[x, x−1]dx⊕ k ⊕ k

f 7−→ (f ′(x)dx, f(p), f(q)).

The differential d is injective, so that H0
dR(X,Z) vanishes. Indeed, if f lies

in its kernel, then f is constant since f ′(x) = 0, but this constant must be equal
to f(p) = f(q) = 0. Besides, using the equalities d(1) = (0, 1, 1) and

d(xn+1/(n+ 1)) = (xndx, pn+1/(n+ 1), qn+1/(n+ 1)) (n ̸= −1),



94 J. I. BURGOS GIL AND J. FRESÁN

one sees that the cokernel of d is generated by

ω′1 = (0, 1, 0), ω2 = (dx/x, 0, 0).

As no linear combination of these two elements lies in the image of d (look at the
first entry of the triple), they form a basis of Coker(d) and H1

dR(X,Z) is thus the
k-vector space ⟨ω′1, ω2⟩k. As you will show in Exercise 2.127, the element ω′1 is
cohomologous to ω1 = (dx/(p − q), 0, 0). Therefore, we can represent H1

dR(X,Z)
using the differential forms

ω1 = dx/(p− q), ω2 = dx/x

on X that vanish when restricted to Z.

Remark 2.110. Recall that the de Rham cohomology of affine smooth varieties
vanishes above the dimension. If n = dimX and Z ⊂ X is a closed smooth subva-
riety of strictly smaller dimension, then a useful part of the long exact sequence of
relative de Rham cohomology is

(2.111) · · · −→ Hn−1
dR (Z) −→ Hn

dR(X,Z) −→ Hn
dR(X) −→ 0.

For instance, it implies that every top degree differential form on a smooth affine
variety can be lifted to a relative cohomology class.

2.2.7. The case of normal crossing divisors. In the sequel, we will also need to
consider relative de Rham cohomology in the case where Z is not a smooth subva-
riety, but a simple normal crossing divisor. Using standard tools from homological
algebra, we will be able to extend Definition 2.107 to this setting. We first introduce
the relevant notions from algebraic geometry following [Kol13, p. 9 ff.].

Let X be a smooth algebraic variety of dimension d over a field k. Given a
closed point p of X, we denote by OX,p the local ring of germs of regular functions
at p, by mp its maximal ideal, and by κ(p) = OX,p/mp its residue field. Recall
that OX,p is regular of Krull dimension d, which means that a minimal set of
generators of mp contains d elements; any such set is called a regular system of
parameters. By Nakayama’s lemma, the elements x1, . . . , xd ∈ mp form a regular
system of parameters if and only if their residue classes x̄1, . . . , x̄d modulo m2

p form

a κ(p)-basis of the cotangent space T ∗pX = mp/m
2
p.

Definition 2.112. A closed subvariety D ⊂ X of codimension one is called
a simple normal crossing divisor if, for each p ∈ D, there exists a Zariski open
neighborhood p ⊂ Up ⊂ X, a regular system of parameters x1, . . . , xd ∈ mp, and an
integer 1 ⩽ r ⩽ d such that D ∩ Up lies in the zero locus of x1 · · ·xr.

It follows from the definition that the irreducible components of a simple normal
crossing divisor D are smooth and that the intersection of m distinct irreducible
components is a smooth subvariety of codimension m in X.

Remark 2.113. Simple normal crossing divisors are also called strict normal
crossing divisors in the literature. Note that this definition is sensitive to the base
field. For example, if −1 is not a square in k, the subvariety D = {x2+y2 = 0} ⊂ A2

k

is irreducible and singular at the origin, and hence is not a simple normal crossing
divisors. However, if k contains a square root of −1, then the factorization

x2 + y2 = (x+
√
−1y)(x−

√
−1y)

shows that D is the union of two affine lines meeting at the origin, which is the
paradigmatic example of a simple normal crossing divisor.



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 95

Construction 2.114. Let X be a smooth affine variety over k and let D be
a simple normal crossing divisor, with irreducible components D0, . . . , Dr. Given a
subset I ⊆ {0, . . . , r}, we write

DI =
⋂

i∈I
Di.

We define D0 = X and, for p = 1, . . . , r + 1,

Dp =
∐

|I|=p

DI .

Then there is a double complex of k-vector spaces

(2.115) Kp,q = Ωq(Dp),

where the vertical differentials dver are the differentials d in the de Rham complex,
and the horizontal differentials dhor are alternating sums of restriction maps. More
precisely, dhor : Kp,q → Kp+1,q is given by

(2.116)
⊕

|I|=p
|J|=p+1
I⊂J

ε(I, J)dJ,I ,

where dJ,I : Ωq(DI)→ Ωq(DJ) denotes the restriction map, and the sign ε(I, J) is
defined as follows: if J = {j0, . . . , jp} with the indexes ordered as j0 < . . . < jp,

and I = {j0, . . . , ĵℓ, . . . , jp}, then ε(I, J) = (−1)ℓ.

Let Ω∗(X,D) denote the total complex associated with Kp,q, that is,
(

Ω∗(X,D) =
⊕

p+q=∗
Kp,q, ∂ = dhor + (−1)pdver

)
.

Thanks to the sign (−1)p of the vertical differential, the map ∂ satisfies ∂2 = 0,
and hence Ω∗(X,D) is a complex. To make the link with the relative de Rham
complex, as defined for smooth D, consider the double complex

Ωp,q(D) = Ωq(Dp+1)

with vertical differentials given by the differentials in the de Rham complex, and
horizontal differentials

dhor =
⊕

|I|=p
|J|=p+1
I⊂J

−ε(I, J)dJ,I .

We define the de Rham complex of D as the total complex

Ω∗(D) = Tot(Ω∗,∗(D)).

Definition 2.117. The de Rham cohomology H∗dR(D) of D is defined as the
cohomology of the complex Ω∗(D).

By construction, there is a restriction map ι∗ : Ω∗(X)→ Ω∗(D) satisfying

Ω∗(X,D) = Tot(ι∗).

In view of the similarities with the Čech double complex (2.98), one may think
of Ω∗(D) as a Čech complex associated with a closed cover of D.
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Definition 2.118. The relative de Rham cohomology H∗dR(X,D) is the coho-
mology of the complex Ω∗(X,D).

As for any total complex associated with a double complex, the cohomology
can be computed by means of the spectral sequence

(2.119) Ep,q1 = Hq(Ω∗(Dp)) =⇒ Hp+q
dR (X,D).

Let d = dimX. By definition, a class in the top degree cohomology Hd(X,D)
is represented by a tuple

(ω0, . . . , ωd) ∈
d⊕

p=0

Ωd−p(Dp).

What is more, one can always choose ωp = 0 for p = 1, . . . , d, so that all classes

in Hd(X,D) are indeed represented by some ω ∈ Ωd(X). The key point here is
that the restriction maps Ωd−p−1(Dp) → Ωd−p−1(Dp+1) are all surjective, as is
proved in [HMS17, Lem. 3.3.20]. We will see in the example below how to use this
result to find a representative of the sought shape; the proof of the existence of
such representatives in the general case is analogous.

Example 2.120. Let X = A2 = Spec(k[x, y]) and let D ⊂ X be the union
of three lines in general position. After an affine transformation, we may assume
without loss of generality that D is the union of the lines

D0 = {y = 0}, D1 = {x = 0}, D2 = {x+ y = 1}.

D2

(0, 0)

D0

D1

(0, 1)

(1, 0)

Figure 3. The triangle D

In this case, the double complex (2.115) is equal to

(Ω∗(A2), d) −→
2⊕

i=0

(Ω∗(Di), d) −→
⊕

0⩽i<j⩽2

(Ω∗(Di ∩Dj), d) −→ 0.
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To make all the above terms and maps explicit, we write

D0 = Spec(k[x]), D1 = Spec(k[y])

and we parametrize D2 = Spec
(
k[x, y]/(x+ y− 1)

)
by the coordinate z = x. Then

the double complex takes the form

k[x, y]dx ∧ dy

k[x, y]dx⊕ k[x, y]dy

d

OO

c // k[x]dx⊕ k[y]dy ⊕ k[z]dz

k[x, y]

d

OO

a // k[x]⊕ k[y]⊕ k[z]
b //

d

OO

k ⊕ k ⊕ k,

where d is the exterior derivative, the maps a and b are given by

a : f(x, y) 7−→ (f(x, 0), f(0, y), f(z, 1− z)),

b : (f(x), g(y), h(z)) 7−→ (g(0)− f(0), h(1)− f(1), h(0)− g(1)),

and c is induced from a in the obvious way. The spectral sequence (2.119) reads

0

0 0

k // k ⊕ k ⊕ k // k ⊕ k ⊕ k

where the first map sends a to (a, a, a) and the second one is given by

(a, b, c) 7→ (b− a, c− a, c− b).
Since the cohomology of the bottom complex is concentrated in degree two, where
it is generated by the class of the element (1, 0, 0), the second page of the spectral

sequence is reduced to E2,0
2 = k. It follows that Hn

dR(A2, D) vanishes for n ̸= 2 and
is one-dimensional for n = 2.

To produce a differential ω ∈ Ω2(A2) representing the generator (1, 0, 0), we
follow the “zig-zag” method, which consists in

• finding ω1 ∈ k[x]⊕ k[y]⊕ k[z] such that b(ω1) = (1, 0, 0);

• applying dver to get ω2 = dω1 one row above; from the equalities

∂ω1 = dhorω1 − dverω1 = b(ω1)− dω1 = (1, 0, 0)− ω2,

it follows that (1, 0, 0) and ω2 are cohomologous;

• choosing ω3 ∈ k[x, y]dx ⊕ k[x, y]dy with c(ω3) = ω2; setting ω = −dω3,
we then get

∂ω3 = c(ω3) + dω3 = ω2 − ω,
so that ω and ω2, and hence ω and (1, 0, 0), are cohomologous.
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ω

ω3

−d

OO

c
// ω2

ω1

d

OO

b
// (1, 0, 0)

Figure 4. The zig-zag method

It is straightforward to check that one can take

ω1 = (x− 1, 0, 0), ω2 = (dx, 0, 0), ω3 = (1− y)dx+ xdy.

This yields the differential form ω = −2dx ∧ dy on A2, which defines a relative
cohomology class since it has top degree. Summing up, we get

Hn
dR(X,D) =

{
⟨dx ∧ dy⟩k, if n = 2,

0, otherwise.

⋆ ⋆ ⋆

Exercise 2.121. Prove that the axioms i) and ii) in Definition 2.73 imply that
the exterior derivative is given by

d(fdxi1 ∧ · · · ∧ dxip) =

d∑

i=1

∂f

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxip

in local coordinates x1, . . . , xd. Deduce that d2 = d ◦ d vanishes.

Exercise 2.122. Let ω1, . . . , ωp be Kähler differentials, and let σ ∈ Sp be a
permutation. Prove the equality

ωσ(1) ∧ · · · ∧ ωσ(p) = sign(σ)ω1 ∧ · · · ∧ ωp.

Exercise 2.123. Let k be a field of characteristic zero. Show that H0
dR(Ank ) = k

and that all the other cohomology groups vanish.

Exercise 2.124. Check the identities (2.100) in Example 2.99.

Exercise 2.125. In Example 2.91 we saw that a basis of the de Rham coho-
mology of an affine elliptic curve X ⊆ A2

k is given by the classes of the differential

forms ω and xω. Let X ⊆ P2
k be the projective completion of X, that is, the smooth

projective curve obtained by adjoining to X the point at infinity O = [0 : 1 : 0].
Prove that ω extends to a holomorphic differential form on X, that is, to a global
section of the sheaf Ω1

X
, whereas xω has a double pole at O.

Exercise 2.126. We have defined de Rham cohomology for varieties over a
field of characteristic zero. Show by means of an example that the same definition
gives pathological results in positive characteristic (for instance, the cohomology of
the affine line A1 is infinite-dimensional).

Exercise 2.127. We place ourselves in the situation of Example 2.108.
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i) Show that the elements −ω′1 = (0,−1, 0) and ω1 = (dx/(p − q), 0, 0) are
cohomologous.

ii) Show that, for every integer r ̸= −1, the elements

(xrdx, 0, 0), and
pr+1 − qr+1

r + 1
ω1

are cohomologous.

Exercise 2.128. Let D ⊂ Pn be the union of a finite collection of hyperplanes.
Under which condition on the hyperplanes is D a simple normal crossing divisor?

Exercise 2.129. Let A be a k-algebra and let µ : A ⊗k A → A denote the
multiplication map which sends an element

∑
i ai ⊗ bi to

∑
aibi. Set

I = Ker
(
µ : A⊗k A→ A

)
.

The goal of the exercise is to establish an isomorphism of A-modules

Ω1
A/k ≃ I/I2.

i) Show that the map a 7→ 1⊗a−a⊗1 induces a k-linear derivationA→ I/I2,
and hence a morphism of A-modules φ : Ω1

A/k → I/I2 by the universal

property (2.85).

ii) Consider the ring R = A⊕Ω1
A/k, where A acts on Ω1

A/k via the A-module

structure, and the product of any two elements of Ω1
A/k is zero. Show that

the k-bilinear map

A×A −→ R (a1, a2) 7−→ (a1a2, a1da2)

factors through A⊗k A and sends I to Ω1
A/k and I2 to zero. Therefore, it

defines a map ψ : I/I2 → Ω1
A/k.

iii) Prove that φ and ψ are inverse of each other.

Exercise 2.130 (The module of Kähler differentials is not locally free for sin-
gular varieties). Set A = k[x, y]/(xy) and X = Spec(A). By Example 2.86, the
module of Kähler differentials Ω1

X/k has generators dx and dy, which are subject

to the relation xdy = −ydx. Set ω = xdy.

i) Show that ω ̸= 0 but xω = yω = 0.

ii) Let z ∈ A. Show that xz = yz = 0 implies z = 0. Conclude that Ω1
X/k is

not locally free.

iii) Show that k · ω sits in an exact sequence

0 −→ k · ω −→ Ω1
X/k −→ k[x]dx⊕ k[y]dy −→ 0,

and that this exact sequence does not split as a sequence of A-modules.

iv) Prove the equality Ω2
X = k · dx ∧ dy.

Exercise 2.131 (An instance of Jouanolou’s trick). In this exercise, we show
how to compute the algebraic de Rham cohomology of the projective line P1 using
global differential forms on an affine variety.

i) Let ∆ ↪→ P1×P1 be the diagonal and set X = P1×P1 \∆. Prove that X
is the affine variety

Spec (k[x, y, z]/(x(x− 1)− yz))
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and that the projection onto the first factor π : X → P1 is given in these
coordinates by π(x, y, z) = [x : y] = [x− 1 : z]. Observe that all the fibers
of π are affine lines. [Hint: first identify P1 × P1 with a quadric in P3

through the Segre embedding.]

ii) Prove that the complexes Ω∗P1 and Rπ∗Ω
∗
X of locally free sheaves on P1

are quasi-isomorphic. Deduce that the algebraic de Rham cohomologies
Hi

dR(P1) and Hi
dR(X) are isomorphic. [Hint: use the Leray spectral se-

quence and that the morphism π is affine, so that Rπ∗Ω
∗
X = π∗Ω

∗
X holds.]

iii) Write down a global differential form ω ∈ Ω2(X) generating H2
dR(X).

2.3. The comparison isomorphism. The goal of this section is to prove
an algebraic counterpart of de Rham’s theorem 2.79, namely Grothendieck’s the-
orem [Gro66] according to which the Betti and the de Rham cohomology of a
smooth algebraic variety over a subfield of the complex numbers become canoni-
cally isomorphic after extension of scalars.

Theorem 2.132 (Grothendieck). Let k be a subfield of the complex numbers
and let X be a smooth variety over k. There is a functorial isomorphism

compB,dR : Hi
dR(X)⊗k C ∼−→ Hi

B(X)⊗Q C

of complex vector spaces, which for affine X is given by

compB,dR([ω])([σ]) =

∫

σ

ω.

We will often refer to compB,dR as the comparison isomorphism. In this context,
functoriality means that the diagram

Hi
dR(X)⊗k C

compB,dR // Hi
B(X)⊗Q C

Hi
dR(Y )⊗k C

f∗

OO

compB,dR // Hi
B(Y )⊗Q C

f∗

OO

commutes for each morphism f : X → Y of smooth algebraic varieties over k.
2.3.1. From algebraic to analytic: Serre’s GAGA theorem. The first step in

the proof of the comparison isomorphism consists in relating the cohomology of
coherent sheaves on algebraic varieties to the cohomology of their analytifications.
This is the content of Serre’s GAGA theorem, named after the title “Géométrie
Algébrique et Géométrie Analytique” of his landmark paper [Ser56]. We refer
the reader to Section A.9.9 of the appendix for a short reminder of the notions of
coherent sheaf in algebraic and analytic geometry, as well as the vanishing theorems
for coherent sheaves on affine and Stein varieties that are used below.

Let X be a smooth algebraic variety over the field of complex numbers. The
set of complex points X(C) of X, together with the topology inherited from that
of C, carries the structure of a complex manifold Xan. We let OXan denote the
sheaf of holomorphic functions on Xan and ψ : Xan → X the map of topological
spaces that sends an element of X(C) = Hom(Spec(C), X) to the corresponding
closed point of X. Since the complex points of every Zariski open subset of X form
an open subset of X(C), this map is continuous. Moreover, there is a morphism

ψ−1OX −→ OXan
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of sheaves of rings on Xan. Indeed, recall from Definition A.283 that the inverse
image ψ−1OX is the sheaf associated with the presheaf

(2.133) U 7−→ lim−→
V

OX(V ),

where U is an open subset of X(C) and the limit runs over all Zariski open subsets V
of X containing ψ(U). Since every regular function f on V induces a holomorphic
function fan on V (C), and hence on U(C) upon restriction, there is an obvious
morphism of presheaves from (2.133) to OXan . As the target OXan is itself a
sheaf, the universal property of sheafification (Proposition A.249) yields the sought
morphism of sheaves ψ−1OX → OXan .

Definition 2.134. Let F be a sheaf of OX -modules on X. The analytification
of F is the sheaf of OXan-modules on Xan given by

F an = ψ−1F ⊗ψ−1OX
OXan .

In other words, F an is the sheaf associated with the presheaf

(2.135) U 7−→ ψ−1F (U)⊗ψ−1OX(U) OXan(U).

If F is coherent in the sense of algebraic geometry, then F an is coherent in the
sense of analytic geometry.

Example 2.136. Let X be an algebraic variety. By its very definition, the an-
alytification of the sheaf of regular functions on X is the sheaf of holomorphic func-
tions on Xan. In symbols, Oan

X = OXan . Moreover, on each complex manifold M
one can define the sheaf of holomorphic differential forms. Namely, for p ⩾ 0, the
sheaf ΩpM consists of differential forms that can be written locally as

ω =
∑

i1<i2<···<ip

fi1,...,ijdzi1 ∧ · · · ∧ dzip ,

where (z1, . . . , zd) are local complex coordinates of M and the functions fi1,...,ip are
holomorphic. The sheaves Ω∗M together with the differential d form a complex

0 −→ OM −→ Ω1
M −→ · · · −→ ΩdM −→ 0,

that is called the holomorphic de Rham complex . For each p ⩾ 1, the analytification
of the sheaf of Kähler differentials is the sheaf of holomorphic differential forms on
the complex manifold Xan. In symbols,

(ΩpX)an = ΩpXan .

The morphism of presheaves from ψ−1F to (2.135) that sends a local section e
to e ⊗ 1 yields a morphism of sheaves ψ−1F → F an, and hence a morphism of
sheaves F → ψ∗F

an using the adjunction between inverse and direct image functors;
see (A.285) from the appendix. Composing this with the map from a functor to its
derived functor, we get morphisms of complexes of sheaves

(2.137) F −→ ψ∗F
an −→ Rψ∗F

an.

Lemma 2.138. If F is a coherent sheaf on X, then Riψ∗F
an = 0 for all i ⩾ 1,

and hence the map ψ∗F
an → Rψ∗F

an is an isomorphism.
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Proof. Using Proposition A.277, the stalk at a closed point x of X of the
higher direct image sheaf Riψ∗F

an is the inductive limit

lim−→Hi(ψ−1(U), F an)

as U runs through all Zariski open subsets of X containing x. Since affine open
subsets form a basis of the Zariski topology, we can restrict to affine U in this limit.
For such an open U , the cohomology Hi(ψ−1(U), F an) vanishes for all i ⩾ 0 by
Cartan’s theorem A.311, since ψ−1(U) is Stein and F an is coherent, so Riψ∗F

an = 0
for all i ⩾ 1. Hence, the map ψ∗F

an → Rψ∗F
an is an isomorphism. □

The celebrated GAGA theorem by Serre [Ser56] is the result that, for X pro-
jective, the analytification functor F 7→ F an is an equivalence of categories from
coherent sheaves on X to coherent sheaves on Xan, and that this functor preserves
cohomology. This was later generalized to proper (not necessarily projective) va-
rieties by Grothendieck in [Gro03, Exp. XII, Thm. 4.4]. In what follows, we will
only need the comparison of algebraic and analytic cohomology on smooth varieties
(using the language of analytic spaces instead of complex manifolds, the statement
below remains valid for singular varieties).

Theorem 2.139 (GAGA theorem). For any smooth proper variety X over
the field of complex numbers and any coherent sheaf F on X, the analytification
map (2.137) induces isomorphisms

Hi(X,F )
∼−→ Hi(Xan, F an).

Remark 2.140. The GAGA theorem fails dramatically when the properness
assumption is dropped. For example, if X = A1 = Spec(C[x]) is the affine line
and F = OX is the structure sheaf, in degree i = 0 the left-hand side is the set of
polynomials C[x], whereas the right-hand side is the set of all entire functions.

By a limiting process, Theorem 2.139 still holds for quasi-coherent sheaves, as
explained e.g. in [Del70, Lem. 6.5]. Indeed, any quasi-coherent sheaf F on X can
be written as an inductive limit F = lim−→Fi of coherent sheaves Fi; taking into
account that the inverse image functor and the tensor product commute with in-
ductive limits, its analytification is given by F an = lim−→F an

i . Besides, on a compact

topological space cohomology commutes with inductive limits, and hence H∗(X,F )
and H∗(Xan, F an) are the inductive limits of H∗(X,Fi) and H∗(Xan, F an

i ) respec-
tively, which are isomorphic by the GAGA theorem for coherent sheaves.

Corollary 2.141. For any smooth proper variety X over the field of complex
numbers and any quasi-coherent sheaf F on X, the analytification map (2.137)
induces isomorphisms

Hi(X,F )
∼−→ Hi(Xan, F an).

2.3.2. Algebraic and analytic de Rham cohomology.

Definition 2.142. Let M be a complex manifold. The analytic de Rham
cohomology of M is the hypercohomology of the holomorphic de Rham complex
(Example 2.136). We denote it by

H∗dR(M) = H∗(M,Ω∗M ).
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Let X be a smooth algebraic variety over C and let Xan be the associated
complex manifold. Since the sheaf of holomorphic differentials ΩpXan is the analyti-
fication of the sheaf of Kähler differentials ΩpX for all p ⩾ 0 by Example 2.136, the
morphisms (2.137) specialize to

ΩpX −→ ψ∗Ω
p
Xan −→ Rψ∗Ω

p
Xan .

Moreover, since the sheaves ΩpX are locally free, and hence coherent, the second map
is an isomorphism by Lemma 2.138. Besides, these maps are compatible with the
differential, as the differential of a regular function is the same whether we consider
it as an algebraic or as an analytic function, so we get a morphism Ω∗X → Rψ∗Ω

∗
X

of complexes of sheaves on X. It induces a C-linear map on cohomology
(2.143)

H∗dR(X) = H∗(X,Ω∗X) −→ H∗(X,Rψ∗Ω∗X) = H∗(Xan,Ω∗Xan) = H∗dR(Xan).

that we call the analytification map. We shall prove later (see the proof of Theo-
rem 2.168 below) that this map is always an isomorphism. For the time being, we
restrict ourselves to proper varieties.

Proposition 2.144. If X is proper, then the analytification map (2.143) is an
isomorphism:

H∗dR(X)
∼−→ H∗dR(Xan).

Proof. Since algebraic and analytic de Rham cohomology are defined as the
hypercohomology of the complexes of sheaves Ω∗X and Ω∗Xan respectively, they are
the abutments of the spectral sequences

Ep,q1 = Hq(X,ΩpX) =⇒ Hp+q
dR (X),

Ep,q1 = Hq(Xan,ΩpXan) =⇒ Hp+q
dR (Xan).

By the construction of the map between algebraic and analytic de Rham cohomol-
ogy, there is a morphism of spectral sequences compatible with this map. By the
GAGA theorem 2.139, the map

Hq(X,ΩpX) −→ Hq(Xan,ΩpXan)

is an isomorphism for all p, q ⩾ 0, hence the result. □

2.3.3. Analytic de Rham cohomology and the Poincaré lemma. The next tool
in the proof of the comparison theorem is a result relating analytic de Rham coho-
mology with singular cohomology.

Theorem 2.145 (Poincaré lemma). Let M be a complex manifold. The in-
clusion of the sheaf of locally constant functions CM into the sheaf of holomorphic
functions OM induces a quasi-isomorphism ι : CM → Ω∗M .

Proof. Let M be a complex manifold of dimension d. Proving that the mor-
phism of complexes of sheaves

ι : CM −→ Ω∗M

is a quasi-isomorphism amounts to showing that ι is a quasi-isomorphism after
taking the stalk at each point of M . Since M is a complex manifold, every point
has an open neighborhood biholomorphic to the polydisc

Dd = {z = (z1, . . . , zd) ∈ Cd | |zi| < 1 for i = 1, . . . , d},
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and it suffices to show that the morphism ι : C → Ω∗M (Dd) of complexes of sec-
tions on Dd is a quasi-isomorphism. We shall in fact prove that it is a homotopy
equivalence (see Definition A.42). For this, we consider the map

r : Ω∗M (Dd) −→ C

that sends a function g ∈ OM (Dd) to its value at the center of the polydisc, and a
differential form ω ∈ ΩpM (Dd), with p ⩾ 1, to zero. Clearly, r ◦ ι = IdC and the goal
is to prove that ι ◦ r is homotopic to the identity on Ω∗M (Dd). For this, we shall

construct a map h : ΩpM (Dd)→ Ωp−1M (Dd) for each p ⩾ 0. Let H : [0, 1]× Dd → Dd
be the map given by H(t, z) = tz. For each differential form ω ∈ ΩpM (Dd), we define

(2.146) h(ω) =

∫ 1

0

i∂tH
∗(ω)dt,

where i∂t stands for the contraction of a differential form on [0, 1] × Dd with the
vector field tangent to [0, 1]. Recalling that a differential p-form on a manifold is a
linear functional on the p-th alternating power of its tangent bundle, the contrac-
tion ι∂tH

∗(ω) is defined as the (p− 1)-th form which takes the value

(ι∂tH
∗(ω))(X1 ∧ · · · ∧Xp−1) = H∗(ω)(∂t ∧X1 ∧ · · · ∧Xp−1)

on vector fields X1, . . . , Xp−1. To get a grasp on what h does to a differential form,
let us compute an example. If ω = z1z2dz1 ∧ dz2, then

H∗(ω) = (tz1)(tz2)d(tz1) ∧ d(tz2)

= z1z2t
4dz1 ∧ dz2 + z21z2t

3dt ∧ dz2 + z1z
2
2t

3dz1 ∧ dt.

Concretely, ι∂t deletes the summands not involving dt and replaces dt with a sign
depending on its position in the remaining ones. In the case at hand,

i∂tH
∗(ω) = z21z2t

3dz2 − z1z22t3dz1,

and integration with respect to t yields

h(ω) =
1

4
(z21z2dz2 − z1z22dz1).

If ω ∈ ΩpM (Dd), then h(ω) is a holomorphic differential (p− 1)-form on Dd, whence

a map h : ΩpM (Dd) → Ωp−1M (Dd) for each p ⩾ 0. By the fundamental theorem of
calculus, the equality

dh(ω) + h(dω) = H∗(ω)|t=1 −H∗(ω)|t=0 = ω − ι ◦ r(ω)

holds, which shows that ι ◦ r is indeed homotopic to the identity. □

Since the singular cohomology with complex coefficients of a complex mani-
fold M is canonically isomorphic to the sheaf cohomology of CM by Theorem A.304,
from the Poincaré lemma we immediately derive:

Corollary 2.147. Singular cohomology with complex coefficients is canoni-
cally isomorphic to analytic de Rham cohomology:

H∗(M,C)
∼−→ H∗dR(M).

Remark 2.148. The Poincaré lemma fails for the Zariski topology: if X is an
algebraic variety over k, then the complex

(2.149) 0 −→ Ker(d) −→ OX d−→ Ω1
X −→ · · ·
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of sheaves for the Zariski topology is not exact. For example, if X = Gm with coor-
dinate t, then a non-empty Zariski open subset of X is the complement U = X \ S
of a finite set of closed points S, and the complex

0 −→ k −→ OX(U)
d−→ Ω1

X(U) −→ 0

always has cohomology in degree two since the class of dt/t still does not vanish
in Ω1

X(U)/ Im(d). In fact, the smaller the Zariski open gets the bigger the coho-
mology group becomes (see Exercise 2.177).

2.3.4. The case of smooth proper varieties. We are now ready to establish the
comparison isomorphism for smooth proper varieties as a mere combination of the
Poincaré lemma and the isomorphism between algebraic and analytic de Rham
cohomology deduced from the GAGA theorem.

Theorem 2.150. Let k be a subfield of C and let X be a smooth proper variety
over k. There is a canonical isomorphism

H∗dR(X)⊗k C ∼−→ H∗B(X)⊗Q C.

Proof. The sought isomorphism is the composition of the maps 1 , 2 , the
inverse of 3 , and 4 below:

H∗dR(X)⊗k C
1

∼ // H∗dR(XC)
2

∼ // H∗dR(Xan)

H∗(X(C),C)

3 ∼

OO

4

∼ // H∗B(X)⊗Q C.

The isomorphism 1 comes from the compatibility of algebraic de Rham cohomology
with extension of scalars (Lemma 2.102). The isomorphism 2 between algebraic
and analytic de Rham cohomology is the corollary of the GAGA theorem estab-
lished as Proposition 2.144. The isomorphism 3 follows from the Poincaré lemma
(Theorem 2.145). Finally, Theorem A.304 in the appendix and the universal coef-
ficient theorem yield the isomorphism 4 . □

In order to extend this result to arbitrary smooth varieties, we need to introduce
the sheaf of differential forms with logarithmic poles.

2.3.5. De Rham cohomology in terms of logarithmic differentials. Recall the
notion of a simple normal crossing divisor from Definition 2.112. In this paragraph,
we explain how to compute algebraic de Rham cohomology of a smooth variety
as the hypercohomology of the complex of sheaves of logarithmic differentials on a
smooth compactification by a simple normal crossing divisor.

We begin with Hironaka’s theorem on the resolution of singularities, which en-
sures that any compactification can be transformed into a smooth compactification
by a simple normal crossing divisor. By a resolution of singularities of a variety Y ,

we mean a proper birational morphism π : Ỹ → Y from a smooth variety Ỹ . Recall
that being birational means that there exists a dense open subset U ⊂ Y such
that the map π−1(U) → U is an isomorphism; the closed complement E ⊂ Y of
the largest open subset with this property is called the exceptional locus of the
morphism π.
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Theorem 2.151 (Hironaka). Let k be a field of characteristic zero. Let Y be a
variety over k and let Z ⊂ Y be a closed subvariety. There exists a proper birational

morphism π : Ỹ → Y such that

i) Ỹ is smooth;

ii) the union of π−1(Z) and the exceptional locus of π is a simple normal
crossing divisor;

iii) π is an isomorphism outside the union of Z and the singular locus of Y .

Moreover, such a morphism can be obtained as an iterated blow-up along smooth
subvarieties of Y .

The morphism π : Ỹ → Y in Theorem 2.151 is called a resolution of singulari-
ties of the pair (Y,Z). We will mainly use the following consequence of Hironaka’s
theorem. Start with a smooth variety X over k and choose a proper variety Y over k
containing X as an open dense subvariety (for example, if X is quasi-projective,
then one can pick as Y the closure of X into some projective space on which X em-
beds as a locally closed subset; the general case requires Nagata’s compactification
theorem). Applied to Y and Z = Y \X, Hironaka’s theorem yields a resolution of

singularities π : Ỹ → Y that is an isomorphism outside Z and such that π−1(Z) is
a normal crossing divisor.

Corollary 2.152. Given a smooth variety X over k, there exists a smooth
proper variety X over k and an open immersion j : X ↪→ X such that D = X \X
is a simple normal crossing divisor.

We shall call such an X a smooth compactification of X by the simple normal
crossing divisor D. With these preliminaries out of the way, we now turn to the
definition of the complex of logarithmic differentials.

Definition 2.153 (Deligne). The complex of sheaves of logarithmic differen-
tials along D is the smallest subcomplex

Ω∗
X

(logD) ↪→ j∗Ω
∗
X

that is stable under wedge product of differential forms and contains Ω∗
X

and the

logarithmic derivatives df/f of all local sections f of j∗O×X .

The sheaf j∗O×X consists of all rational functions that can be written locally

as h/g with h, g ∈ OX and h|X , g|X ∈ O×X . It follows that Ω1
X

(logD) is a lo-
cally free OX -module of rank d = dimX. Indeed, if z1, . . . , zd is a regular system
of parameters with respect to which D is cut out by the equation z1 · · · zr = 0
(Definition 2.112), then Ω1

X
(logD) is locally generated by the differential forms

dz1/z1, . . . ,dzr/zr,dzr+1, . . . ,dzd.

Moreover, the equality Ωp
X

(logD) = ΛpΩ1
X

(logD) holds for all p ⩾ 0.

We will also need to consider logarithmic differentials in the analytic setting.
We first define simple normal crossing divisors on complex manifolds.

Definition 2.154. Let M be a complex manifold of dimension d. A closed
analytic subset Z ⊂M of codimension 1 is called a simple normal crossing divisor
if all its irreducible components are smooth and, for each point p ∈ D, there exist
an integer 1 ⩽ r ⩽ d and local coordinates x1, . . . , xd around p on which D is
defined by the equation x1 · · ·xr = 0.
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Remark 2.155. There is an analogous definition of the sheaf of holomorphic
forms on a complex manifold M with logarithmic poles along a simple normal
crossing divisor Z. If X is a smooth complex algebraic variety and X a smooth
compactification by a simple normal crossing divisor D = X \X, then

Ω∗
X

an(logDan) = Ω∗
X

(logD)an.

Definition 2.156. Let M be a complex manifold, Z ⊂ M a normal crossing
divisor, U = M \Z its complement, and j : U →M the inclusion. The subcomplex
of j∗Ω

∗
U consisting of the sheaves of holomorphic differential forms on U that are

meromorphic along Z is denoted by jm∗ Ω∗U .

In concrete terms, jm∗ Ω∗U is the sheaf of differential forms on M , possibly with
singularities along Z, that can be written locally as ω/f for local sections ω of Ω∗M
and f of OM such that the restriction f |U is invertible, i.e. a local section of O×U .

Example 2.157. Let X be a smooth variety over C and X a smooth compacti-
fication with D = X \X a simple normal crossing divisor. By an abuse of notation,
we write j for both the algebraic open immersion X → X and the analytic open
immersion Xan → X

an
. Then, we can identify

(2.158) jm∗ Ω∗Xan = (j∗Ω
∗
X)an.

Indeed, both sheaves are subsheaves of j∗Ω
∗
Xan . A local section of j∗Ω

∗
Xan belongs

to (j∗Ω
∗
X)an if it can be written locally as ω/f with ω ∈ Ω∗

X
an and f ∈ OX such

that f |X ∈ O×X . Since any holomorphic function g ∈ OXan with g|Xan ∈ O×Xan can

be written locally as g = fu with f as before and u ∈ O×
X

an , we deduce (2.158)

from the concrete description of jm∗ Ω∗Xan given in Definition 2.156.

The proof of the next theorem is taken from [Del70, Lem. 6.9].

Theorem 2.159. The inclusions of complexes of sheaves

ιm : Ω∗M (logZ) ↪−→ jm∗ Ω∗U ι : Ω∗M (logZ) ↪−→ j∗Ω
∗
U

are quasi-isomorphisms.

Proof. To fix ideas we start by proving the result in dimension one. Since the
statement is local, pick a small ball B with coordinate z such that Z∩B = {z = 0}.
Then all elements ω1 ∈ (j∗Ω

∗
U )(B) and ω2 ∈ (jm∗ Ω∗U )(B) can be written as

ω1 =
∑

n∈Z
anz

n +
∑

n∈Z
bnz

n dz

z
, ω2 =

∑

n⩾n0

anz
n +

∑

n⩾n1

bnz
n dz

z
.

We consider the map r : (j∗Ω
∗
U )(B)→ (Ω∗M (logZ))(B) that forgets the polar non-

logarithmic part, that is,
∑

n∈Z
anz

n +
∑

n∈Z
bnz

n dz

z
7−→

∑

n⩾0

anz
n +

∑

n⩾0

bnz
n dz

z
.

Let rm be the restriction of r to (jm∗ Ω∗U )(B). Then the equalities r◦ι = rm◦ιm = Id
hold, so we need to prove that the compositions ι ◦ r and ιm ◦ rm are homotopically
equivalent to the identity. We define the homotopy

h : (j∗Ω
1
U )(B) −→ (j∗Ω

0
U )(B)∑

n∈Z bnz
n dz
z 7−→

∑
n<0

bn
n z

n.
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Let hm : (jm∗ Ω1
U )(B)→ (jm∗ Ω0

U )(B) the restriction of h. A direct verification gives

d ◦ h+ h ◦ d = Id−ι ◦ r, d ◦ hm + hm ◦ d = Id−ιm ◦ rm.
We now assume that M is d-dimensional. Let P ⊂M be an open polydisc with

coordinates z1, . . . , zd such that Z ∩ P has equation z1 . . . zk = 0. For i = 1, . . . , d,
we define maps ri : (j∗Ω

∗
U )(P )→ (j∗Ω

∗
U )(P ) by the assignment

∑

I⊂{1,...,k}
J⊂{k+1,...,d}
α∈Zk×Nd−k

aI,J,αz
α dzI

zI
dzJ 7−→

∑

I⊂{1,...,k}
J⊂{k+1,...,d}
α∈Zk×Nd−k

αi⩾0

aI,J,αz
α dzI

zI
dzJ .

That is, the map ri erases the polar non-logarithmic part on the coordinate zi.
The maps ri are commuting projectors, i.e. satisfy r2i = ri and ri ◦ rj = rj ◦ ri.
Moreover, the image of r1 ◦ · · · ◦ rk is (Ω∗M (logZ))(P ).

We now define the homotopies Hi : (j∗Ω
∗
U )(P )→ (j∗Ω

∗−1
U )(P ) by the rule

∑

I⊂{1,...,k}
J⊂{k+1,...,d}
α∈Zk×Nd−k

aI,J,αz
α dzI

zI
dzJ 7−→

∑

I⊂{1,...,k}
J⊂{k+1,...,d}

i∈I
α∈Zk×Nd−k

αi<0

εi
aI,J,α
αi

zα
dzI\{i}

zI\{i}
dzJ ,

where εi = ε(I \ {i}, I) is the sign of the permutation (i, I \ {i}) of I, seing I as an
ordered set, as in Construction 2.114.

The homotopies Hi satisfy

Hi ◦ d + d ◦Hi = Id−ri
for all i and Hi ◦ rj = rj ◦Hi for all i ̸= j. This implies that all the maps

(2.160) (j∗Ω
∗
U )(P )

r1−→ Im(r1)
r2−→ Im(r2 ◦ r1) −→ · · · −→ (Ω∗M (logZ))(P )

are homotopy equivalences, and hence their composition is a quasi-isomorphism
from the complex (j∗Ω

∗
U )(P ) to the complex (Ω∗M (logZ))(P ). Since the map ι in

the statement is a right-inverse of the composition (2.160), it is a quasi-isomorphism
as well. The result for (jm∗ Ω∗U )(P ) follows from the observation that the operators ri
and Hi send this last space to itself. □

As an immediate consequence of this theorem, we see that the complexes jm∗ Ω∗U
and j∗Ω

∗
U are quasi-isomorphic.

Corollary 2.161. The inclusion of complexes of sheaves

jm∗ Ω∗U ↪−→ j∗Ω
∗
U

is a quasi-isomorphism.

Another consequence of Theorem 2.159, combined with the GAGA theorem for
quasi-coherent sheaves, is that the complex of logarithmic differentials computes
algebraic de Rham cohomology.

Proposition 2.162. Let k be a field of characteristic zero. Let X be a smooth
variety and X a smooth compactification of X by a simple normal crossing divi-
sor D, with everything defined over k. Let j : X ↪→ X denote the inclusion. The
morphism of complexes

(2.163) Ω∗
X

(logD) ↪−→ j∗Ω
∗
X
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induces an isomorphism in hypercohomology, hence an isomorphism

Hn(X,Ω∗
X

(logD))
∼−→ Hn

dR(X).

Proof. We first use a standard trick in algebraic geometry to reduce to vari-
eties over the field of complex numbers. Since the varieties X and X are of finite
type, there is a finitely generated subfield Q ⊂ k0 ⊂ k and varieties (X0, X0) de-
fined over k0 such that the pair (X,X) is deduced from (X0, X0) by extension of
scalars. Set D0 = X0 \X0. Any field extension being flat, the map (2.163) induces
an isomorphism in hypercohomology if and only if the same holds for the map

(2.164) Ω∗
X0

(logD0) ↪−→ j∗Ω
∗
X0
.

The advantage is that k0 can now be embedded into the complex numbers. We
choose an embedding k0 ⊂ C and we write (XC, XC) for the pair of complex varieties
obtained from (X0, X0) by extension of scalars. Again, the map (2.164) induces an
isomorphism in hypercohomology if and only if the map

Ω∗
XC

(logDC) ↪−→ j∗Ω
∗
XC

does, and hence we may assume k = C without loss of generality.
Recall the continuous map ψ : X

an → X from Section 2.3.1, and consider the
commutative diagram

j∗Ω
∗
X

// ψ∗jm∗ Ω∗Xan

Ω∗
X

(logD) //

OO

ψ∗Ω
∗
X

an(logDan).

OO

Using the GAGA theorem for quasi-coherent sheaves (Corollary 2.141) and the iden-
tification (j∗Ω

∗
X)an = jm∗ Ω∗Xan from Example 2.157, a spectral sequence argument

similar to that in the proof of Proposition 2.144 shows that the upper horizon-
tal arrow induces an isomorphism in hypercohomology. Again a spectral sequence
argument and the GAGA theorem shows that the lower horizontal arrow also in-
duces an isomorphism in hypercohomology. Theorem 2.159, together with the fact
that the involved sheaves are ψ-acyclic, implies that the right vertical arrow is a
quasi-isomorphism. We deduce that the left vertical arrow induces an isomorphism
in hypercohomology. This gives the first statement and the isomorphism 3 in

(2.165)

Hn
dR(X) = Hn(X,Ω∗X)

≃

1

// Hn(X,Rj∗Ω
∗
X)

Hn(X,Ω∗
X

(logD))
∼

3

// Hn(X, j∗Ω
∗
X)

2∼

OO

The remaining isomorphisms are obtained as follows. Since the morphism j is affine
(see Example A.312) and the sheaves j∗Ω

i
X are quasi-coherent, 2 is an isomorphism

by Theorem A.313. Finally, the isomorphism 1 follows from Proposition A.278.
Composing the maps 1 , 2 , and the inverse of 3 , we get the second statement. □

Remark 2.166. We have proved Proposition 2.162 using the GAGA principle
and the corresponding result for complex manifolds. A purely algebraic proof using
étale cohomology can be found in [HMS17, Prop. 3.1.16].
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Corollary 2.167. Let X be a smooth algebraic variety of dimension d over k.
The algebraic de Rham cohomology Hn

dR(X) is a finite-dimensional k-vector space.
Moreover, Hn

dR(X) = 0 for all n > 2d.

Proof. By Proposition 2.162, it suffices to prove that the hypercohomology
of the complex of logarithmic differentials is finite-dimensional. This cohomology
group is the abutment of the spectral sequence

Ep,q1 = Hq(X,Ωp
X

(logD)).

Since the logarithmic differentials Ωq
X

(logD) are coherent sheaves on the proper

variety X, all terms Ep,q1 of the spectral sequence have finite dimension and vanish
unless 0 ⩽ p ⩽ d and 0 ⩽ q ⩽ d. □

2.3.6. The comparison isomorphism. We now have all the ingredients needed
to prove Grothendieck’s comparison isomorphism.

Theorem 2.168 (Grothendieck, [Gro66]). Let X be a smooth variety over a
subfield k of C. There is a canonical isomorphism

(2.169) compB,dR : Hi
dR(X)⊗k C ∼−→ Hi

B(X)⊗Q C.

Proof. As discussed in Section 2.3.4, one may assume k = C and it suffices
to prove that the analytification map

H∗dR(X) −→ H∗dR(Xan)

is an isomorphism. Let j : X ↪→ X be a smooth compactification by a simple normal
crossing divisor. Since j is an affine morphism and Ω∗X is a complex of coherent
sheaves, the complex Rj∗Ω

∗
X is reduced to j∗Ω

∗
X , so

H∗dR(X) = H∗(X,Ω∗X) = H∗(X,Rj∗Ω
∗
X) = H∗(X, j∗Ω

∗
X).

Similarly, since j : Xan ↪→ X
an

is a Stein morphism and the sheaves Ω∗Xan are
coherent, the complex Rj∗Ω

∗
Xan is reduced to j∗Ω

∗
Xan , and hence

H∗dR(Xan) = H∗(Xan,Ω∗Xan) = H∗(X
an
, Rj∗Ω

∗
Xan) = H∗(X

an
, j∗Ω

∗
Xan).

By Corollary 2.161, the complex j∗Ω
∗
Xan is quasi-isomorphic to jm∗ Ω∗Xan , which

is nothing but the analytification of j∗Ω
∗
X (Example 2.157). Therefore, the first

pages of the spectral sequences

Hq(X, j∗Ω
p
X) =⇒ Hp+q

dR (X)

Hq(X
an
, jm∗ ΩpXan) =⇒ Hp+q

dR (Xan)

are isomorphic by the GAGA theorem for quasi-coherent sheaves (Corollary 2.141)
, and so are the abutments. □

Remark 2.170. When X is an affine variety, all classes in de Rham cohomology
are represented by differential forms. In that case, the comparison isomorphism is
induced by the pairing

(2.171)
Hi

dR(X)⊗Hi(X(C),Q) −→ C
ω ⊗ σ 7−→

∫
σ
ω.

This pairing is called the period pairing. The fact that it depends only on the classes
of ω and σ, and is thus well defined, follows from Stokes’s theorem.
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Remark 2.172. Later on, we will also need the inverse of the comparison
isomorphism compB,dR, which will be written as

compdR,B : Hi
B(X)⊗Q C ∼−→ Hi

dR(X)⊗k C.
Remark 2.173. The comparison isomorphism (Theorem 2.168) does not hold

if the smoothness assumption is removed. For instance, if X is the affine plane
curve defined by the equation x5 + y5 + x2y2 = 0, one can show that dim H1

dR(X)
is bigger than dim H1

B(X); see [AK11, Ex. 4.4] for an example. However, the
theorem remains true for singular varieties X with the “correct” definition of de
Rham cohomology, as presented for instance in [HMS17, §3.3.3].

There is also a relative version of the comparison isomorphism:

Theorem 2.174. Let k be a subfield of the complex numbers, X a smooth
variety, and Z ⊆ X either a smooth closed subvariety or a normal crossing divisor,
with everything defined over k. Then there is a canonical isomorphism

(2.175) Hi
dR(X,Z)⊗k C ∼−→ Hi

B(X,Z)⊗Q C.

Remark 2.176. For affine X and a smooth closed subvariety ι : Z ↪→ X, rela-
tive cohomology classes are represented by pairs (ωX , ωZ) and (σX , σZ) satisfying

∂σX = −ι∗σZ , ι∗ωX = dωZ , dωX = 0.

As in Remark 2.170, the comparison isomorphism is also given by a period pairing:

Hi
dR(X,Z)⊗HB

i (X,Z) −→ C
(ωX , ωZ)⊗ (σX , σZ) 7−→

∫
σX

ωX +
∫
σZ
ωZ .

⋆ ⋆ ⋆

Exercise 2.177. A way to rephrase the fact that the Poincaré lemma fails for
the Zariski topology, as explained in Remark 2.148, is by saying that, for a smooth
connected variety X over k, the Zariski sheaves

HqX =
Ker(d: ΩqX → Ωq+1

X )

Im(d: Ωq−1X → ΩqX)

are not zero in general. Observe that HqX is the sheaf associated with the presheaf

U 7−→ Hq
dR(U).

As for any hypercohomology of sheaves, there is a spectral sequence

Ep,q2 = Hp(X,HqX) =⇒ Hp+q
dR (X).

i) Prove that the sheaf H0
X is flasque, and hence acyclic.

ii) Deduce that the presheaf U 7→ H1
dR(U) is already a sheaf on X.

Exercise 2.178. Use the GAGA theorem for quasi-coherent sheaves (Corol-
lary 2.141) to prove the following statement. Let X be a smooth complex variety
and let X be a smooth compactification by a simple normal crossing divisor. Let f
be a meromorphic function on X

an
that is holomorphic on Xan. Then f is alge-

braic, that is, comes from a rational function on X. For example, an entire function
on the complex plane that extends meromorphically to ∞ is a polynomial.
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Exercise 2.179. Let k be a subfield of C and X a smooth variety over k.
Let E∗Xan

C
be the sheaf of real-valued differential forms on the complex manifold Xan

C ,

let E∗(Xan
C ,R) be its complex of global sections, and S∗(Xan

C ,R) the complex of
smooth singular cochains. Let ψk : Xan

C → X be the continuous map between
the complex manifold and the scheme. Show that the comparison isomorphism of
Theorem 2.168 is induced by the inclusion of sheaves

Ω∗X/k −→ (ψk)∗E∗Xan
C
⊗ C

and the morphism of complexes
∫

: E∗(Xan
C ,R)⊗ C −→ S∗(Xan

C ,R)⊗ C.

2.4. Periods. In this section, we introduce a class of complex numbers called
periods. They sit halfway between the algebraic and the transcendental numbers:
although they tend to be transcendental, periods share with algebraic numbers
the property that they contain “a finite amount of information”. Moreover, this
information is of geometric nature. From the modern point of view, periods appear
when comparing de Rham and Betti cohomology of algebraic varieties over number
fields. We refer the reader to [HMS17] and [Fre24] for more detailed expositions.

2.4.1. An elementary definition of periods. The following elementary definition
was first written down by Kontsevich and Zagier [KZ01, § 1.1]:

Definition 2.180. A period is a complex number whose real and imaginary
parts can be written as absolutely convergent integrals of the form

(2.181)

∫

S

f(x1, . . . , xn)dx1 · · · dxn,

where the integrand is a rational function f with rational coefficients and the inte-
gration domain is a Q-semi-algebraic subset S ⊂ Rn, i.e. a finite union and intersec-
tion of subsets {g(x1, . . . , xn) ⩾ 0} with g a polynomial with rational coefficients.

Periods form a countable subring of the complex numbers (Exercise 2.189).
Moreover, one may replace “rational function” with “algebraic function” and “ra-
tional coefficients” with “algebraic coefficients” in the above definition, and still
obtain the same class of numbers. Standard examples of periods include:

• All algebraic numbers (see Exercise 2.190).

• The number π =
∫
x2+y2⩽1

dxdy.

• Logarithms of rational numbers log(q) =
∫ q
1

dx
x , where q ∈ Q⩾1.

• Elliptic integrals
∫∞
1

dx√
x(x−1)(x−λ)

where λ ∈ Q \ {0, 1}.

• Multiple zeta values, certain Feynman integrals (see Section 2.8.11), peri-
ods of modular forms, some special values of L-functions, etc.

2.4.2. A cohomological interpretation of periods. The comparison isomorphism
of Theorem 2.168 does not respect the rational structures, as it will be clear from
the next basic example. In particular, in the case where k = Q, the vector
spaces Hi

dR(X) and Hi
B(X) are isomorphic (they have the same dimension), but

there is no canonical isomorphism between them!
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Example 2.182. Let X = Gm = Spec
(
Q[t, t−1]

)
, so that X(C) = C \ {0}. We

know from examples 2.36 and 2.90 that

H1
dR(X) = Qdt

t , H1(X(C),Q) = Qσ,

where σ is the counterclockwise oriented unit circle. Then the comparison isomor-
phism is given by multiplication by:

∫

σ

dt

t
= 2πi.

The fact that the comparison isomorphism does not respect the rational struc-
tures gives rise to the cohomological interpretation of periods. The following result
is shown in [HMS17, § 11.2]

Theorem 2.183. The set of periods is equal to the set of complex numbers that
appear as a coefficient of a matrix of the comparison isomorphism (2.175) between
the de Rham cohomology and the Betti cohomology of some pair (X,Z) consisting
of a smooth variety X and a simple normal crossing divisor Z ⊂ X, both defined
over Q, with respect to Q-bases of de Rham cohomology and Betti cohomology.

2.4.3. Examples.

Example 2.184. All algebraic numbers are periods. Indeed, let k be a number
field and consider the zero-dimensional variety X = Spec(k), which we regard as
defined over Q. Then H0

dR(X) is canonically identified with the Q-vector space k.
By its very definition,

X(C) = Hom(Spec(C),Spec(k)) = Hom(k,C)

is the set of complex embeddings of k, and hence H0
B(X) = QHom(k,C). If we choose

a basis a1, . . . , an of k over Q and σ1, . . . , σn denote the complex embeddings of k,
then the period matrix is (σi(aj))i,j .

In fact this example can be generalized as follows. Let k ⊂ C be a number field.
A period over k is defined as a complex number that appears as a coefficient of a
matrix of the comparison isomorphism (2.175) between the de Rham cohomology
and the Betti cohomology of some pair (X,Z) consisting of a smooth variety X
defined over k and a simple normal crossing divisor Z ⊂ X also defined over k,
with respect to k-basis of de Rham cohomology and a Q basis of Betti cohomology.
This apparently more general definition of periods does not produce new numbers.

Proposition 2.185 ([HMS17, § 11.2]). The set consisting of all periods over k
all number fields agrees with the set of periods over Q.

Example 2.186. Let X = Gm,Q and Z = {1, q} for q ∈ Q \ {0, 1}. In Ex-

ample 2.44 we obtained generators σ1 and σ2 of HB
1 (X,Z), and in Example 2.108

generators ω1 and ω2 of H1
dR(X,Z). With respect to these bases, the period ma-

trix is given by (∫
σ2
ω1

∫
σ2
ω2∫

σ1
ω1

∫
σ1
ω2

)
=

(
1 log(q)

0 2πi

)
,

which shows that logarithms of rational numbers are periods in the sense of the
comparison isomorphism.
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2.4.4. Compatibility with complex conjugation. We finish this section by prov-
ing a result of compatibility of the comparison isomorphism with complex conjuga-
tion that will be used in Chapter 4. Assume that k is a subfield of the real numbers.
Complex conjugation c : C → C induces a continuous map X(C)→ X(C) on the
complex points of any algebraic variety X over k, and hence an involution

ρ : Hi
B(X) −→ Hi

B(X)

on its Betti cohomology.

Proposition 2.187. Assume k ⊆ R. The comparison isomorphism (2.169)
is equivariant for the action of Z/2 by Id⊗c on the left-hand side (de Rham) and
by ρ⊗ c on the right-hand side (Betti).

Proof. We assume, as we may without loss of generality after extension of
scalars, that k is the field of real numbers. Let X be a smooth variety over R and
let Xan

C be the corresponding complex manifold. We denote by E∗Xan
C

the sheaf of

real-valued differential forms on Xan
C , by E∗(Xan

C ,R) its complex of global sections,
and by S∗(Xan

C ,R) the complex of smooth singular cochains. Let ψR : Xan
C → X

be the continuous map between the complex manifold and the real scheme. By
Exercise 2.179, the comparison isomorphism is induced by the inclusion of sheaves

Ω∗X/R −→ (ψR)∗E∗Xan
C
⊗ C

and the morphism of complexes
∫

: E∗(Xan
C ,R)⊗ C −→ S∗(Xan

C ,R)⊗ C

given by integration. By the functoriality of the de Rham theorem for differentiable
maps (Theorem 2.79),

∫
commutes with the map ρ⊗c that is defined on both sides.

Let V be a Zariski open subset of X and let U = ψ−1R (V ). Then U is invariant
under ρ. Then we claim that the sections of

Ω∗X/R(V ) ⊂ (ψR)∗E∗(V )⊗ C = E∗(U)⊗ C

are invariant under the action of ρ⊗c. To prove this claim, we can assume that V is
affine and there is a closed immersion V ⊂ ANR . Since every differential form on V
is the restriction of a differential form on ANR , we are reduced to the case X = ANR
where we can use coordinates x = (x1, . . . , xN ).

Let ω =
∑
I fI(x)dxI be a holomorphic differential form. Then

(ρ⊗ c)(ω) =
∑

I

fI(x̄)dx̄I .

If ω is a section of Ω∗X/R, then the fI are polynomials with real coefficients and we

deduce that (ρ⊗ c)(ω) = ω, thus proving the claim.
It follows from the claim that compB,dR(Hi

dR(X)) is invariant under the action

of ρ⊗ c, which in turn, thanks to Exercise 2.193, implies that ρ⊗ c in Hi
dR(X)⊗C

induces Id⊗c through the comparison isomorphism. This concludes the proof. □

We illustrate the proposition in the case of X = Gm viewed as a variety over Q
(see Exercise 2.192 below for another instance).
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Example 2.188. We know from Example 2.182 that the comparison isomor-
phism compB,dR sends dt/t to σ∨ ⊗ (2πi). The differential form being rational, it
is invariant under complex conjugation, so σ∨⊗ (2πi) should also be invariant. For
this, observe that the image of σ by complex conjugation is the clockwise oriented
unit circle, whose cohomology class is −σ. Thus,

(ρ⊗ c)(σ ⊗ (2πi)) = −σ ⊗ (−2πi) = σ ⊗ (2πi),

as predicted by Proposition 2.187.

⋆ ⋆ ⋆

Exercise 2.189. Show that the set of periods is a countable ring. [Hint: to
prove that it is closed under products use Fubini’s theorem. To prove that it is
closed under sums, first show that a real number is a period if and only if it can be
written as a difference of volumes of Q-semi-algebraic sets, and then show that the
sum of two differences of volumes can be written as a difference of volumes.]

Exercise 2.190. In this exercise, we show that all algebraic numbers are peri-
ods in the sense of Definition 2.180. For example, the integral representation

√
2 =

∫

x2⩽2
x⩾0

dx

shows that
√

2 is a period.

i) Let P ∈ Q[x] be an irreducible polynomial and let α1, . . . , αr be its real
roots. Generalize the above example to show that all αi are periods.

ii) Using that the real and the imaginary part of a complex algebraic number
are real algebraic numbers, deduce that all algebraic numbers are periods.

Exercise 2.191. Let X be a smooth affine variety of dimension d over a sub-
field k of the complex numbers. Prove the vanishing Hi

B(X) = 0 for all i > d.

Exercise 2.192. Let C ⊂ A2
Q be the affine conic given by x2 + y2 = 1.

i) Show that the de Rham cohomology group H1
dR(C) is generated by the

class of the differential form xdy − ydx and that the singular homology
group H1(C(C),Q) is generated by the chain

σ : [0, 1] −→ C(R), t 7−→ (cos(2πt), sin(2πt)).

ii) Prove that the associated period is equal to∫

σ

xdy − ydx = 2π

and check Proposition 2.187 in this case.

iii) Find generators of the singular homology of the conics C defined by the
equations x2 + y2 = −1 and x2 − y2 = 1 and check Proposition 2.187 in
these cases as well.

Exercise 2.193. Let (V, σ) be a finite-dimensional complex vector space, to-
gether with an antilinear involution. Prove that the set of fixed points VR = V σ is a
real vector space, that there is a unique isomorphism VR⊗C→ V compatible with
the inclusion VR ⊂ V , and that the involution σ agrees with the involution Id⊗c
on VR ⊗ C→ V under this isomorphism.
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2.5. Multiple zeta values as periods of algebraic varieties. The exam-
ples from the previous section show that algebraic numbers, logarithms of rational
numbers, as well as the ubiquitous 2πi are all periods. From the integral represen-
tation (1.117), it follows immediately that multiple zeta values are periods in the
sense of Kontsevich and Zagier (Definition 2.180). However, it is not so easy to
exhibit the corresponding algebraic varieties. The main goal of this section is to
work out the example of ζ(2) in detail to give an idea of the difficulties involved.

2.5.1. The example of ζ(2). Recall from Example 1.110 that ζ(2) admits the
integral representation

(2.194) ζ(2) =

∫

1⩾t1⩾t2⩾0

dt1
t1
∧ dt2

1− t2
.

The integrand is the differential form

ω =
dt1
t1
∧ dt2

1− t2
on the affine plane, which is singular along the union of the lines

ℓ0 = {t1 = 0} and ℓ1 = {t2 = 1}.

Thus, ω is a global differential 2-form on Y = A2 \ (ℓ0 ∪ ℓ1).
The domain of integration is the simplex

σ = {(t1, t2) | 1 ⩾ t1 ⩾ t2 ⩾ 0} ⊂ A2(C).

However, if we want to consider the integral (2.194) as a period of Y , relative to
some divisor containing the boundary of σ, we immediately face the problem that σ
is not contained in Y , as the points p = (0, 0) and q = (1, 1) belong to σ ∩ (ℓ0 ∪ ℓ1)
(see Figure 5).

σ
ℓ0

q

p

ℓ1

Figure 5. The simplex σ and the singular locus ℓ0 ∪ ℓ1

A way to remedy this is to perform a geometric construction called blow-up,
which replaces a point on a variety with a divisor. It is a very useful technique in the
study of singularities. In our case, we have to blow up the two problematic points p
and q. The blow-up of A2 along p and q is the closed subvariety X ⊂ A2 × P1 × P1
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defined by the equations

t1α1 = t2β1,

(t1 − 1)α2 = (t2 − 1)β2,

where [αi : βi] are homogeneous coordinates on the two copies of P1. The projection
onto the first factor induces a proper surjective map

π : X −→ A2.

One checks that π−1(p) is the projective line

Ep = (0, 0)× P1 × [1 : 1] ⊂ A2 × P1 × P1,

whereas π−1(q) is the projective line

Eq = (1, 1)× [1 : 1]× P1 ⊂ A2 × P1 × P1.

They are called the exceptional divisors of the blow-up. Moreover, the restriction

π |X\(Ep∪Eq) : X \ (Ep ∪ Eq) −→ A2 \ {p, q}

is an isomorphism. For any closed subset C ⊂ A2, the strict transform Ĉ of C is
the closed subset of X given by

Ĉ = π−1(C \ {p, q}).
In words: we first remove the points p and q if they are in C, then we take the
preimage on X by π, and finally the Zariski closure. The strict transform is con-
tained in the total transform π−1(C) but it may be smaller. For instance, the strict
transform of ℓ0 is the affine line

L0 = ℓ̂0 = {((0, t2), [1 : 0], [1− t2 : 1]) | t2 ∈ A1},
while the total transform is L0 ∪ Ep. Note that L0 and Ep intersect at the point

(2.195) L0 ∩ Ep = {((0, 0), [1 : 0], [1 : 1])}.
Similarly, the strict transform of ℓ1 is the affine line

L1 = ℓ̂1 = {((t1, 1), [1 : t1], [0 : 1]) | t1 ∈ A1},
which is disjoint from the exceptional divisor Ep, intersects the line L0 at the
point ((0, 1), [1 : 0], [0 : 1]), and intersects Eq at ((1, 1), [1 : 1], [0 : 1]).

In principle, the pull-back π∗(ω) of ω might have singularities along the total
transform of ℓ0 ∪ ℓ1, which would only worsen the initial situation. Luckily, π∗(ω)
is only singular on the strict transform L0 ∪ L1. This can be seen using local
coordinates in X. For instance, a local chart of X around the intersection of L0

and Ep is given by the coordinates

t =
β1
α1

=
t1
t2
, s = t2,

in which Ep and L0 have local equations s = 0 and t = 0, respectively. Then

π∗(ω) =
d(st)

st
∧ ds

1− s =
ds

s
∧ ds

1− s +
dt

t
∧ ds

1− s =
dt

t
∧ ds

1− s ,

where we have used the Leibniz rule and ds ∧ ds = 0. It follows that π∗(ω) is
only singular along L0 and not along Ep \ L0. An analogous computation shows
that π∗(ω) has singularities along L1 but not along Eq.
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The closed points of the exceptional divisor Ep can be interpreted as lines
passing through the point p. This allows us to find the points of Ep that are
contained in σ̂, namely

σ̂ ∩ Ep = {((0, 0), [m : 1], [1 : 1]) | 0 ⩽ m ⩽ 1}.
Combined with (2.195), this implies that σ̂ ∩ L0 = ∅. A similar argument shows
that σ̂∩L1 = ∅, so, after passing to the blow-up X, the singular locus of π∗(ω) and
the domain of integration σ̂ are disjoint (Figure 6).
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L0

σ̂

L1

Ep

Eq

Figure 6. The strict transform of σ and the singular locus L0∪L1

of the form π∗(ω)

Write L = L0 ∪ L1. The complement X \ L is still an affine variety; in fact, it
is the closed subvariety of A2 × A1 × A1 defined by the equations

t1t = t2,

(t1 − 1) = (t2 − 1)s,

where t, s are the coordinates of the first and the second affine lines. By the previous
discussion, π∗(ω) is an element of Ω2(X \ L).

The next issue one needs to deal with is that σ is not a closed chain. Its
boundary is contained in the union of the affine lines

m2 = {t1 = t2}, m3 = {t2 = 0}, m4 = {t1 = 1},
so we are naturally led to consider the normal crossing divisor

M = π−1(m2 ∪m3 ∪m4) = Ep ∪ Eq ∪M2 ∪M3 ∪M4 ⊂ X,
where Mi denotes the strict transform of mi. One checks that the intersection L∩M
is reduced to the points L0 ∩ Ep and L1 ∩ Eq which we have already computed.

Since σ̂ is contained in X \ L and its boundary lies in M , using Remark 2.40
we see that σ̂ determines a relative homology class

σ̂ ∈ H2(X \ L,M \ (L ∩M)).
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Besides, the restriction of π∗(ω) to every irreducible component of M is zero for
dimension reasons, so it defines a relative cohomology class

π∗(ω) ∈ H2
dR(X \ L,M \ (L ∩M)).

Pairing these classes through the comparison isomorphism (2.175) yields, as we
wanted, the period ∫

σ̂

π∗(ω) =

∫

π∗(σ̂)

ω =

∫

σ

ω = ζ(2).

Remark 2.196. This example was generalized by Terasoma in [Ter02]. For
any multiple zeta value ζ(s), he starts with some affine space An and shows that,
after blowing up some subvarieties, one obtains a smooth algebraic variety X and
simple normal crossing divisors L and M on X such that ζ(s) is a period of the
pair (X \ L,M \ L ∩M). An important feature of Terasoma’s construction is that
the subvarieties one has to blow up are given by linear equations with all coefficients
equal to 0 and 1. This implies that the “motive” of the pair (X \ L,M \ L ∩M)
is a “mixed Tate motive over Z” and he uses this observation to prove Theorem A
from the introduction. The notion of motive and mixed Tate motive over Z will
be explained in Chapter 4. The combinatorics in Terasoma’s approach is quite
involved. Roughly at the same time, Goncharov and Manin [GM04] found a clever
trick to make geometry do the hard work for us. They showed that multiple zeta
values appear as periods of a suitable pair built out of a compactification of the
moduli space M0,n. We will explain this point of view in the next section with a
little more detail. Thanks to the properties of these moduli spaces, they also show
that multiple zeta values are periods of “mixed Tate motive over Z”. This can be
used to give another proof of Theorem A. In these notes, we will rather follow a
third approach due to Deligne and Goncharov [DG05] to show that multiple zeta
values are periods associated with the pro-unipotent completion of the fundamental
group of P1 \ {0, 1,∞}. This approach is better adapted to the question whether
relations between multiple zeta values come from geometry.

2.5.2. Multiple zeta values as periods of the moduli spaces M0,n. For each in-
teger n ⩾ 3, let M0,n be the moduli space of n ordered distinct points in P1 up
to projective equivalence. In other words, every point of M0,n(C) is given by a
tuple (x1, . . . , xn) of distinct complex points in P1(C), and two tuples (x1, . . . , xn)
and (y1, . . . , yn) are identified if there exists an element g ∈ PGL2(C) satisfy-
ing g(xi) = yi for all i. Since there exists a unique automorphism of P1 sending
any given three points to 0, 1,∞, we can fix an identification

(x1, . . . , xn) = (0, 1,∞, t1, . . . , tn−3)

to get rid of the quotient. This induces an isomorphism

(2.197) M0,n ≃ (P1 \ {0, 1,∞})n−3 \ {(t1, . . . , tn−3) | ti = tj for some i ̸= j},
which shows that M0,n is a smooth variety of dimension n−3. In particular, M0,3 is
reduced to a point and M0,4 = P1 \{0, 1,∞}. Even better, M0,n can be represented
by a smooth scheme over Z.

Deligne, Mumford, and Knudsen [Knu83] constructed a smooth compactifica-
tion M0,n of M0,n by a simple normal crossing divisor. The complex points M0,n(C)
are identified with stable marked curves of genus 0.
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Definition 2.198. A stable n-marked curve of genus 0 over C is a pair con-
sisting of a curve X over C with at worst nodal singularities and an ordered tu-
ple (x1, . . . , xn) of distinct smooth points, such that every irreducible component
of X is a P1, the space X(C) is connected and simply connected, and every irre-
ducible component has at least three special points. By special point we mean a
point of intersection with another component or a marked point.

The points of M0,n(C) correspond to the irreducible curves. The space M0,n(C)
can be stratified into locally closed subsets corresponding to the different combina-
torial types of the stable marked curves. In particular, the irreducible components
of the boundary are in one-to-one correspondence with the partitions of the marked
points into subsets of cardinality at least 2. We refer the reader to [KV07] for a
nice introduction to these spaces and their compactifications.

Example 2.199. The space M0,4 can be identified with P1 \ {0, 1,∞}. The

compactification M0,4 can be identified with P1. Thus, there are three boundary
components of dimension 0 that correspond to the three possible partitions of the
set {1, 2, 3, 4} into two subsets of size 2 (see Figure 7).

0

x2

x4

x1

x3

1

x2

x3

x1

x4

∞

x3

x2

x1

x4

Figure 7. Boundary of the moduli space M0,4

Example 2.200. The irreducible components of the boundary of M0,5 are in
one-to-one correspondence with the 10 ways of dividing the set {1, . . . , 5} into two
subsets, one of size 3 and the other of size 2. For instance, the component corre-
sponding to the partition {1, 2, 3} ∪ {4, 5} has an open dense subset corresponding
to curves with two components, one with the marked points (x1, x2, x3) and the
other with the points (x4, x5), intersecting at a non-marked point. This open set is
isomorphic to M0,4 ×M0,3. This component and the component corresponding to
the partition {1, 2} ∪ {3, 4, 5} meet transversely at a single point that corresponds
to a curve with three components as in Figure 8. Intuitively, we can think that, to
move the point x3 from one component to another, we have to cross the singular
point. Since this is forbidden we have to add a new component.

Remark 2.201. The Deligne–Knudsen–Mumford compactification M0,5 is iso-
morphic to the blow-up of P1 × P1 at the points (0, 0), (1, 1), and (∞,∞). The
boundary M0,5 \M0,5 consists of 10 smooth divisors intersecting transversally.
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x2

x1

x5

x3

x4

x2

x1

x3

x4

x5

x4

x5

x3

x2

x1

Component 2Intersection pointComponent 1

Figure 8. Two components of the boundary of M0,5

They correspond to the three exceptional divisors E(0,0), E(1,1), and E(∞,∞), and
the strict transforms of the divisors

{t1 = 0}, {t1 = 1}, {t1 =∞}, {t2 = 0}, {t2 = 1}, {t2 =∞}, {t1 = t2}.
The correspondence is given in Table 2.1. The boundary components of M0,5 are

Component Partition Divisor

E(0,0) {2, 3} ∪ {1, 4, 5} B

E(1,1) {1, 3} ∪ {2, 4, 5} B

E(∞,∞) {1, 2} ∪ {3, 4, 5} A

{t1 = 0} {1, 4} ∪ {2, 3, 5} A

{t1 = 1} {2, 4} ∪ {1, 3, 5} B

{t1 =∞} {3, 4} ∪ {1, 2, 5} A

{t2 = 0} {1, 5} ∪ {2, 3, 4} B

{t2 = 1} {2, 5} ∪ {1, 3, 4} A

{t2 =∞} {3, 5} ∪ {1, 2, 4} A

{t1 = t2} {4, 5} ∪ {1, 2, 3} B

Table 2.1. Boundary components of M0,5

distributed into two simple normal crossings divisors A and B. The discussion in
Section 2.5.1 shows that ζ(2) is a period of the cohomology group

H2(M0,5 \A,B \ (A ∩B)).

This example was generalized by Goncharov and Manin:
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Theorem 2.202 (Goncharov–Manin [GM04]). Let s be an admissible mul-
ti-index s of weight n. There exist two simple normal crossing divisors As and B,
supported on the boundary of M0,n+3 and with no common irreducible components,
such that the multiple zeta value ζ(s) is a period of

(2.203) Hn(M0,n+3 \As, B \ (As ∩B)).

Sketch of the proof. We explain the general strategy of the proof without
entering in the combinatorial details that are encapsulated in two lemmas.

For any n ⩾ 3, we have identified in (2.197) the moduli space M0,n+3 with an
open subset of (P1\{0, 1,∞})n with coordinates t1, . . . , tn. Using this identification,
the open simplex

(∆n)◦ = {(t1, . . . , tn) ∈ Rn | 1 > t1 > t2 > · · · > tn > 0}
is contained in M0,n+3(R). We denote by σ̂ the closure of (∆n)◦ in M0,n+3. On
the marked points

x1 = 0, x2 = 1, x3 =∞, x4 = t1, . . . , xn+3 = tn,

we consider the cyclic order x1 < x3 < x2 < x4 < · · · < xn+3 < x1 (note that
we switched x2 and x3 from the standard cyclic order). Recall that the boundary
components of M0,n+3 are indexed by the partitions of the set {1, . . . , n+3} into two

subsets of size at least 2. Let B be the union of boundary components of M0,n+3

indexed by the partitions such that both subsets consist of consecutive elements for
the above cyclic order (see, for instance, the components labeled B in Table 2.1).

Lemma 2.204. For every n, the boundary of σ̂ is contained in B.

This lemma implies that σ̂ defines a relative homology class

[σ̂] ∈ Hn(M0,n+3, B).

Let now ωs be the differential form given by equation (1.115). By the explicit
formula of ωs, it is an algebraic differential form on M0,n+3 of top degree n. We

can see ωs as a singular form of M0,n+3. Let As denote the divisor where ωs is

singular. That is, M0,n+3\As is the maximal open set where ωs can be extended as
a regular algebraic differential form. By dimension reasons, the differential form ωs

vanishes when restricted to B. Therefore, ωs defines a class

[ωs] ∈ Hn(M0,n+3 \As, B \ (As ∩B)).

The divisor As depends on s. The main point in the proof of the theorem is:

Lemma 2.205. The divisors As and B do not have any common component.
Moreover, σ̂ and As are disjoint.

In view of this lemma, [σ̂] can be lifted to a class

[σ̂] ∈ Hn(M0,n+3 \As, B \ (As ∩B)).

The number ⟨[ωs], [σ̂]⟩ is thus a period of Hn(M0,n+3 \ As, B \ (As ∩ B)). This
period is given by

⟨[ωs], [σ̂]⟩ =

∫

σ̂

ωs =

∫

∆n

ωs = ζ(s),

concluding the proof of the theorem. □
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Remark 2.206. A converse to this theorem, due to Brown [Bro09], affirms
that, for any choice of boundary divisors A and B, all periods of the cohomology
groups Hn(M0,n+3 \A,B \ (A∩B)) are Q[2πi]-linear combinations of multiple zeta
values. This can now be seen as a consequence of Brown’s theorem characterizing
the periods of mixed Tate motives over Z (Corolllary 5.123).

⋆ ⋆ ⋆

Exercise 2.207. Show that the boundary of the Deligne–Knudsen–Mumford
compactification of M0,n has 2n−1 − n− 1 irreducible components.

Exercise 2.208. Draw a stable curve of genus zero with six marked points
that has four components, one of them without any marked points. What is the
dimension of the stratum of M0,6 containing the point representing this curve?
Write down the components of the boundary divisor that contain that point.

Exercise 2.209. How many irreducible components does the boundary divi-
sor B from Lemma 2.204 contain?

2.6. Mixed Hodge structures. Thanks to the comparison isomorphism, the
Betti cohomology of an algebraic variety has richer properties than the singular co-
homology of a random topological space. As we will explain in this section, it is
endowed with a mixed Hodge structure, which can be thought of as a first approxi-
mation to the notion of motive. This theory was developed by Deligne in the 70s,
taking as source of inspiration on the one hand Hodge’s theorem for compact Kähler
manifolds and, on the other hand, the properties of ℓ-adic cohomology of varieties
over finite fields. For a more systematic treatment, we refer the reader to Deligne’s
original papers [Del71, Del74], or the monographs [Voi02] and [PS08]. The pa-
per [Dur83] is a user-friendly introduction to the subject. Usually, the study of a
period begins by understanding the mixed Hodge structure on the cohomology of
the pair of varieties from which it arises.

2.6.1. Pure Hodge structures. Let M be a compact Kähler manifold of dimen-
sion d, for instance a smooth projective complex variety. For integers p, q ⩾ 0, let

Hp,q(M) ⊆ Hp+q(M,C)

be the subspace of cohomology classes that can be represented by a C∞-closed
differential (p+ q)-form of type (p, q), i.e. that can be locally written as

∑

I,J

fI,J(z1, . . . , zd)dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,

where the sum runs over subsets I = {i1, . . . , ip} and J = {j1, . . . , jq} of {1, . . . , d},
and fI,J are C∞-functions in the local coordinates z1, . . . , zd.

The starting point of Hodge theory is the following theorem:

Theorem 2.210 (Hodge). There is a direct sum decomposition

(2.211) Hn(M,Q)⊗Q C =
⊕

p+q=n

Hp,q(M).

Complex conjugation acts on the right-hand side of (2.211) through the action
on the coefficients of the left-hand side, that is,

σ ⊗ w = σ ⊗ w for all σ ∈ Hn(M,Q) and w ∈ C.
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This action transforms the subspace Hp,q(M) into Hq,p(M), a property commonly
referred to as Hodge symmetry. Abstractly, the data appearing in Hodge’s theorem
is captured in the following definition:

Definition 2.212. Let n be an integer. A pure Hodge structure of weight n is
the data of a finite-dimensional Q-vector space H and a bigrading

HC = H ⊗Q C =
⊕

(p,q)∈Z2

p+q=n

Hp,q

of its complexification satisfying Hp,q = Hq,p for all p, q ∈ Z. The set of pairs (p, q)
for which Hp,q is non-zero is called the Hodge type of H.

Lemma 2.213. The data defining a pure Hodge structure of weight n are equiv-
alent to the datum of an exhaustive decreasing filtration F on HC (the Hodge fil-
tration) such that, for all integers p, the following equality holds:

(2.214) HC = F p ⊕ Fn+1−p.

Proof. Given a pure Hodge structure of weight n, one sets

F p =
⊕

r⩾p

Hr,s,

which is visibly an exhaustive and decreasing filtration of HC. Since

Fn+1−p =
⊕

r⩾n+1−p

Hr,s =
⊕

s⩽p−1

Hs,r

by Hodge symmetry, condition (2.214) holds. Conversely, given a filtration F as in
the statement, define

Hp,n−p = F p ∩ Fn−p.
With this definition, Hp,q = Hq,p holds. It remains to prove that H =

⊕
pH

p,n−p.

We proceed by induction on r = max{p | F p ̸= 0}. If r < n/2, then

F ⌈
n
2 ⌉ = Fn+1−⌈n2 ⌉ = 0.

Therefore, HC = 0 and there is nothing to prove. Let us now assume r ⩾ n/2. By
Exercise 2.238, there is a direct sum decomposition

HC = F r ⊕ (Fn+1−r ∩ Fn+1−r)⊕ F r.

Condition (2.214) and the definition of r readily imply the equalities

F r = Hr,n−r, F r = Hn−r,r.

Write H ′C = Fn+1−r ∩ Fn+1−r. This complex vector space has a real structure.
Using the induction hypothesis, one derives

H ′C =

n−r−1⊕

p=r+1

Hp,n−p,

thus finishing the proof of the statement. □



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 125

Definition 2.212 and Lemma 2.213 contain the definition that one usually finds
in textbooks about Hodge theory. However, for the purpose of studying periods it
is important to remember that, for a Hodge structure of the form Hn(M,Q), the
filtration F comes from de Rham cohomology of M . If M is given by the complex
points of an algebraic variety X over a subfield k of the complex numbers, then

Hn(M,C) ≃ Hn
dR(X)⊗k C

and the Hodge filtration is in fact already defined on the k-vector space Hn
dR(X).

The following definition keeps track of all these elements:

Definition 2.215. Let k be a subfield of C. A pure Hodge structure over k is
the data

H = (HB, (HdR, F ), compB,dR)

of a finite-dimensional Q-vector space HB, a finite-dimensional k-vector space HdR,
together with an exhaustive decreasing filtration F , and an isomorphism of complex
vector spaces

compB,dR : HdR ⊗k C −→ HB ⊗Q C,
such that the induced filtration on HC = HB⊗QC, still denoted by F , satisfies that
there exists an integer n such that, for all p, the equality

(2.216) HC = F pHC ⊕ Fn−p+1HC

holds. We call n the weight of H. Abusing language, we will often say that HB

carries a pure Hodge structure.

Definition 2.217. A morphism of pure Hodge structures over k

f : H −→ H ′

is a pair f = (fB, fdR) consisting of a Q-linear map fB : HB → H ′B and a k-linear
map fdR : HdR → H ′dR such that fdR(F pHdR) ⊆ F pH ′dR holds for all p ∈ Z, and
that the following diagram commutes:

HdR ⊗k C
fdR⊗kIdC

��

compB,dR // HB⊗QC

fB⊗QIdC

��
H ′dR ⊗k C

comp′
B,dR // H ′B ⊗Q C.

It follows from this definition that a morphism of Hodge structures of different
weight is always zero (Exercise 2.241).

We let HS(k) denote the category of pure Hodge structures over k. If L is
another subfield of C containing k, there is an “extension of scalars” functor

(2.218) −⊗k L : HS(k) −→ HS(L)

such that (H ⊗k L)B = HB and (H ⊗k L)dR = HdR⊗k L together with the induced
filtration and the induced comparison isomorphism via the canonical identification

(HdR ⊗k L)⊗L C = HdR ⊗k C.
Example 2.219 (Hodge–Tate structures). For each integer n ∈ Z, set

Q(n) = (Q, (Q, F ), compB,dR),

where F is the filtration

Q = F−nQ ⊇ F−n+1Q = {0},
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and the isomorphism compB,dR : C → C is given by multiplication by (2πi)−n.
Then Q(n) is a one-dimensional pure Hodge structure of weight −2n over Q.

Upon application of the functor (2.218), we obtain a Hodge structure over any
subfield k of C that will be still denoted by Q(n). Note, however, that the special
role of 2πi will be more or less significant depending on the nature of k. For
example, if k = C, then the Hodge structure Q(n) is isomorphic to the one where
compB,dR is given by the identity, and indeed to any one-dimensional pure Hodge
structure of weight −2n (Exercise 2.239).

The Hodge structures Q(n) are called Hodge–Tate structures. Observe that we
already encountered Q(−1) in our study of periods. By Example 2.182, this Hodge
structure is isomorphic to the triple

H1(Gm) = (H1
B(Gm), (H1

dR(Gm), F ), compB,dR),

where F is the trivial filtration concentrated in degree 1, and compB,dR stands for
Grothendieck’s comparison isomorphism from Theorem 2.168.

Once we have introduced these notions, we can state the following algebraic
variant of Hodge’s theorem:

Theorem 2.220. Let k be a subfield of C and let X be a smooth proper variety
over k. The Betti cohomology Hn

B(X) carries a functorial pure Hodge structure of
weight n over k.

More precisely, we consider the triple

Hn(X) = (Hn
B(X), (Hn

dR(X), F ), compB,dR).

As in the previous example, compB,dR is the comparison isomorphism of Theo-
rem 2.168. The Hodge filtration F is given by

F p Hn
dR(X) = Im

(
Hn(X,Ω⩾p

X ) −→ Hn(X,Ω∗X)
)
,

where Ω⩾p
X stands for the bête truncation of the de Rham complex, namely

Ω⩾p
X : 0 −→ · · · 0 −→ ΩpX −→ Ωp+1

X −→ · · · .
The functoriality of the Hodge structure on Hn(X) means the following, for any
morphism f : X → Y of smooth proper varieties,

f∗ : Hn(Y ) −→ Hn(X)

is a morphism of Hodge structures.
As we have already mentioned, by Exercise 2.241, there are no non-zero mor-

phisms between pure Hodge structures of different weight. However, such maps
naturally occur in geometry. For example, if Z ↪→ X is a smooth closed subvariety
of codimension c, then there is a Gysin morphism

Hn(Z) −→ Hn+2c(X).

In order to turn the Gysin morphism into a morphism of Hodge structures, we
introduce Tate twists: given a pure Hodge structure H of weight n and an inte-
ger m, we denote by H(m) the pure Hodge structure of weight n − 2m with the
same underlying vector spaces, filtration shifted by m, and comparison isomorphism
multiplied by (2πi)−m. In fact (see Exercise 2.242), there is a tensor product of
Hodge structures and H(m) is nothing but the tensor product of H with the Hodge
structure Q(m) from Example 2.219. With this notation, the Gysin map becomes
a morphism of Hodge structures Hn(Z)(−c)→ Hn+2c(X). See Definition 2.301.



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 127

Example 2.221. As a Hodge structure over Q, the cohomology of projective
space Pn is isomorphic to

Hj(Pn,Q) =

{
Q(−j/2), if 0 ⩽ j ⩽ 2n is even,

0, otherwise.

2.6.2. Mixed Hodge structures. Before discussing mixed Hodge structures, we
recall some terminology concerning filtrations and morphisms (see Section A.7 for
a more thorough discussion in the context of an arbitrary abelian category).

Definition 2.222. Let k be a field and (V, F ) and (V ′, F ) filtered k-vector
spaces. A morphism f : V → V ′ is called filtered if f(F pV ) ⊂ F pV ′ holds for all p
and strict (with respect to F ) if, in addition,

f(F pV ) = F pV ′ ∩ Im(f).

Hodge’s theorem says that the cohomology in degree n of a smooth proper
complex variety carries a pure Hodge structure of weight n. In general, this is no
longer true when X fails to be smooth or proper. For instance, H1(Gm) is one-
dimensional, so it cannot carry a pure Hodge structure of weight one because of
Hodge symmetry. Nevertheless, Deligne proved that the cohomology of any complex
variety is an “iterated extension” of pure Hodge structures.

Theorem 2.223 (Deligne). Let X be a complex algebraic variety.

i) There exists an increasing filtration

W−1 = 0 ⊆W0 ⊆W1 ⊆ · · · ⊆W2n = Hn(X),

and a decreasing filtration

F 0 = Hn(X,C) ⊇ F 1 ⊇ · · · ⊇ Fn ⊇ Fn+1 = 0

such that F induces a pure Hodge structure of weightm on each graded piece

GrWm Hn(X) = Wm/Wm−1.

ii) Moreover, if f : X → Y is a morphism of complex varieties, the induced
map on cohomology f∗ : Hn(Y ) → Hn(X) is a filtered morphism with
respect to both filtrations, i.e.

f∗(Wm Hn(Y )) ⊆Wm Hn(X),

f∗C(F p Hn(Y )) ⊆ F p Hn(X).

iii) If X is smooth, then GrWm Hn(X) = 0 holds for all m < n. If X is proper,

then GrWm Hn(X) = 0 for all m > n.

Some ingredients of the proof of this theorem will be presented in Section 2.8.
This motivates the following definition:

Definition 2.224. Let k be a subfield of C. A mixed Hodge structure over k
is a triple

H = ((HB,W
B), (HdR, F,W

dR), compB,dR)

consisting of:

• a finite-dimensional Q-vector space HB, together with an increasing fil-
tration WB,
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• a finite-dimensional k-vector space HdR, together with an increasing fil-
tration W dR and a decreasing filtration F ,

• an isomorphism of complex vector spaces

compB,dR : HdR ⊗k C ∼−→ HB ⊗Q C

that is filtered with respect to the weight filtration. That is,

compB,dR(W dR ⊗k C) = WB ⊗Q C.

Moreover, we require that these data verify the following: for each integer m,

(2.225) GrWm H = (GrWm HB, (GrWm HdR, F ), compB,dR)

is a pure Hodge structure over k of weight m.
Given a mixed Hodge structure H, we endow HC = HB⊗QC with the complex

conjugation coming from this rational structure and the Hodge filtration induced
by the one in HdR through the comparison isomorphism. Then HC has a complex
conjugate filtration F .

Definition 2.226. A morphism f : H → H ′ of mixed Hodge structures over k
is a pair f = (fB, fdR) consisting of

• a morphism of Q-vector spaces fB : HB → H ′B,

• a morphism of k-vector spaces fdR : HdR → H ′dR
such that fB is filtered with respect to the weight filtration, fdR is filtered with
respect to the weight and the Hodge filtrations, and both maps are compatible
with the comparison isomorphisms. In symbols,

fB(WBHB) ⊆WBH ′B,

fdR(FHdR) ⊆ FH ′dR,
fdR(W dRHdR) ⊆W dRH ′dR,

fdR ◦ comp′B,dR = compB,dR ◦(fB ⊗ IdC).

We shall denote by MHS(k) the category of mixed Hodge structures over k.
When k = C, we shall simply speak of “mixed Hodge structures” and write MHS
instead of MHS(C).

Definition 2.227. We call Betti fiber functor and de Rham fiber functor on
the category MHS(k) the forgetful functors

ωB : MHS(k) −→ VecQ,

ωdR : MHS(k) −→ Veck

that map H to HB and HdR respectively.

The reason for the name “fiber functor” will be explained when we discuss
tannakian categories in Chapter 4.

Definition 2.228. A mixed Hodge structure H over k is called split if there
exists an isomorphism of mixed Hodge structures

H
∼−→
⊕

m∈Z
GrWm H,

and hence H is a direct sum of pure Hodge structures.
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As was explained in Remark 2.212, the Hodge filtration of a pure Hodge struc-
ture H induces a natural bigrading on HC. A similar, albeit more involved con-
struction applies to mixed Hodge structures as well.

Proposition 2.229 (Deligne’s splitting). Let H be a mixed Hodge structure
defined over k. There exists a unique decomposition of HC into a direct sum

(2.230) HC =
⊕

p,q

Hp,q

satisfying the conditions

WnHC =
⊕

p+q⩽n

Hp,q,

F pHC =
⊕

p′⩾p

Hp′,q,

Hp,q ≃ Hq,p mod
⊕

r<p,s<q

Hr,s.

This splitting is functorial: a morphism of mixed Hodge structures f : H1 → H2

induces maps fp,q : Hp,q
1 → Hp,q

2 compatible with the decomposition (2.230).

Idea of the proof. The graded pieces are defined as

Hp,q = F p ∩Wp+q ∩
(
F q ∩Wp+q +

∑

j⩾2

F q−j+1 ∩Wp+q−j

)

The proof that this decomposition satisfies the required conditions and is charac-
terized by them can be found in [PS08, Lem.–Def. 3.4]. The functoriality follows
from this explicit description. □

Theorem 2.231 (Deligne). The category MHS(k) is abelian.

In [Del71] Deligne proves this result for k = C, but the proof carries over to the
general case. Deligne’s proof of this theorem is sometimes called “a masterpiece
of linear algebra”. The main difficulty stems from the fact that the category of
bifiltered vector spaces is not abelian. The key property that makes everything work
in this setting is that any morphism of mixed Hodge structures is strict with respect
to the weight and the Hodge filtrations. More precisely, we have the following lemma
that is a consequence of Proposition 2.229.

Lemma 2.232. Let f : H → H ′ be a morphism of mixed Hodge structures.
Then fB is strict with respect to the weight filtration and fdR is strict with respect
to the weight and the Hodge filtrations.

A first consequence of this lemma is the following:

Corollary 2.233. The weight and the Hodge filtration are exact functors from
the category of mixed Hodge structures to the category of vector spaces. That is, if

0→ H → H ′ → H ′′ → 0

is an exact sequence of mixed Hodge structures, then

0 −→WnH −→WnH
′ −→WnH

′′ −→ 0

is an exact sequence of vector spaces for each n, and similarly for F p.
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Another important consequence of Lemma 2.232 is the following:

Proposition 2.234. Let f be a morphism of mixed Hodge structures. The
following are equivalent:

i) f is an isomorphism;

ii) ωB(f) is an isomorphism;

iii) ωdR(f) is an isomorphism.

Proof. Thanks to the comparison isomorphism, ωB(f) is an isomorphism if
and only if ωdR(f) is an isomorphism. Thus, we only need to prove that i) and iii)
are equivalent. Note that this is not a general property of filtered vector spaces.
A morphism g : (V, F ) → (V ′, F ) that induces an isomorphism on the underlying
vector spaces is not necessarily an isomorphism because the filtrations, although
being compatible, may not match exactly. That is,

g(F pV ) ⊂ F pV ′, g(F pV ) ̸= F pV ′.

If f : H → H ′ is a morphism of mixed Hodge structures, then the de Rham com-
ponent fdR : (H,W,F ) → (H ′,W, F ) is strict with respect to both filtrations by
Lemma 2.232. Hence, the are equalities

fdR(F pHdR) = F pH ′dR ∩ Im(fdR) = F pH ′dR,

fdR(WnHdR) = WnH
′
dR ∩ Im(fdR) = WnH

′
dR,

and this implies the result. □

2.6.3. Mixed Hodge structures of Tate type.

Definition 2.235. A mixed Hodge structure H over k is said to be of Tate
type if GrW2m+1H = 0 holds and GrW2mH is a sum of copies of the pure Hodge–Tate
structure Q(−m) for all integers m. Mixed Hodge structures of Tate type are also
called mixed Hodge–Tate structures.

We shall denote by MHTS(k) the full subcategory of MHS(k) consisting of
mixed Hodge structures of Tate type over k.

Remark 2.236. One can think of mixed Hodge structures as “iterated exten-
sions” of pure Hodge structures. Indeed, given two successive steps of the weight
filtration, there is an exact sequence of vector spaces

0 −→Wm−1H −→WmH −→ GrWm H −→ 0.

Whenm is the highest weight ofH (i.e. WmH = H), this exhibitsH as an extension

of the pure Hodge structure GrWm H by Wm−1H, which in turn is an extension of

the pure Hodge structure GrWm−1H by Wm−2H, and so on. Then mixed Hodge–
Tate structures are those obtained as iterated extensions of the simplest ones, that
is, sums of copies of Q(n).

In the case of mixed Hodge structures H of Tate type, the bifiltered space HdR

admits a canonical grading. Hence, the fiber functor fdR factors through the cate-
gory of graded vector spaces.

Lemma 2.237. Let H be a mixed Hodge structure of Tate type over k. Then HdR

is endowed with the canonical grading

HdR =
⊕

p

(
F pHdR ∩W2pHdR

)
,
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and the forgetful functor H 7→ HdR factors through the category of graded vector
spaces. Moreover, the weight and the Hodge filtration on HdR can be recovered from
this grading as follows:

F pHdR =
⊕

r⩾p

(
F rHdR ∩W2rHdR

)
,

W2mHdR = W2m+1HdR =
⊕

r⩽m

(
F rHdR ∩W2rHdR

)
.

Proof. Exercise 2.243. □

⋆ ⋆ ⋆

Exercise 2.238. Let H be a finite-dimensional real vector space along with
an exhaustive and separated filtration F of HC = H ⊗ C satisfying (2.214). Prove
that, for every r ∈ Z, there is a direct sum decomposition

HC = F r ⊕ (Fn+1−r ∩ Fn+1−r)⊕ F r.
Exercise 2.239. Let k be a subfield of C. Prove that the set of isomorphism

classes of one-dimensional pure Hodge structures over k is in one-to-one correspon-
dence with the set Z× (C×/k×).

Exercise 2.240. Let H be a pure Hodge structure of weight n over k. For
each integer p, we define the space of (p, p)-classes of H as

H(p,p) =

{
compB,dR(F pHdR) ∩ (2πi)pHB, if n = 2p,

{0}, if n ̸= 2p.

Prove the equality
HomMHS(k)(Q(−p), H) = H(p,p),

where Q(−p) is the pure Hodge structure of weight 2p over k from Example 2.219.

Exercise 2.241. Let H and H ′ be pure Hodge structures over k of weights n
and m respectively.

i) Use the definitions of Section A.7.2 to show that the vector space

HomQ(HB, H
′
B)

admits a pure Hodge structure Hom(H,H ′) over k of weight m− n.

ii) Show that the group of morphisms of Hodge structures from H to H ′

agrees with the subspace Hom(H,H ′)(0,0). [Hint: recall from Section A.7.2
that given filtered vector spaces (A,W ) and (B,W ) with increasing filtra-
tions, one defines an increasing filtration on Hom(A,B) as

Wn Hom(A,B) = {f ∈ Hom(A,B) | f(WkA) ⊂Wk+nB}.
A similar construction is valid for decreasing filtrations.]

iii) Conclude that there are no non-zero morphisms between pure Hodge
structures of different weights.

Exercise 2.242. Let H and H ′ be mixed Hodge structures over k. Define a
natural mixed Hodge structure on the tensor product H ⊗H ′. Show that for any
pure Hodge structure H, there is an isomorphism

H(m) = H ⊗Q(m).
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Exercise 2.243. In this exercise, we prove Lemma 2.237. Let H be a mixed
Hodge structure of Tate type.

i) Use negative induction on n to prove the equality

WrHdR =
∑

2p⩽r

(
W2pHdR ∩ F pHdR

)
.

ii) Show that, for every p ∈ Z, the following holds:

W2p−1HdR ∩ F pHdR = 0.

iii) Conclude the proof of Lemma 2.237.

Exercise 2.244. There are two possible ways of inducing the filtration F on
the graded piece GrWm H. Show that they are equivalent.

Exercise 2.245. Given a morphism f : H → H ′ of mixed Hodge structures,
prove that the induced maps fm : GrWm H → GrmH

′ are morphism of pure Hodge
structures.

Exercise 2.246. Let H = (HB, HdR, α) be a triple consisting of

• a finite-dimensional Q-vector space HB, equipped with an increasing fil-
tration WHB indexed by even integers,

• a finite-dimensional Q-vector space HdR, together with a grading indexed
by even integers HdR =

⊕
n(HdR)2n,

• a comparison isomorphism α : HdR ⊗Q C ∼−→ HB ⊗Q C,

subject to the condition that α maps (HdR)2n ⊗Q C to W2nHB ⊗Q C, and induces
an isomorphism

αn : (HdR)2n ⊗Q C ∼−→
(
W2nHB/W2(n−1)HB

)
⊗Q C

which sends (HdR)2n to
(
W2nHB/W2(n−1)HB

)
⊗Q (2πi)nQ.

Prove that the category MHTS(Q) is equivalent to the category whose objects
are such triples and whose morphisms are the obvious ones.

2.7. Extensions of mixed Hodge structures. We now turn to the descrip-
tion of the extension groups in the category of mixed Hodge structures. Recall that,
when no field of definition is explicitly mentioned, by a mixed Hodge structure we
mean a mixed Hodge structure over C.

2.7.1. Definition of the group of extensions.

Definition 2.247. Let A and B be mixed Hodge structures.

i) An extension of A by B is a short exact sequence

(2.248) 0 −→ B
β−→ H

α−→ A −→ 0,

where α and β are morphisms of mixed Hodge structures.

ii) Two extensions are equivalent if there exists a morphism of mixed Hodge
structures f : H → H ′ such that the diagram

(2.249)

0 // B
β // H

f

��

α // A // 0

0 // B
β′
// H ′

α′
// A // 0
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commutes. This defines indeed an equivalence relation (see Exercise 2.261)
whose set of equivalence classes will be denoted by

Ext1MHS(A,B).

iii) An extension 0→ B → H → A is said to be split if it is equivalent to the
trivial extension 0→ B → A⊕B → A→ 0.

Remark 2.250. An extension (2.248) is split if and only if the map α : H →
A admits a section, that is, a morphism of mixed Hodge structures s : A → H
satisfying α ◦ s = IdA. Indeed, if the extension is split, then the projection to A of
a map f : H → A⊕B making the diagram (2.249) commutative provides a section.
Conversely, out of a section one can form the following commutative diagram:

0 // B // A⊕B
s+β

��

// A // 0

0 // B
β // H

α // A // 0.

Equivalently, the extension is split if and only if the map β : B → H admits a
retraction, i.e. a morphism of mixed Hodge structures r : H → B with r ◦ β = IdB .
Concretely, if s : A→ H is a section, one checks that the map

IdH −s ◦ α : H −→ H

takes values in B and is a retraction, and similarly a retraction gives rise to a
section. Such a section or retraction is often called a splitting.

2.7.2. Computation of the group of extensions. We present Carlson’s compu-
tation of the extension groups in the category of mixed Hodge structures [Car80].
In writing down his formula, it will be convenient to use the following filtration
on the space of linear maps between filtered vector spaces already introduced in
Exercise 2.241. Given vector spaces with increasing filtrations (A,W ) and (B,W ),
we endow Hom(A,B) with the increasing filtration

Wn Hom(A,B) = {f ∈ Hom(A,B) | f(WmA) ⊂Wm+nB for all m}.
Similarly, if (A,F ) and (B,F ) are vector spaces with decreasing filtrations, the
space of linear maps Hom(A,B) is endowed with the decreasing filtration

Fn Hom(A,B) = {f ∈ Hom(A,B) | f(FmA) = Fm+nB for all m}.
Theorem 2.251 (Carlson). Let A and B be mixed Hodge structures. The

extension group of A by B is isomorphic to

(2.252) Ext1MHS(A,B) =
W0 HomC(AC, BC)

W0 ∩ F 0 HomC(AC, BC) +W0 HomQ(AB, BB)
.

Proof. Given an extension of mixed Hodge structures

0 −→ B
β−→ H

α−→ A −→ 0,

we first choose a section φ1 : AC → HC of the underlying complex vector spaces
that is compatible with the weight and the Hodge filtration. This is always possible,
for example using Deligne’s splitting (Proposition 2.229). We then choose a second
section φ2 : AC → HC, this time compatible with the rational structures AB and HB

as well as the weight filtration. For every a ∈ AC, the element φ1(a) − φ2(a) is
mapped to zero under αC, and hence there exists a unique element b ∈ BC such
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that βC(b) = φ1(a) − φ2(a). We set f(a) = b. This assignment yields a linear
map f : AC → BC that respects the weight filtration, that is to say, an element
of W0 HomC(AC, BC). We thus obtain a map

(2.253) Ext1MHS(A,B) −→W0 HomC(AC, BC).

This map depends on the sections φ1 and φ2, and we need to understand how it
changes for different choices of sections.

Let φ′2 be another section compatible with the weight filtration and the rational
structure, and let f ′ be the corresponding map. Then f(a)−f ′(a) = φ′2(a)−φ2(a),
so f − f ′ respects the rational structure and the weight filtration. In other words,

f − f ′ ∈W0 HomQ(AB, BB).

Similarly, if φ′′1 is another choice of a section compatible with the weight and the
Hodge filtrations and f ′′ is the corresponding linear map, then

f − f ′′ ∈W0 ∩ F 0 HomC(AC, BC).

In consequence, the class of f in the quotient of the right-hand side of (2.252) is
independent of the choice of the sections φ1 and φ2. Let now H ′ be an equivalent
extension. This means that there is a commutative diagram with exact rows

0 // B // H //

ψ

��

A // 0

0 // B // H ′ // A // 0.

If φ1 and φ2 are splittings of the extension H, then ψ ◦φ1 and ψ ◦φ2 are splittings
of H ′ that yield the same function f . Therefore, we have constructed a map from
the left-hand side of (2.252) to the right-hand side.

If the class of f in the quotient is zero, then we can modify φ1 by an element
of W0 ∩ F 0 HomC(AC, BC) to get a new splitting φ′1, and we can modify φ2 by an
element of W0 HomQ(AB, BB) to get φ′2 so that φ′1 = φ′2. This implies that φ′1 = φ′2
defines a splitting of mixed Hodge structures, and the extension was trivial. There-
fore, the map (2.253) is injective.

To see that it is surjective, we start with a function f ∈ W0 HomC(AC, BC).
We then write

(HB,W ) = (AB,W )⊕ (BB,W ), (HdR,W ) = (AdR,W )⊕ (BdR,W ),

define the comparison isomorphism of H as the direct sum of the comparison iso-
morphisms of Aand B, and we define the Hodge filtration on HdR by

F pHdR = F pBdR ⊕ {a+ f(a) | a ∈ F pAdR}.
The fact that the resulting tuple

(2.254) H = ((HB,W ), (HdR,W, F ), compB,dR)

is a mixed Hodge structure is the content of Exercise 2.262. By construction,
the function corresponding to H is the original function f . This shows that the
map (2.253) is an isomorphism and concludes the proof of the theorem. □

One consequence of Carlson’s formula is that the category of mixed Hodge
structures has cohomological dimension one, i.e. all higher extension groups vanish.



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 135

Theorem 2.255. For any mixed Hodge structures A and B and any inte-
ger n ⩾ 2, the following holds:

ExtnMHS(A,B) = 0.

Proof. According to Lemma A.66 from the appendix, the vanishing of the
higher extension groups would follow if we knew that Ext1MHS(A,−) is a right exact
functor for every mixed Hodge structure A. Since the functors Ext∗MHS(A,−) form
a cohomological functor, it is enough to show that, if B1 → B2 is an epimorphism
of mixed Hodge structures, then

Ext1MHS(A,B1) −→ Ext1MHS(A,B2)

is surjective. But this is a direct consequence of Carlson’s formula. □

2.7.3. Extensions of Hodge–Tate structures. In the case of Hodge–Tate struc-
tures, the extensions defined over Q can also be described.

Theorem 2.256. Let m and n be integers. Then

Ext1MHS(Q)(Q(m),Q(n)) =

{
C/(2πi)n−mQ, if m < n,

0, otherwise.

Proof. Assume first that m > n. Then W−2mH ⊆ H is a rank one sub-Hodge
structure over Q, and the composition

W−2mH ↪−→ H
α−→ Q(m)

is an isomorphism. Thus, the extension is necessarily split.
For m = n, the weight and the Hodge filtration of H are trivial (the corre-

sponding subobjects are either zero or everything), and hence any section sB of the
map αB : HB → Q(n)B induces a morphism of Hodge structures s : Q(n) → H, so
the extension is again split.

Now assume that m < n. The Q-vector space HdR has a canonical splitting

HdR = WnHdR ⊕ F−mHdR.

Choose a basis e0, e1 of HB satisfying e0 = β(1n) and α(e1) = 1m, where 1n is
the generator of Q(n)B and 1m is the generator of Q(m)B. This basis uniquely
determines a basis f0, f1 of HdR by the conditions

f0 ∈W−2nHdR, compB,dR(f0) = (2πi)−ne0,

f1 ∈ F−mHdR, compB,dR(f1) ∈ (2πi)−me1 +W−2nHB ⊗Q C.

In these bases, the morphism compB,dR can be written as

(
(2πi)−n (2πi)−na

0 (2πi)−m

)

for a complex number a that determines the class of the extension.
We can change the basis (e0, e1) by an upper triangular matrix with diagonal

entries 1 and a rational coefficient b in the upper right corner. The basis (f0, f1)
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remains unchanged. In these new bases, the comparison isomorphism is given by
(

(2πi)−n (2πi)−na′

0 (2πi)−m

)
=

(
1 b

0 1

)(
(2πi)−n (2πi)−na

0 (2πi)−m

)

=

(
(2πi)−n (2πi)−n(a+ (2πi)n−mb)

0 (2πi)−m

)
.

Hence, two complex numbers a, a′ ∈ C determine the same extension if and only
if a− a′ ∈ (2πi)n−mQ, from which the result follows. □

2.7.4. Examples. According to Theorem 2.256, the extensions of Q(0) by Q(n)
are parametrized by elements in C/(2πi)nQ. It follows that, for each n ⩾ 2, there
exists an extension of mixed Hodge structures

(2.257) 0 −→ Q(n) −→ ζMHS(n) −→ Q(0) −→ 0,

whose class corresponds to the zeta value ζ(n). This extension is split if and only
if ζ(n) ∈ (2πi)nQ. By Theorem 1.3 and the fact that elements of (2πi)nQ are
purely imaginary for odd n, the extension (2.257) is split if and only if n is even.
It is an open question to construct geometrically these extensions, e.g. as a relative
cohomology group. In the case n = 1, however, we know that all the extensions
of Q(0) by Q(1) have geometric origin.

Example 2.258 (Kummer mixed Hodge structure). For each complex num-
ber t ∈ C× \ {1}, consider the relative cohomology

Ht = H1(P1 \ {0,∞}, {1, t}).
The long exact sequence (2.111) gives

0 −→ H0(P1 \ {0,∞}) −→ H0({1, t}) −→ Ht −→ H1(P1 \ {0,∞}) −→ 0.

By Example 2.307, there is an isomorphism H1(P1 \ {0,∞}) = Q(−1), and hence
we obtain a short exact sequence

0 −→ Q(0) −→ Ht −→ Q(−1) −→ 0.

The Kummer mixed Hodge structure KH
t is defined to be the dual of Ht, so that

KH
t ∈ Ext1MHS(C)(Q(0),Q(1))

sits in an exact sequence

(2.259) 0 −→ Q(1) −→ KH
t −→ Q(0) −→ 0.

For t = 1, the Kummer extension is defined as the trivial extension of Q(0) by Q(1).
This yields a map

C× −→ Ext1MHS(C)(Q(0),Q(1)) = C/(2πi)Q

that we want to make explicit following the recipe from the proof of Theorem 2.256.
Let t ∈ P1 \ {0,∞} be distinct from 1. Write X = P1 \ {0,∞} and Z = {1, t}.

Since KH
t is defined as the dual of Ht it is best described using homology. That is,

KH
t,B = H1(X,Z,Q).

Therefore, the Betti part of the exact sequence (2.259) reads

0 −→ H1(X) −→ KH
t,B −→ H̃0(Z) −→ 0,
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where H̃0(Z) = Ker(H0(Z) → H0(X). Let e0 be the element of KH
t,B represented

by the path γ0 : [0, 1] → X given by s 7→ e2πis. This element is the image of
the generator of H1(X). Hence e0 ∈ W−2K

H
t,B. Let e1 be the element of KH

t,B

represented by any path γ1 : [0, 1] → X such that γ1(0) = 1 and γ1(1) = t. Note
the ambiguity in the choice of e1, to which we can add any rational multiple of e0.

We next describe KH
t,dR. It is simpler to describe its dual Ht. Since X and Z

are both affine, we can use the method of Section 2.2.6 to represent relative de
Rham cohomology. By Example 2.108, Ht is generated by the differential forms

ω1 =
dz

t− 1
and ω2 =

dz

z
.

The class [ω0] belongs to W0 Ht,dR because it lies in the image of H0
dR(Z). The class

represented by ω2 belongs to F 1 Ht,dR because ω2 ∈ F 1Ω1
P1(log{0,∞}) (see equa-

tion (2.277) for the definition of the Hodge filtration in the logarithmic complex).
Note that ω1 does not belong to Ω1

P1(log{0,∞}) because it has a double pole at∞.

Going back to KH
t,dR, let f0 ∈ KH

t,dR be the element determined by f0(ω1) = 0

and f0(ω2) = 1. Since W1 Ht,dR = W0 Ht,dR is generated by ω1, we deduce that f0
lies in W−2K

H
t,dR from Example A.194. Moreover, the computations

∫

e0

ω1 = 0 and

∫

e0

ω2 = 2πi

show that f0 satisfies compB,dR(f0) = (2πi)−1e0 because

Let f1 ∈ KH
t,dR be the element determined by f1(ω1) = 1 and f1(ω2) = 0. Since

ω2 generates F 1 Ht,dR, we deduce that f1 ∈ (F 1 Ht,dR)⊥ = F 0KH
t,dR and satisfies

that compB,dR(f1) = e1 +W−2 because
∫

e1

ω1 = 1.

Finally, the equation ∫

e1

ω2 = log t

implies that

compB,dR(f1) = e1 − (2πi)−1(log t)e0.

Therefore, the class of KH
t,dR in C/(2πi)Q is represented by the number log t.

Example 2.260. As another example of how arithmetic information can be
encoded in extensions of mixed Hodge structures, let us consider extensions of
the first cohomology of a smooth projective curve C by Q(−1). In this situation,
Carlson’s theorem implies that extensions classes of Q(−1) by H1(−1) are given by

Ext1MHS(Q(−1),H1(C)) = Jac(C)(C)⊗Z Q,

where Jac(C)(C) = H0(C,Ω1
C)/H1(C(C),Z) is the complex torus given by the

complex points of the Jacobian of C. By Example 2.307, the cohomology of C\{p, q}
for any pair of points gives such an extension. Through the above isomorphism,
the class of the extension is given by the class of the divisor [p]− [q] in Jac(C)(C).
In particular, the extension splits if and only if this divisor is torsion.

⋆ ⋆ ⋆
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Exercise 2.261. Show that being equivalent in the sense of Definition 2.247
defines an equivalence relation on the set of extensions of mixed Hodge structures.

Exercise 2.262. Let H be the structure given in (2.254). Use that A and B
are mixed Hodge structures to prove the equality

GrWn HC = F p GrWn HC ⊕ Fn−p+1 GrWn HC

for all n, p ∈ Z. Conclude that H is a mixed Hodge structure.

2.8. Construction of mixed Hodge structures. We now explain some
ideas behind the construction of mixed Hodge structures on the cohomology of
algebraic varieties. We start by presenting our basic tool, which is the notion of
mixed Hodge complex introduced by Deligne in [Del74].

2.8.1. Mixed Hodge complexes. Among the different variants of the notion of
mixed Hodge complex, we will deal here with the one that is the most relevant for
the study of periods since it keeps track of the field of definition of the de Rham
component and its filtrations. Throughout, k denotes a subfield of C. Recall the
notion of filtered quasi-isomorphism from Definition A.195.

Definition 2.263. A mixed Hodge complex over k is a 5-tuple

A = ((A∗B,W ), (A∗dR,W, F ), (A∗C,W ), α, β),

consisting of the following data:

(a) (A∗B,W ) is a bounded below complex of Q-vector spaces along with an
increasing filtration W ;

(b) (A∗dR,W, F ) is a bounded below complex of k-vector spaces along with an
increasing filtration W and a decreasing filtration F ;

(c) (A∗C,W ) is a bounded below complex of C-vector spaces along with an
increasing filtration W ;

(d) α : (A∗B ⊗Q C,W )→ (A∗C,W ) is a filtered quasi-isomorphism;

(e) β : (A∗dR ⊗k C,W )→ (A∗C,W ) is a filtered quasi-isomorphism;

subject to the following two conditions:

i) for every integer n ∈ Z, the differential induced on the complex GrWn A∗dR
is strict with respect to the filtration F ;

ii) for all integers n,m ∈ Z, the triple

(Hm(GrWn A∗B), (Hm(GrWn A∗dR), F ),Hm(α)−1 ◦Hm(β)),

is a pure Hodge structure over k of weight n+m (Definition 2.215).

A morphism of mixed Hodge complexes f : A→ A′ is a triple

f = (fB, fdR, fC)

consisting of the following data:

(a) a morphism of filtered complexes fB : (A∗B,W )→ ((A′)∗B,W
′);

(b) a morphism of bifiltered complexes fdR : (A∗dR,W, F )→ ((A′)∗dR,W
′, F ′);

(c) a morphism of bifiltered complexes fC : (A∗C,W, F )→ ((A′)∗C,W
′, F ′);

subject to the condition that fB and fC commute with the quasi-isomorphisms α
and α′, and fdR and fC commute with the quasi-isomorphisms β and β′.
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Example 2.264. Let H∗ be a bounded below complex of mixed Hodge struc-
tures over k. Unraveling the definition, this is the data of

(a) a complex H∗B of Q-vector spaces along with an increasing filtration W , in
which the differential is compatible with W and strict with respect to W ;

(b) a complex H∗dR of k-vector spaces along with an increasing filtration W
and a decreasing filtration F , in which the differential is compatible and
strict with respect to both filtrations;

(c) a comparison isomorphism

compB,dR : H∗dR ⊗k C −→ H∗B ⊗Q C.

We explain how to associate a mixed Hodge complex with H∗. The first component
is the filtered complex (A∗B,W ) defined by writing

AmB = Hm
B , WnA

m
B = Wn+mH

m
B .

It is clear that the differential respects this new filtration W , but in general it is
no longer strict with respect to W . Recall from Definition 2.222 that being strict
means that every element of WnH

m+1
B ∩ Im(d) lies in d(WnH

m
B ). However,

WnA
m+1
B ∩ Im(d) = Wn+m+1H

m+1
B ∩ Im(d) = d(Wn+m+1H

m
B ) = d(Wn+1A

m
B ),

and in general Wn+1A
m
B is bigger than WnA

m
B . The second component is the

bifiltered complex (A∗dR,W, F ) given by

AmdR = Hm
dR, WnA

m
dR = Wn+mH

m
dR, F pAmdR = F pHm

dR.

Finally, we consider (A∗C,W ) = (A∗B⊗C,W ), along with the identity isomorphism α,
and β = compB,dR. Then

A = ((A∗B,W ), (A∗dR,W, F ), (A∗C,W ), α, β)

is a mixed Hodge complex over k. The only point to check in the definition is
condition ii), as condition i) follows from the strictness of d with respect to F . By

definition of the new weight filtration, GrWn Am is a pure Hodge structure over k of

weight n+m, and hence the induced differential d : GrWn Am → GrWn Am+1 is zero
since the source and the target are pure of different weights. Therefore, condition ii)
is satisfied. We note that this construction yields a functor from C+(MHS(k)) to
the category of mixed Hodge complexes over k.

The basic properties of mixed Hodge complexes are summarized in the following
result of Deligne [Del74, Sch. 8.1.9]:

Proposition 2.265. Let A be a mixed Hodge complex over k.

i) For every n, the triple

((Hn(A∗B),W [n]), (Hn(A∗dR),W [n], F ), compB,dR = Hn(α)−1 ◦Hn(β))

is a mixed Hodge structure over k.

ii) A morphism of mixed Hodge complexes induces a morphism of mixed
Hodge structures in cohomology.

iii) The spectral sequences associated with the filtered complexes (A∗B,W ) and
(A∗dR,W ) degenerate at the term E2.

iv) The spectral sequence associated with the filtered complex (A∗dR, F ) degen-
erates at the term E1.
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2.8.2. The triangulated category of mixed Hodge complexes. We can mimic the
definition of the derived category of an abelian category (Example A.81) to obtain
a triangulated category of mixed Hodge complexes. Namely, if A∗ is a mixed Hodge
complex, then a homotopy on A∗ is a family of morphisms of degree −1

sB : (A∗B,W ) −→ (A∗B,W ),

sdR : (A∗dR,W, F ) −→ (A∗dR,W, F ),

sC : (A∗C,W ) −→ (A∗C,W ),

that commute with the quasi-isomorphisms α and β. Two morphisms of mixed
Hodge complexes f, g : A∗ −→ B∗ are said to be homotopically equivalent if there
exists a homotopy s on B∗ satisfying

f − g = d ◦ s+ s ◦ d.
The triangulated category of mixed Hodge complexes over k is defined by first
identifying morphisms that are homotopically equivalent, and then inverting the
quasi-isomorphisms. Thanks to a theorem by Beilinson [Bĕı86, Thm. 3.4], this
triangulated category is the derived category of mixed Hodge structures.

Theorem 2.266. The functor defined in Example 2.264 induces an equivalence
of categories from the bounded derived category of mixed Hodge structures to the
bounded derived category of mixed Hodge complexes.

2.8.3. dg-mixed Hodge complexes. In practice, it will be useful to combine sev-
eral mixed Hodge complexes into a single one through the notion of dg (for differ-
ential graded) mixed Hodge complexes and their associated total complex.

Definition 2.267. A dg-mixed Hodge complex over k is a 5-tuple

A = ((A∗,∗B ,W ), (A∗,∗dR ,W, F ), (A∗,∗C ,W ), α, β)

consisting of the following data:

i) (A∗,∗B ,W ) is a bounded below double complex of Q-vector spaces along
with an increasing filtration W ;

ii) (A∗,∗dR ,W, F ) is a bounded below double complex of k-vector spaces along
with an increasing filtration W and a decreasing filtration F ;

iii) (A∗,∗C ,W ) is a bounded below double complex of C-vector spaces along
with an increasing filtration W ;

iv) α : (A∗,∗B ⊗QC,W )→ (A∗,∗C ,W ) is a filtered morphism of double complexes;

v) β : (A∗,∗dR⊗kC,W )→ (A∗,∗C ,W ) is a filtered morphism of double complexes;

subject to the condition that, for every integer p ∈ Z, the 5-tuple

A = ((Ap,∗B ,W ), (Ap,∗dR ,W ), (Ap,∗C ,W, F ), α, β),

is a mixed Hodge complex over k in the sense of Definition 2.224.

Let A be a dg-mixed Hodge complex over k. We can construct the total com-
plexes Tot(AB), Tot(AdR), and Tot(AC) as in Definition A.33 from the appendix.
On each of them, we will denote by L the filtration defined by the second degree,
and let δ(W,L) be the diagonal filtration defined as

(2.268) δ(W,L)nA
p,∗
? = Wn+pA

p,∗
? .
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Definition 2.269. Let

A = ((A∗,∗B ,W ), (A∗,∗dR ,W ), (A∗,∗C ,W, F ), α, β)

be a dg-mixed Hodge complex defined over k. Then Tot(A) is the 5-tuple

((Tot(AB)∗, δ(W,L)), (Tot(AdR)∗, δ(W,L), F ), (Tot(AC)∗, δ(W,L), F ), α, β).

Proposition 2.270. Let A be a dg-mixed Hodge complex defined over k. Then
Tot(A) is a mixed Hodge complex defined over k.

Remark 2.271. The need to introduce the diagonal filtration instead of the
induced filtration stems from the fact that the weight filtration in cohomology is
not the induced weight filtration, but the shifted filtration

WnH
m = Im(Wn−m).

Let us see this with an example. Let A be a dg-mixed Hodge complex and
let x ∈WrA

p,q be a cycle. In the cohomology group Hq(Ap,∗), the class of x is
an element of weight r + q, not r. We want all maps to preserve weights, so
in Hp+q(Tot(A)), the element x should also have weight r+ q. This implies that in
the complex Tot(A), the element x should be in the piece r + q − p− q = r − p of
the filtration. This is exactly the role of the diagonal filtration:

x ∈WrA
p,q = δ(W,L)r−pA

p,q.

Every time we construct a simple complex from a double complex, it comes
equipped with a spectral sequence that relates the cohomology of the total complex
with the individual cohomologies of the columns or the rows of the double complex.
The extra information in the case of dg-mixed Hodge complexes is that this spectral
sequence is a spectral sequence of mixed Hodge structures.

Proposition 2.272. Let A be a dg-mixed Hodge complex over k. Let G denote
the decreasing filtration induced by the first degree of Tot(A), that is,

Gp Tot(A)n =
⊕

p′⩾p

Ap
′,n−p′ .

The spectral sequence associated with G converges to

Ep,qG 1 = Hq(Ap,∗) =⇒ Hp+q(Tot(A)).

Moreover, the following holds:

i) all the terms Ep,qG r carry a mixed Hodge structure and all the maps dr
are morphisms of mixed Hodge structures;

ii) the mixed Hodge structure on the graded piece GrpGH
n(Tot(A)) agrees

with the mixed Hodge structure on Ep,n−pG ∞ .

This proposition often allows one to prove that a spectral sequence degenerates.
Indeed, since the differentials dr are morphisms of mixed Hodge structures, they
are strict with respect to the weight filtration. In particular, whenever two terms
have disjoint weights, any map between them is zero.
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2.8.4. Smooth proper varieties. Let k be a subfield of C and let X be a smooth
proper variety over k. As a warming up, we construct a mixed Hodge complex
defined over k that produces the pure Hodge structure of the cohomology of X
discussed in Theorem 2.220.

The difficulties we have to overcome are twofold. First, algebraic de Rham
cohomology of X is defined as the hypercohomology of the algebraic de Rham com-
plex. Therefore, in order to compute it we need to replace this complex with a
complex made out of acyclic sheaves. The second difficulty is that de Rham coho-
mology is computed in the algebraic scheme X with its Zariski topology, while Betti
cohomology is computed as a sheaf cohomology in the analytic space X(C) with its
analytic topology. All the game of Hodge structures is to compare two cohomolo-
gies that live in completely different worlds. Luckily, the Godement resolution of
Section A.9.3 behaves so well that solves both difficulties for us.

We start with the de Rham complex Ω∗X/k, define on it the weight filtration as

the trivial filtration

W−1Ω∗X/k = {0}, W0Ω∗X/k = Ω∗X/k,

and the Hodge filtration as the bête filtration

F pΩ∗X/k = Ω∗⩾pX/k.

For each sheaf ΩpX/k, we construct the Godement resolution Gd(ΩpX/k). Thanks to

the functorial properties of the Godement resolution, Gd∗(Ω∗X/k) is a double com-

plex with induced weight and Hodge filtrations. Its total complex is the Godement
resolution of the de Rham complex Gd(Ω∗X/k) (Definition A.271). Then the de

Rham part of the sought mixed Hodge complex is the complex of global sections

(AdR,W, F ) =
(
Γ(X,Gd(Ω∗X/k)),W, F

)
.

We now look at the complex manifold X(C) and let Q be the constant sheaf on
this manifold. Since X(C) satisfies the hypothesis of Theorem A.304, its singular
cohomology with rational coefficients agrees with the sheaf cohomology of Q, we
define the weight filtration of Q as the trivial filtration

W−1 Q = {0}, W0 Q = Q.
Then the Godement resolution Gd(Q) has an induced weight filtration, and we
define the Betti component of the mixed Hodge complex taking global sections:

(AB,W ) = (Γ(X(C),Gd(Q)),W ).

Now we need to compare the de Rham and the Betti components. That is,
we need a complex that receives arrows from both complexes, and these arrows
are filtered quasi-isomorphisms. To this end, we use the complex of holomorphic
differential forms Ω∗X(C). Once again, we define the weight filtration as the trivial

filtration, we apply the Godement resolution and take global sections:

(AC,W ) = (Γ(X(C),Gd(Ω∗X(C))),W )

Next we need the comparison maps. The map α is easy because the complexes
involved are both global sections of sheaves living in the same topological space.
Since Q agrees with the sheaf of locally constant functions on X(C) and locally
constant functions are holomorphic, we deduce a morphism

Q −→ OX(C) = Ω0
X(C) −→ Ω∗X(C).
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By the functoriality of the Godement resolution, it induces a morphism

α : AB ⊗Q C −→ AC

that, thanks to the Poincaré Lemma is a quasi-isomorphism, and hence a filtered
quasi-isomorphism with respect to the (trivial) weight filtration.

The map β is more complicated as we have to change not only the sheaves but
also the spaces. Recall from Section 2.3.1 that there is a continuous map

ψ : X(C) −→ X.

from the manifold X(C) with the analytic topology to the underlying topological
space of X with its Zariski topology. Applying Lemma A.279, we obtain a map

ψ−1(Gd(ΩpX/k)) −→ Gd(ψ−1ΩpX/k)

for each p. Since algebraic differential forms are always holomorphic, there is also
a morphism of sheaves

ψ−1ΩpX/k −→ ΩpX(C).

Taking the Godement resolution of this last map, global sections and total com-
plexes we deduce a map

(2.273) β : AdR ⊗k C −→ AC

that, thanks to the GAGA theorem (Theorem 2.139), is a quasi-isomorphism, and
hence a filtered quasi-isomorphism with respect to the (trivial) weight filtration.

For future reference, we wrap the previous complexes in a single symbol.

Definition 2.274. Let X be a smooth proper variety over k. We denote by AH
X

the mixed Hodge complex constructed in this section.

Proposition 2.275. Let X be a smooth proper variety over k. The mixed
Hodge complex AH

X induces the Hodge structure of Theorem 2.220 on the cohomology
of X. Moreover, the assignment X 7→ AH

X is functorial: if f : X → Y is a morphism
of smooth proper varieties over k, then there is an induced morphism of mixed Hodge
complexes AH

f : AH
Y → AH

X , which induces the morphism f∗ : H∗(Y ) → H∗(X) of
pure Hodge structures.

2.8.5. Smooth varieties. Let X be a smooth variety over a subfield k of C. By
Theorem 2.168, there is a canonical comparison isomorphism

(2.276) compB,dR : Hn
dR(X)⊗k C ≃ Hn

B(X)⊗Q C.

We would like to endow Hn
B(X) with a filtration WB and Hn

dR(X) with two filtra-
tions W dR and F making the triple

((Hn
B(X),WB), (Hn

dR(X), F,W dR), compB,dR)

into a mixed Hodge structure over k. However, if algebraic de Rham cohomology
is computed from its Definition 2.95, that is, by using the complex Ω∗X of Kähler
differentials on X, we face two problems:

• A Hodge filtration defined by means of the bête filtration Ω⩾p
X will not

give much information. For example, for a smooth affine variety X we saw
in Remark 2.96 that Hn

dR(X) is the cohomology of the global de Rham
complex, so in this case the definition would yield the trivial filtration

Fn Hn
dR(X) = Hn

dR(X).



144 J. I. BURGOS GIL AND J. FRESÁN

• There is no obvious way to get the weight filtration from Ω∗X .

To solve these difficulties, we shall instead use the complex of logarithmic dif-
ferentials, as introduced in Section 2.3.5. In view of Proposition 2.162, the strategy
is to define the Hodge and the weight filtrations on the complex Ω∗

X
(logD). The

Hodge filtration is given by the bête filtration, that is

(2.277) F pΩ∗
X

(logD) = Ω∗⩾p
X

(logD).

Note that F is defined over k. The weight filtration is given by the order of poles:

WmΩp
X

(logD) =





0, if m < 0,

Ωp−m
X

∧ Ωm
X

(logD), if 0 ⩽ m ⩽ p,

Ωp
X

(logD), if m ⩾ p.

Once we have a complex of sheaves with two filtrations, in order to produce the
de Rham part of a mixed Hodge complex we follow the same strategy used in the
smooth proper case. Namely, we define A′dR as the complex of global sections of the
total complex of the Godement resolution of Ω∗

X
(logD) with the induced weight

and Hodge filtrations.

(AdR,W, F ) = (Γ(X,Gd(Ω∗
X

(logD))),W, F ).

The weight filtration defined by the order of the poles does not look a priori as a
“topological” filtration, so it is not clear how to translate it to the Betti side. The
key idea now is to use a different filtration that has a more topological flavour. But
this new filtration is only available in the analytic topology. So let Xan denote the
complex manifold associated with the complex variety X × Spec(C) and, similarly,

let X
an

denote the one associated with X × Spec(C) and Dan = X
an \ Xan. We

also denote by j : Xan → X
an

the open immersion of complex manifolds.
The canonical filtration on Ω∗

X
an(logDan), as defined in Example A.196 from

the appendix, is the filtration

τ⩽nΩp
X

an(logDan
C ) =





Ωp
X

an(logDan), if p < n,

Ker d, if p = n,

{0}, if p > n.

Consider the complex of sheaves j∗Ω
∗
Xan on X

an
. Note that, since j is an affine

morphism and the sheaves ΩpXan are coherent, all higher direct images vanish. Let τ
denote also the canonical filtration of this complex.

Proposition 2.278 ([Del71, Prop. 3.1.8]). The arrows

(Ω∗
X

an(logDan),W )←− (Ω∗
X

an(logDan), τ) −→ (j∗Ω
∗
Xan , τ)

are filtered quasi-isomorphisms.

Proposition 2.278 also suggests how to define the weight filtration on the Betti
part of the mixed Hodge complex. Let Q be the constant sheaf on Xan, and
let Gd(Q) be its Godement’s resolution. Since the sheaves composing this com-
plex are flasque, they are acyclic with respect to the functor j∗. Therefore, the
complex j∗Gd(Q) is isomorphic in the derived category of sheaves to Rj∗Q. Let
now τ denote again the increasing canonical filtration, but this time of the com-
plex j∗Gd(Q). Since each sheaf Gdp(Q) is flasque, j∗Gdp(Q) is also flasque, so

H∗(Γ(X
an
, j∗Gd(Q))) = H∗(Xan,Q).
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So, we define the Betti part of the mixed Hodge complex as

(AB,W ) =
(

Γ(X
an
, j∗Gd(Q)), τ

)
.

We now consider the diagram of filtered complexes of vector spaces given in Figure 9.
All the arrows in that diagram exist and are filtered quasi-isomorphisms. The
existence of the arrow 1 follows a similar argument that the existence of the map β
in (2.273). The fact that this arrow is a filtered quasi-isomorphism is a consequence
of the GAGA theorem. For the arrows 2 and 3 , this follows from Proposition 2.278.
For the arrow 4 , it follows from Exercise A.329. The existence of the arrow 5

follows from Lemma A.279 and the fact that the sheaves ΩpXan are acyclic for the
functor j∗. Finally, the arrow 6 comes from the exactness of Gd (Lemma A.268)
and Exercise A.218.

(
Γ(X,Gd(Ω∗

X
(logD))),Gd(W )

)
⊗ C

1

**(
Γ(X

an
,Gd(Ω∗

X
an(logDan))),Gd(W )

)

(
Γ(X

an
,Gd(Ω∗

X
an(logDan))),Gd(τ)

)

3

**

2

44

(
Γ(X

an
,Gd(j∗Ω

∗
X

an)),Gd(τ)
)

(
Γ(X

an
,Gd(j∗Ω

∗
X

an)), τ
)

5

**

4

44

(
Γ(X

an
,Tot(j∗Gd∗(Ω∗

X
an))), τ

)

(
Γ(X

an
, j∗Gd(Q)), τ

)
⊗ C

6

44

Figure 9. Diagram of filtered complexes

We are almost done with the construction of the sought Hodge complex, but
we still have to solve the small technical problem that some of the arrows in the
previous diagram go in the wrong direction. To invert these arrows, we apply
Exercise A.217 three times, one time to the arrows 2 and 3 , another time to the
arrows 4 and 5 , and finally to the arrows obtained in the previous iteration. This
is illustrated in Figure 10. There the complexes A to G are the filtered complexes
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appearing in Figure 9. The first two applications of Exercise A.217 produce the
filtered complexes cone( 2 + 3 ) and cone( 4 + 5 ). The third application of the
exercise produces the filtered complex cone( 4 + 5 ).

A

1

��
B

%%
C

3

��

2

??

cone( 2 + 3 )

((
D

7

99

8

%%

cone( 7 + 8 )

E

5

��

4

??

cone( 4 + 5 )

66

F

99

G

6

??

Figure 10. Completing the diagram of filtered complexes

In this way, we obtain a big filtered complex (A∗C,W ) = cone( 7 + 8 ) together
with filtered quasi-isomorphisms

(A∗dR,W )⊗ C β−→ (A∗C,W )
α←− (A∗B,W )⊗ C.

Definition 2.279. Let X be a smooth variety over k and j : X → X a smooth
compactification with D = X \X a simple normal crossing divisor. We set

AH
X

(logD) = ((AdR,W, F ), (AB,W ), (AC,W ), α, β).

Proposition 2.280. Let X be a smooth variety defined over k and let X be a
smooth compactification with D = X \X a simple normal crossing divisor. Then
the 5-tupe AH

X
(logD) is a mixed Hodge complex. In particular, it induces the Hodge

structure of Theorem 2.223 on the cohomology of X. Moreover, the assignment

X 7−→ AH
X

(logD)

is functorial with respect to pairs of compactifications: given a commutative diagram

X
f //

��

Y,

��
X

f // Y
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in which X and Y are smooth varieties, X and Y are smooth proper varieties,
and DX = X \X and DY = Y \ Y are simple normal crossing divisors, there is a
morphism of mixed Hodge complexes

f
∗

: AH
Y

(logDY ) −→ AH
X

(logDX)

that induces the morphism of mixed Hodge structures f∗ : H∗(Y )→ H∗(X).

Consider the weight and the Hodge filtrations on cohomology given by

(2.281) W dR
m Hn

dR(X) = Im
(
Hn(X,Wm−nΩ∗

X
(logD)) −→ Hn

dR(X)
)
,

(2.282) F pdR Hn
dR(X) = Im

(
Hn(X,F pΩ∗

X
(logD)) −→ Hn

dR(X)
)
,

We refer the reader e.g. to [Del71] or [PS08, § 4] for a proof that the filtrations we
have introduced define a mixed Hodge structure on Hn

B(X).

Definition 2.283. We say that a mixed Hodge structure H has weights in a
subset I ⊆ Z if GrWm H = 0 holds whenever m /∈ I.

It follows from (2.281) that the cohomology group Hn
B(X) of a smooth variety X

has weights in [n, 2n]. Moreover, noting that W0Ω∗
X

(logD) = Ω∗
X

and the shift of

indices in (2.281), one finds that the first step in the weight filtration is the piece
of the cohomology coming from the compactification:

Wn Hn
B(X) = Im

(
Hn

B(X) −→ Hn
B(X)

)
.

In contrast, when X is proper, the mixed Hodge structure Hn(X) defined in [Del74]
has weights in [0, n]. The combination of these two statements implies that the
cohomology of a smooth proper variety carries a pure Hodge structure.

As we have seen, the definition of de Rham cohomology involves hypercoho-
mology of sheaves; therefore, to compute it concretely, in general we cannot use
directly the algebraic de Rham complex but we need a resolution of it, like the
Godement resolution. As we have seen in Remark 2.96 for an affine variety X,
every coherent sheaf is acyclic and we can represent de Rham cohomology with
algebraic differentials directly. Nevertheless, the Hodge structure involves a hyper-
cohomology computed on a proper compactification of X; therefore, even in the
case of affine varieties, in order to compute the Hodge structure we will need an
acyclic resolution of the complex of logarithmic differentials, compatible with the
weight and the Hodge filtrations.

Example 2.284. Let us compute everything for X = P1 \ {0, 1,∞}, viewed as
a variety over Q. As for any smooth curve, there is a canonical smooth compactifi-
cation, in this case X = P1. Write D = {0, 1,∞} for the divisor at infinity. Recall
that OP1(D) stands for the sheaf of rational functions having at most simple poles
at D and nowhere else. We have:

Ω0
P1(logD) = OP1 , Ω1

P1(logD) = OP1(D)⊗OP1
Ω1

P1 .

Since Ω1
P1 ≃ OP1(−2), one sees that Ω1

P1(logD) ≃ OP1(1). By the standard compu-
tation of the cohomology of line bundles on P1 [Har77, Chap. III, § 5], none of the
terms in the complex of logarithmic differentials has higher cohomology. Besides,
setting ω0 = dt/t and ω1 = dt/(1− t), one has:

H0(P1,OP1) = Q, H0(P1,Ω1
P1(logD)) = Qω0 ⊕Qω1
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(note that these differentials ω0 and ω1 have a simple pole at ∞ as well). From the
spectral sequence (A.272), it follows that

H∗dR(X) = H∗(OP1
d−→ OP1(D)⊗OP1

Ω1
P1)

= H∗(Q −→ Qω0 ⊕Qω1),

where the differential in the second complex is the zero map. Thus,

H1
dR(X) = Qω0 ⊕Qω1.

We now turn to the filtrations. For the Hodge filtration, (2.277) gives

H1
dR(X) = F 0 = F 1 ⊇ F 2 = {0}.

Moreover, the weight filtration on the complex of logarithmic differentials is given
by Ω∗P1 = W0 ⊆W1 = Ω∗P1(logD). Since H1

dR(P1) vanishes, we find:

{0} = W1 ⊆W2 = H1
dR(X).

On the other hand, the first homology group H1(X(C),Q) has as a basis the
classes of two loops σ0 and σ1 winding once counterclockwise around the punctures 0
and 1. By Cauchy’s residue theorem, the period matrix reads:

(∫
σ0
ω0

∫
σ1
ω0∫

σ0
ω1

∫
σ1
ω1

)
=

(
2πi 0

0 2πi

)
.

In other words, letting σ∨0 and σ∨1 denote the dual elements in cohomology, the
isomorphism compB,dR sends ω0 to σ∨0 ⊗ 2πi and ω1 to σ∨1 ⊗ 2πi. Comparing with
Example 2.219, one concludes that there is an isomorphism

H1(P1 \ {0, 1,∞}) ≃ Q(−1)⊕2

of mixed Hodge structures over Q.
Observe that all the information in the de Rham part of the mixed Hodge

structure over Q of the variety X = P1
Q \ {0, 1,∞} can be read from the complex

(2.285) A∗ = A0 ⊕A1, A0 = Q, A1 = Qω0 ⊕Qω1,

together with the trivial differential and the filtrations

(2.286)
F 0 = A∗ ⊃ F 1 = A1 ⊃ F 2 = {0},
W−1 = 0 ⊂W0 = A0 ⊂W1 = A∗.

Note that A∗ has an algebra structure given by ωi ∧ ωj = 0, for i, j ∈ {0, 1}.
For later reference, we summarize the results of this example in a proposition.

We say that a morphism f : (A,W,F )→ (A′,W ′, F ′) between two complexes pro-
vided with two filtrations is a bifiltered quasi-isomorphism if f is compatible with
the filtrations and the induced maps

GrpF GrWn A −→ GrqF ′ GrW
′

n A′

are quasi-isomorphisms for all p and n.

Proposition 2.287. Set X = P1
Q \ {0, 1,∞} and let A∗ = A∗P1 be the filtered

algebra from (2.285) and (2.286). The algebraic de Rham cohomology of X equals

H∗dR(X) = H∗(A∗).
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The Hodge and the weight filtration are induced by the filtrations (2.286):

F p H∗dR(X) = H∗(F pA∗),

Wk Hn
dR(X) = Hn(Wk−nA

∗).

Moreover, the inclusion of algebras

A∗ −→ E∗P1(C)(logD)

induces a bifiltered quasi-isomorphism

(A∗ ⊗Q C,W, F ) −→ (E∗P1(C)(logD),W, F ).

2.8.6. Simple normal crossing divisors. Following the same method we used to
define the de Rham cohomology of a simple normal crossing divisor in Section 2.2.7,
we can build a mixed Hodge complex that endows it with a mixed Hodge structure.

Let X be a smooth variety over k, and let D be a simple normal crossing
divisor on X. We keep notation from Section 2.2.7. In particular, DI stands for
the intersection of irreducible components indexed by a subset I, and Dp for the
disjoint union of all DI such that I has cardinal p. By resolution of singularities
(Theorem 2.151), we can choose a smooth compactification X of X such that, for
each subset I, the Zariski closure DI is a smooth compactification of DI whose
complement EI = DI \ DI is a simple normal crossing divisor. Let Ep be the
disjoint union of all EI such that I has cardinal p. The mixed Hodge complexes

AH
Dp(logEp)

for p ⩾ 1 form a dg-mixed Hodge complex with the same differentials used in
Section 2.2.7. More precisely, the double complex

AH
D

(logE)p,q = AH
Dp+1

(logEp+1)q, p, q ⩾ 0

is a dg-mixed Hodge complex. Its total complex

(2.288) AH
D

(logE) = Tot(AH
D

(logE)∗,∗)

is also a mixed Hodge complex that defines a mixed Hodge structure on the coho-
mology of D. Since all Dp and Ep are smooth, we deduce from Proposition 2.275
a morphism of mixed Hodge complexes

AH
X

(log(X \X)) −→ AH
D

(logE).

In case X is proper, so that there is no need to compactify, we write AH
D for the

complex (2.288). There is then a morphism of mixed Hodge complexes AH
X → AH

D.

Example 2.289. We consider Example 2.120 again. Now, instead of computing
the relative cohomology H∗(X,D), we will compute the cohomology H∗(D) with
its mixed Hodge structure. The added information is that, by Proposition 2.272,
there is a spectral sequence of mixed Hodge structures. Taking into account that
the mixed Hodge structure on the H0 of an irreducible smooth variety is always a
copy of Q(0), we obtain the E1 term of the spectral sequence

0 0

Q(0)⊕Q(0)⊕Q(0) // Q(0)⊕Q(0)⊕Q(0)
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where the horizontal map is (a, b, c) 7→ (b− a, c− a, c− b). From this, we easily get

H0(D) = H1(D) = Q(0).

In fact, using hyperresolutions, the technique we have used for a simple normal
crossing divisor can be extended to any quasi-proyective variety [Del74].

2.8.7. Mixed Hodge structures on cohomology with compact support and relative
cohomology. The cohomology with compact support of complex algebraic varieties
or, more generally, the relative cohomology is also endowed with a mixed Hodge
structure. The basic technique is the following. Let f : A → B be a morphism of
mixed Hodge complexes. We can see f as a dg-mixed Hodge complex. Then

Tot(f) = cone(−f)[−1]

is a mixed Hodge complex (Proposition 2.270) and the long exact sequence

· · · −→ Hn(Tot(f)) −→ Hn(A) −→ Hn(B) −→ Hn+1(Tot(f)) −→ · · ·
is a long exact sequence of mixed Hodge structures (Proposition 2.265 ii)). We will
apply this technique to two situations: the cohomology with compact support and
the cohomology with support on a subvariety.

Definition 2.290. Let k be a subfield of C and let X be an algebraic variety
over k. The Betti cohomology with compact support H∗B,c(X) is the cohomology
with compact support (as introduced in Definition 2.56) of the set of complex
points X(C) equipped with the classical topology:

H∗B,c(X) = H∗c(X(C),Q).

By Exercise A.326, the Betti cohomology with compact support of X can be
identified with a relative cohomology group on a compactification. Namely, if X
is a proper variety containing X as a dense open subset and D = X \ X is the
complement, there is a canonical isomorphism

(2.291) H∗B,c(X) ≃ H∗B(X,D),

and hence a long exact sequence

· · · −→ Hn
B,c(X) −→ Hn

B(X) −→ Hn
B(D) −→ Hn+1

B,c (U) −→ · · ·
More generally, for any open subvariety U of X, with closed complement subset Z,
there is a long exact sequence

(2.292) · · · −→ Hn
B,c(U) −→ Hn

B,c(X) −→ Hn
B,c(Z) −→ Hn+1

B,c (U) −→ · · ·
The Betti cohomology with compact support of an algebraic variety is equipped

with a mixed Hodge structure for which (2.292) is a long exact sequence of mixed
Hodge structures. We content ourselves with explaining the construction for a
smooth variety X. Then X has a smooth compactification X such that D = X \X
is a simple normal crossing divisor. Let AH

X
and AH

D be the mixed Hodge complexes

from Definition 2.274 and Section 2.8.6. Then there is a map f : AH
X
→ AH

D and the

mixed Hodge structure of Hn
c (X) is the one induced by Tot(f). Alternatively, we

can use a variant of the construction we made in Section 2.8.6 to define AH
D. We

keep the notation from that section and consider the double complex

AH,p,q

X,D
= AH,q

Dp , p, q ⩾ 0.

This complex is a dg-mixed Hodge complex. Moreover, Tot(f) = Tot(AH,∗,∗
X,D

).
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Remark 2.293 (A spectral sequence computing the weight filtration on co-
homology with compact support). One advantage of this second point of view is
that it enables us to use the spectral sequence associated with the dg-mixed Hodge
complex AH

X,D
. This spectral sequence has first page

Ep,q1 = Hq(Dp),

and the term Ep,q1 carries a pure Hodge structure of weight q since the variety Dp

is smooth and proper for each p. Since the differentials are morphisms of Hodge
structures by Proposition 2.272 i), the terms of the second page

Ep,q2 =
Ker(d1 : Ep,q1 → Ep+1,q

1 )

Im(d1 : Ep−1,q1 → Ep,q1 )

are pure of weight q as well, and hence all differentials d2 : Ep,q2 → Ep+2,q−1
2 vanish

(the source and the target are pure of different weights). Since the spectral sequence
degenerates at the second page, Proposition 2.272 ii) gives

GrWm Hn
c (X) = En−m,m2 .

More generally, if X is a smooth variety and D a simple normal crossing divisor
on X, one can find a compactification X of X as in Section 2.8.6. The relative
cohomology of the pair (X,D) has a mixed Hodge structure induced by the total
complex Tot(f) of the morphism of mixed Hodge complexes

f : AH
X

(logX \X)→ AH
D

(logD \D).

Note, however, that in this case the analogue of Remark 2.293 is no longer true
since, although the varieties Dp are still smooth, they will in general not be proper,
and hence the Hodge structure of Hq(Dp) can be mixed of different weights.

Example 2.294. Let X and D be as in Example 2.120. Then the spectral se-
quence considered in that example is a spectral sequence of mixed Hodge structures
whose E1 term reads

0 0 0

0 0 0

Q(0) // Q(0)⊕Q(0)⊕Q(0) // Q(0)⊕Q(0)⊕Q(0)

from which we derive the equalities

Hi(X,D) =

{
Q(0), if i = 2,

0, otherwise.

Similarly, let X be a smooth variety, Z ⊂ X a closed subvariety, and U = X \Z
its complement. By resolution of singularities (Theorem 2.151), we can find a
compactification X such that D = X \ X and E = X \ U are simple normal
crossing divisors. By functoriality, there is a morphism of Hodge complexes

f : AH
X

(logD) −→ AH
X

(logE).
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Definition 2.295. The mixed Hodge structure on the cohomology with support
on Z is defined as

H∗Z(X) = H∗(X,U) = H∗(Tot(f)).

By construction, the cohomology with support H∗Z(X) sits into a long exact
sequence of mixed Hodge structures

(2.296) · · · −→ Hn
Z(X) −→ Hn(X) −→ Hn(U) −→ Hn+1

Z (X) −→ · · ·
For an example, see Exercise 2.319.

2.8.8. Poincaré duality and the Gysin morphism. The cup-product in cohomol-
ogy is also a morphism of mixed Hodge structures.

Proposition 2.297. Let X and Y be varieties over k. The external product

Hn(X)⊗Hm(Y ) −→ Hn+m(X × Y )

is a morphism of mixed Hodge structures over k. In particular, the cup-product

Hn(X)⊗Hm(X) −→ Hn+m(X)

is a morphism of mixed Hodge structures over k.

This is proved in [PS08, Section 5.4]. Since an isomorphism of mixed Hodge
structure is a morphism of Hodge structures whose underlying linear map is an
isomorphism of vector spaces, we immediately derive:

Corollary 2.298 (Künneth formula). The external product induces an iso-
morphism of mixed Hodge structures

⊕

i+j=n

Hi(X)⊗Hj(Y )
∼−→ Hn(X × Y ).

Another useful property is:

Lemma 2.299. Let X be a smooth irreducible proper variety of dimension d
over k. There is an isomorphism of Hodge structures

H2d(X) ≃ Q(−d).

Proof. SinceX is irreducible, the topological spaceX(C) is connected. Hence,

its singular cohomology in top degree H2d(X(C),Z) is isomorphic to Z by Poincaré
duality (2.33). We first assume that X is projective, so that we can pick an em-
bedding X ⊂ PN into some projective space. Then the map

H2d
B (PN ) −→ H2d

B (X)

that sends the class of a general linear subvariety of codimension d in PN to its
intersection with X is an isomorphism. The map H2d(PN ) → H2d(X) is hence an

isomorphism of mixed Hodge structures by Proposition 2.234. Since H2d(PN ) is
the Hodge structure Q(−d), the result follows. If X is proper but non-projective,
by Chow’s lemma [Gro61, Thm. 5.6.1] there exists a birational morphism X ′ → X
from a smooth projective irreducible variety X ′. Such a morphism induces an
isomorphism H2d(X)→ H2d(X ′), and we can then argue as above. □

Putting together Proposition 2.297 and Lemma 2.299, we deduce that Poincaré
duality is a morphism of mixed Hodge structures after a twist.
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Proposition 2.300 (Poincaré duality). Let X be a smooth variety of dimen-
sion d over k. Poincaré duality gives an isomorphism of mixed Hodge structures

Hn(X) ≃ Hom(H2d−n
c (X),Q(−d)).

For some morphisms of algebraic varieties, such as the inclusions of smooth
closed subvarieties, Poincaré duality is used to define direct images in cohomology.

Definition 2.301. Let X be a smooth variety of dimension d and let Z ⊂ X
be a smooth closed subvariety of codimension p. For each n ⩾ 0, the Gysin map

γ : Hn(Z)(−p)→ Hn+2p(X)

is defined as the composition

Hn(Z)(−p)

≃
��

Hom(H2d−2p−n
c (Z),Q(p− d))(−p) Hom(H2d−2p−n

c (Z),Q(−d))

��
Hn+2p(X) Hom(H2d−2p−n

c (X),Q(−d))≃
oo

of Poincaré duality and the dual of the map H2d−2p−n
c (X)→ H2d−2p−n

c (Z) induced
by the inclusion Z ↪→ X.

The Gysin map has the following very useful property.

Proposition 2.302 (Gysin long exact sequence). Let X be a smooth variety
over k and let Z ⊆ X be a smooth closed subvariety of codimension p with open
complement U = X \ Z. For each n ⩾ 0, the Gysin map can be lifted to an

isomorphism of mixed Hodge structures Hn(Z)(−p)→ Hn+2p
Z (X). Therefore, there

is a long exact sequence of mixed Hodge structures

(2.303) · · · −→ Hj−1(X)
α−→ Hj−1(U)

β−→ Hj−2p(Z)(−p) γ−→ Hj(X) −→ · · ·
where α is the usual restriction map and γ is the Gysin map.

As we will see in Exercise 2.322, the smoothness assumption on Z is necessary.
This proposition is proved in

2.8.9. E-polynomials and the Grothendieck ring of varieties. The E-polynomial
of a complex algebraic variety X is the polynomial in two variables defined as

EX(u, v) =
∑

p,q

(∑

i

(−1)ihp,q(GrWp+q Hi
c(X))

)
upvq,

where hp,q(GrWp+q Hi
c(X)) stands for the dimension of the piece of type (p, q) in the

Hodge decomposition of the pure Hodge structure GrWp+q Hi
c(X) of weight p+ q.

From the fact that (2.292) is a long exact sequence of mixed Hodge structures, we
get the equality of E-polynomials

(2.304) EX = EZ + EX\Z

for each variety X and each closed subvariety Z ⊂ X. Besides, since the Künneth
isomorphism is compatible with the mixed Hodge structures by Corollary 2.298,
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the E-polynomial is multiplicative:

(2.305) EX×Y = EX · EY .
The above identities suggest to consider the following universal setting. For

any field k, the Grothendieck ring of varieties K0(Vark) is the quotient of the free
abelian group on the set of isomorphism classes of varieties over k by the subgroup
generated by elements of the form

[X]− [Z]− [X \ Z],

where Z ⊂ X is a closed subvariety, together with the ring operation

[X] · [Y ] = [X ×k Y ].

In the case where k is a subfield of C, a compact way to summarize the equali-
ties (2.304) and (2.305) is then to say that the E-polynomial gives rise to a ring
morphism, also known as a motivic measure,

(2.306) E : K0(Vark)→ Z[u, v].

Another typical example of a motivic measure, when k is a finite field, is the func-
tion K0(Vark) → Z that sends [X] to the cardinal of X(k). The definition of the
Grothendieck ring of varieties extends verbatim to schemes over any base (for ex-
ample Spec(Z), which is particularly interesting since it provides a common frame-
work for counting points over closed points and computing Hodge numbers over
the generic point). We refer the reader to [CLNS18, Chap. 2] for a full-fledged
treatment of the Grothendieck ring of varieties and motivic measures.

2.8.10. More examples. We close this section with a few more examples of
mixed Hodge structures on the cohomology of algebraic varieties.

Example 2.307 (Smooth open curves). Let C be a smooth projective complex
curve, and let S ⊂ C be a non-empty finite subset consisting of s points. In this
example, we describe the mixed Hodge structure on the first cohomology group
of the open curve C = C \ S. Since S is non-empty, the curve C is affine, and
hence H2(C) vanishes by Exercise 2.191. Thanks to this vanishing, the Gysin long
exact sequence (2.303) reads

0 −→ H1(C) −→ H1(C) −→ H0(S)(−1)
γ−→ H2(C) −→ 0.

By Lemma 2.299, the last two non-zero terms are isomorphic to the Hodge struc-
tures Q(−1)⊕s and Q(−1). Through this identification, the Gysin map γ is given
by the sum of the coordinates. From this, we get a short exact sequence

0 −→ H1(C) −→ H1(C) −→ Q(−1)⊕(s−1) −→ 0.

Since taking a step of the weight filtration is an exact functor (Corollary 2.233) and
the Hodge structures H1(C) and Q(−1) are pure of weights 1 and 2 respectively,
the weight filtration on H1(C) is given by

0 = W0 H1(C) ⊂W1 H1(C) = H1(C) ⊂W2 H1(C) = H1(C).

The graded pieces are therefore

GrW1 H1(C) ≃ H1(C), GrW2 H1(C) ≃ Q(−1)⊕(s−1),

which are indeed pure Hodge structures of weights 1 and 2 respectively. In partic-
ular, H1(C) is of Tate type if and only if H1(C) vanishes, which is equivalent to
asking that the curve is a punctured projective line C = P1 \ S.
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Example 2.308 (Moduli spaces M0,n). Recall the moduli spaces M0,n from
Section 2.5.2. In this example, we compute the Hodge structure on their cohomol-
ogy using a method we learnt from Consani and Faber [CF06, Lem. 3].

Proposition 2.309. For each i ⩾ 0 and n ⩾ 3, the cohomology group Hi(M0,n)
carries a pure Hodge–Tate structure of weight 2i. More precisely, there is an iso-
morphism of pure Hodge structures

Hi(M0,n) ≃ Q(−i)⊕bi,n ,

where the Betti numbers bi,n are given by the generating series
∑

i⩾0

bi,nt
i = (1 + 2t)(1 + 3t) · · · (1 + (n− 2)t).

Proof. We proceed by induction on n. For n = 3, the moduli space is re-
duced to a point, and hence all cohomology groups but H0(M0,3) = Q(0) vanish.
The case n = 4 was already settled in Example 2.307, where we saw that the
only non-trivial cohomology groups of M0,4 ≃ P1 \ {0, 1,∞} are H0(M0,4) = Q(0)

and H1(M0,4) = Q(−1)⊕2. Assume n ⩾ 5, and let (0, 1,∞, t1, . . . , tn−3) denote the
coordinates on M0,n. The map

M0,n −→ M0,4 ×M0,n−1

(0, 1,∞, t1, . . . , tn−3) 7−→ ((0, 1,∞, t1), (0, 1,∞, t2, . . . , tn−3))

induces an isomorphism from M0,n to the complement of the smooth closed subva-
riety Z ⊂M0,4 ×M0,n−1 defined as

Z =

n−3⊔

i=2

{t1 = ti} ≃
n−3⊔

i=2

M0,n−1.

We compute the cohomology of M0,n ≃ (M0,4 ×M0,n−1) \Z by combining the
Gysin exact sequence, the Künneth formula, and the induction hypothesis. First,
the Gysin sequence (2.303) gives

(2.310)
· · · −→ Hi−2(Z)(−1)

α−→ Hi(M0,4 ×M0,n−1) −→ Hi(M0,n)

−→ Hi−1(Z)(−1)
β−→ Hi+1(M0,4 ×M0,n−1) −→ · · ·

By the Künneth formula (Corollary 2.298) and the induction hypothesis, there are
isomorphisms of Hodge structures

(2.311)

Hi(M0,4 ×M0,n−1) ≃
⊕

a+b=i

Ha(M0,4)⊗Hb(M0,n−1)

≃ Hi(M0,n−1)⊕Hi−1(M0,n−1)(−1)⊕2

≃ Q(−i)⊕(bi,n−1+2bi−1,n−1).

It follows that the maps α and β in (2.310) are morphisms between pure Hodge
structures of different weights, and hence are identically zero. From this, we derive
the short exact sequence of Hodge structures

0 −→ Hi(M0,4 ×M0,n−1) −→ Hi(M0,n) −→ Hi−1(M0,n−1)(−1)⊕(n−4) −→ 0.



156 J. I. BURGOS GIL AND J. FRESÁN

Thanks to the isomorphism (2.311) and the induction hypothesis, the cohomol-
ogy Hi(M0,n) is an extension of two pure Hodge–Tate structures of the same weight.
Since all such extensions are split by Theorem 2.256, we deduce

Hi(M0,n) ≃ Q(−i)bi,n , bi,n = bi,n−1 + (n− 2)bi−1,n−1.

One immediately checks that this recurrence relation amounts to the expression for
the Betti numbers given in the statement. □

2.8.11. Graph hypersurfaces. Let G = (V,E) be a finite graph with vertex
set V and edge set E. Assume that G is connected. A subgraph T ⊆ G is called
a spanning tree if T is a tree (i.e. a connected graph with no loops) and contains
all vertices of G. Consider a collection of formal variables (xe)e∈E indexed by the
edges of G. The first Symanzik polynomial of the graph G is defined as

(2.312) ψG =
∑

T⊆G

∏

e/∈T

xe ∈ Z
[
(xe)e∈E

]
,

where the sum runs over all spanning trees in G. Let nG be the number of edges
of G, and hG the number of loops. One readily checks that ψG is a homogeneous
polynomial of degree hG (Exercise 2.327). After choosing a numbering of the ver-
tices, we can see ψG as a polynomial in the variables x0, . . . , xnG−1.

Definition 2.313. The graph hypersurface XG ⊆ PnG−1 is the vanishing locus
of the polynomial ψG.

Graph hypersurfaces appear in perturbative quantum field theory, which asso-
ciates an integral called Feynman amplitude with each graph describing a possible
interaction between particles. In the case of primitive log divergent graphs, which
are those satisfying the conditions nG = 2hG and nγ > 2hγ for all non-empty strict
subgraphs γ ⊊ G, the Feynman amplitude is given by the convergent integral

(2.314) IG =

∫

σ

Ω

ψ2
G

up to a normalization factor that will play no role in our discussion. In the above
formula, Ω stands for the differential form

Ω =

nG−1∑

j=0

(−1)jxjdx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxnG−1,

and the integration domain is the real coordinate simplex

σ = {[x0 : · · · : xnG−1] ∈ PnG−1(R) | xj ⩾ 0}.
Note that the condition nG = 2hG implies that the integrand of (2.314), which
is written in homogeneous coordinates, is well defined. Setting ti = xi/x0, the
amplitude IG can also be written as the affine integral

IG =

∫ ∞

0

dt1

∫ ∞

0

dt2 · · ·
∫ ∞

0

dtnG−1

ψ2
G(1, t1, t2, . . . , tnG−1)

.

That the integral converges is proved, for instance, in [BEK06, Prop. 5.2].
The extensive numerical calculations of Broadhurst and Kreimer [BK97] iden-

tified many Feynman amplitudes of primitive log divergent graphs, such as those
shown in Figure 11, with Q-linear combinations of multiple zeta values. This hap-
pens to be a general phenomenon for “small graphs” (for example, those with at
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most 6 loops), and it was believed for some time that IG might always be a Q-linear
combination of multiple zeta values. In our current state of knowledge, giving a
negative answer to this question seems completely out of reach, as it would require
to prove the very strong diophantine statement that some Feynman amplitude
is Q-linearly independent from all multiple zeta values. Nevertheless, we can ap-
proach the question from a cohomological point of view to get compelling evidence
for a negative answer. Indeed, multiple zeta values are periods of Hodge struc-
tures of mixed Tate type built on algebraic varieties over Q. Conversely, a form of
Grothendieck’s period conjecture implies that, if all periods of such a mixed Hodge
structure are Q-linear combinations of multiple zeta values, then it is necessarily
of mixed Tate type. One can then ask instead if the mixed Hodge structure that
naturally arises from the integral representation (2.314) is of mixed Tate type. An
easier question to begin with is whether the cohomology of YG = PnG−1 \ XG is
always of mixed Tate type. This variety being smooth, the question amounts by
Poincaré duality to asking whether the cohomology with compact support of YG is
always of mixed Tate type or, using the long exact sequence (2.292), whether the
cohomology of XG is always of mixed Tate type.
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r
2 R
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Figure 11. Three examples of primitive log divergent graphs and
the corresponding Feynman amplitudes

This last question was answered in the negative by Belkale and Brosnan, who
showed in [BB03] that varieties of the form YG are general enough to span the
Grothendieck ring of varieties (see Section 2.8.9). Note that the polynomial ψG has
integer coefficients, and hence the graph hypersurface XG and its complement YG
are schemes defined over Spec(Z). Their result can then be stated as follows:

Theorem 2.315 (Belkale–Brosnan [BB03]). For each scheme X of finite type
over Spec(Z), there exist finitely many graphs Gi, polynomials pi ∈ Z[T ], and
integers nj ⩾ 2 such that, setting L = [A1

Z], the equality

[X] =
∏

j

(Lnj − L) ·
∑

i

pi(L)[YGi
]

holds in the Grothendieck ring K0(VarZ).
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By base change, the same identity holds between the classes of the correspond-
ing varieties over the field of complex numbers. Now recall from (2.306) that there
is a unique ring morphism K0(VarC)→ Z[u, v] that sends the class of a variety to
its E-polynomial. If all the cohomology with compact support groups of a variety
are of mixed Tate type, then its E-polynomial is a polynomial in the variable uv.
This is, for example, the case for the affine line, since its only non-zero cohomology
with compact support is H2

c(A1) = Q(−1); the E-polynomial of L is thus equal
to uv. It then follows from Theorem 2.315 that, if the cohomology with compact
support of YG were of mixed Tate type for all graphs G, then the same would hold
for any variety. But this is clearly not true: for example, the E-polynomial of an
elliptic curve is (1 − u)(1 − v). Therefore, there exists at least one graph G such
that not all cohomology with compact support groups of YG (or, equivalently, all
cohomology groups of XG) are of mixed Tate type.

In a different line of thought, the fact that the cohomology of XG is of mixed
Tate type is also expected to impose strong constraints on the number of points of
this variety over finite fields. Indeed, since ψG has integral coefficients, it makes
sense to consider for each finite field Fq of characteristic p the number of Fq-points

|XG(Fq)| = {[x0 : . . . : xnG−1] ∈ PnG−1(Fq) | ψG(x0, . . . , xnG−1) = 0}

of the reduction modulo p of the graph hypersurface. In 1997, Kontsevich informally
conjectured that, for each graph G, the function

(2.316) q 7−→ |XG(Fq)|

is a polynomial in q. Again, this happens to be true for “small graphs” (for example,
those with at most 12 edges [Ste98]), but the theorem of Belkale and Brosnan
also disproves the expectation that it might be a general phenomenon. Indeed,
Theorem 2.315 implies that the functions (2.316) span all counting functions of
schemes over Z: for each scheme of finite type X over Spec(Z), there exist finitely
many graphs Gi, polynomials pi ∈ Z[T ], and integers nj ⩾ 2 satisfying

|X(Fq)| =
∏

j

(qnj − q) ·
∑

i

pi(q)|XGi
(Fq)|

for all q. Therefore, if the function q 7→ |XG(Fq)| were a polynomial in q for
each graph G, then the same would hold for all varieties. This is again false, for
example, for an elliptic curve. Later on, Brown and Schnetz [BS12] constructed
explicit graphs that are counterexamples to Kontsevich’s conjecture. For example,
there exists a primitive log divergent graph G with 8 loops and 16 edges such that
the counting function of XG is given modulo pq2 by a modular form arising from a
certain K3 surface with complex multiplication.

In order to interpret the Feynman amplitude IG as a period, we observe that
the integrand of (2.314) is a global top-degree differential form ωG on PnG−1 \XG

and that the boundary of the integration domain σ is contained in the union D
of the coordinate hyperplanes {xi = 0}. In general, σ intersects the graph hyper-
surface XG, so we are faced again with the problem we encountered in Section 2.5
when dealing with ζ(2) that the integration cycle does not define an element in the
relative cohomology group

HnG−1
B (PnG−1 \XG, D \D ∩XG).
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However, the fact that the coefficients of ψG are positive makes this intersection
easy to describe. In fact, it is equal to

XG(C) ∩ σ =
⋃

hγ>0

Lγ(R⩾0),

where γ is a subgraph of G with at least one loop, Lγ is the linear subvariety
of PnG−1 defined by the equations xe = 0 for all vertices e of γ, and we set

Lγ(R⩾0) = {[xe]e∈E ∈ Lγ(R) | xe ⩾ 0}.
This allowed Bloch, Esnault, and Kreimer to obtain the following result:

Theorem 2.317 (Bloch–Esnault–Kreimer [BEK06, Prop. 7.3]). There exists
a tower of blow-ups

π : P = Pr −→ · · · −→ P0 = PnG−1

such that each Pi is obtained by blowing up Pi−1 along the strict transform of a
coordinate linear space Li, and the following conditions hold:

i) The differential π∗ωG has no poles along the exceptional divisors associ-
ated with the blow-ups.

ii) The total transform B of D is a normal crossing divisor such that none
of the non-empty intersections of its irreducible components is contained
in the strict transform Y of XG.

iii) The strict transform of σ does not meet Y .

Corollary 2.318. Keeping the notation from above, the Feynman ampli-
tude IG is a period of the mixed Hodge structure

HnG−1(P \ Y,B \ (B ∩ Y )).

⋆ ⋆ ⋆

Exercise 2.319. Set X = P1
Q and let Z ⊂ X be a closed subvariety consisting

of a rational point. Compute the mixed Hodge structure on the cohomology with
support H∗Z(X) introduced in Definition 2.295.

Exercise 2.320. Let X be a smooth complex variety, let Z ⊂ X be a smooth
closed subvariety of codimension c, and write U = X \Z. Use the Gysin long exact
sequence (2.303) to prove that the restriction map Hi(X)→ Hi(U)

i) is an isomorphism for i < 2c− 1;

ii) is injective for i = 2c− 1.

Exercise 2.321 (Varieties which do not admit a compactification by a smooth
divisor). Let U be a smooth complex variety. In this exercise, we show that the ex-
istence of a smooth compactification by a smooth divisor imposes strong restrictions
on the mixed Hodge structure on the cohomology of U .

i) Use the Gysin exact sequence (2.303) to prove that, if U = X \D is the
complement of a smooth divisor D on a smooth proper variety X, then
the mixed Hodge structure Hn(U) has only weights in [n, n+ 1].

ii) Give an example of a smooth surface which does not admit a smooth
proper compactification by a smooth divisor.
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Exercise 2.322. In this exercise, we show that Proposition 2.302 does not hold
without the smoothness assumption.

i) Let H1 → H2 → H3 be an exact sequence of mixed Hodge structures.
Assume that H1 has weights in I ⊂ Z and H3 has weights in J ⊂ Z.
Prove that H2 has weights in I ∪ J .

ii) Let X be a smooth proper variety and Z a closed subvariety. Use the
exact sequence (2.296) to prove that, for any n ⩾ 0, the mixed Hodge
structure Hn

Z(X) has weights in [n − 1,max(n, 2n − 2)]. Then show that
weight n− 1 does not occur.

iii) Let X be a smooth proper variety and D a simple normal crossing divisor.
Show that Hn−2(D)(−1) has weights in [2, n]. (In fact, a similar result
holds for any closed subvariety.)

iv) It follows from the above that Hn
D(X) and Hn−2(D)(−1) can only be

isomorphic mixed Hodge structures if they are both pure of weight n.
Consider X = P2, and let D = D1 ∪ D2 ∪ D3 be the union of the coor-
dinate hyperplanes. Prove that there are isomorphisms of mixed Hodge
structures H3

D(X) = Q(−2) and H1(D)(−1) = Q(−1).

v) Even if the weights match, the Hodge structures need not be isomorphic.
Consider X = P2, and let D = D1 ∪ D2 be the union of two coordinate
hyperplanes. Prove that there are isomorphisms

Hn
D(X) =





Q(−2), if n = 4,

Q(−1)⊕Q(−1), if n = 2,

0, otherwise,

Hn(D) =





Q(−1)⊕Q(−1), if n = 2,

Q(0), if n = 0,

0, otherwise.

Therefore, Hn
D(X) is not isomorphic to Hn−2(D)(−1).

Exercise 2.323. Let X be a smooth proper complex variety, and let Y0, Y1 be
smooth divisors on X such that Y0 ∪ Y1 has simple normal crossings. Set

X = X \ Y0, Y = Y1 \ (Y0 ∩ Y1).

Show that the weight filtration on the relative cohomology group

M = Hn(X,Y )

is given by the following steps:

Wn−2M = 0,

Wn−1M = Im(Hn−1(Y1)→M),

WnM = Ker(M → Hn−1(Y0)(−1)),

Wn+1M = M.

[Hint: Consider a diagram of mixed Hodge structures whose rows are Gysin long
exact sequences and whose columns are long exact sequences of relative cohomology;
then use the fact that Wm is an exact functor and Lemma 2.232.]
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Exercise 2.324 (The graded pieces of the mixed Hodge structure of a smooth
variety). Let X be a smooth proper variety, D a simple normal crossing divisor,
and U = X \D. As in Construction 2.114, we use the notation

D0 = X, Dp =
∐

i1,i2,...,ip

Di1 ∩ · · · ∩Dip (p ⩾ 1).

Prove that the weight filtration of Hn(U) has graded pieces

(2.325) GrWm Hn(U) = Hn−m (· · · −→ Hm−2(D1)(−1) −→ Hm(X) −→ 0
)
,

where the term Hm−2p(Dp)(−p) sits in degree −p and the arrows are alternating
sums of Gysin maps.

Exercise 2.326. Let n ⩾ 3 be an integer and q a power of a prime number. As
the moduli space M0,n is defined over the integers, we can consider its base change
to any finite field Fq. Consider the polynomial of degree n− 3 given by

P (T ) = (T − 2)(T − 3) · · · (T − n+ 2).

i) Show that the number of points of M0,n over Fq is equal to P (q).

ii) Building on Proposition 2.309, prove that the E-polynomial of M0,n equals

EM0,n
(u, v) = P (uv).

More generally, given any complex variety X, there exists a subring R ⊂ C that is
finitely generated over Z and a scheme X over R that gives X back after extension
of scalars. We say that X has strong polynomial count if R and X can be chosen in
such a way that there exists a polynomial P ∈ Z[t] with the following property: for
each finite field Fq and each ring morphism R→ Fq, the number of points of X (Fq)
is P (q). It is then a general result, proved in Katz’s appendix to [HRV08], that
the E-polynomial of a variety with strong polynomial count is equal to P (uv).

Exercise 2.327. Prove that the first Symanzik polynomial of a graph, as de-
fined in (2.312), is homogeneous of degree the number of loops in G.

Exercise 2.328 (Deletion-contraction relations). Let G be a connected graph
and e an edge of G. We denote by G \ e the graph obtained by deleting the edge e,
and by G/e the graph obtained by contracting the edge e. Assuming that G \ e is
still connected and that the two endpoints of e are different, show that the identity

ψG = xeψG\e + ψG/e

relating the first Symanzik polynomials of G, G \ e, and G/e holds.

Exercise 2.329 (The trivial Feynman amplitude). Consider the graph G with
two vertices and two edges connecting them, as in Figure 12. Compute the Feynman
amplitude IG defined in (2.314), and write down a Hodge structure for which it is
a period (no blow-up is needed in this case).

2.9. Back to ζ(2) and irrationality proofs. We end the chapter by showing
that the relative cohomology group attached to the period ζ(2) in Section 2.5.1 is an
extension of Q(−2) by Q(0). We then discuss the problem of constructing extensions
of Q(−n) by Q(0) by geometric means, with a potential application to irrationality
proofs. Many thanks to Clément Dupont and Peter Jossen for their help.
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y

x

Figure 12. A simple graph

2.9.1. The extension associated with ζ(2). We prove that the relative cohomol-
ogy group built in Section 2.5.1 out of the integral representation of ζ(2) is an
extension of Q(−2) by Q(0). Recall that we considered the blow-up X of A2 at the
points p = (0, 0) and q = (1, 1), together with the simple normal crossing divisors

L = L0 ∪ L1, M = M0 ∪M1 ∪M2 ∪M3 ∪M4,

with the following irreducible components:

• L0 and L1 are the strict transforms of {t1 = 0} and {t2 = 1} (affine lines),

• M0 = Ep and M1 = Eq are the exceptional divisors (projective lines),

• M2, M3, and M4 are the strict transforms in X of {t1 = t2}, {t2 = 0},
and {t1 = 1} (affine lines).

Proposition 2.330. There exists a short exact sequence

(2.331) 0 −→ Q(0) −→ H2(X \ L,M \ (L ∩M)) −→ Q(−2) −→ 0

of mixed Hodge structures.

The proof relies on a spectral sequence computing the grading for the weight
filtration on relative cohomology groups that we first discuss in a general setting.
Let X be any smooth complex variety of dimension d, and L and M two simple
normal crossing divisors on X with no common irreducible components and such
that L ∪M has simple normal crossings as well. By [Dup17, App. A.1], there is a
spectral sequence of mixed Hodge structures

(2.332)
Ep,q1 =

⊕

j−i=p
|I|=i
|J|=j

Hq−2i(LI ∩MJ)(−i) =⇒ GrW Hp+q(X \ L,M \ (M ∩ L)),

where the indexes run over −d ⩽ p ⩽ d and 0 ⩽ q ⩽ 2d, and the differential

d1 : Ep,q1 −→ Ep+1,q
1

is the sum of the following maps:

i) the restriction maps

Hq−2i(LI ∩MJ)(−i) −→ Hq−2i(LI ∩MJ∪{s})(−i)
induced from the inclusions

LI ∩MJ∪{s} ↪→ LI ∩MJ ,

multiplied by the signs ε(J, J ∪ {s});
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ii) the Gysin morphisms

Hq−2i(LI ∩MJ)(−i) −→ Hq−2i+2(LI\{r} ∩MJ)(−i+ 1)

associated with the inclusions

LI ∩MJ ↪→ LI\{r} ∩MJ ,

multiplied by the signs ε(I \ {r}, I).

(Recall from Section 2.2.7 that, if J = {j0, . . . , jr} is an index set with j0 < · · · < jr
and I is obtained from J by removing jℓ, we set ε(I, J) = (−1)ℓ.) In particular, d1

is a morphism of mixed Hodge structures.
Assume that all the terms Ep,q1 in the spectral sequence (2.332) carry a pure

Hodge structure of weight q. The second page is given by

Ep,q2 =
Ker(d1 : Ep,q1 → Ep+1,q

1 )

Im(d1 : Ep−1,q1 → Ep,q1 )
,

together with a differential d2 : Ep,q2 → Ep+1,q−1
2 . Thus, Ep,q2 has a pure Hodge

structure of weight q as well, which implies d2 = 0 since there are no non-trivial
morphisms between Hodge structures of different weight. It follows that the spectral
sequence degenerates at E2 and

(2.333) Ep,q2 = GrWq Hp+q(X \ L,M \ (M ∩ L)).

Proof. Let us now turn to our particular situation. Setting

R = L0 ∩ L1, S = L0 ∩ Ep, T = L1 ∩ Eq, Mij = Mi ∩Mj ,

the spectral sequence takes the form of Figure 13. By way of illustration, the
piece E1,2

1 is the sum of all possible H2−2i(LI ∩MJ)(−i) with j = i + 1. Then
necessarily i = 0 or i = 1, and the second case does not occur since there are
no non-empty intersections of one component of L and two components of M .
For i = 0, we get

⊕
H2(Mj) = H2(Ep) ⊕ H2(Eq), taking into account that the

remaining components are affine lines. Observe that odd values of q do not need
to be considered, since all intersections LI ∩MJ have cohomology concentrated in
even degrees. The assumption that Ep,q1 has pure weight q also holds in our case.

We need to prove that

(2.334) GrW H2(X \ L,M \ (L ∩M)) = Q(0)⊕Q(−2).

In this equality, the piece Q(−2) comes from the top-left corner of the spectral
sequence, while Q(0) arises as the cokernel of the map

⊕
H0(Mi) →

⊕
H0(Mij),

which has rank 4. Indeed, this map is given by

(a, b, c, d, e) 7−→ (c− a, d− a, c− b, e− b, e− d).

Since the map H0(X)→⊕
H0(Mi) sends a to (a, a, a, a, a), the cohomology of the

bottom line is concentrated in E2,0
2 = Q(0).

We are thus reduced to show that the complex E∗,21 is exact at the middle
term. For this, we first observe that the Gysin maps induce an isomorphism of
Hodge structures

(2.335) H0(Ep)(−1)⊕H0(Eq)(−1)
∼−→ H2(X).
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4 H0(R)(−2) 0 0 0 0

3 0 0 0 0 0

2 0

H0(L0)(−1)

⊕
H0(L1)(−1)

H2(X)

⊕
H0(S)(−1)

⊕
H0(T )(−1)

H2(Eq)

⊕
H2(Ep)

0

1 0 0 0 0 0

0 0 0 H0(X)
⊕

H0(Mi)
⊕

H0(Mij)

-2 -1 0 1 2

Figure 13. The first page of the spectral sequence computing the
grading GrW H2(X \ L,M \ (L ∩M))

This is an instance of the general computation of the Hodge structure of a blow-up;
see e.g. [Voi02, § 7.3.3]. In the case at hand, it can be seen as follows: the Gysin
long exact sequence (2.303) for U = X \ (Ep ∪ Eq) reads

· · · −→ H1(U) −→ H0(Ep)(−1)⊕H0(Eq)(−1) −→ H2(X) −→ H2(U) −→ · · ·

Since U and A2 \ {p, q} are isomorphic via the blow-up map, the cohomology
groups H1(U) and H2(U) vanish (use Exercise 2.320). It follows that, in suitable
bases compatible with the isomorphism (2.335), the differential

d1 : E0,2
1 −→ E1,2

1

in the spectral sequence is given by

(2.336)
H2(X)⊕H0(S)(−1)⊕H0(T )(−1) −→ H2(Ep)⊕H2(Eq)

(a, b, c, d) 7−→ (a+ c, b+ d).

To compute the remaining map in the spectral sequence, we take a closer look
at the cohomology classes [Li] ∈ H2(X). We claim that [L0] = −[Ep]. Indeed, since
the total transform of ℓ0 is the union L0 ∪ Ep, we get

[L0] + [Ep] = [π−1(ℓ0)] = π∗[ℓ0] = 0,

where the last equality follows from the fact that [ℓ0] lives in H2(A2) = 0. Similarly,

the equality [L1] = −[Eq] holds, so that d1 : E−1,21 → E0.2
1 is given by

(2.337)
H0(L0)(−1)⊕H0(L1)(−1) −→ H2(X)⊕H0(S)(−1)⊕H0(T )(−1)

(a, b) 7−→ (−a,−b, a, b).
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It is now obvious that the middle row of the spectral sequence is exact. Indeed,
its whole second page reads

Q(−2) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 Q(0).

This concludes the proof of the equality (2.334) and shows, moreover, the vanishing

Hi(X \ L,M \ (L ∩M)) = 0

in all degrees i different from 2. □

Remark 2.338. A byproduct of the proof is that we have canonical identifica-
tions (see Exercise 2.344)

(2.339)
GrW4 H2(X \ L,M \ (L ∩M)) = H2(X \ L) = Q(−2),

GrW0 H2(X \ L,M \ (L ∩M)) = H2(X,M) = Q(0).

Recall from Section 2.5.1 that the differential form π∗(ω) defines a class in the
de Rham cohomology group H2

dR(X \ L) and the simplex σ̂ belongs to H2(X,M).
By Theorem 2.256, the class of the extension

[H2(X \ L,M \ (L ∩M))] ∈ Ext1MHS(Q(−2),Q(0)) = C/(2πi)2Q
is thus given by

∫
σ̂
π∗(ω) = ζ(2). One would like to use this information as follows:

imagine that we knew by “pure thought” that all extensions of Q(−2) by Q(0)
given by relative cohomology of varieties defined over Q are split. Then ζ(2) would
have to vanish in the quotient C/(2πi)2Q, which would yield a more conceptual
explanation of why ζ(2) is a rational multiple of π2. To carry out this program, one
needs however to leave the category of mixed Hodge structures and work with the
more abstract notion of mixed Tate motives which will be introduced in Chapter 4.

2.9.2. Odd zeta extensions. In general, it is a difficult problem to give a geo-
metric construction of the extension of Q(−n) by Q(0) whose class in

Ext1MHS(Q(−n),Q(0)) = C/(2πi)nQ
is the zeta value ζ(n). The meaning of “geometric” is vague for the moment: we
may understand it as “given by a relative cohomology group of a pair of algebraic
varieties over Q”, or more generally built out of such a relative cohomology by lin-
ear algebra operations such as taking the kernel and the image of maps induced by
morphisms of algebraic varieties (functoriality, Gysin maps, etc.). Besides Proposi-
tion 2.330, a case where such a geometric construction is known is n = 3, by work
of Brown [Bro16] and Dupont [Dup18]. We sketch the later, which is inspired by
the integral representation

(2.340) ζ(n) =

∫

[0,1]n

dx1 . . . dxn
1− x1 · · ·xn

.

In order to attach a relative cohomology group to the period (2.340), we start
with affine space An and the hypersurfaces

ℓn = {x1 · · ·xn = 1}, mn =
⋃

1⩽i⩽n

{xi = 0} ∪
⋃

1⩽i⩽n

{xi = 1}.
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The divisor ℓn is smooth and mn is a normal crossing divisor; however, their
union ℓn ∪mn fails to have simple normal crossings at the point pn = (1, . . . , 1),
where n + 1 irreducible components intersect. Let πn : Xn → An be the blow-
up of An at pn, and let En denote the exceptional divisor. We write Ln for the
strict transform of ℓn, and Mn for the union of the strict transform of mn and the
exceptional divisor En. We form the relative cohomology:

Zn = Hn(Xn \ Ln,Mn \ (Ln ∩Mn)).

Dupont proves that Zn fits into an exact sequence of mixed Hodge structures

0 −→ Q(0) −→ Zn −→ Q(−2)⊕ · · · ⊕Q(−n)

and that there is a natural isomorphism

(2.341) Zn/Q(0)
∼−→ Hn−1(ℓn,

⋃

1⩽i⩽n

{xi = 1})(−1).

Moreover, with respect to appropriate bases of de Rham and Betti cohomology, the
period matrix of Zn is given by




1 ζ(2) ζ(3) . . . . . . ζ(n− 1) ζ(n)

(2πi)2

(2πi)3 0
. . .

. . .

0 (2πi)n−1

(2πi)n




.

To separate the values of the zeta function at even and odd integers, he uses
the involution

τ(x1, . . . , xn) = (x−11 , . . . , x−1n )

on ℓn. Since τ leaves each subvariety {xi = 1} invariant, it induces an involution on
the right-hand side of (2.341). By [Dup18, Thm. 1.4], the invariants are given by

(Zn/Q(0))τ=1 ≃
⊕

3⩽2k+1⩽n

Q(−(2k + 1)).

Therefore, letting p : Zn → Zn/Q(0) denote the quotient map, and defining

Zodd
n = p−1((Zn/Q(0))τ=1),

we obtain an exact sequence of mixed Hodge structures

0 −→ Q(0) −→ Zodd
n −→

⊕

3⩽2k+1⩽n

Q(−(2k + 1)) −→ 0.
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The period matrix of Zodd
n is given by



1 ζ(3) ζ(5) ζ(7) . . . . . .

(2πi)3

(2πi)5 0

(2πi)7

0
. . .

. . .




.

This example has recently been generalized in [DF24] to construct relative coho-
mology groups associated with the polylogarithm.

2.9.3. Irrationality proofs. Here is how a typical irrationality proof works. To
show that a real number α is irrational, we proceed in three steps:

i) we construct linear forms

(2.342) In = an + bnα, an, bn ∈ Q,
such that 0 < |In| < Cn for some 0 < C < 1 and all sufficiently big n;

ii) if rn is the common denominator of an and bn, then we require that
rn < Dn for some real number D, again when n is big enough;

iii) C and D should be related by the inequality CD < 1.

If one succeeds in carrying out these three steps, then α is irrational. Indeed, assume
by contradiction that α is of the form p/q for some integers p and q. Multiplying In
by rnq, we get

0 < |rnanq + rnbnp| < qrnC
n < q(CD)n,

so the sequence inside the absolute value converges to zero by the assumption
that CD < 1. But then, for sufficiently big n, we would find integers strictly bigger
than 0 and strictly smaller than 1, which is of course a contradiction!

Algebraic geometry could be useful in producing the linear forms (2.342). In-
deed, assume that we can construct a mixed Hodge structure over Q which is an
extension of Q(0) by Q(n) with period matrix

(
1 α

0 (2πi)n

)

with respect to some bases {ω0, ω1} of HdR and {σ0, σ1} of HB. Then, given
an ω ∈ HdR, there exist rational numbers a and b such that ω = aω0 + bω1, and
the integral

∫
σ0
ω is equal to a+ bα. Typically, H is given by a relative cohomology

group and one considers a sequence ωn = fnω where ω is a fixed differential form
and f is a function vanishing on the boundary.

Example 2.343. Consider the differential form

ωa,b,c =
(x− 1)a(t− x)b

xc+1
dx,

where a, b, c ⩾ 1 and t ⩾ 2 are integers. Since ωa,b,c is only singular along x = 0,∞
and has top degree, it defines a class in H1

dR(P1 \{0,∞}, {1, t}). By Example 2.108,
a basis of this relative cohomology group is given by the differentials ω1 = dx/(t−1)
and ω2 = dx/x, so there exist rational numbers A and B such that

[ωa,b,c] = A[ω1] +B[ω2].
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Indeed, elementary manipulations using Exercise 2.127 ii) yield the values

A =
∑

0⩽i⩽a
0⩽j⩽b
i+j ̸=c

(
a
i

)(
b
j

)
(−1)a−i−j(tb−c+i − tb−j)

i+ j − c ,

B =
∑

0⩽i⩽a
0⩽j⩽b
i+j=c

(
a

i

)(
b

j

)
(−1)a−i−jtb−j ,

Note that B is an integer. In view of Example 2.186, it follows that
∫ t

1

ωa,b,c = A+B log(t),

and choosing the parameters a, b, c as functions of n gives a sequence of linear forms
in 1 and log(t) as in Step i).

Let us specialize to the case a = b = c = n and t = 2. Then

In =

∫ 2

1

ωn,n,n = an + bn log(2),

where bn is an integer and an is given by the formula

an =
∑

0⩽i⩽n
0⩽j⩽n
i+j ̸=n

(
n
i

)(
n
j

)
(−1)n−i−j(2i − 2n−j)

i+ j − n .

Since the denominators of the summands in an run through [−n, n], one can
take rn = lcm(1, 2, . . . , n). We have:

rn =
∏

p⩽n
prime

p⌊ log n
log p ⌋ <

∏

p⩽n
prime

p
log n
log p = nπ(n),

where π(n) is the number of primes smaller than or equal to n. Here is where some
deep arithmetic input enters: the prime number theorem asserts that

lim
n→∞

π(n)

n/ log(n)
= 1;

see e.g. [IK04, Chap. 2]. It follows that, for all ε > 0 and big enough n, the
inequality nπ(n) < e(1+ε)n holds. Being generous, D = 3 thus works in Step ii). In
fact, it suffices to use the estimate rn ⩽ 3n, which is easier to prove.

By the choice of the parameters, the integral In can be written as

In =

∫ 2

1

fn
dx

x
, f(x) =

(x− 1)(2− x)

x
.

The function f is strictly positive on the open interval (1, 2) and bounded above

by its maximal value 3− 2
√

2. Therefore,

0 < In < (3− 2
√

2)n log(2) < (3− 2
√

2)n,

so C = 3 − 2
√

2 satisfies the assumptions. Luckily, CD = 0, 5147186 . . . < 1 and,
all in all, we have proved that log(2) is irrational!
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⋆ ⋆ ⋆

Exercise 2.344. Specialize the spectral sequence (2.332) to the cases I = ∅
and J = ∅. Deduce the identifications (2.339).

Exercise 2.345. Let L = L0 ∪ L1 ∪ L2 and M = M0 ∪ M1 ∪ M2 be two
triangles in P2 such that no three lines intersect at a common point. Use the
spectral sequence (2.332) to construct an isomorphism

GrW H2(P2 \ L,M \ (L ∩M)) ∼= Q(0)⊕Q(−1)⊕4 ⊕Q(−2).

The question of what happens when the lines are not in general position is studied
in great detail in [BGSV90].

Exercise 2.346 (Irrationality of ζ(3)). The goal of this exercise is to prove
that ζ(3) is irrational following the proof given by Beukers [Beu79] shortly after
Apéry’s announcement (see Section 1.1.2). We keep the notation

rn = lcm(1, 2, . . . , n).

i) Let n,m ⩾ 0 be integers and σ ⩾ 0 a real number. Prove the identity

∫

[0,1]2

xn+σym+σ

1− xy dxdy =





1

n−m

(
1

m+ 1 + σ
+ · · ·+ 1

n+m

)
, if n > m,

∞∑

k=1

1

(k + n+ σ)2
, if n = m.

ii) Let n,m ⩾ 0 be integers and consider the integral

In,m =

∫

[0,1]2

− log xy

1− xy xnymdxdy.

Show that, if n > m, then In,m is a rational number whose denominator
divides r3n, and that

In,n =

{
2ζ(3), if n = 0,

2
(
ζ(3)− 1− 2−3 − · · · − n−3

)
, if n > 0.

[Hint: differentiate the formulas of part i) with respect to σ.]

iii) For each integer n ⩾ 1, let Pn ∈ Z[x] be the polynomial defined by

n!Pn(x) =
dn

dxn
(xn(1− x)n)

and consider the integral

In =

∫

[0,1]2

− log xy

1− xy Pn(x)Pn(y)dxdy.

Prove that there exist rational numbers an, bn ∈ Q whose denominators
divide r3n such that

In = an + bnζ(3).
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iv) Prove that the above integral can be rewritten as

In =

∫

[0,1]3

xn(1− x)nyn(1− y)nzn(1− z)n

(1− (1− xy)z)n+1
dxdydz.

[Hint: use the integral representation

− log xy

1− xy =

∫ 1

0

dw

1− (1− xy)w

and the change of variables z = (1− w)(1− (1− xy)w)−1.]

v) Show that, for all 0 ⩽ x, y, z ⩽ 1, one has

x(1− x)y(1− y)z(1− z)

(1− (1− xy)z)
⩽ (
√

2− 1)4

and deduce the inequalities 0 < |In| < 2ζ(3)(
√

2− 1)4n. [Hint: first prove
that the maximum of the left-hand side occurs for x = y.]

vi) Conclude that ζ(3) is irrational.
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3. Multiple zeta values and the fundamental group of P1 \ {0, 1,∞}
In this chapter, we start moving towards the goal of upgrading multiple zeta

values to their motivic counterparts, which are functions on an algebro-geometric
construction associated with the fundamental group of P1 \ {0, 1,∞}. To this end,
we first look for homotopy functionals on the space of paths on a differentiable man-
ifold M . By Stokes’s theorem, line integrals of closed 1-forms are examples of such
functionals; however, the corresponding functions on the fundamental group π1(M)
always factor through its abelianization and cannot detect loops with trivial ho-
mology classes. Trying to go further, K-T. Chen had the fundamental insight that
iterated integrals yield finer invariants, which are in fact sufficient to recover all
finite-dimensional unipotent representations of π1(M) and not only the abelian
ones. In Section 3.1, we present the definition and algebraic properties of iter-
ated integrals, and tackle the question of when they define homotopy functionals.
Chen’s results are most conveniently phrased in terms of Hopf algebras and alge-
braic groups, notions that we review in Sections 3.2 and 3.3, first in the general
setting and then in the case of unipotent groups. Then, in Section 3.4, we ex-
plain how to associate with any abstract group its pro-unipotent completion, an
algebraic group whose finite-dimensional representations are the unipotent ones of
the initial group. Chen’s celebrated π1-de Rham theorem asserts that the Hopf
algebra of regular functions on the pro-unipotent completion of the fundamental
group π1(M) is isomorphic to the cohomology in degree zero of the bar complex of
any connected model of the algebra of differential forms on M . After introducing
the bar complex of a dg-algebra, we state this theorem in Section 3.5. As an ex-
ample, we observe that the bar complex of P1 \ {0, 1,∞} is the Hoffman algebra H
which we already encountered in the combinatorial study of multiple zeta values.
The proof of Chen’s theorem presented in Section 3.6 relies on a result of Beilinson
identifying the algebra of functions on the pro-unipotent completion with a limit of
certain relative cohomology groups. As we explain in Section 3.7, Chen’s theorem
has a number of important consequences, notably the fact due to Hain that the
pro-unipotent completion of the fundamental group of a complex algebraic variety
carries a mixed Hodge structure; thanks to Beilinson’s theorem, we will even be
able to show that the resulting mixed Hodge structure is motivic. In the remaining
of the chapter, we focus on the case of P1 \{0, 1,∞}. The integral representation of
polylogarithms and multiple zeta values suggests that these numbers are iterated
integrals on P1 \ {0, 1,∞}, and hence periods of the corresponding mixed Hodge
structure on the pro-unipotent completion of the fundamental group, except for
the fact that the endpoints of the integration path do not lie on the ambient space.
To remedy this, we resort to the notion of tangential base points in Section 3.8.
Armed with this tool, in Section 3.9 we make the comparison isomorphism in Chen’s
theorem explicit for P1 \ {0, 1,∞} using polylogarithms and the Drinfeld associa-
tor. In the final Section 3.10, we introduce the tangential fundamental groupoid
of P1 \ {0, 1,∞} and study its automorphisms. As an outcome, we obtain a new
structure on the Hoffman algebra H called Goncharov’s coproduct that will play a
pivotal role in the proof of Brown’s theorem in Chapter 5.

3.1. Iterated integrals and parallel transport. Our presentation follows
closely the first sections of Hain’s survey [Hai87b]. Other nice references are
Cartier’s Bourbaki seminar [Car88] and Brown’s notes [Bro13].
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3.1.1. The fundamental groupoid. Let M be a connected differentiable mani-
fold. A continuous function γ : [0, 1] → M is said to be piecewise smooth if there
exists a partition 0 = a0 < a1 < . . . < an+1 = 1 of the unit interval such that
the restriction of γ to each [ai, ai+1] is smooth, meaning that it can be extended
to a C∞ function on an open neighborhood of [ai, ai+1]. Similarly, a continuous
map F : [0, 1]2 →M is said to be piecewise smooth if there exists a finite decompo-
sition into polyhedra (i.e. regions bounded by polygons) [0, 1]2 =

⋃
i Ci such that

all the restrictions F |Ci are smooth, in the sense that they can be extended to a
smooth function on an open neighborhood of Ci.

From now on, we will call a continuous piecewise smooth map from [0, 1] to M
simply a path (see Remark 3.8 below), and denote the space of paths by

P(M) = {γ : [0, 1] −→M | γ continuous and piecewise smooth} .
Given points x and y in M , the subspace of P(M) consisting of paths from x to y
will be denoted by

P(M)y x = {γ ∈ P(M) | γ(0) = x, γ(1) = y}.
When the endpoints of γ agree, we will often call it a loop.

Definition 3.1. Let γ1, γ2 ∈ P(M)y x be paths from x to y. We say that γ1
and γ2 are homotopic if there exists a continuous piecewise smooth function

F : [0, 1]2 −→ M

(t, s) 7−→ F (t, s)

satisfying the following conditions:

(3.2)
F (t, 0) = γ1(t), F (t, 1) = γ2(t), for all t ∈ [0, 1],

F (0, s) = x, F (1, s) = y, for all s ∈ [0, 1].

In other words, F is a continuous family of paths

fs : [0, 1] −→ M

t 7−→ fs(t) = F (t, s)

parameterized by s ∈ [0, 1] that interpolates between γ1 and γ2, while keeping the
endpoints fixed (see Figure 14).

γ1

x

γ2

y

Figure 14. A homotopy between two paths
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It is straightforward to check that “being homotopic” defines an equivalence
relation ∼ on P(M)y x. We write

π1(M ; y, x) = P(M)y x/∼
for the set of equivalence classes. When the endpoints agree, we will abbreviate
this notation to π1(M,x). Note that there is a reversal of paths operation

P(M)y x −→ P(M)x y

γ 7−→ γ−1

defined by the formula γ−1(t) = γ(1− t). Moreover, given a point z in M , there is
a composition of paths operation

P(M)z y × P(M)y x −→ P(M)z x,

(γ1, γ2) 7−→ γ1γ2

given by first going along γ2 and then along γ1. Explicitly, γ1γ2 is the path

(3.3) γ1γ2(t) =

{
γ2(2t), if 0 ⩽ t ⩽ 1

2 ,

γ1(2t− 1), if 1
2 ⩽ t ⩽ 1.

Both the reversal and the composition of paths are compatible with the homo-
topy equivalence relation, and hence induce operations

π1(M ; y, x) −→ π1(M ;x, y)(3.4)

π1(M ; z, y)× π1(M ; y, x) −→ π1(M ; z, x)(3.5)

on the sets of equivalence classes, which will be called “inverse” and “composition”
respectively. It is a simple matter to check that the composition is associative and
that the class of the constant path γ(t) = x for all t ∈ [0, 1] in π1(M,x) is a neutral
element. As such, it will be usually denoted by 1.

If the endpoints are fixed and agree, the above operations endow π1(M,x) with
the structure of a group: the fundamental group of M . In general, when we allow
the endpoints to vary and be distinct, we obtain a groupoid. The definition of such
a structure is in fact tailored to study this example.

Definition 3.6. A groupoid G is the data of a set G0 of “objects” and a set G1

of “arrows”, together with the following five operations:

• a source map s : G1 → G0;

• a target map t : G1 → G0;

• a unit map u : G0 → G1 satisfying s(u(x)) = t(u(x)) = x for all x ∈ G0;

• a composition map m : G1 ×s t G1 → G1 defined on the set

G1 ×s t G1 = {(f, g) ∈ G1 ×G1 | s(f) = t(g)}
such that the equalities s(m(f, g)) = s(g) and t(m(f, g)) = t(f) hold for
all arrows f, g ∈ G1, and that u is a two-sided unit for m. Moreover, the
composition is required to be associative;

• an inverse map i : G1 → G1 satisfying s(i(f)) = t(f) and t(i(f)) = s(f)
for all arrows f ∈ G1, and which is a two-sided inverse for the composition.

Equivalently, a groupoid can be viewed as a small category in which all morphisms
are isomorphisms (Exercise 3.38).
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Example 3.7 (The fundamental groupoid). The fundamental groupoid of M
is the groupoid where G0 is the set of points of M and G1 is the set of homotopy
classes of paths in M , that is:

G1 =
∐

x,y∈M
π1(M ; y, x).

The source, the target, and the unit are defined in the obvious way, and the inverse
and the composition maps are given by (3.4) and (3.5) respectively.

Remark 3.8. When doing homotopy theory on a differentiable manifold, one
can choose to work with continuous, piecewise smooth, or smooth paths. By Whit-
ney’s approximation theorem (see e.g. [Lee13, Thm. 6.19]), each homotopy class of
continuous paths admits a smooth representative; the resulting fundamental group
or groupoid is hence the same in all three cases. To make the link with differential
forms, it is convenient to work with piecewise smooth or smooth paths. However,
since the composition of smooth paths as defined in (3.3) is in general only piece-
wise smooth, we prefer to work with piecewise smooth paths from the beginning to
avoid having to replace γ1γ2 with a homotopic smooth path.

3.1.2. Homotopy functionals. We would like to construct functions on the fun-
damental groupoid of a manifold.

Definition 3.9. A function on P(M) is called a homotopy functional if the
image of every element of P(M) depends only on its homotopy class, and hence
induces a function on π1(M ; y, x) for all x, y ∈M .

The simplest method to construct homotopy functionals is by means of differ-
ential forms, as we now recall. Let k be either the field of real numbers or the field
of complex numbers. We consider the k-algebra

E∗(M,k) =

dimM⊕

p=0

Ep(M,k)

of smooth k-valued differential forms on M , as introduced in Section 2.2.1.
Let ω ∈ E1(M,k) be a differential 1-form and γ ∈ P(M) a path. Since γ

is assumed to be piecewise smooth, we can pullback ω to the interval [0, 1]; the
pullback takes the form γ∗ω = f(t)dt for some bounded function f that may be
discontinuous at the points at which γ is not smooth. The line integral of ω along γ
is then defined as

(3.10)

∫

γ

ω =

∫ 1

0

γ∗ω =

∫ 1

0

f(t)dt.

Since the integral converges by the assumption on γ, this yields a function
∫
ω : P(M) −→ k

γ 7−→
∫
γ
ω.

Lemma 3.11. The function
∫
ω is a homotopy functional if and only if ω is a

closed 1-form.

Proof. The result follows from Stokes’s theorem. We first assume that ω is
closed, and that we are given paths γ1 and γ2 and a homotopy F between them.
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Using the conditions (3.2) in the definition of F , we find
∫

γ1

ω −
∫

γ2

ω =

∫

[0,1]

γ∗1ω −
∫

[0,1]

γ∗2ω =

∫

∂[0,1]2
F ∗ω,

where ∂[0, 1]2 stands for the boundary of the square [0, 1]2. Since F is piecewise
smooth, there exists a finite decomposition [0, 1]2 =

⋃
i Ci into polyhedra Ci such

that F |Ci is smooth. By Stokes’s theorem and the fact that taking pullback by F
commutes with the differential, we get

∫

∂[0,1]2
F ∗ω =

∑

i

∫

∂Ci

F ∗ω =
∑

i

∫

Ci

F ∗(dω) = 0,

which proves that the line integral is a homotopy functional.
Conversely, assume that the 1-form ω is not closed, i.e. dω ̸= 0. Thanks to

Exercise 3.39, we can then find a smooth map f : D →M from the unit disc

D = {(x, y) ∈ R2 | x2 + y2 ⩽ 1}
to the manifold M satisfying ∫

D

f∗(dω) ̸= 0.

On the one hand, the paths from x = f(1, 0) to y = f(−1, 0) given by

γ1(t) = f(cos(πt), sin(πt)) and γ2(t) = f(cos(πt),− sin(πt))

are homotopic through the homotopy

F (x, y) = f(cos(πx), (1− 2y) sin(πx)).

On the other hand, another application of Stokes’s theorem gives
∫

γ1

ω −
∫

γ2

ω =

∫

∂D

f∗ω =

∫

D

f∗(dω) ̸= 0,

which proves that ω being closed is a necessary condition as well. □

Line integrals of closed 1-forms produce, however, only a very special kind of
homotopy functionals. Indeed, from (3.10) we get the relations

∫

γ1γ2

ω =

∫

γ2

ω +

∫

γ1

ω and

∫

γ−1

ω = −
∫

γ

ω,

which together imply that the equality

(3.12)

∫

γ−1
1 γ−1

2 γ1γ2

ω = 0

holds for all loops γ1, γ2 ∈ π1(M,x). From this, it follows that line integrals of
closed 1-forms factor through the abelianization of the fundamental group.

Definition 3.13. The abelianization of a group G is the quotient

Gab = G/[G,G]

of G by the normal subgroup [G,G] generated by the commutators

[g, h] = g−1h−1gh (g, h ∈ G).
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The abelianization Gab of G is an abelian group with the universal property
that any homomorphism from G to an abelian group factors through Gab. In
particular, for every closed 1-form ω the homomorphism

∫
ω : π1(M,x) −→ k

factors through π1(M,x)ab. Now, viewing a loop γ : [0, 1]→M as a closed singular
1-chain, as defined in Section 2.1, yields a canonical homomorphism

h : π1(M,x) −→ H1(M,Z),

which is often called the Hurewicz map. The following is a basic result from alge-
braic topology; see for instance [Hat02, Thm. 2A.1] for a proof.

Theorem 3.14. The kernel of the homomorphism h consists exactly of the com-
mutator subgroup [π1(M,x), π1(M,x)] of π1(M,x). Moreover, if M is connected,
then h is surjective and thus induces an isomorphism

π1(M,x)ab ≃ H1(M,Z).

Summarizing, line integrals of closed 1-forms always factors through the first
homology group of the manifold. Since the fundamental group is a finer invariant,
we would like to construct other homotopy functionals that are able to detect the
extra information carried by π1(M,x).

3.1.3. Iterated integrals. The theory of iterated integrals started with the fun-
damental observation by Chen [Che77] that homotopy functionals obtained by
successive integration of 1-forms can detect elements of π1(M,x) with trivial ho-
mology classes in H1(M,Z).

Definition 3.15. Let ω1, . . . , ωr be smooth k-valued 1-forms on M . The iter-
ated integral of ω1, . . . , ωr is the function

(3.16)

∫
ω1 · · · ωr : P(M) −→ k

γ 7−→
∫
γ
ω1 · · · ωr

defined by the formula
∫

γ

ω1 · · · ωr =

∫

1⩾t1⩾···⩾tr⩾0

f1(t1) · · · fr(tr)dt1 · · · dtr,

where γ∗ωi = fi(t)dt is the pullback of ωi to [0, 1] along the path γ.

More generally, we will call iterated integral every function on P(M) that can
be written as a k-linear combination of (3.16) and the constant function 1, which
we view as an iterated integral of length 0. We say that an iterated integral has
length ⩽ s if each summand is of the form

∫
ω1 · · · ωr with r ⩽ s.

Remark 3.17. Here is an explanation of the term “iterated integral” taken
from [Del13, p. 163]. Let S be the operator that transforms a 1-form η on the

interval [0, 1] into the function S[η](t) =
∫ t
0
η. To obtain the iterated integral we

apply S to γ∗ωr, then multiply the resulting function by γ∗ωr−1, apply S again,
multiply by γ∗ωr−2, etc., and finally evaluate at t = 1. That is,

∫

γ

ω1 · · · ωr = S[γ∗ω1 · S[γ∗ω2 · · · S[γ∗ωr] · · · ]](1).



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 177

Observe that the integral representations of multiple zeta values and polylog-
arithms from Theorems 1.116 and 1.126 look very similar to iterated integrals but
do not quite fit into the framework of Definition 3.15 because the differential forms
dx/x and dx/(1−x) are singular at the endpoints of the integration path. We will
come back to this question in Section 3.8.

3.1.4. Basic properties of iterated integrals. The first important property is
that iterated integrals are functorial and independent of the parametrization of the
path. The proof is left to the reader (see Exercise 3.41).

Proposition 3.18 (Functoriality). Let f : N →M be a smooth map of differ-
entiable manifolds. For all γ ∈ P(N) and ω1, . . . , ωr ∈ E1(M,k), the equality

∫

γ

f∗ω1 · · · f∗ωr =

∫

f◦γ
ω1 · · · ωr

holds. In particular, the iterated integral
∫
γ
ω1 · · · ωr does not depend on the choice

of parametrization of the path γ.

The basic algebraic properties of iterated integrals are formulas for the reversal
and composition of paths, as well as for the product of iterated integrals.

Theorem 3.19. Let ω1, . . . , ωr+s be smooth k-valued 1-forms onM and γ, γ1, γ2
be piecewise smooth paths on M satisfying γ2(1) = γ1(0). Then the following holds:

(3.20)

∫

γ

ω1 · · · ωr = (−1)r
∫

γ−1

ωr · · · ω1,

(3.21)

∫

γ1γ2

ω1 · · · ωr =

r∑

i=0

∫

γ1

ω1 · · · ωi
∫

γ2

ωi+1 · · · ωr,

(3.22)

∫

γ

ω1 · · · ωr
∫

γ

ωr+1 · · · ωr+s =
∑

σ∈�(r,s)

∫

γ

ωσ−1(1) · · · ωσ−1(r+s).

In the last identity, the sum runs over the subset �(r, s) ⊂ Sr+s of the symmetric
group on r + s elements consisting of shuffles of type (r, s), as in Definition 1.129.

Proof. The identity (3.20) follows from a simple computation, using the fact
that the equality γ∗ωi = fi(t)dt implies (γ−1)∗ωi = −fi(1− t)dt, and hence

∫

γ−1

ωr · · · ω1 = (−1)r
∫

1⩾t1⩾···⩾tr⩾0

fr(1− t1) · · · f1(1− tr)dt1 · · · dtr

= (−1)r
∫

1⩾u1⩾···⩾ur⩾0

fr(ur) · · · f1(u1)du1 · · · dur

= (−1)r
∫

γ

ω1 · · · ωr.

To get the second equality above we made the change of variables ui = 1− tr−i+1,
whose Jacobian has absolute value equal to 1.

We next prove formula (3.21). Writing

(γ1γ2)∗ωi = fi(t)dt, γ∗1ωi = gi(t)dt, γ∗2ωi = hi(t)dt,
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the functions fi, gi, hi are related by

(3.23) fi(t) =

{
2hi(2t), if 0 ⩽ t ⩽ 1

2 ,

2gi(2t− 1), if 1
2 ⩽ t ⩽ 1,

thanks to the composition rule (3.3). We decompose the domain of integration as
a union ∆r =

⋃r
i=0 Ci, where

Ci = {(t1, . . . , tr) ∈ Rr | 1 ⩾ t1 ⩾ · · · ⩾ ti ⩾ 1
2 ⩾ ti+1 · · · ⩾ tr ⩾ 0}.

Observe that projecting to the first i and the last r − i coordinates yields an iso-
morphism Ci ≃ ∆i ×∆r−i. Figure 15 illustrates the case r = 2.

t1

C2

t2

C1
C0

Figure 15. The decomposition ∆2 = C0 ∪ C1 ∪ C2

Formula (3.21) now follows from the computation
∫

Ci

f1(t1) · · · fr(tr)dt1 · · · dtr =

∫

1⩾t1⩾...⩾ti⩾1/2
1/2⩾ti+1⩾···⩾tr⩾0

f1(t1) · · · fr(tr)dt1 · · · dtr

=
2r

2r

∫

1⩾u1⩾···⩾ui⩾0
1⩾ui+1⩾···⩾ur⩾0

g1(u1) · · · gi(ui)hi+1(ui+1) · · ·hr(ur)du1 · · · dur

=

∫

γ1

ω1 · · · ωi
∫

γ2

ωi+1 · · · ωr,

together with the fact that the overlaps of the Ci do not contribute to the integral
because they all have codimension at least 1, and hence their Lebesgue measure is
zero. The second equality is obtained by the change of variables

uj =

{
2tj − 1, if j ⩽ i,

2tj , if j > i.

The 2r in the numerator comes from the identity (3.23), whereas the 2r in the
denominator is the Jacobian of the change of variables.

Finally, formula (3.22) is a consequence of the decomposition

∆r ×∆s =
⋃

σ∈�(r,s)

{(t1, . . . , tr+s) | 1 ⩾ tσ−1(1) ⩾ · · · ⩾ tσ−1(r+s) ⩾ 0},

which was already used in the proof of Proposition 1.131. □
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3.1.5. When are iterated integrals homotopy functionals? We have seen that
iterated integrals do not depend on the parametrization of the path (Proposi-
tion 3.18). However, even when all the forms ωi are closed, they do not always
give rise to homotopy functionals, as this example borrowed from [Bro13] shows:

Example 3.24. Take M = R2 with the standard coordinates x and y. Let
a, b > 0 be real numbers and consider the path γa,b : [0, 1]→ R2 from (0, 0) to (1, 1)
given by γa,b(t) = (ta, tb). Let ω1 = dx and ω2 = dy. Taking the equalities

γ∗a,bω1 = ata−1dt, γ∗a,bω2 = btb−1dt

into account, the iterated integral of ω1ω2 along γa,b is equal to
∫

γa,b

ω1ω2 =

∫ 1

0

(
ata−11

∫ t1

0

btb−12 dt2

)
dt1 =

a

a+ b
,

which obviously depends on the choice of a and b. However, all the paths γa,b are
homotopic to each other! This example will be revisited in Exercise 3.42.

A natural question is thus: when is an iterated integral invariant under homo-
topy? Theorem 3.270 gives a full answer to this question in terms of an algebraic
construction called the bar complex . For the moment, we content ourselves with a
partial answer by linking iterated integrals to connections on trivial bundles through
the notion of parallel transport.

3.1.6. Iterated integrals and connections on trivial bundles. We continue writ-
ing k for either the real or the complex numbers. Let

V = kn ×M
be the trivial vector bundle of rank n over M . Since V is trivial, we can identify
the space of sections of V with the space of functions x : M → kn. We let C∞(V )
denote the space of all smooth sections of V .

Definition 3.25. A connection on V is a k-linear map

∇ : C∞(V ) −→ C∞(V )⊗C∞(M) E
1(M,k)

that satisfies Leibniz’s rule

∇(fx) = x⊗ df + f∇x
for each smooth function f ∈ C∞(M) and each smooth section x ∈ C∞(V ).

A connection ∇ on V canonically extends to a k-linear map on the space
of C∞(V )-valued p-forms on M as follows:

C∞(V )⊗C∞(M) E
p(M,k) −→ C∞(V )⊗C∞(M) E

p+1(M,k).

x⊗ η 7−→ x⊗ dη +∇(x) ∧ η
We will still denote by ∇ this extension.

Definition 3.26. The operator ∇2 = ∇ ◦ ∇ is called the curvature of the
connection, and ∇ is said to be flat (or integrable) if ∇2 vanishes.

We call global canonical frame of V the tuple e = (e1, . . . , en) consisting of
the constant functions ei : M → kn whose value is the i-th standard basis vec-
tor (0, . . . , 1, . . . , 0) of kn. By virtue of Leibniz’s rule, the connection ∇ is uniquely



180 J. I. BURGOS GIL AND J. FRESÁN

determined by the image of the global canonical frame. Indeed, write

∇ej =

n∑

i=1

ei ⊗ ηij (j = 1, . . . , n)

with ηij ∈ E1(M,k). The matrix

ω = (ηij) ∈ E1(M,k)⊗C∞(M) End(V ) = E1(M,k)⊗k End(kn),

whose entries are smooth k-valued 1-forms on M , is called the matrix of the con-
nection in the global canonical frame e. Seeing a section x : M → kn as a column
vector of smooth functions and invoking Leibniz’s rule again, ∇ is given by

∇x = dx+ ωx.

Sometimes, we will simply write∇ = d+ω. From this, one easily finds an expression
for the curvature of the connection, namely

∇2x = ∇(dx+ ωx)

= d2x+ d(ωx) + ωdx+ ω ∧ ωx
= d2x+ dωx− ωdx+ ωdx+ ω ∧ ωx
= (dω + ω ∧ ω)x,

where ω ∧ ω stands for the product of matrices of 1-forms induced by the usual
wedge product. The sign when we apply Leibniz’s rule in the third equality comes
from the fact that ω is a 1-form. In explicit terms, writing ω =

∑
Miηi for some

forms ηi ∈ E1(M,k) and some Mi ∈ GLn(k), this product is equal to

ω ∧ ω =
1

2

∑

i,j

[Mi,Mj ]ηi ∧ ηj ,

where we have used that wedge products anti-commute. The matrix

R = dω + ω ∧ ω
is called the curvature matrix of the connection ∇.

Besides, associated with the trivial rank n vector bundle V is the bundle

GL(V ) ≃ GLn(k)×M
with fibers GLn(k). The action of the connection ∇ column by column gives then
rise to a differential operator

∇X = dX + ωX

on the space of smooth functions X : M → GLn(k).
3.1.7. Parallel transport. Given a smooth path γ : [0, 1]→M and a section

X : [0, 1] −→ GLn(k)×M
t 7−→ (X(t), γ(t))

of GL(V ) along γ, we say that X is horizontal if the vanishing

∇X(t) = 0(3.27)

holds. This amounts to the equality dX(t) = −γ∗(ω)X(t). Writing γ∗(ω) = A(t)dt,
then (3.27) becomes the linear differential equation

X ′(t) +A(t)X(t) = 0.



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 181

The parallel transport function

T : P(M) −→ GLn(k)

associated with the connection ∇ is defined as follows. We first restrict ourselves
to smooth paths γ : [0, 1]→M and set

T (γ) = X(1),

where X : [0, 1]→ GLn(k) is the unique section along the path γ : [0, 1]→M that is
horizontal with respect to ∇ and has initial value X(0) = Idn, the identity matrix
of size n. From the theorems of existence and uniqueness of solutions to linear
ordinary differential equations, one also gets (see [KN96, Chap. II, § 3]):

Proposition 3.28. Let γ and γ′ be smooth paths in M with γ′(1) = γ(0). Then
the following holds:

i) The value T (γ) is independent of the parametrization of γ.

ii) If γγ′ is smooth, then the equality T (γγ′) = T (γ)T (γ′) holds.

Using Proposition 3.28, we can extend the definition of parallel transport to
piecewise smooth paths by reparameterizing them as a finite composition of smooth
paths. The equality T (γγ′) = T (γ)T (γ′) remains true for piecewise smooth paths.

We now have all ingredients to state the main result relating connections and
homotopy functionals. Recall that the connection ∇ = d+ω is flat if the curvature
matrix R = dω + ω ∧ ω is zero.

Theorem 3.29. The connection ∇ is flat if and only if each of the entries of
the parallel transport function is a homotopy functional.

Proof. Fix a point x ∈ M . The restricted holonomy group of ∇ is the sub-
group Hol0x(∇) ⊂ GLn(k) consisting of the automorphisms T (γ) for all contractible
loops γ based at x. It is a connected Lie group, which is reduced to the identity
matrix if and only if each of the entries of the paralell transport function is a ho-
motopy functional. According to the Ambrose–Singer theorem [KN96, Thm. 8.1],
the Lie algebra of Hol0x(∇) is the k-vector space generated by the matrices

T (γ)−1R(∂1, ∂2)T (γ),

where γ is any path from x to a point y, ∂1 and ∂2 are tangent vectors at y,
and R(∂1, ∂2) is the result of applying the vectors ∂1 and ∂2 to the entries of the
matrix of 2-forms R. Therefore, Hol0x(∇) is trivial if and only if ∇ is flat. □

3.1.8. Parallel transport and iterated integrals. Using iterated integrals, one can
give the following explicit formula for the parallel transport function:

Proposition 3.30. Let ∇ = d + ω be a connection on the trivial bundle
kn ×M →M . Then the parallel transport function of ∇ is given by

T (γ) = Idn−
∫

γ

ω +

∫

γ

ωω −
∫

γ

ωωω + . . . ,

where the products in the integrands are formal products of matrices of 1-forms and
the iterated integrals are computed entry by entry.
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Proof. Setting γ∗ω = A(t)dt, the iterated integrals of formal products of
matrices of 1-forms are given by

(3.31)

∫

γ

ωω · · ·ω︸ ︷︷ ︸
r

=

∫

1⩾t1⩾···⩾tr⩾0

A(t1)A(t2) · · ·A(tr)dt1 · · · dtr.

Moreover, the parallel transport function is T (γ) = X(1), where X(t) is the unique
solution of the differential equation

X ′(t) +A(t)X(t) = 0(3.32)

with initial condition X(0) = Idn. Observe that the function X(t) satisfies (3.32)
and X(0) = Idn if and only if the following integral equation holds

(3.33) X(t) = Idn−
∫ t

0

A(s)X(s)ds.

We will solve (3.33) by applying the method of Picard–Lindelöf. For this, we define
recursively a sequence of approximations to the solution:

X0(t) = Idn,

Xr(t) = Idn−
∫ t

0

A(s)Xr−1(s)ds (r ⩾ 1).

We need to show that the sequence (Xr(t))r⩾0 converges. In order to do so, we
first prove by induction that the equality

Xr(t)−Xr−1(t) = (−1)r
∫

t⩾s1⩾···⩾sr⩾0

A(s1) · · ·A(sr)ds1 · · · dsr(3.34)

holds for all r ⩾ 1. Indeed, by definition

X1(t)−X0(t) = −
∫ t

0

A(s)ds,

which settles the case r = 1. Assume then that (3.34) holds for all indices smaller
than r. By the induction hypothesis, the equalities

Xr(t)−Xr−1(t) = −
∫ t

0

A(s)(Xr−1(s)−Xr−2(s))ds

= −
∫ t

0

A(s)(−1)r−1
∫

s⩾s2⩾···⩾sr⩾0

A(s2) · · ·A(sr)ds2 · · · dsrds

= (−1)r
∫

t⩾s1⩾···⩾sr⩾0

A(s1) · · ·A(sr)ds1 · · · dsr

hold. Using that the volume of the simplex ∆r is 1/r!, we deduce that there exists
a constant K > 0 satisfying

∫

t⩾s1⩾···⩾sr⩾0

A(s1) · · ·A(sr)ds1 · · · dsr = O

(
Kr

r!

)
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as r goes to infinity. This estimate proves that (Xr(t))r⩾0 is a Cauchy sequence
and that its limit is given by the convergent series

X∞(t) =
∑

r⩾0

(−1)r
∫

t⩾s1⩾···⩾sr⩾0

A(s1) · · ·A(sr)ds1 · · · dsr.

Clearly, X∞(0) = Idn holds, and a telescopic argument shows that X∞(t) satisfies
the differential equation (3.32). Therefore, the parallel transport is given by

T (γ) = X∞(1) = Idn−
∫

γ

ω +

∫

γ

ωω − . . . ,

which is what we wanted to prove. □

The entries of the parallel transport matrix involve an infinite series, and there-
fore they are not iterated integrals according to our Definition 3.15. On the con-
trary, if we can ensure that the products appearing in the right-hand side of equa-
tion (3.31) vanish for large enough r, then all the entries would be finite sums. One
can then combine Theorem 3.29 and Proposition 3.30 to give examples of iterated
integrals that are homotopy functionals.

Example 3.35. A strictly upper triangular matrix A(t) is nilpotent, so there
exists an integer r0 ⩾ 1 satisfying A(s1) . . . A(sr0) = 0. In this case, the parallel
transport function reduces to the iterated integral

T = 1−
∫
ω + · · ·+ (−1)r0−1

∫
ωω · · ·ω︸ ︷︷ ︸
r0−1

.

For instance, in the example of the connection matrix

ω =




0 ω1 ω12

0 0 ω2

0 0 0


 ,

the parallel transport function is given by

T =




1 −
∫
ω1

∫
ω1ω2 −

∫
ω12

0 1 −
∫
ω2

0 0 1




and the curvature of the connection is equal to

dω + ω ∧ ω =




0 dω1 ω1 ∧ ω2 + dω12

0 0 dω2

0 0 0


 .

Thus, ∇ = d + ω is flat if and only if the equalities

(3.36) dω1 = dω2 = 0 and dω12 + ω1 ∧ ω2 = 0

hold. It follows that the iterated integral
∫
ω1ω2 −

∫
ω12 is a homotopy functional

if and only if the conditions (3.36) are satisfied.
More generally, the following result is proved in [Hai87b, Prop. 3.1]:
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Proposition 3.37. Let ω, ω1, . . . , ωr be smooth k-valued 1-forms on M . As-
sume that all the forms ωi are closed. An iterated integral of length two

∑

1⩽i,j⩽r

aij

∫
ωiωj −

∫
ω

is a homotopy functional if and only if dω +
∑

1⩽i,j⩽r aijωi ∧ ωj = 0 holds.

⋆ ⋆ ⋆

Exercise 3.38 (Groupoids as categories). Let C be a small category in which
all morphisms are isomorphisms. Show that C gives rise to a groupoid in the sense
of Definition 3.6. Conversely, given a groupoid, construct such a category. Note
that groups correspond to the case where the set of objects is a singleton.

Exercise 3.39. Let η be a smooth non-zero 2-form on a differential mani-
fold M . The assumption that η is non-zero means that there exists a point x ∈M
and two tangent vectors u, v ∈ TxM with η(u ∧ v) ̸= 0. Use this information to
construct a map f : D →M satisfying

∫
D
f∗(η) ̸= 0, as in the proof of Lemma 3.11.

Exercise 3.40 (Integration by parts). Let ω1, . . . , ωr be smooth k-valued
1-forms on a differentiable manifold M and let f be a smooth function on M .
Prove that the equalities

∫

γ

(df)ω1 · · · ωr = (f ◦ γ)(1)

∫

γ

ω1 · · · ωr −
∫

γ

(fω1)ω2 · · · ωr,
∫

γ

ω1 · · · ωi−1(df)ωi · · · ωr =

∫

γ

ω1 · · · (fωi−1)ωi · · · ωr−
∫

γ

ω1 · · · ωi−1(fωi)ωi+1 · · · ωr,
∫

γ

ω1 · · · ωr(df) =

∫

γ

ω1 · · · ωr−1(fωr)− (f ◦ γ)(0)

∫

γ

ω1 · · · ωr,

hold for all paths γ ∈ P(M).

Exercise 3.41. Prove Proposition 3.18.

Exercise 3.42. Recall from Example 3.24 that the iterated integral of the
1-forms ω1 = dx and ω2 = dy on R2 is not a homotopy functional. According to
Proposition 3.37, this is explained by the fact that ω1 ∧ ω2 does not vanish. Find
a 1-form ω12 satisfying dω12 + ω1 ∧ ω2 = 0 and check that the iterated integral

∫
ω1ω2 −

∫
ω12 : P(R2) −→ R

now takes the same value on all the paths γa,b from Example 3.24.

Exercise 3.43 (Another proof of formulas (3.20) and (3.21)). Let ω1, . . . , ωr
be 1-forms on a differentiable manifold M . Consider the connection ∇ = d + ω on
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the trivial vector bundle of rank r + 1 on M given by the matrix

ω =




0 ω1 0 · · · 0

0 0 ω2 · · · 0
...

...
...

...

0 0 0 · · · ωr

0 0 0 · · · 0



.

i) Show that the parallel transport associated with ∇ is the matrix T = (Tij)
of size r + 1 with entries

Tij =





∫
ωi · · · ωj−1, if i < j,

1, if i = j,

0, if i > j.

ii) Using the equality T (γ1γ2) = T (γ1)T (γ2) from Proposition 3.28, deduce
from the above computation another proof of the algebraic properties of
iterated integrals (3.20) and (3.21).

3.2. Affine group schemes, Lie algebras, and Hopf algebras. In this
section, we explain the definition of affine group schemes and of two intimately
related algebraic structures: Lie algebras and Hopf algebras. The book [Wat79]
is an excellent entry point for readers unfamiliar with these notions. A classical
reference for Hopf algebras is [Swe69], and we also recommend [Car07] for a
motivated introduction. As in Chapter 2, we assume that the reader is familiar
with the relation between affine schemes and commutative algebras as explained,
for instance, in [Har77, Chap. II, § 2] and very briefly recalled below.

Throughout this section, we fix a field k of characteristic zero (later, in the
applications, it will always be equal to Q). All undecorated cartesian and tensor
products are assumed to be over k. When we want to emphasize that a group
is simply a group and does not carry any additional structure (such as a scheme
structure or a topology), we will call it an “abstract group”.

3.2.1. Affine group schemes. The category of affine schemes over k is equivalent
to the category of commutative k-algebras through the contravariant functors

(3.44) A 7−→ Spec(A), X 7−→ O(X),

where O(X) denotes the ring of regular functions on an affine scheme X.

Definition 3.45. An affine group scheme G over k is the data of an affine
scheme G = Spec(A) and of three morphisms of schemes

µ : G×G −→ G (product),

e : Spec(k) −→ G (unit),

ι : G −→ G (inverse),

satisfying the usual axioms in the definition of a group, which are expressed by the
commutativity of the following three diagrams:
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Associativity:

G×G×G µ×Id //

Id×µ
��

G×G
µ

��
G×G

µ
// G.

Unit:

G× Spec(k)
Id×e //

pr1
&&

G×G
µ

��

Spec(k)×Ge×Idoo

pr2
xx

G

Inverse:

G×G
µ

##
G

Id×ι
;;

π //

ι×Id ##

Spec(k)
e // G,

G×G
µ

;;

where π denotes the structural map of G as a k-scheme.

We say that G is commutative if the product µ is commutative, which can also be
expressed as the commutativity of the diagram

G×G
µ

##
τ

��

G,

G×G
µ

;;

where τ is the map that swaps the factors. If the algebra A is finitely generated, we
say that G is an algebraic affine group scheme or simply an affine algebraic group.

A morphism of affine group schemes f : G→ H is a morphism of the underlying
schemes such that the diagram

G×G
µ

��

f×f // H ×H
µ

��
G

f // H

commutes. We let AGS(k) denote the category of affine group schemes over k
and AAGS(k) the full subcategory of AGS(k) consisting of affine algebraic groups.

Remark 3.46. In fact, every affine group scheme is a projective limit of al-
gebraic affine groups. What is more, AGS(k) is equivalent to the category of
pro-algebraic affine group schemes; see Lemma 3.51 and Theorem 3.52 below.
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3.2.2. Hopf algebras. The defining data of an affine group scheme can be trans-
ferred to its algebra of regular functions by means of the equivalence (3.44). This
gives rise to the concept of Hopf algebra. We begin by explaining the definitions of
algebra, coalgebra, bialgebra, and Hopf algebra.

Definition 3.47. Let H be a k-vector space.

i) An algebra structure on H is the data of two k-linear morphisms

∇ : H ⊗H −→ H (product),

η : k −→ H (unit),

such that the following diagrams commute:
Associativity:

H ⊗H ⊗H ∇⊗Id //

Id⊗∇
��

H ⊗H
∇
��

H ⊗H ∇ // H.

Unit:

H ⊗ k

≃
%%

Id⊗η // H ⊗H
∇
��

k ⊗Hη⊗Idoo

≃
yy

H

,

where the left and right diagonal maps are the canonical isomor-
phisms h⊗ λ 7→ λh and λ⊗ h 7→ λh respectively.

The algebra structure is said to be commutative if the diagram

H ⊗H

τ

��

∇

##
H

H ⊗H
∇

;;

commutes, where τ : H ⊗H → H ⊗H is the swap of the factors.

ii) The notion of coalgebra is dual to that of algebra. That is, a coalgebra
structure on H is the data of two k-linear morphisms

∆: H −→ H ⊗H (coproduct),

ϵ : H −→ k (counit),

such that the following diagrams commute:
Coassociativity:

H
∆ //

∆

��

H ⊗H
Id⊗∆
��

H ⊗H ∆⊗Id // H ⊗H ⊗H.
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Counit:

H ⊗ k H ⊗HId⊗ϵoo ϵ⊗Id // k ⊗H

H

∆

OO

≃

99

≃

ee ,

where the left and right diagonal maps are the canonical isomor-
phisms h 7→ h⊗ 1 and h 7→ 1⊗ h respectively.

The coalgebra is called cocommutative if the following diagram commutes:

H ⊗H

τ

��

H

∆ ##

∆

;;

H ⊗H.

iii) A bialgebra structure on H is the data of an algebra and a coalgebra struc-
ture that are compatible with each other in the sense that the coproduct
and the counit are morphisms of algebras and that the product and the
unit are morphisms of coalgebras. This amounts to the commutativity of
the following four diagrams:
Product and coproduct:

H ⊗H ∇ //

∆⊗∆
��

H
∆ // H ⊗H

H ⊗H ⊗H ⊗H
Id⊗τ⊗Id

// H ⊗H ⊗H ⊗H.
∇⊗∇

OO

Unit and counit:

k
Id //

η ��

k.

H

ϵ

>>

Unit and coproduct:

H
∆ // H ⊗H.

k ≃ k ⊗ k
η⊗η

88

η

dd

Counit and product:

H ⊗H ∇ //

ϵ⊗ϵ

&&

H.

ϵ

zz
k ⊗ k ≃ k
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iv) A Hopf algebra structure on H is the data of a bialgebra structure and
a k-linear morphism

S : H −→ H (antipode)

such that the following diagram commutes:
Antipode:

H ⊗H S⊗Id // H ⊗H
∇

##
H

∆

;;

∆ ##

ϵ // k
η // H.

H ⊗H
Id⊗S

// H ⊗H
∇

;;

v) A bialgebra H is called commutative if the product ∇ is commutative,
and cocommutative if the coproduct ∆ is commutative.

Remark 3.48. The diagram concerning the antipode can be interpreted in
terms of a convolution product as follows. If H is a bialgebra, then the space
of k-linear endomorphisms End(H) of H is endowed with the product structure in
which the product f ∗ g of elements f, g ∈ End(H) is given by the composition

H
∆−→ H ⊗H f⊗g−−−→ H ⊗H ∇−→ H.

The associativity of ∇ and the coassociativity of ∆ imply that this convolution
product is associative. Besides, its unit element is η ◦ ϵ. In these terms, the
commutativity of the antipode diagram is equivalent to asking that S is a two-sided
inverse of the identity map Id for the convolution product. In particular, the
antipode S is unique provided it exists. However, a bialgebra does not always
admit an antipode (see Exercise 3.132 for an example).

There is no need to impose further compatibilities between the antipode and
the remaining structures in the definition of a Hopf algebra; they all follow from
the axioms. A proof of the next result can be found in [Swe69, Prop. 4.0.1].

Proposition 3.49. Let H be a Hopf algebra.

i) The antipode S is an antihomomorphism of algebras. That is,

S ◦ ∇ = ∇ ◦ τ ◦ (S ⊗ S).

In particular, if H is commutative, then S is an algebra homomorphism.

ii) The antipode S is an antihomomorphism of coalgebras. That is,

(S ⊗ S) ◦ τ ◦∆ = ∆ ◦ S.
If H is cocommutative, then S is a coalgebra homomorphism.

iii) S respects the unit and the counit. That is,

S ◦ η = η and ϵ ◦ S = ϵ.

iv) If H is commutative or cocommutative, then S ◦ S = Id.
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Given a commutative Hopf algebra A, we can use the algebra structure to
define an affine scheme Spec(A). Then the coproduct, counit, and antipode of A
give rise to the dual notions of product, unit, and inverse on Spec(A). From this,
we immediately derive the following result:

Proposition 3.50. The assignment A 7→ Spec(A) is a contravariant equiva-
lence between the category of commutative Hopf k-algebras and the category of affine
group schemes over k. A quasi-inverse equivalence is given by G 7→ O(G). More-
over, the affine group scheme G is commutative if and only if the Hopf algebra O(G)
is cocommutative.

3.2.3. Affine group schemes are pro-algebraic. By way of illustration, we show
how to use this correspondence to prove the promised result that affine group
schemes are pro-algebraic.

Lemma 3.51. Every Hopf algebra is the inductive limit of its Hopf subalgebras
that are finitely generated as k-algebras. Therefore, every affine group scheme is a
projective limit of algebraic affine group schemes.

Proof. Let H be a Hopf algebra. It suffices to show that every x ∈ H is
contained in a finitely generated Hopf subalgebra of H. Choose a basis {hi} (maybe
infinite and even uncountable) of H and write ∆(x) =

∑
i xi⊗hi, where only finitely

many xi are non-zero. Let V ⊆ H be the vector subspace spanned by x and the xi.
We claim that there is an inclusion ∆(V ) ⊆ V ⊗ H, which amounts of course to
saying that ∆(xi) belongs to V ⊗H for all i. Indeed, writing ∆(hi) =

∑
j,ℓ aijℓhj⊗hℓ

with aijℓ ∈ k, the equalities
∑

i

∆(xi)⊗ hi = (∆⊗ Id)∆(x)

= (Id⊗∆)∆(x)

=
∑

i,j,ℓ

xi ⊗ aijℓhj ⊗ hℓ

hold by the associativity of the coproduct. Comparing the coefficients of hℓ yields

∆(xℓ) =
∑

i,j

xi ⊗ aijℓhj ∈ V ⊗H,

as we wanted. Now let {vi} be a basis of V and write ∆(vj) =
∑
i vi⊗hij for some

elements hij ∈ H. By Exercise 3.131, it follows that ∆(hij) =
∑
ℓ hiℓ ⊗ hℓj , and

hence the vector space U generated by {vi} and {hij} satisfies ∆(U) ⊆ U⊗U . If W
is the vector space spanned by U and S(U), then ∆(W ) ⊆W ⊗W and S(W ) ⊆W
hold using Exercise 3.131 again. Finally, let A be the subalgebra of H generated
by W . Since ∆ and S are morphisms of algebras, there are inclusions ∆(A) ⊆ A⊗A
and S(A) ⊆ A, and A is a finitely generated Hopf subalgebra of H containing x. □

Not only every affine group scheme is pro-algebraic, but the pro-algebraic struc-
ture is, in some sense, unique. This is the content of the following result. The
pro-category and the notion of a compact object are reviewed in Section A.6.3.

Theorem 3.52. The functor Pro(AAGS(k))→ AGS(k) given by

(Gd)d∈D 7−→ lim←−
d∈D

Gd

is an equivalence of categories.
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Proof. In view of Lemma 3.51 and Theorem A.175 from the appendix, it
suffices to show that AAGS(k) is the full subcategory of AGS(k) consisting of
cocompact objects. By duality, this amounts to proving that the compact objects
of the category of commutative Hopf algebras are the finitely generated algebras.

Let H be such a Hopf algebra. To prove that H is a compact object, we need
to check that the canonical map

(3.53) lim−→
d∈D

Hom(H,Bd) −→ Hom(H, lim−→
d∈D

Bd)

is a bijection for each inductive system of Hopf algebras (Bd)d∈D. Let us first
prove injectivity. Given f ∈ lim−→d∈D Hom(H,Bd), there is an object d0 of D and

a morphism fd0 : H → Bd0 whose image in the limit is f . For each d0 → d, we
write fd0→d for the composition

H −→ Bd0 −→ Bd.

The image of f by the map (3.53) is the composition

H −→ Bd0 −→ lim−→
d∈D

Bd.

Let a1, . . . , an be a set of generators of H. If the image of f under (3.53) is zero,
then for each i = 1, . . . , n, there is an arrow d0 → di such that fd0→di(ai) = 0.
Taking a d′ that receives arrows di → d′, for i = 1, . . . , n, then fd0→d′ = 0, which
implies that f = 0. Hence, the map (3.53) is injective.

To prove surjectivity, we use that the k-algebra H is noetherian, being finitely
generated. There is hence an exact sequence of H-modules

0 −→ I −→ k[x1, . . . , xn] −→ H −→ 0,

xi 7−→ ai

where I is a finitely generated ideal. Let f ∈ Hom(H, lim−→d∈D Bd). There is an

object d ∈ D such that, for i = 1, . . . , n, the element f(ai) belongs to Im(Bd).

Choosing representatives in Bd, we construct a map f̃d that makes the diagram

k[x1, . . . , xn] //

f̃d

��

H

f

��
Bd // lim−→d∈D Bd

commute. Since f(I) = 0 and I is finitely generated, there is an arrow d→ d′ such
that I is mapped to zero by the composition

k[x1, . . . , xn]
f̃d−→ Bd −→ Bd′ .

The resulting map fd′ : H → Bd′ yields an element f ′ ∈ lim−→d∈D(Hom(H,Bd)). By

construction, this element is in the preimage of f , so the map (3.53) is surjective.
It remains to prove that, if Hom(H,−) commutes with direct limits, then H is

a finitely generated algebra. As in the proof of Lemma 3.51, we write H as a limit

H = lim−→
d∈D

Hd
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of Hopf algebras Hd that are finitely generated as algebras. Consider the map

IdH ∈ Hom(H,H) = Hom(H, lim−→
d∈D

Hd).

Since we are assuming that Hom(H,−) commutes with direct limits, the map (3.53)
is an isomorphism. Therefore, there is a d ∈ D and a map H → Hd such that the
composition H → Hd → H is IdH . The map Hd → H is hence surjective and we
deduce that H is finitely generated as an algebra, which finishes the proof. □

3.2.4. Comodules and Hopf modules.

Definition 3.54. Let (H,∆, ϵ) be a coalgebra over k. A right comodule over H
is the data of a k-vector space V and a k-linear map

∆: V −→ V ⊗H
called the coaction of H on V , such that the following diagrams commute:

Associativity:

V
∆ //

∆

��

V ⊗H,
Id⊗∆
��

V ⊗H ∆⊗Id // V ⊗H ⊗H.
Compatibility with the counit:

V

≃ ##

∆ // V ⊗H
Id⊗ϵ
��

V ⊗ k
Left comodules over H are defined similarly.

Examples 3.55. The following are examples of comodules.

i) Every coalgebra is a (right and left) comodule over itself.

ii) Let A be a finite-dimensional k-algebra and M a finite-dimensional (left
or right) A-module. Then the dual space

A∨ = Hom(A, k)

is a coalgebra, and M∨ is a comodule over A∨.

iii) Consider the k-vector space

H =
⊕

n∈Z
ken

with the counit ϵ(en) = 1 for all n and the coproduct

∆(en) = en ⊗ en.
Then H is a coalgebra and every graded vector space V ∗ =

⊕
n∈Z V

n is
a right comodule over H with coaction

∆v = v ⊗ en,
for v ∈ V n (Exercise 3.130). Similarly, V ∗ can be viewed as a left comodule
because the Hopf algebra H is cocommutative.
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Definition 3.56. Let H be a commutative Hopf algebra. A left Hopf module
is a vector space V that is a module over the algebra structure of H and a left
comodule over its coalgebra structure (Definition 3.54). Moreover, both structures
are required to be compatible in the sense that the equality

∆(hv) = ∆(h)∆(v)

holds for all h ∈ H and for all v ∈ V .

Example 3.57. In the same way that every affine group scheme gives rise to
a Hopf algebra, every left action of an affine group scheme on an affine scheme
gives rise to a left comodule. Namely, let G be an affine group scheme, X an affine
scheme, and µ : G×X → X a left action of G on X. Then the dual µ is a map

∆: O(X) −→ O(G)⊗O(X)

of µ is a coaction that turns O(X) into a left O(G)-module. Similarly, a right action
of G on X gives rise to a right O(G)-module structure on O(X).

3.2.5. Graded Hopf algebras.

Definition 3.58.

i) A bialgebra H is said to be graded if the underlying k-vector space has a
direct sum decomposition

H =
⊕

n∈Z
Hn

compatible with the operations in the sense that the inclusions

∇(Hp ⊗Hq) ⊆ Hp+q and ∆Hn ⊆
⊕

i+j=n

Hi ⊗Hj

hold for all p, q, n ⩾ 0. If, moreover, Hn = {0} for n < 0 and H0 = k we
say that H is connected .

ii) A graded Hopf algebra is a Hopf algebra such that the underlying bialgebra
is graded and the antipode satisfies S(Hn) ⊆ Hn.

One advantage of working with graded connected bialgebras is that they admit
a unique antipode turning them into (graded) Hopf algebras (see Exercise 3.133).

3.2.6. Examples. In this paragraph, we give a few examples of affine group
schemes and their corresponding Hopf algebras. Of particular interest for the sequel
is the Hoffman algebra from Example 3.64.

In order to define affine group schemes, the language of representable functors
will be useful. An affine group scheme over k defines a functor from the category
of commutative k-algebras to the category of abstract groups: given G = Spec(A)
as in Definition 3.45, the set-valued functor

R 7−→ G(R) = Homk-alg(A,R)

takes values in the category of groups, since the structure of a group scheme of G
endows G(R) with a group structure for all R.

Definition 3.59. We say that a functor F from commutative k-algebras to
groups is representable if there exist an affine group scheme G and a natural iso-
morphism of functors between F and G.
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Examples 3.60.

i) The trivial group scheme is Spec(k) with all operations equal to the iden-
tity. The corresponding commutative Hopf algebra is k with all operations
equal to the identity, once k ⊗ k is identified with k.

ii) The multiplicative group Gm. The functor from commutative k-algebras to
groups given byR 7→ (R×,×) is represented by an affine group scheme Gm.
The corresponding Hopf algebra is k[x, x−1], together with the coproduct
uniquely determined by the formulas

∆(x) = x⊗ x, ∆(x−1) = x−1 ⊗ x−1,
the counit ϵ(x) = ϵ(x−1) = 1, and the antipode determined by S(x) = x−1

and S(x−1) = x.

iii) The additive group Ga. The functor from commutative k-algebras to
groups given by R 7→ (R,+) is represented by an affine group scheme Ga.
The corresponding Hopf algebra is k[x] with the coproduct, the counit,
and the antipode being the only algebra morphisms satisfying

∆(x) = 1⊗ x+ x⊗ 1, ϵ(x) = 0, S(x) = −x.
iv) More generally, if V is a finite-dimensional k-vector space, then the func-

tor R 7→ (V ⊗ R,+) is representable. The corresponding Hopf algebra is
the symmetric algebra Sym(V ∨), which is the free associative and com-
mutative k-algebra generated by V ∨. Generalizing the previous example,
the coproduct, the counit, and the antipode in Sym(V ∨) are the algebra
morphisms determined by ∆v = 1 ⊗ v + v ⊗ 1, ϵ(v) = 0, and S(v) = −v
respectively, for all v ∈ V ∨.

v) When V is infinite-dimensional, the functor R 7→ V ⊗ R is not rep-
resentable (see Exercise 3.135). Nevertheless, for pro-finite-dimensional
vector spaces, one can find a replacement as follows. Let V be a k-vector
space that can be written as

V = lim←−
α

Vα

with every Vα finite-dimensional. Then the functor

R 7−→ lim←−
α

(Vα ⊗R)

is representable by an affine group scheme whose Hopf algebra is

A = lim−→
α

Sym(V ∨α ).

vi) The linear group GLn. The functor that maps a commutative k-algebra R
to the group GLn(R) of invertible n by n matrices with entries in R is
representable by an affine group scheme GLn. Its Hopf algebra is

k[t, (xij)i,j=1,...,n]/(tdet(xij)− 1).

Recall that this means that the determinant det(xij), which is a homoge-
neous polynomial of degree n in the entries xij , is invertible. Its inverse
is the variable t. The coproduct is given by

(3.61) ∆t = t⊗ t, ∆xij =

n∑

l=1

xil ⊗ xlj .
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The counit is the map

ϵ(xij) =

{
1, if i = j,

0, if i ̸= j.

Finally, the antipode can be expressed using Cramer’s rule for the inverse
of a matrix in terms of cofactors, that is,

S(t) = t−1, S(xij) = tCji,

where Cij is (−1)i+j times the determinant of the matrix obtained by
deleting the i-th row and the j-th column of (xℓm)ℓ,m. Observe that Cij
is a homogeneous polynomial of degree n− 1.

vii) Similarly, for every finite-dimensional k-vector space V , the functor

R 7−→ AutR(R⊗ V )

that with a k-algebra R associates the set of R-linear automorphisms of
the R-module R⊗V is representable by an algebraic affine k-group scheme
GL(V ). If V has dimension n, and the choice of a basis of V induces an
isomorphism between GL(V ) and GLn.

viii) Again, one needs to be cautious when working with infinite-dimensional
vector spaces. In fact, given a k-vector space V , the functor

R 7−→ AutR(R⊗ V )

is representable by an affine group k-scheme if and only if V is finite-
dimensional (see Exercise 3.136). Observe that the rule (3.61) from Ex-
ample vi) above does not define a coproduct in the infinite-dimensional
case since the sum appearing in the right-hand side will be infinite.

Example 3.62. Further examples of affine group schemes arise from Zariski
closed subsets of GLn that are stable under matrix multiplication and matrix in-
version, and contain the identity matrix, namely classical algebraic groups such as

i) the special linear group

SLn = Spec

(
k[(xij)i,j=1,...,n]/(det(xij)− 1)

)
,

which represents the functor that sends a k-algebra R to the group SLn(R)
of n× n matrices with entries in R and determinant equal to 1;

ii) the group of unipotent matrices

Upn = Spec

(
k[(xij)i,j=1,...,n]/((xii − 1)i, (xij)i<j)

)
,

which represents the functor that sends a k-algebra R to the group Upn(R)
of n×n upper triangular matrices with entries in R and all diagonal entries
equal to 1;

iii) the orthogonal group

On = Spec

(
k[(xij)i,j=1,...,n]/(

∑

j

xjixjℓ − δiℓ)i,ℓ=1,...,n

)
,

which represents the functor that sends a k-algebra R to the group On(R)
of n×n matrices M with entries in R and M tM = 1 (see Exercise 3.139).
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As we will prove later (Corollary 3.125), every affine algebraic group is linear,
i.e. can be seen as a Zariski closed subset of some GLn.

Example 3.63. Let Γ be an abstract group. The group algebra

k[Γ] = {
∑

g∈Γ
agg | ag ∈ k, ag = 0 except for finitely many g}

carries the structure of a Hopf algebra. The product is determined by the group
law of Γ, as follows:

∑

g∈Γ
agg ·

∑

h∈Γ

bhh =
∑

g,h∈Γ

agbhgh =
∑

f∈Γ


∑

g∈Γ
agbg−1f


 f.

The unit is the k-linear map k → k[Γ] that sends 1 to the neutral element. The
coproduct and the antipode on k[Γ] are the k-linear extensions of the maps given
by ∆g = g ⊗ g and S(g) = g−1 respectively, and the counit sends

∑
agg to

∑
ag.

This Hopf algebra is cocommutative but not commutative, unless Γ is abelian.

Example 3.64. For the purpose of these notes, the main example will be the
Hoffman algebra H of Section 1.6. Recall that the underlying vector space of H is
the vector space Q⟨X⟩ generated by (non-commutative) words in two letters x0, x1.
The Hopf algebra structure is given by

Shuffle product:

xε1 · · · xεr � xεr+1
· · · xεr+s

=
∑

σ∈�(r,s)

xεσ−1(1)
· · · xεσ−1(p+q)

.

Unit: The map η : Q→ H that sends 1 to the empty word.

Deconcatenation coproduct:

∆xε1 · · · xεn =

n∑

j=0

xε1 · · · xεj ⊗ xεj+1
· · · xεn .

Counit: The map ϵ : H → Q that sends every non-empty word to 0 and the
empty word to 1.

Antipode:

S(xε1 · · · xεn) = (−1)nxεn · · · xε1
For convenience, if w is a word on the letters x0 and x1, we will also use
the notation

(3.65) w∗ = S(w).

Consider the grading of H that gives weight n to xε1 · · · xεn . Since all the above
operations respect the weight, H is a graded Hopf algebra. Moreover, it is connected.

3.2.7. The dual of a Hopf algebra. Let H be a Hopf algebra over k. If H is a
finite-dimensional k-vector space, then its dual

H∨ = Hom(H, k)

is again equipped with a Hopf algebra structure. The product of H∨ is the dual of
the coproduct of H, the coproduct is the dual of the product, and similarly for the
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antipode. In other words, the axioms in Definition 3.47 are self-dual. This relies
on the fact that the canonical morphism

(3.66) H∨ ⊗H∨ −→ (H ⊗H)∨

is an isomorphism. If H is infinite-dimensional, then the morphism (3.66) fails
to be an isomorphism, and hence the dual of the product does not give rise to a
coproduct but only to what is called a completed coproduct. Let us explain why.
Let V be an infinite-dimensional k-vector space and write

V = lim−→
I

VI ,

where I runs over the directed set of finite-dimensional subspaces of V . Since the
functor Hom(·, k) exchanges inductive and projective limits, the dual of V equals

(3.67) V ∨ = Hom(V, k) = Hom(lim−→
I

VI , k) = lim←−
I

Hom(VI , k) = lim←−
I

V ∨I .

Thus, V ∨ has a natural structure of pro-finite-dimensional k-vector space.

Definition 3.68. Given a pro-finite-dimensional k-vector space

W = lim←−
I

WI ,

the completed tensor product of W with itself is defined as

W ⊗̂W = lim←−
I

(WI ⊗WI) .

Note that the definition requires a structure of pro-finite-dimensional space.
When dealing with the dual of an infinite-dimensional vector space V , we will
tacitly assume that V ∨ is endowed with the structure (3.67).

There are canonical maps

V ∨ ⊗ V ∨ −→ (V ⊗ V )∨ −→ V ∨⊗̂V ∨,
which are not isomorphisms in general. Hence, the dual of the product A⊗A→ A
of an algebra gives only rise to a completed coproduct

(3.69) A∨ −→ (A⊗A)∨ −→ A∨⊗̂A∨

and not necessarily to a coproduct A∨ → A∨ ⊗A∨.

Definition 3.70. A completed Hopf algebra A is a pro-finite-dimensional vector
space satisfying the analogous properties of a Hopf algebra (Definition 3.47), where
all tensor products are replaced by completed tensor products and all the maps are
compatible with the pro-finite-dimensional structure. In particular, a completed
Hopf algebra has a completed coproduct

∆: A −→ A⊗̂A.
Moreover, the algebra product ∇ : A⊗A −→ A factors through a completed product

A⊗A −→ A⊗̂A ∇̂−→ A,

and the antipode S is compatible with the pro-finite-dimensional structure.

The dual of an infinite-dimensional Hopf algebra is a completed Hopf algebra.
In practice, we will mostly consider the dual of connected graded Hopf algebra with
finite-dimensional graded pieces, in which case the completed Hopf algebra can be
conveniently written in terms of the topology induced by the augmentation ideal.
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Example 3.71. Let A = k[x] be the Hopf algebra from Example 3.60 iii). We
denote by ⟨·, ·⟩ the pairing between a vector space and its dual. Let ym ∈ A∨ be
the element determined by ⟨ym, xn⟩ = δn,m. As a k-vector space, we have

A∨ =
∏

n⩾0

kyn.

Although A∨ is a product space, we will use additive notation and write (an)n⩾0 as
a formal infinite sum

∑
n⩾0 anyn. To determine the algebra structure, we compute

⟨∇(ym ⊗ yn), xj⟩ = ⟨ym ⊗ yn,∆xj⟩
= ⟨ym ⊗ yn, (1⊗ x+ x⊗ 1)j⟩

=

{
(m+n)!
n!m! , if j = n+m,

0, otherwise.

Therefore, we get an equality

yn · ym =
(m+ n)!

n!m!
yn+m.

From this equation we deduce that ym = ym1 /m! and that A∨ is the algebra of
formal series on divided powers. Since we are working over a field of characteristic
zero, A∨ is isomorphic to the algebra of formal power series. Thus, writing y = y1,
there is an isomorphism of algebras

A∨ = kJyK.

The completed coproduct is determined by ∆y = 1⊗ y + y ⊗ 1, the dual antipode
by S(y) = −y, the unit by η(1) = 1 and the counit by ϵ(yn) = δ0,n. In particular,

∆ym =

m∑

j=0

yj ⊗ ym−j , S(ym) = −ym.

The completed coproduct cannot be factored through a true coproduct. Indeed,
consider the element η =

∑
n⩾0 nyn, so that

∆η =
∑

n⩾0

n∑

j=0

nyj ⊗ yn−j .

This element does not belong to A∨ ⊗A∨, since an element
∑

i,j⩾0

ai,jyi ⊗ yj ∈ A∨ ⊗A∨

has the property that the rank of the matrix (ai,j) is finite. By contrast, the rank
of the matrix (bi,j) with bi,j = i+ j is not bounded.

Example 3.72. Let A = k[x, x−1] be the Hopf algebra from Example 3.60 ii).
As in the previous example, we denote by ⟨·, ·⟩ the pairing between a vector space
and its dual, and we let ym ∈ A∨ be the element determined by ⟨ym, xn⟩ = δn,m.
As a k-vector space, the dual A∨ is given by

A∨ =
∏

n∈Z
kyn.
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As in the previous example, we will use additive notation and formal infinite sums.
To determine the algebra structure, we compute

⟨∇(ym ⊗ yn), xj⟩ = ⟨ym ⊗ yn,∆xj⟩
= ⟨ym ⊗ yn, xj ⊗ xj⟩

=

{
1, if j = n = m,

0, otherwise.

This gives the formula

(3.73) yn · ym =

{
yn, if n = m,

0, otherwise.

Hence, the elements yn are mutually orthogonal projectors. It is easy to check that
the completed coproduct is given by

∆yn =
∑

a+b=n

ya ⊗ yb,

which is not an element of A∨ ⊗ A∨ since the sum is infinite. This completed co-
product is not a true coproduct either. The dual antipode is given by S(yn) = y−n,
the counit by ϵ(yn) = δ0,n and the unit by

η(1) =
∑

n∈Z
yn.

It is amusing to observe that Spec(A∨)(k) is isomorphic to Z, realizing in some sense
the duality between Gm and Z given by characters. The completed coproduct in A∨

is compatible with the addition in Z, but even if Spec(A∨) is a scheme over k, it is
not a group scheme, because the completed coproduct is not a true coproduct.

Example 3.74. The dual of the Hoffman Hopf algebra H from Example 3.64 is
the space H∨ = Q⟪e0, e1⟫ of series on the non-commutative words in two letters e0
and e1. Given a binary sequence α and an element γ ∈ Q⟪e0, e1⟫, the duality is
given by the pairing

⟨xα, γ⟩ = coefficient of eα in γ.

This duality and the Hopf algebra structure of H endows Q⟪e0, e1⟫ with the fol-
lowing structures:

Concatenation product: The product ∆∨ : H∨ ⊗ H∨ → H∨ is given by

eε1 · · · eεr · eεr+1
· · · eεr+s

= eε1 · · · eεr+s
.

Unit: It is the morphism

ϵ∨ : Q −→ Q⟪e0, e1⟫
that sends 1 to the empty word.

Completed coproduct: It is the unique morphism of algebras

∇∨ : H∨ −→ H∨⊗̂H∨

such that the equality

∇∨eε = 1⊗ eε + eε ⊗ 1
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holds for ε = 0, 1. This implies the equality

∇∨w =
∑

w1,w2

�(w1, w2;w)w1 ⊗ w2,

for any word w on the alphabet {e0, e1}, where �(w1, w2;w) is the shuffle
multiplicity introduced in Notation 1.162.

Counit: The map

η∨ : Q⟪e0, e1⟫ −→ Q
sending all non-empty words to 0 and the empty word to 1.

Dual antipode: It is given by

S∨(eε1 · · · eεn) = (−1)neεn · · · eε1 .
By analogy with (3.65), for a word w in the letters e0 and e1, we use the
notation

w∗ = S∨(w).

3.2.8. Hopf ideals, quotients, and completions. Let A be a k-algebra. A left
(resp. right) ideal of A is a left (resp. right) A-submodule of A, i.e. a vector sub-
space I ⊂ A satisfying AI ⊂ I (resp. IA ⊂ I). An ideal I ⊂ A is a vector subspace
that is both a left and a right ideal. If I ⊂ A is an ideal, then A/I inherits a
product structure. The corresponding notion for coalgebras is that of a coideal.

Definition 3.75. Let H be a coalgebra with coproduct ∆ and counit ϵ. A
vector subspace I ⊂ H is

• a left coideal if ∆I ⊂ H ⊗ I;

• a right coideal if ∆I ⊂ I ⊗H;

• a coideal if ∆I ⊂ H ⊗ I + I ⊗H and ϵ(I) = 0.

Lemma 3.76. Let H be a coalgebra with coproduct ∆ and counit ϵ. Let I ⊂ H
be a coideal. Then H/I inherits a coalgebra structure.

Proof. Since ϵ(I) = 0, the counit ϵ induces a map ϵH/I : H/I → k. For each
class [c] ∈ H/I, with representative c ∈ H, we define ∆H/I [c] as the class of ∆c in
the tensor product H/I ⊗H/I. The condition that ∆c belongs to H ⊗ I + I ⊗H
for all c ∈ I implies that the coproduct ∆H/I is well defined. The coassociativity
of ∆H/I and its compatibility with the counit ϵH/I then follow from the correspond-
ing properties of ∆ and ϵ. □

Definition 3.77. A Hopf ideal of a Hopf algebra H is a vector subspace I ⊂ H
that is both an ideal and a coideal and, moreover, satisfies S(I) ⊂ I.

If H is a Hopf algebra and I is a Hopf ideal, then H/I is also a Hopf algebra.

Examples 3.78. Let H be a Hopf algebra with coproduct ∆ and counit ϵ.

i) The augmentation ideal I = Ker ϵ is a Hopf ideal of H. Indeed, writing
the coproduct of an element a ∈ I as ∆a =

∑
i bi ⊗ ci, the condition

that (ϵ ⊗ Id) ◦ ∆ is the identity map under the canonical identification
of k ⊗H with H implies the equality

∑
i ϵ(bi)ci = a ∈ I, and hence

∆a =
∑

i

bi ⊗ ci =
∑

i

(bi − ϵ(bi))⊗ ci + 1⊗ a ∈ I ⊗H +H ⊗ I.
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Since ϵ ◦S = ϵ by Proposition 3.49 iii), the ideal I is also stable under the
antipode. This shows that I is a Hopf ideal.

ii) Let I ⊂ H be a Hopf ideal. The powers In are not necessarily coideals,
but they always satisfy the weaker condition

(3.79) ∆(In) ⊂ H ⊗ In + I ⊗ In−1 + · · ·+ In−1 ⊗ I + In ⊗H.
Definition 3.80. Let H be a Hopf algebra and I ⊂ H a Hopf ideal. The

completion of H with respect to I is the projective limit

H∧I = lim←−
n

H/In+1.

When I is the augmentation ideal, we will simply write H∧.

Proposition 3.81. Let H be a Hopf algebra and I ⊂ H a Hopf ideal. The
completion H∧I is a completed Hopf algebra.

Proof. Since the powers of an ideal are again ideals, each H/In+1 inherits an
algebra structure from H, and hence so does the projective limit H∧I . Although
the powers of a coideal are not necessarily coideals, condition (3.79) is enough to
have coproducts

∆: H/I2n+1 −→ H/In+1 ⊗H/In+1,

that induce a completed coproduct

lim←−
n

H/In+1 −→ lim←−
n

(H/In+1 ⊗H/In+1) −→ lim←−
n

H/In+1 ⊗ lim←−
n

H/In+1.

The unit and the counit are also defined at each level H/In+1, and hence in the
limit. Since I is stable under the antipode S, the same is true for the powers In.
Therefore, H∧I has an induced antipode. The compatibilities between the various
structures of H∧I follow from the compatibilities between those of H. □

3.2.9. Lie algebras. We next introduce the notion of Lie algebra of an affine
group scheme. The definition is modelled after the more classical notion of Lie
algebra of a Lie group, which is the tangent space at the neutral element of the
underlying differentiable manifold together with an antisymmetric product that
reflects the non-commutativity of the group law. Throughout the next sections, k
still denotes a field of characteristic zero.

Definition 3.82. A Lie algebra over k is the data L = (L, [·, ·]) of a k-vector
space L and a bilinear product

[·, ·] : L⊗ L −→ L,

called the Lie bracket, that satisfies the following two conditions:

Antisymmetry: [a, b] + [b, a] = 0 for all a, b ∈ L.

Jacobi identity: [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 for a, b, c ∈ L.

A morphism of Lie algebras is a k-linear map φ : L → L′ that is compatible with
the Lie brackets, in that the equality

φ([a, b]L) = [φ(a), φ(b)]L′

holds for all a, b ∈ L. When the underlying vector space of L has a grading

L =
⊕

n∈Z
Ln
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such that [Ln, Lm] ⊆ Ln+m, we say that L is a graded Lie algebra.
An abelian Lie algebra is a Lie algebra with identically zero Lie bracket.

Remark 3.83.

i) The antisymmetry of the Lie bracket implies that it factors through the
exterior product L ∧ L.

ii) The commutator [a, b] = ab− ba endows any associative k-algebra L with
a Lie algebra structure. The Jacobi identity reflects the associativity of
the product.

iii) There is a dual notion to that of Lie algebra called Lie coalgebra. We let
the reader explore its properties in Exercise 3.142.

3.2.10. The Lie algebra of an affine group scheme. With an affine group scheme
is associated a Lie algebra that is the algebraic analogue of the Lie algebra of a Lie
group. This Lie algebra can be directly built out of the Hopf algebra of regular
functions on the group, as we now explain. Let G be an affine group scheme over k
and let A = O(G) be the corresponding commutative Hopf algebra. We keep the
notation (∇, η,∆, ϵ, S) from Definition 3.47.

Definition 3.84. The augmentation ideal of A is the kernel of the counit
map ϵ : A→ k. It will be denoted by I = Ker(ϵ).

The augmentation ideal is the maximal ideal of regular functions on G that
vanish at the unit e = η(1). Thanks to the equality ϵ ◦ η = Idk, there is a canonical
projection A→ I, and hence a canonical direct sum decomposition A = k ⊕ I.

Definition 3.85. The tangent space of the affine group scheme G at the unit
element is the k-vector space g = (I/I2)∨.

To make g into a Lie algebra, we need a bracket

[·, ·] : g ∧ g −→ g.

We will first define the dual map. For this, we observe that the compatibilities of
the coproduct with the unit and the counit imply that, if f ∈ I, then

(3.86) ∆f − f ⊗ 1− 1⊗ f ∈ I ⊗ I.
We now consider the map

I
∆−→ A⊗A −→ (I/I2)⊗ (I/I2) −→ (I/I2) ∧ (I/I2),

where the second arrow is induced by the projection A→ I → I/I2 and the third
arrow is the projection from the tensor product to the exterior product. It follows
from property (3.86) that the composition of these maps vanishes on I2. Therefore,
we obtain a map

(3.87) d: I/I2 −→
2∧

(I/I2).

By duality, we obtain a map

[·, ·] : g ∧ g = (I/I2)∨ ∧ (I/I2)∨ −→ (I/I2 ∧ I/I2)∨
d∨

−→ (I/I2)∨ = g.

Following Exercise 3.143, the pair (I/I2,d) is a Lie coalgebra over k. See Exer-
cise 3.144 for a more down to earth formula for the bracket.
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Definition 3.88. Let G = Spec(A) be an affine group scheme. The Lie coal-
gebra associated with the commutative Hopf algebra A is the pair (I/I2,d). Its
dual (g, [·, ·]) is called the Lie algebra of G and denoted by Lie(G).

The construction of the Lie algebra is functorial for morphisms of affine group
schemes. Indeed, given G = Spec(A) and H = Spec(B), a morphism f : G → H
of affine group schemes corresponds to a morphism of Hopf algebras f : B → A.
In particular, f is compatible with the counits of A and B, and hence maps the
augmentation ideal J of B to the augmentation ideal I of A. The dual of the
induced map J/J2 → I/I2 is then a k-linear map

df : Lie(G)→ Lie(H)

which is compatible with the Lie bracket.
In practice, to compute the Lie algebra of an affine group scheme G, one looks

for the elements of G(k[ε]) mapping to the identity in G(k), which is an algebraic
characterization of the tangent space at the unit. Here k[ε] = k[x]/x2 denotes the
ring of dual numbers, in which ε2 = 0. We make this observation more precise.

Let G = Spec(A) be an affine group scheme over k and g = Lie(G) its Lie
algebra. Recall that the set of R-points of G is given by G(R) = Homk-alg(A,R)
for each k-algebra R. Consider the map

(3.89)
eε· : g⊗R −→ G(R[ε])

x 7−→ eεx

constructed as follows. By definition of the Lie algebra, an element x ∈ g ⊗ R
corresponds to a k-linear map µx : (I/I2)→ R, where I ⊂ A is the ideal of regular
functions on G that vanish at the unit element e ∈ G(k). We then set

(3.90)
eεx : A −→ R[ε]

f 7−→ f(e) + µx(f − f(e))ε.

One checks that the maps (3.89) are functorial with respect to morphisms of affine
group schemes. The choice of the notation eε and eεx is justified by the relation
with the exponential map from Section 3.3.4.

Proposition 3.91. There is a split short exact sequence

0 // g
eε· // G(k[ε]) // G(k)

ww
// 0 ,

where the arrows between G(k[ε]) and G(k) are induced by the maps k → k[ε]→ k.

Proof. We first show that the map (3.90) is a morphism of k-algebras. That
it is k-linear is clear, so we have to show that it is an algebra homomorphism. This
amounts to checking the equality

f(e)g(e) + µx(fg − f(e)g(e))ε = [f(e) + µx(f − f(e))ε][g(e) + µx(g − g(e))ε]

in k[ε] for all f, g ∈ A. Developing both sides and using that µx is linear, we see
that this equality is equivalent to

µx(fg + f(e)g(e)− g(e)f − f(e)g) = 0,

which is satisfied because

fg + f(e)g(e)− g(e)f − f(e)g = (f − f(e))(g − g(e)) ∈ I2.
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We next show that (3.89) is injective. The unit in the group G(k[ε]) corresponds
to the algebra morphism A → k[ε] given by f 7→ f(e) + 0ε, so if x ∈ g is mapped
to the unit element in G(k[ε]), then µx is identically zero, and hence x = 0.

To prove exactness in the middle, notice that any element in Homk-alg(A, k[ε])
can be written as f 7→ ρ(f) + λ(f)ε for some k-linear maps ρ, λ : A → k. Such an
algebra morphism is mapped to the unit element in G(k) if and only if ρ(f) = f(e).
One checks directly that a linear map of the form f 7→ f(e) + λ(f)ε is an algebra
homomorphism if and only if λ(1) = 0 and λ(I2) = 0. Therefore, there exists some
element x ∈ g satisfying λ(f) = µx(f − f(e)).

Finally, since the composition k → k[ε] → k of the inclusion and the projec-
tion is the identity, the map G(k) → G(k[ε]) is a section of G(k[ε]) → G(k). In
particular, the latter is surjective. □

Remark 3.92. In fact, we can define a functor from k-algebras to groups

g(R) = Ker
(
G(R[ε])→ G(R)

)
.

Then part of Proposition 3.91 can be rephrased as the equality g(k) = g. Moreover,
if G is algebraic, then g(R) = g⊗R (see [DG70, II §4, Prop. 4.8]), so that we can
endow g with the structure of an affine algebraic group as in Example 3.60 iv). By
Lemma 3.51, an affine group scheme G is pro-algebraic. We write G = lim←−αGα.

Hence, for every k-algebra R, we have G(R) = lim←−αGα(R). Let gα be the Lie

algebra of Gα. Using the left-exactness of the projective limit, we deduce that

g(R) = lim←−
α

(gα ⊗R).

Therefore, we can endow g with the scheme structure of Example 3.60 v).

Examples 3.93.

i) The group G = GLn is the open subscheme of the affine space An2

defined
as the complement of the determinant hypersurface {det = 0}. Thus, the
tangent space at the origin can be identified with the space Matn(k) of
all n×n matrices over k, and the Lie bracket is just the usual commutator
of matrices [A,B] = AB −BA. This Lie algebra is denoted by gln. More
generally, if V is a finite-dimensional vector space over k, then the Lie
algebra gl(V ) of GL(V ) consists of all endomorphisms of V .

ii) The group G = SLn is the closed subscheme of GLn defined by the equa-
tion det = 1. It represents the functor R 7→ SLn(R). The Lie algebra
of G is a subalgebra of Lie(GLn) = gln. Using the characterization of
Proposition 3.91, it consists of the matrices M such that 1 + εM has
determinant 1. From the equality

det(1 + εM) = 1 + εTr(M)

in k[ε], that can be proved for example by expanding the determinant
along the first column and induction, we deduce that Lie(SLn) is the
space of traceless n× n matrices. This Lie algebra is denoted by sln.

iii) The Lie algebra of the group G = Upn of n × n unipotent matrices is
the subalgebra un ⊂ gln consisting of strictly upper triangular matri-
ces. Indeed, G represents the functor that sends a k-algebra R to the
group Upn(R) of upper triangular matrices with diagonal entries equal
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to 1. The elements of G(k[ε]) can be thus written as U+εN with U ∈ G(k)
and N strictly upper triangular with entries in k, and the kernel of the
map G(k[ε])→ G(k) is identified with the space of such matrices N .

3.2.11. The universal enveloping algebra. It is sometimes more convenient to
work within the framework of associative algebras instead of Lie algebras. This
is possible thanks to the construction of the universal enveloping algebra. Recall
from Remark 3.83 that every associative algebra is endowed with a canonical Lie
algebra structure in which the Lie bracket is given by the commutator. We keep
the assumption that k is a field of characteristic zero.

Definition 3.94. Let (L, [·, ·]) be a Lie algebra over k. The universal envelop-
ing algebra of L is an associative k-algebra U(L) with a morphism of Lie algebras

ιL : L→ U(L)

that satisfies the following universal property: for each associative k-algebra A
and each morphism of Lie algebras ι : L → A, there exists a unique morphism
of k-algebras φ : U(L)→ A satisfying ι = φ ◦ ιL.

Concretely, that ιL is a morphism of Lie algebras means that the equality

ιL([a, b]) = ιL(a)ιL(b)− ιL(b)ιL(a)

holds for all a, b ∈ L. To construct U(L), we begin with the tensor algebra

T (L) =
⊕

n⩾0

L⊗n

with the associative product uniquely determined by

(a1 ⊗ · · · ⊗ ar) · (ar+1 ⊗ · · · ⊗ ar+s) = a1 ⊗ · · · ⊗ ar+s.
This algebra is non-commutative if L has dimension bigger than 1. Consider the
two-sided ideal R(L) ⊆ T (L) generated by the elements

(3.95) a⊗ b− b⊗ a− [a, b] for all a, b ∈ L.
We claim that the universal enveloping algebra of L is the quotient

(3.96) U(L) = T (L)/R(L),

along with the morphism ιL : L → U(L) given by the composition of the natural
inclusion L → T (L) with the quotient map T (L) → U(L). Indeed, every k-linear
map ι : L → A with target an associative k-algebra A factors uniquely through a
morphism of k-algebras T (L)→ A and, if ι is a morphism of Lie algebras, then the
two-sided ideal R(L) of T (L) maps to zero.

Remark 3.97. The universal enveloping algebra U(L) is endowed with the
filtration (in the sense of Definition 1.85) by length given by

(3.98) FnU(L) = image of
⊕

0⩽m⩽n

L⊗m for n ⩾ 0 and F−1U(L) = {0}.

The Poincaré–Birkhoff–Witt theorem encapsulates the structure of the univer-
sal enveloping algebra. The version we give below is not the most general possible
(see [Bou60, §1, nº 7, Thm. 1]), but it will be enough for our purposes.
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Theorem 3.99 (Poincaré–Birkhoff–Witt). Assume that the Lie algebra L ad-
mits a totally ordered basis {yi}i∈I . Then a basis of the universal enveloping alge-
bra U(L) is given by the classes of the so-called standard monomials

yi1 ⊗ · · · ⊗ yin ∈ T (L) with i1 ⩽ · · · ⩽ in.
Note that the empty monomial 1 ∈ T (L) is standard. In what follows, we will

mainly use the Poincaré–Birkhoff–Witt theorem through some of its corollaries.

Corollary 3.100. The map ιL : L→ U(L) is injective.

Proof. The map ιL sends a basis element yi of L to the standard monomial yi,
which is part of a basis of U(L) by Theorem 3.99. □

The universal enveloping algebra U(L) can be naturally viewed as a Hopf al-
gebra, with the coproduct uniquely determined by the rule

∆ιL(a) = ιL(a)⊗ 1 + 1⊗ ιL(a),

the counit ϵ : U(L)→ k induced by the zero map L→ k, and the antipode uniquely
characterized by S(a) = −a for all a ∈ L (see Exercise 3.140 below). The counit ϵ
is also called the augmentation of U(L). This Hopf algebra structure allows one to
recover the original Lie algebra L from its universal enveloping algebra U(L) as the
space of primitive elements. We first define them.

Definition 3.101. Let H be a coalgebra with coproduct ∆: H → H ⊗H. An
element a ∈ H is called primitive if it satisfies

∆a = 1⊗ a+ a⊗ 1.

Corollary 3.102. Let L be a Lie algebra that admits a totally ordered basis.
Then the image ιL(L) agrees with the set of primitive elements of U(L).

Proof. Let P (U(L)) denote the subspace of primitive elements of U(L). The
inclusion ιL(L) ⊂ P (U(L)) is clear. To prove the converse inclusion, consider, for
each integer n ⩾ 0, the vector subspace U(L)n of U(L) spanned by all standard
monomials of length n. As the image ιL(L) agrees with U(L)1, we need to prove
the inclusion P (U(L)) ⊂ U(L)1. For this, we observe that the operator ∇ ◦∆ acts
as multiplication by 2 on P (U(L)), whereas

(3.103) (∇ ◦∆)x = 2nx+ (terms of length < n)

holds for all x ∈ U(L)n (solve Exercise 3.141). Let a ∈ P (U(L)) be a primitive
element. By the Poincaré–Birkhoff–Witt theorem, we can write a = a0+ · · ·+ar for
some elements aj ∈ U(L)j . Upon application of the operator ∇ ◦∆, we get r = 1,
then a0 = 0 from (3.103). Thus, P (U(L)) ⊂ U(L)1 and ιL(L) agrees with the space
of primitive elements. □

Another consequence of the Poincaré–Birkhoff–Witt theorem is an expression
for the abelianization of a Lie algebra. Let J = Ker(ϵ) ⊂ U(L) be the augmentation
ideal, that is, the quotient of

⊕
n>0 L

⊗n by the two-sided ideal R(L).

Corollary 3.104. Let L be a Lie algebra that admits a totally ordered basis.
The inclusion ιL : L→ U(L) induces an isomorphism

ι′L : L/[L,L]
∼−→ J/J2.
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Proof. There is an inclusion ιL(L) ⊂ J by definition of the augmentation
ideal. Since ιL is a morphism of Lie algebras and the Lie bracket on U(L) is given
by the commutator [x, y] = xy − yx, there is also an inclusion ιL([L,L]) ⊂ J2.
The map ι′L is hence well defined. By Theorem 3.99, the universal enveloping
algebra U(L) is generated by standard monomials. Since every monomial of length
bigger than or equal to 2 belongs to J2, every element of J/J2 can be represented
by a monomial of length 1, that is, by an element of L. This shows that ι′L is

surjective. To prove injectivity, we need to show that ι−1L (J2) is contained in [L,L].
For this, let us first observe that any linear combination of monomials of length n
can be written, using the relations (3.95) defining the ideal R(L), as the sum of
a linear combination of standard monomials of length n and a linear combination
of monomials of length at most n − 1 in which all terms contain at least one
commutator. Now, an element a ∈ J2 can be written as a linear combination
of monomials of length at least 2. Applying repeatedly the above observation, a
can be written as aℓ + · · · + a2 + b1, where an is a linear combination of standard
monomials of length n and b1 is a commutator. If a lies in the image of L, then it is
a linear combination of standard monomials of length 1. Since standard monomials
form a basis of U(L) by Theorem 3.99, we deduce that a is equal to b1, and hence
lies in the image of [L,L]. The map ι′L is thus an isomorphism. □

Applying Definition 3.80 to the Hopf algebra U(L), we obtain:

Definition 3.105. Let L be a Lie algebra. The completed universal envelop-
ing algebra U(L)∧ is the completion of U(L) with respect to the augmentation
ideal J = Ker(ϵ), where ϵ is the counit of U(L).

Explicitly, Û(L) is defined as the projective limit

U(L)∧ = lim←−
N

U(L)/JN+1.

Let us now explain the relationship between the dual of the ring of regular
functions on an affine group scheme and the universal enveloping algebra of its Lie
algebra. Let G be an affine group scheme over k and g = Lie(G) its Lie algebra.
Since O(G) is a Hopf algebra, its k-linear dual

O(G)∨ = Homk(O(G), k)

has the structure of an associative algebra, in which the product of two linear
forms λ, µ ∈ O(G)∨ is given by the rule

(λ · µ)(f) = (λ⊗ µ)(∆f)

on functions f ∈ O(G). The associativity of this product follows from the coasso-
ciativity of the coproduct in the definition of Hopf algebra. Using the definition of
the Lie algebra as g = (I/I2)∨, we get a canonical map

(3.106) φG : g −→ O(G)∨

that sends an element X ∈ g to the composition

O(G) −→ I/I2
X−→ k,

where the first map sends f to the class of f − f(e). From the fact that φG
is a morphism of Lie algebras (Exercise 3.145) and the universal property of the
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universal enveloping algebra, we obtain a canonical map

(3.107) U(g) −→ O(G)∨.

In general, this map is not an isomorphism (see Example 3.108 below). In some
cases (see Theorem 3.182), it can be extended to the completed universal enveloping
algebra U(g)∧. We will see later that this is characteristic of pro-unipotent groups.

Examples 3.108.

i) Let G = Ga be the additive group over Q. Its algebra of functions is the
polynomial ring O(G) = Q[x] and its Lie algebra is the abelian (i.e. with
identically zero bracket) Lie algebra Q. Its universal enveloping algebra
is the algebra of polynomials Q[y], while its completed universal envelop-
ing algebra is the algebra of formal power series QJyK. The canonical
map (3.107) is the map Q[y]→ O(G)∨ that sends the divided power yn/n!
to the dual of xn. This map is not an isomorphism, but it extends to an
isomorphism QJyK→ O(G)∨.

ii) Let G = Gm be the multiplicative group over Q. Its algebra of func-
tions is the ring of Laurent polynomials O(G) = Q[x, x−1] and its Lie
algebra is again is the one-dimensional abelian Lie algebra Q. As in the
previous example, the universal enveloping algebra is the algebra of poly-
nomials Q[y], and its completion is the algebra of formal power series QJyK.
The map Q[y] → O(G)∨ sends y to the linear form P 7→ P ′(1), which in
the representation of Example 3.72 corresponds to the element

∑

n∈Z
nyn

since yn is dual to xn. From the computation (3.73) that says that the yn
are orthogonal projectors, we then deduce that yℓ is sent to

∑
nℓyn. In

this case, the map Q[y] → O(G)∨ cannot be extended to the completed
universal enveloping algebra.

3.2.12. Universal enveloping algebras and distributions. In this section, we ex-
plain a theorem by Cartier relating the universal enveloping algebra of the Lie al-
gebra of an algebraic group with certain linear functionals on its regular functions
that are called distributions.

Let G = Spec(A) be an affine group scheme over k with Lie algebra g. The
unit element e ∈ G(k) corresponds to a morphism of k-algebras A → k that we
denote by φ 7→ φ(e). For each linear map µ : A→ k and each φ ∈ A, define

(3.109)
(adφ)µ : A −→ k

x 7−→ φ(e)µ(x)− µ(φx).

Definition 3.110. A distribution on G centered at e of order ⩽ n is a linear
map µ : A→ k such that the equality

(adφ0) . . . (adφn)µ = 0
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holds for all φ0, . . . , φn ∈ A. The space of all distributions centered at e of order ⩽ n
will be denoted by Distn(G). We also write

Dist+n (G) = {µ ∈ Distn(G) | µ(1) = 0},
Dist(G) =

⋃

n⩾0

Distn(G),

Dist+(G) =
⋃

n⩾0

Dist+n (G).

Examples 3.111. Let G = Spec(A) be an affine group scheme and g its Lie
algebra. In this example, we compute the space of distributions in terms of the
ideal I ⊂ A of functions vanishing at the neutral element e ∈ G(k).

i) An element µ ∈ Dist0(G) is determined by the value µ(1) through the
rule µ(φ) = φ(e)µ(1). In particular, µ vanishes on I, whence

Dist0(G) = (A/I)∨ = k and Dist+0 (G) = {0}.
ii) Let µ ∈ Dist1(G). By definition, the linear map (adφ)µ lies in Dist0(G)

for all φ ∈ A, which by i) amounts to saying that it vanishes on I. This
map sends x to µ((φ(e)− φ)x) by linearity of µ, and hence

Dist1(G) = (A/I2)∨.

If µ vanishes at 1, then µ defines an element of g = (I/I2)∨ and

g ≃ Dist+1 (G).

From the vanishing on I2 and at 1, we see that all µ ∈ Dist+1 (G) satisfy

µ(φ0φ1) = φ0(e)µ(φ1) + φ1(e)µ(φ0).

iii) More generally, µ belongs to Distn(G) if and only (adφ)µ belongs to
Distn−1(G) for all φ ∈ A. By induction, this is equivalent to the condition
that µ vanishes on In+1, hence an isomorphism

Distn(G) = (A/In+1)∨.

By duality, the coproduct and the product of the Hopf algebra A = O(G)
induce a product and a coproduct in the space of distributions. Namely, there is a
convolution product given by

(µ0 ∗ µ1)(φ) = (µ0 ⊗ µ1)(∆φ).

The coassociativity of ∆ implies that this product is associative. In addition, since
the ideal I is the kernel of the counit, it satisfies ∆I ⊂ A⊗ I + I ⊗A. Therefore,

(3.112) ∆In+1 ⊂
n+1∑

i=0

Ii ⊗ In+1−i.

By the characterization of Example 3.111 iii), the inclusion (3.112) implies

(3.113) Distn(G) ∗Distm(G) ⊂ Distn+m(G).

The coproduct

∆: Dist(G) −→ Dist(G)⊗Dist(G)

is given by the formula

∆µ(φ0 ⊗ φ1) = µ(φ0φ1).
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For all µ ∈ Dist+1 (G), the equalities

∆µ(φ0 ⊗ φ1) = µ(φ0φ1) = φ0(e)µ(φ1) + φ1(e)µ(φ0) = (1⊗ µ+ µ⊗ 1)(φ0 ⊗ φ1)

hold, and hence all elements of Dist+1 (G) are primitive for this coproduct.

Theorem 3.114 (Cartier). Let G be an affine algebraic group and g its Lie
algebra. Then there is a unique isomorphism of algebras

U(g) −→ Dist(G)

that agrees with the isomorphism of Example 3.111 ii) for g. Moreover, this iso-
morphism is compatible with the coproduct and sends FnU(g) to Distn(G).

Sketch of proof. The map U(g) −→ Dist(G) is constructed using the uni-
versal property of the universal enveloping algebra. Indeed, Dist(G) is an associative
algebra, and Example 3.111 ii) gives map ι : g→ Dist(G) that satisfies

ι([a, b]) = a ∗ b− b ∗ a
by Exercise 3.144. Therefore, the universal property of U(g) yields a morphism of
algebras U(g) → Dist(G). Recall that the coproduct of U(g) is characterized by
the fact that it is a morphism of algebras and that elements of g are primitive.
Since the coproduct of Dist(G) is a morphism of algebras by construction and g is
mapped to Dist+1 (G), which consists of primitive elements, the map U(g)→ Dist(G)
is compatible with the coproducts on the source and the target. Moreover, it
sends FnU(g) to Distn(G) because the elements of FnU(g) are those that can be
written as a linear combination of products of at most n elements of g. Thanks
to (3.113), those elements are sent to Distn(G). Finally, the proof that the map is
an isomorphism is a long computation using the Poincaré–Birkhoff–Witt theorem,
whose details can be found in [DG70, II §6, Thm. 1.1]. □

3.2.13. Representations. We introduce the notion of representation of an ab-
stract group and an affine group scheme. In the latter case, one needs to be careful
because the group-valued functor Aut(V ) is not representable by a scheme when V
is an infinite-dimensional vector space (see Example 3.60 viii)).

Definition 3.115. Let Γ be an abstract group. A k-linear representation of Γ
is a k-vector space V together with a group homomorphism

Γ −→ Autk(V ).

Definition 3.116. Let G be an affine group scheme over k. A k-linear repre-
sentation of G is the data of a k-vector space V and a natural transformation of
group-valued functors G→ Aut(V ).

This means that we are given the data of a group homomorphism

G(R) −→ AutR(R⊗ V )

for every k-algebra R, and a commutative diagram

G(R) //

��

AutR(R⊗ V )

��
G(R′) // AutR′(R′ ⊗ V ).

for every morphism of k-algebras R→ R′.
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Remark 3.117. Recall from Example 3.60 that the linear automorphisms of
a finite-dimensional vector space V form an affine group scheme GL(V ). It turns
out that to give a finite-dimensional representation of G is equivalent to give a pair
consisting of a k-vector space V and a morphism of group schemes ρ : G→ GL(V ).
Since we will be mainly interested in finite-dimensional representations, this is the
point of view that we will mostly use.

Every k-linear representation of an affine group scheme determines a represen-
tation of the group of k-points G(k), but of course not all representations of G(k)
arise this way (see Lemma 3.122 and Exercise 3.220 below for an example). Since
we will be only working with k-linear representations, we will omit the adjective
“k-linear” and refer to them in what follows simply as “representations”.

In some cases, it is more convenient to use the point of view of comodules. For
a more detailed proof of the next result, see [Mil17, Rem. 4.1].

Lemma 3.118. Let G be an affine group scheme over k, and let V be a k-vector
space. There is a natural one-to-one correspondence between linear representations
of G on V and right O(G)-comodule structures on V .

Proof. For shorthand, we write A = O(G). In fact, the correspondence is in
two steps. First, each linear representation of G corresponds to a left A-comodule
structure on the dual vector space V ∨. Then the left A-comodule structure on V ∨

corresponds to a right A-comodule structure on V .
More precisely, let ρ : G→ Aut(V ) be a representation of G. For each ω ∈ V ∨,

we consider the element

∆ρω ∈ A⊗ V ∨ ≃ Hom(V,A)

uniquely defined by the formula

⟨∆ρ(ω), v⟩(g) = ⟨ω, ρ(g)(v)⟩.
Here, ⟨∆ρ(ω), v⟩ is meant to be an element of A = O(G) that we determine by
evaluating it at elements g ∈ G(R) for any k-algebra R. By duality, this defines a
right coaction ∆ρ : V → V ⊗A, denoted with the same letter, by the rule

(3.119) ⟨ω,∆ρ(v)⟩(g) = ⟨∆ρ(ω), v⟩(g) = ⟨ω, ρ(g)(v)⟩.
for each v ∈ V and ω ∈ V ∨. It is easy to check that the maps ∆ρ and ρ from
equation (3.119) determine each other, and that ∆ρ is a right coaction of A on V
if and only if ρ is a representation of G.

In the finite-dimensional case, this can be made more concrete by choosing
basis. Indeed, let e1, . . . , er be a basis of V . Each linear representation ρ of G
on V is an affine group homomorphism ρ : G → GL(V ). After choosing the basis,
we can identify GL(V ) with GLn. Therefore, ρ : Spec(A) = G → GLn defines a
point M ∈ GLn(A), i.e. an invertible r × r matrix M = (Mi,j) with entries in A.
The fact that ρ is a group homomorphism is equivalent to

(3.120) Mi,j(g · g′) =
∑

k

Mi,k(g)Mk,j(g
′), Mi,j(e) = δi,j ,

for e the unit of G.
On the other hand, a right coaction ∆: V → V ⊗A defines also a matrix Mi,j

with entries in A by the rule

∆ej =
∑

i

ei ⊗Mi,j .
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The fact that ∆ is a coaction is again equivalent to (3.120). Both the set of linear
representations of G on V and the set of right A-coactions on V are thus given by
the set of r × r matrices with entries in A satisfying conditions (3.120). □

Remark 3.121. It is interesting to see the relationship between Lemma 3.118
and Example 3.57. A right action X ×G → X gives rise to a representation of G
on the vector space O(X), which, by Lemma 3.118 gives a right O(G)-module
structure on O(X). This structure is the same as the one from Example 3.57.

From the first part of the proof of Lemma 3.51, we also derive the following
result (see also [DM82, Cor. 2.4]).

Lemma 3.122. Every linear representation of an affine group scheme is a di-
rected union of finite-dimensional subrepresentations.

Definition 3.123. Let G be an affine algebraic group. A finite-dimensional
representation ρ : G→ GL(V ) is called faithful if Ker(ρ) is trivial.

A useful property of affine algebraic groups is the following:

Proposition 3.124. Let f : G→ H be a morphism of affine algebraic groups.

i) The image f(G) is closed in H.

ii) f is a closed immersion if and only if Ker(f) is zero.

A proof is given in [Bri17, Prop. 2.7.1]). In view of Proposition 3.124, a repre-
sentation ρ is faithful if and only if ρ is a closed immersion.

Corollary 3.125. Every affine algebraic group admits a faithful finite-dimen-
sional representation. In other words, any affine algebraic group can be realized as
a closed subgroup of some general linear group GL(V ).

Proof. Let G be an affine algebraic group, so that the algebra O(G) is finitely
generated. Let f1, . . . , fn be a set of generators. Since O(G) is a linear representa-
tion of G, Lemma 3.122 implies that there exist finite-dimensional subrepresenta-
tions W1, . . . ,Wn of O(G) such that Wi contains fi. Consider their sum

W = W1 + · · ·+Wn

and the dual representation ρ : G→ GL(W∨). Since W contains a set of generators
of O(G), the map Sym(W ) → O(G) given by the universal property of the sym-
metric algebra is surjective. Therefore, there is a closed G-equivariant immersion

G −→ Spec(Sym(W )) = W∨,

which implies that Ker(ρ) is trivial. □

We next introduce Lie algebra representations.

Definition 3.126. Let L be a Lie algebra over k. A representation of L is
a k-vector space V along with a morphism of Lie algebras

ρ : L −→ End(V ),

i.e. a k-linear map such that, for all x, y ∈ L, the following equality holds:

(3.127) ρ([x, y]) = ρ(x)ρ(y)− ρ(y)ρ(x).

Proposition 3.128. Let L be a Lie algebra. The category of representations
of L is equivalent to the category of U(L)-modules.
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Proof. Let ρ : L→ End(V ) be a representation of L. Thanks to the universal
property of the enveloping algebra U(L), the representation ρ factors through a
unique k-algebra morphism U(L) → End(V ), which turns V into a U(L)-module.
Conversely, a U(L)-module is the data of a k-vector space V and a k-algebra mor-
phism U(L) → End(V ). Precomposing with the natural map from L to U(L), we
obtain a Lie algebra morphism L → End(V ). It is straightforward to check that
these constructions are functorial and quasi-inverse to each other. □

We next relate Lie group representations with Lie algebra representations.

Definition 3.129. Let G be an affine group scheme and g its Lie algebra.
With a representation ρ of G on a vector space V is associated a representation

dρ : g→ Endk(V ),

namely the unique map that fits in the commutative diagram with exact rows

0 // g //

dρ

��

G(k[ε]) //

ρ

��

G(k)

ρ

��
0 // Endk(V ) // Autk[ε](V ⊗ k[ε]) // Autk(V ).

See Exercise 3.138 for the exactness of the bottom row.

⋆ ⋆ ⋆

Exercise 3.130. Prove that the space H of Example 3.55 is a coalgebra and
that V ∗ is an H-comodule.

Exercise 3.131. Let H be a Hopf algebra.

i) Consider a finite-dimensional subvector space V of H satisfying

∆(V ) ⊆ V ⊗H.
Pick a basis {vi} of V and write ∆(vj) =

∑
i vi ⊗ hij . Prove the equality

∆(hij) =
∑

ℓ

hiℓ ⊗ hℓj .

ii) Show that ∆◦S = τ ◦ (S⊗S)◦∆ holds, where τ is the swap of the factors
of H ⊗H. Concretely, if ∆(h) =

∑
i ai ⊗ bi, then

∆(S(h)) =
∑

i

S(bi)⊗ S(ai).

Exercise 3.132 (A bialgebra without antipode). Let H = k[x] be the polyno-
mial algebra in one variable. The coproduct ∆(x) = x⊗ x and the counit ϵ(x) = 1
endow H with the structure of a cocommutative bialgebra. Show that H does not
admit an antipode.

Exercise 3.133 (A connected graded bialgebra has an antipode). Let H be a
connected graded bialgebra.

i) Use the commutativity of diagram (2) in Definition 3.47 to prove that
the counit ϵ : H → k vanishes on Hn for all n ⩾ 1, and hence induces an
isomorphism H0 ≃ k.
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ii) Show that the antipode S : H → H is the unique algebra morphism such
that S|H0

= Id and, if x ∈ Hn for n ⩾ 1, then

S(x) = −x−
∑
∇(S(x′)⊗ x′′),

where the sum runs over all elements x′′ appearing in the coproduct

∆(x) = 1⊗ x+ x⊗ 1 +
∑

x′ ⊗ x′′.

Exercise 3.134. Let H be the Hoffman algebra.

i) Verify that the operations described in Example 3.64 endow H with a Hopf
algebra structure.

ii) Recall that H is graded by assigning weight n to xε1 · · · xεn . Prove by
induction on n that the recipe to compute the antipode presented in Ex-
ercise 3.133 yields S(xε1 · · · xεn) = (−1)nxεn · · · xε1 .

Exercise 3.135. Let V be an infinite-dimensional vector space over a field k.
In this exercise, we show that the functor F (R) = V ⊗R from k-algebras to sets is
not representable by an affine scheme.

i) Assume that F is representable by an affine scheme Spec(A), so that the
equality F (R) = Hom(A,R) holds. Prove that the natural map

F (kJtK) −→ lim←−
n

F (k[t]/tn+1)

is then bijective.

ii) Show that the natural map

V ⊗ kJtK −→ lim←−
n

(
V ⊗ k[t]/tn+1

)

is not surjective.

iii) By contrast, prove that in case V is a projective limit V = lim←−α Vα of

finite-dimensional vector spaces Vα, the natural map

lim←−
α

(
Vα ⊗ kJtK

)
−→ lim←−

n

lim←−
α

(
Vα ⊗ k[t]/tn+1

)

is a bijection.

Exercise 3.136. Let V be an infinite-dimensional vector space over a field k.
In this exercise, we show that the functor

(3.137) R 7−→ AutR(R⊗ V )

is not representable by an affine group scheme over k.

i) Use [Har77, Lem. II.2.1] to prove that, if A is any ring, then the topolog-
ical space underlying S = Spec(A) is quasi-compact. That is, every open
covering of S admits a finite subcovering.

ii) Consider the functor A1
k that sends a k-algebra R to the set R. Similarly

to Example 3.60 iii), it is represented by the scheme Spec(k[x]). Let A
be a k-algebra and S = Spec(A). Denote by S the corresponding functor.
Use Yoneda’s lemma to prove that we can recover A from S as

A = Homfunctors(S,A1).
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Therefore, if we want to prove that a functor is representable by an affine
scheme, there is a unique candidate for the corresponding algebra.

iii) Let V be an infinite-dimensional k-vector space and let {vα}α∈I be a basis.
For every α ∈ I, define the dual element ωα ∈ V ∨ = Homk(V, k) given by

ωα(vβ) =

{
1, if α = β,

0, if α ̸= β.

Assume that the functor R 7→ AutR(R⊗ V ) is representable by an affine
scheme S = Spec(A). By ii), for all α, β ∈ I the morphism of func-
tors xα,β : S → A1 given by

xα,β(ψ) = ωα(ψ(vβ))

determines an element of the algebra A. Let D(xα,β) be the open subset
of S where xα,β does not vanish (see [Har77, § II.2]). Then prove that

S =
⋃

α,β∈I

D(xα,β)

but that this covering does not admit a finite subcovering. This contra-
diction with i) shows that the functor (3.137) is not representable by an
affine k-scheme.

Exercise 3.138. Let V be a k-vector space of arbitrary dimension. Prove that
there is an exact sequence of groups

0 −→ Endk(V ) −→ Autk[ε](V ⊗ k[ε]) −→ Autk(V ) −→ 1,

where k[ε] is the ring of dual numbers and the first non-zero map is given by

φ 7→ eεφ = IdV + εφ.

Here, the endomorphisms Endk(V ) are given an additive group structure, and the
automorphisms Autk[ε](V ⊗ k[ε]) and Autk(V ) a multiplicative group structure.

Exercise 3.139. Let k be a field and let A be an invertible n× n matrix with
coefficients in k. Prove that the functor

R 7−→ G(R) = {B ∈ GLn(R) | BtAB = A}
from commutative k-algebras to groups is representable by an affine algebraic group
scheme over k, and write down the associated Hopf algebra. In the case where A
is the identity matrix, one obtains the orthogonal group from Example 3.62.

Exercise 3.140. Let (L, [·, ·]) be a Lie algebra. Recall the tensor algebra T (L),
the two-sided ideal R(L), and the universal enveloping algebra U(L) = T (L)/R(L)
from Section 3.2.11. Consider the coproduct

∆: T (L) −→ T (L)⊗ T (L)

defined as the unique morphism of k-algebras satisfying ∆a = 1 ⊗ a + a ⊗ 1 for
all a ∈ L. Prove that there is an inclusion

∆R(L) ⊂ R(L)⊗ T (L) + T (L)⊗R(L),

hence an induced coproduct ∆: U(L)→ U(L)⊗ U(L).

Exercise 3.141. Prove identity (3.103) in the proof of Corollary 3.102.

Exercise 3.142 (Lie coalgebras). We introduce Lie coalgebras.
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i) Let L be a finite-dimensional Lie algebra over k. The dual of the Lie
bracket [·, ·] : L ⊗ L → L is a map d: L∨ → L∨ ⊗ L∨. Write down the
properties dual to the anti-symmetry and the Jacobi identity of [·, ·].

ii) A Lie coalgebra over k is a pair (C,d) consisting of a k-vector space C
and a k-linear map d: C → C ∧ C such that d ◦ d = 0 holds (when d is
appropriately extended to C ∧C). Prove that the dual of a Lie coalgebra,
not necessarily of finite dimension, is a Lie algebra.

Exercise 3.143. In this exercise, we show that I/I2 is a Lie coalgebra, and
hence L is a Lie algebra.

i) Check property (3.86).

ii) Extend d to an operator

d:

n∧
(I/I2) −→

n+1∧
(I/I2)

by using the Leibniz rule with appropriate signs. Then show that d2 = 0
holds. This implies that I/I2 is a Lie coalgebra. Deduce from Exer-
cise 3.142 that L is a Lie algebra.

Exercise 3.144. Let G be an affine group scheme and g its Lie algebra. Let ∆
be the coproduct in O(G). Let a, b ∈ g and f ∈ I ⊂ O(G). Show that the bracket
in g is given explicitly by

[a, b](f) = (a⊗ b− b⊗ a)(∆f).

Exercise 3.145. Show that the map φG from (3.106) satisfies

φG([X,Y ]) = φG(X) · φG(Y )− φG(Y ) · φG(X)

for all elements X,Y ∈ g of the Lie algebra of G.

Exercise 3.146. Prove the equality

∆(xn) =

n∑

r=0

(
n

r

)
xr ⊗ xn−r

in the Hopf algebra k[x] associated with the additive group Ga.

Exercise 3.147 (The Hopf algebra of rooted trees). In this exercise, we de-
scribe the Hopf algebra of rooted trees introduced by Connes and Kreimer, in con-
nection with the renormalization of quantum field theories [CK98].

A rooted tree is an oriented finite graph which is connected and simply con-
nected (in other words, a tree), and has a distinguished vertex with no incoming
edges called the root. Continuing the metaphor, the vertices with no outcoming
edges are called the leaves. A rooted forest is a disjoint union of rooted trees.

Let HR be the Q-algebra of polynomials in rooted trees, i.e. HR is the free
commutative Q-algebra with unit generated by (isomorphism classes of) rooted
trees. The product of two rooted trees can be identified with their disjoint union,
and the unit is the empty tree 1. Therefore, as vector space,

HR = Q{rooted forests up to isomorphism}.
Let t be a rooted tree. An admissible cut c of t is the choice of a non-empty

subset of the edges such that any path from the root to the leaves meets at most
one of them. Deleting the edges in c, one gets a rooted forest W c(t). Among
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the connected components of W c(t), there is a unique tree Rc(t) containing the
original root. The rooted forest consisting of the remaining components will be
denoted by P c(t). Writing Adm∗(t) for the set admissible cuts of t, we define

(3.148) ∆t = 1⊗ t+ t⊗ 1 +
∑

c∈Adm∗(t)

P c(t)⊗Rc(t).

Since HR is the free algebra in rooted trees, (3.148) extends uniquely to a coproduct

∆: HR → HR ⊗HR.
Figure 16 below gives an example of an admissible cut of a rooted tree and its
contribution to the coproduct.

⇝ ⊗

t Rc(t)

︸ ︷︷ ︸

P c(t)

Figure 16. Coproduct of rooted trees

The counit is the map ϵ : HR → Q which sends the empty tree to 1 and every-
thing else to zero.

i) Prove that ∆ and ϵ satisfy the associativity and counit axioms from Def-
inition 3.47. In other words, HR is a bialgebra.

ii) For each integer n ⩾ 0, let HR(n) ⊆ HR be the vector subspace generated
by rooted forests with n vertices, so that

HR =
⊕

n⩾0

HR(n).

Observe the inclusion ∆HR(n) ⊆ ⊕i+j=nHR(i) ⊗ HR(j). Since HR is
obviously a graded connected algebra, by Exercise 3.133 there is a unique
antipode S turning HR into a Hopf algebra.

iii) Given a rooted tree t and a cut c, write nc for the number of edges in c.
Prove that the antipode is given by

S(t) = −t−
∑

c∈Adm∗(t)

(−1)ncWc(t).

Exercise 3.149. Let G be an affine group scheme. By Lemma 3.51, we can
write G as a projective limit G = lim←−αGα of affine algebraic groups Gα. Use

Proposition 3.124 to prove that we can assume that all maps G→ Gα are surjective.
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3.3. Unipotent and pro-unipotent groups. In this section, we gather var-
ious properties of unipotent affine algebraic groups and pro-unipotent affine group
schemes and their Lie algebras that will enter the study of the pro-unipotent com-
pletion of an abstract group in the next section.

3.3.1. Definition of unipotent and pro-unipotent groups. Recall that we proved
in Lemma 3.51 that every affine group scheme is pro-algebraic, that is, can be
written as a projective limit of affine algebraic groups.

Definition 3.150. An affine algebraic group G over k (resp. an affine group
scheme over k) is called unipotent (resp. pro-unipotent) if every non-zero represen-
tation of G has a non-zero fixed vector.

Remark 3.151. In view of Lemma 3.122, to check that an affine algebraic
group is unipotent or an affine group scheme is pro-unipotent, it is enough to check
that non-zero finite-dimensional representations have a non-zero fixed vector.

Example 3.152. Let Upn be the affine algebraic group from Example 3.62 ii),
that is, the functor that associates with each k-algebra R the subgroup of GLn(R)
consisting of upper triangular matrices with all diagonal entries equal to 1. For
every k-vector space V of dimension n, a choice of a basis of V induces a closed
immersion Upn → GL(V ). We will prove in Corollary 3.163 below that an affine
algebraic group is unipotent if and only if it is isomorphic to a closed subgroup of
some Upn. One implication follows from the existence of faithful finite-dimensional
representations; the other relies on the characterization of unipotent groups in terms
of the conilpotency filtration proved in Section 3.3.2.

Proposition 3.153. Every unipotent affine algebraic group is isomorphic to a
closed subgroup of some Upn.

Proof. Let G be a unipotent algebraic group and let ρ : G → GL(V ) be a
faithful representation of G, which exists by Corollary 3.125. Let n be the dimension
of V . By definition of unipotency, V contains a non-zero fixed vector v1. Let us
choose inductively vectors v2, . . . , vn in such a way that the image of vi+1 in the
quotient representation V/⟨v1, . . . , vi⟩ is a non-zero fixed vector. Then v1, . . . , vn
form a basis of V and, via the corresponding identification of GL(V ) with GLn,
the image of ρ is contained in Upn. Since the representation ρ is faithful, we get a
closed immersion G→ Upn by Proposition 3.124. □

Definition 3.154. Let G be either an abstract group or an affine group scheme.
A finite-dimensional representation ρ : G→ GL(V ) is called unipotent if there exists
a basis of V with respect to which the image of ρ lies inside Upn.

It follows readily from Definitions 3.150 and 3.154 that an affine algebraic
group is unipotent if and only if all its non-zero finite-dimensional representations
are unipotent. The terminology pro-unipotent is justified by the following result.

Proposition 3.155. An affine group scheme G is pro-unipotent if and only if
it can be written as a projective limit of unipotent affine algebraic groups.

Proof. Let G be a pro-unipotent affine group scheme. By Lemma 3.51, it can
be written as a projective limit

(3.156) G = lim←−
α

Gα
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of affine algebraic groups Gα. We assume that all the morphisms πα : G→ Gα are
surjective, as we may by Exercise 3.149. Let V be a finite-dimensional representa-
tion of Gα. Then V defines a finite-dimensional representation of G through the
map πα. Since G is pro-unipotent, V has a fixed vector v for the action of G. Using
the surjectivity of πα, this vector is also fixed for the action of Gα, and hence the
affine algebraic group Gα is unipotent.

Conversely, assume that each Gα in the limit (3.156) is unipotent, and let V be
a non-zero finite-dimensional representation of G. Let H ⊂ GL(V ) be the closure of
the image of the representation. Then the mapO(H)→ O(G) is injective andO(H)
is finitely generated. Taking the equality O(G) =

⋃
αO(Gα) into account, there

is an inclusion O(H) ⊂ O(Gα) for some α. This means that the representation V
factors through Gα, and hence has a non-zero fixed vector since Gα is unipotent. □

3.3.2. The conilpotency filtration. We give an alternative characterization of
pro-unipotent affine group schemes. Let G = Spec(A) be an affine group scheme
over k. Recall from Section 3.2.7 that A∨ = Hom(A, k) has the structure of a
completed Hopf algebra. In particular, it is endowed with a counit ϵ : A∨ → k, that
is also called an augmentation. Its kernel

J = Ker(ϵ) ⊂ A∨

is called the augmentation ideal. Denote by Jn the n-th power of the ideal J defined
using the algebra structure of A∨, and consider the annihilator

Ci = AnnA J
i+1,

that is, the set of elements a ∈ A satisfying ⟨a, x⟩ = 0 for all x ∈ J i+1 ⊂ A∨. Here
we are again using the notation ⟨·, ·⟩ for the pairing between a vector space and its
dual. The conilpotency filtration is the filtration of A defined by

0 ⊂ C0 ⊂ C1 · · · ⊂ Ci ⊂ · · ·
It is easy to see that C0 = k · 1, where 1 is the unit of A, and that the conilpotency
filtration is compatible with the coproduct, in that there is an inclusion

(3.157) ∆Ci ⊂
∑

a+b=i

Ca ⊗ Cb.

Proposition 3.158. The affine group scheme G = Spec(A) is pro-unipotent if
and only if the conilpotency filtration of A is exhaustive, that is:

A =

∞⋃

i=0

Ci.

Proof. We first assume that the conilpotency filtration is exhaustive. Let V
be a non-zero representation of G = Spec(A) and denote by ∆: V → V ⊗ A the
corresponding comodule structure given by Lemma 3.118. The filtration {Ci}i⩾0

of A being exhaustive, we deduce that the filtration {Vi}i⩾0 of V given by

Vi = {v ∈ V | ∆v ∈ V ⊗ Ci}
is also exhaustive. By the compatibility with the counit in the axioms defining a
comodule (see Definition 3.54), if v ∈ V0, then ∆v = v ⊗ 1. Any vector v ∈ V0 is
hence a fixed vector for the representation, and to prove that G is pro-unipotent
is enough to show that V0 is non-zero. To this end, we show that the vanishing
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of Vi implies that of Vi+1. Indeed, assume that Vi = 0 and let v ∈ Vi+1. Using the
inclusion (3.157), we get

(1⊗∆)∆v ∈
∑

a+b=i+1

V ⊗ Ca ⊗ Cb.

Since a and b cannot be both bigger than i, the vector v is sent to zero by the map

V
∆−→ V ⊗A 1⊗∆−−−→ V ⊗A⊗A −→ V ⊗A/Ci ⊗A/Ci.

But, by the associativity property of comodules, this map agrees with the map

V
∆−→ V ⊗A ∆⊗1−−−→ V ⊗A⊗A −→ V ⊗A/Ci ⊗A/Ci,

which is an injection since Vi = 0. Thus, v = 0, and hence Vi+1 = 0.
Conversely, assume that every non-zero representation of G has a non-zero fixed

vector. Then every representation V has an increasing filtration {Vi}i⩾0 recursively
defined by taking the set of fixed vectors as V0, and the set of elements whose image
in the representation V/Vi are fixed vectors as Vi+1. This filtration is exhaustive by
Lemma 3.122. Let now V be the representation given by A itself with the coaction
determined by the coproduct of A. Then

V0 = {a ∈ A | ∆a = a⊗ 1} = k and Vi = {a ∈ A | ∆a ∈ a⊗ 1 + Vi−1 ⊗A}
for all i ⩾ 1. We show by induction that Vi ⊂ Ci, that is, the conilpotency filtration
contains this filtration. The case n = 0 follows from the equalities V0 = k = C0.
Assume that Vi ⊂ Ci and let a ∈ Vi+1. By the characterization of Vi+1, we see
that ∆a can be written as

∆a = a⊗ 1 +
∑

j

bj ⊗ cj

with bj ∈ Vi. Let x ∈ J i+1 and y ∈ J . Then

⟨a, xy⟩ = ⟨∆a, x⊗ y⟩ = ⟨a, x⟩⟨1, y⟩+
∑

j

⟨bj , x⟩⟨cj , y⟩ = 0

because ⟨1, y⟩ = 0 and ⟨bi, x⟩ = 0. Therefore, a ∈ Ann(J i+2) = Ci+1. Since the
filtration {Vi}i⩾0 is exhaustive, the same is true for the filtration {Ci}i⩾0. □

Example 3.159. The multiplicative group Gm is isomorphic to GL1 and the
standard representation of GL1 on the one-dimensional vector space does not have
any non-zero fixed vector. Thus, Gm is not unipotent. By contrast, the additive
group Ga is isomorphic to Up2 through the morphism x 7→ ( 1 x

0 1 ), and hence it
should be unipotent by Proposition. In this example, we illustrate Proposition 3.158
using both groups.

As seen in Example 3.72, the dual O(Gm)∨ is the algebra
∏

n∈Z
kyn

with product (yn)2 = yn and ynym = 0 for n ̸= m. The augmentation is given
by ϵ(y0) = 1 and ϵ(yn) = 0 for n ̸= 0. Hence, the augmentation ideal is equal to

J =
∏

n ̸=0

kyn
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and all its powers J i are equal to J , whence

Ci = AnnJ i+1 = Ann J = k.

It follows that the conilpotency filtration is not exhaustive, in agreement with the
fact that Gm is not a unipotent group.

On the other hand, as shown in Example 3.71, the dual O(Ga)∨ is the algebra
of power series kJyK with augmentation ϵ(1) = 1 and ϵ(yn) = 0 for n ̸= 0. Therefore,
the augmentation ideal is equal to J = ykJyK and the equality

J i = yikJyK

holds for all i ⩾ 1. Since yn/n! is the dual of xn, the annihilator

Ci = AnnJ i+i = k[x]⩽i

is the space of polynomials of degree less than or equal to i. The conilpotency
filtration is hence exhaustive, in agreement with the fact that Ga is unipotent.

Although the conilpotency filtration has the advantage of being canonical, a
closer inspection of the proof of Proposition 3.158 shows that any filtration with
similar properties would be enough to characterize pro-unipotent groups. This is
made explicit in the following lemma, which is useful in situations where it might be
tricky to determine the exact shape of the conilpotency filtration. For example, we
will use it in Proposition 3.161 to prove that the subgroups of Upn are unipotent.

Lemma 3.160. Let G = Spec(A) be an affine group scheme. Assume that there
exists an increasing exhaustive filtration {Fi}i⩾0 of the k-vector space A satisfying
the conditions F0 = k and ∆Fi ⊆

∑
a+b=i Fa⊗Fb. Then the conilpotency filtration

on A is exhaustive, and hence G is pro-unipotent.

Proof. Consider the decreasing filtration {W i+1}i⩾0 on A∨ defined by

W i+1 = AnnA∨ Fi.

That is, W i+1 ⊂ A∨ consists of those linear forms that vanish on all elements of Fi.
Since J is the kernel of the counit, which is nothing but the evaluation map at
constants inside A, the condition F0 = k is equivalent to W 1 = J . Moreover, the
compatibility between the filtration and the coproduct implies W a ·W b ⊂ W a+b,
for the algebra structure on A∨ dual to the coalgebra structure on A. Indeed, the
coproduct of an element z ∈ Fa+b−1 takes the form ∆z =

∑
r+s=a+b−1 zr ⊗ zs for

some zr ∈ Fr and zs ∈ Fs; hence, ⟨z, x · y⟩ = ⟨∆z, x⊗ y⟩ = 0 holds for all x ∈ W a

and y ∈ W b, since the terms appearing in the sum either satisfy r < a, in which
case ⟨zr, x⟩ = 0, or s < b, in which case ⟨zs, y⟩ = 0. From W 1 = J and the
multiplicativity of the filtration W ∗, we deduce an inclusion J i+1 ⊆ W i+1, and
hence the annihilator Ci = AnnA J

i+1 contains Fi. The latter filtration being
exhaustive by assumption, so is the conilpotency filtration. □

Proposition 3.161. Every closed subgroup of Upn is unipotent.

Proof. Recall that the algebraic group Upn is the spectrum of the Hopf alge-
bra A = k[(xij)1⩽i<j⩽n], on which the coproduct is given by the formula

(3.162) ∆xij = 1⊗ xij +
∑

i<k<j

xik ⊗ xkj + xij ⊗ 1
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for all i < j (see Example 3.60 vi) for the case of GLn). Let F∗ be the increasing
filtration of A associated with the algebra grading A =

⊕
r⩾0Ar determined by the

properties A0 = k and xij ∈ Aj−i, that is, Fi =
⊕

r⩽iAr. Clearly, F∗ is exhaustive

and satisfies F0 = k. Moreover, the condition ∆Fi ⊂
∑
a+b=i Fa ⊗ Fb follows from

formula (3.162). It then results from Lemma 3.160 that Upn is unipotent.
Let us now consider a closed subgroup H ⊂ Upn, given by H = Spec(B) for a

quotient B = A/I of A. The filtration F∗ of A induces a filtration F ∗ of B, which
satisfies the conditions F 0 = k and ∆F i ⊆

∑
a+b=i F a ⊗ F b because A → B is

a morphism of Hopf algebras. Since F∗ is exhaustive and A surjects onto B, the
filtration F ∗ is also exhaustive, and hence H is unipotent. □

Combined with Proposition 3.153, this yields the following characterization of
unipotent affine algebraic groups.

Corollary 3.163. An affine algebraic group is unipotent if and only if it is
isomorphic to a closed subgroup of some Upn.

3.3.3. Nilpotent and quasi-nilpotent Lie algebras. In this section, we isolate a
class of Lie algebras that are the counterpart of pro-unipotent affine group schemes.

Definition 3.164. Let L be a Lie algebra over k. The lower central series of L
is the descending filtration

L ⊃ L(1) ⊃ L(2) ⊃ · · ·
given by L(0) = L and L(i+1) = [L,L(i)] for all integers i ⩾ 0.

Definition 3.165. A Lie algebra L over k is said to be nilpotent if its lower
central series L(i) is eventually zero, i.e. there exists an integer n such that

(3.166) [x1, [x2, [· · · [xn, y] · · · ] = 0 for all x1, . . . , xn, y ∈ L.
It is said to be quasi-nilpotent if the lower central series is a separated filtration:

⋂

i⩾0

L(i) = {0}.

Every nilpotent Lie algebra is obviously quasi-nilpotent, and the two notions
agree in finite dimension. Free Lie algebras (see Definition 3.195 below) provide
examples of infinite-dimensional quasi-nilpotent Lie algebras that are not nilpotent.

Example 3.167. For each n ⩾ 1, the vector subspace un ⊂ gln consisting of
all strictly upper triangular matrices is a nilpotent Lie algebra. Indeed, un is a Lie
subalgebra since the property of being strictly upper triangular is preserved under
products and sums of matrices. It is nilpotent because in the product of r elements
of un, and hence in all elements of the (r− 1)th step of the lower central series, all
the entries xij with j − i ⩽ r are zero.

For finite-dimensional Lie algebras L, condition (3.166) holds as soon as, for
each x ∈ L, there exists an integer n ⩾ 1 such that

[x, [· · ·[x︸ ︷︷ ︸
n

, y] · · · ] = 0

holds for all y ∈ L. This is the statement of Engel’s theorem. One of its conse-
quences, sometimes also referred to by the same name, is the following.
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Proposition 3.168. Let V be a vector space of dimension n and let L ⊂ gl(V )
be a Lie subalgebra consisting of nilpotent endomorphisms. Then there exists a basis
of V such that, under the identification gl(V ) = gln, the subalgebra L is contained in
the Lie algebra un from Example 3.167. In other words, by a single choice of basis,
all the endomorphisms of L can be turned into strictly upper triangular matrices.

A proof is given in [Jac62, Chap. 2, §3].

Lemma 3.169. The Lie algebra of a unipotent affine algebraic group is nilpotent.

Proof. Let U be a unipotent affine algebraic group and let u = Lie(U) be
its Lie algebra. By Proposition 3.153, the group U can be embedded as a closed
subgroup of Upn for some integer n, whose Lie algebra is un, the Lie algebra of
strictly upper triangular matrices, by Example 3.93 iii). Hence, u is a Lie subalgebra
of un. The result then follows from the fact that un is nilpotent by Example 3.167
and that any Lie subalgebra of a nilpotent algebra is again nilpotent. □

Corollary 3.170. The Lie algebra of a pro-unipotent affine group scheme is
quasi-nilpotent.

Proof. Let U be a pro-unipotent affine group scheme, written as

U = lim←−
α

Uα

for a projective system of unipotent affine algebraic groups Uα. By functoriality,
the Lie algebra u of U can then be written as the projective limit u = lim←−α uα of the

finite-dimensional Lie algebras uα = Lie(Uα). In particular, there is an injection

u ↪→
∏

α

uα.

By Lemma 3.169, each Lie algebra uα is nilpotent, which means that the space u(nα)

of the lower central series vanishes for some nα. Therefore, an element x ∈ ⋂i⩾0 u
(i)

has zero image in all u(α), and is hence zero itself. This shows that the Lie algebra u
is quasi-nilpotent. □

Definition 3.171. A Lie algebra L is called pro-nilpotent if it can be written
as a projective limit of finite-dimensional nilpotent Lie algebras:

L = lim←−
α

Lα.

This definition is analogous to that of pro-unipotent affine group scheme in
that we enforce the finite-dimensionality condition on each Lie algebra Lα. The
same argument as in the proof of Corollary 3.170 implies that every pro-nilpotent
Lie algebra is quasi-nilpotent.

Definition 3.172. Let L be a Lie algebra with finite-dimensional abelianiza-
tion L/[L,L]. The pro-nilpotent completion of L is the pro-nilpotent Lie algebra

L̂ = lim←−
i

L/L(i+1).

Remark 3.173. Every finitely generated Lie algebra (for example, a free Lie
algebra on a finite set of generators) satisfies the assumption of this definition. By
Exercise 3.221 the finite-dimensionality of the abelianization L/[L,L] implies that
of L/L(i+1). Moreover, the lower central series of L/L(i+1) is given by L(i)/L(i+1),
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so L/L(i+1) is nilpotent. Hence, the pro-nilpotent completion L̂ is indeed pro-

nilpotent. If L is quasi-nilpotent, then the canonical map L→ L̂ is injective.
The completion could be defined without the assumption that L/[L,L] is finite-

dimensional, but in general it will not be a pro-nilpotent Lie algebra. A variant of
this construction for graded Lie algebras will be introduced in Section 3.3.8.

3.3.4. The exponential map. One of the main tools in the classical theory of
Lie groups is the exponential map from Lie(G) to G. Even if G is algebraic, this
map is not algebraic in general (for example, it is the usual exponential function
for G = Gm), so it is not straightforward how to construct it in the setting of affine
group schemes and their Lie algebras. In the case of unipotent group schemes,
however, the exponential map turns to be algebraic. In what follows, we write

R[ε] = R[x]/x2 = RJxK/x2

for the ring of dual numbers associated with a k-algebra R.

Proposition 3.174. Let G be an affine group scheme over k and g its Lie
algebra. For each k-algebra R and each x ∈ g⊗R, there exists a unique element

exp(Tx) ∈ G(RJT K)

satisfying the following conditions:

i) the image exp(εx) of exp(Tx) in G(R[ε]) is equal to eεx, where eεx is the
element defined in (3.90);

ii) the equality exp((T + T ′)x) = exp(Tx) exp(T ′x) holds in G(RJT, T ′K).
Here exp((T+T ′)x) represents the image of exp(Tx) in G(RJT, T ′K) under
the map induced by the algebra morphism RJT K→ RJT, T ′K that sends T
to T + T ′.

This result is proved in [DG70, II §6, Prop. 3.1]. We now look for conditions
ensuring that the element exp(Tx) lies in G(R[T ]).

Definition 3.175. Let G be an affine algebraic group with Lie algebra g. An
element x ∈ g ⊗ R is said to be nilpotent if there exists a faithful representa-
tion ρ : G→ GL(V ) such that dρ(x) is a nilpotent endomorphism of V ⊗R.

The next result is [DG70, II §6 Cor. 3.5].

Proposition 3.176. If x is nilpotent, then exp(Tx) belongs to G(R[T ]).

Thanks to Proposition 3.176, we can make the following definition.

Definition 3.177. Let x ∈ g⊗R be a nilpotent element. Then we define exp(x)
as the image of exp(Tx) under the map G(R[T ])→ G(R) induced by T 7→ 1.

Let us now assume that U is a unipotent affine algebraic group, and let u
denote its Lie algebra. Thanks to Proposition 3.153, there exists a faithful repre-
sentation ρ : U → GL(V ) such that ρ(U) lies in Upn for a suitable choice of basis
of V . Every element of u⊗R is hence nilpotent, and we obtain maps

(3.178) exp: u⊗R −→ U(R)

thanks to Proposition 3.176. These maps are functorial with respect to morphisms
of k-algebras. Since u is finite-dimensional, the functor R 7→ u⊗R is represented by
a k-scheme that we will also denote by u, and (3.178) is the evaluation on R-points
of a morphism of schemes exp: u→ U .
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Theorem 3.179. Let U be a unipotent affine algebraic group and u its Lie
algebra, viewed as a scheme. Then exp: u→ U is an isomorphism of schemes. In
particular, O(U) is a polynomial algebra (i.e. a free commutative algebra).

This result is proved in [DG70, IV §2 Prop. 4.1].

Corollary 3.180. Let U be a pro-unipotent affine group scheme and u its Lie
algebra. If u is given the pro-algebraic scheme structure from Remark 3.92, then
the exponential exp: u→ U is an isomorphism of pro-algebraic schemes.

Proof. Write U as a projective limit U = lim←−Uα of unipotent affine algebraic

groups Uα, and let uα = Lie(Uα). Since the isomorphisms of schemes exp: uα → Uα
from Theorem 3.179 are functorial, they induce an isomorphism of pro-algebraic
schemes exp: u→ U . □

Definition 3.181. Let U be a pro-unipotent affine group scheme and u its
Lie algebra, with the structure of a pro-algebraic scheme from Remark 3.92. The
logarithm is the isomorphism of schemes log : U → u inverse to exp.

The phenomenon we saw in Example 3.108 i), namely the existence of an iso-
morphism from the completed universal enveloping algebra of the additive group
to the dual of its ring of functions, is characteristic of pro-unipotent groups.

Theorem 3.182. Let U be a pro-unipotent affine group scheme and let u be
its Lie algebra. Assume that u/[u, u] is finite-dimensional. Then the canonical
morphism U(u)→ O(U)∨ from (3.107) extends to an isomorphism U(u)∧ → O(U)∨

on the completed universal enveloping algebra.

Proof. We first show that the canonical map U(u)→ O(U)∨ can be extended
to a map U(u)∧ → O(U)∨. Indeed, let f ∈ O(U) and µ ∈ U(u)∧. Since the
conilpotency filtration on O(U) is exhaustive by Proposition 3.158, there exists
an integer i such that f lies in the annihilator Ci = AnnO(U) J

i+1. We can then

define µ(f) as the image of f by the image of µ in U(u)/J i+1. Since the original
map U(u)→ O(U)∨ is compatible with the product and the (completed) coproduct
on the Hopf algebras U(u) and O(U)∨, the same holds for this extension.

Let us now show that the map U(u)∧ → O(U)∨ is an isomorphism, for which
it suffices to check that it is an isomorphism of vector spaces. We first consider the
case of a unipotent affine algebraic group U . Let A = O(U) be its ring of regular
functions and I ⊂ A the ideal of those vanishing at the neutral element e ∈ U(k). By
Theorem 3.179, A is a polynomial algebra, say A = k[T1, . . . , Tr]. Up to translating
the variables by elements of k, we may assume that I is generated by T1, . . . , Tr.
Let A⩽n denote the vector space of polynomials of degree less than or equal to n.
As vector spaces, there is a decomposition

(3.183) A = A⩽n ⊕ In+1,

hence isomorphisms of vector spaces A⩽n ≃ A/In+1. Since A = lim−→A⩽n, we have

A∨ ≃ lim←−(A⩽n)∨.

By Theorem 3.114, the universal enveloping algebra of u and the space of distri-
butions on U are isomorphic: U(u) ≃ Dist(U). This isomorphism sends FnU(u)
to Distn(U). Besides, we saw in Example 3.111 iii) that the space Distn(U) is
isomorphic to the dual of A/In+1. Hence, we obtain an identification

(3.184) FnU(u) ≃ (A/In+1)∨.
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There is a decomposition

U(u) = FnU(u)⊕ Jn+1.

Together with the decomposition (3.183) and the identification (3.184), it gives an
identification

U(u)/Jn+1 ≃ (A⩽n)∨.

By construction, the map U(u)∧ → A∨ fits into a commutative diagram

U(u)∧ //

��

U(u)/Jn+1

≃
��

A∨ // (A⩽n)∨

for each n, which implies that it is an isomorphism.
Let us now move to the general case where U is a pro-unipotent affine group

scheme such that u/[u, u] is finite-dimensional. Let J ⊂ U(u) be the augmentation
ideal. By Corollary 3.104, the space J/J2 is finite-dimensional. It follows that all
quotients JN/JN+1 are finite-dimensional, since the map (J/J2)⊗N → JN/JN+1

is surjective. Then, induction and the short exact sequence

0 −→ JN/JN+1 −→ U(u)/JN+1 −→ U(u)/JN −→ 0

imply that U(u)/JN+1 is finite-dimensional for all N .
Let us now write the pro-unipotent group U as

U = lim←−
α

Uα

with the groups Uα unipotent and the maps U → Uα surjective (Exercise 3.149).
Let uα be the Lie algebra of Uα and Jα the augmentation ideal of U(uα). The fact
that U(u)/JN+1 is finite-dimensional implies that, for each N there is a big enough
index α0 such that, for α ⩾ α0 we have U(uα)/JN+1

α = U(u)/JN+1. Therefore,
using that projective limits commute with each other, we get

(3.185)

U(u)∧ = lim←−
N

U(u)/JN+1

= lim←−
N

lim←−
α

U(uα)/JN+1
α

= lim←−
α

lim←−
N

U(uα)/JN+1
α

= lim←−
α

U(uα)∧.

Since the maps U → Uα are surjective, the maps Aα = O(Uα) → O(U) = A are
injective and we have isomorphisms

U(u)∧ = lim←−
α

U(uα)∧ ≃ lim←−
α

A∨α = A∨.

This finishes the proof of the theorem. □
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3.3.5. Primitive elements and group-like elements. In any completed Hopf al-
gebra H, such as the completed universal enveloping algebra U(u)∧, the notion of
primitive element is the same as in Definition 3.101. Namely, an element v ∈ H is
called primitive if it satisfies

∆v = 1⊗ v + v ⊗ 1.

We let P (H) denote the set of primitive elements of H.

Lemma 3.186. Let H be a completed Hopf algebra. If v is a primitive element
of H, then ϵ(v) = 0. In other words, v ∈ Ker(ϵ).

Proof. We use the relation (Id⊗ϵ) ◦∆ = Id to obtain

v = (Id⊗ϵ)(1⊗ v + v ⊗ 1) = ϵ(v) + v,

and hence ϵ(v) = 0. □

Corollary 3.187. Let U be a pro-unipotent affine group scheme and let u be
its Lie algebra. Assume that u/[u, u] is finite-dimensional. Then the composition

u −→ U(u) −→ U(u)∧

is injective and identifies u with the set of primitive elements of U(u)∧.

Proof. We identify U(u)∧ with O(G)∨ through the isomorphism from The-
orem 3.182. Under this identification, the map u → U(u)∧ corresponds to the
inclusion (I/I2)∨ → O(G)∨, which is injective. Clearly, the image of u is contained
in the space of primitive elements of U(u)∧. Conversely, let us show that each
primitive element a ∈ O(G)∨ vanishes on I2 and on η(k). Indeed, if x, y ∈ I, then

⟨a, xy⟩ = ⟨∆a, x⊗ y⟩ = ⟨1⊗ a+ a⊗ 1, x⊗ y⟩ = ϵ(x)⟨a, y⟩+ ϵ(y)⟨a, x⟩ = 0.

Besides, by Lemma 3.186, we have

⟨a, η(1)⟩ = ⟨ϵ(a), 1⟩ = 0.

We deduce that a primitive element lies in u, as wanted. □

Let now H be a Hopf algebra, with augmentation ideal J = Ker ϵ, and let H∧

be its completion with respect to J .

Definition 3.188. An element x ∈ H∧ is called group-like if the equalities

ϵ(x) = 1 and ∆x = x⊗ x
hold. We write G(H∧) for the set of group-like elements of H∧.

Lemma 3.189. Group-like elements of H∧ form a group under product.

Proof. Since the counit and the coproduct are morphisms of algebras, the
product of two group-like elements is also group-like. The compatibility

∇ ◦ (S ⊗ Id) ◦∆ = η ◦ ϵ
for a group-like element reads S(x)x = 1. Therefore, S(x) is the inverse of x. □

For each n ⩾ 1, we define the ideal

Jn = Ker(H∧ −→ H/Jn)

of H∧. In particular, J1 = Ker(ϵ : H∧ → k). There is an inclusion (J1)n ⊂ Jn and

(3.190) H∧ = lim←−H
∧/Jn+1.
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With a primitive element v ∈ H∧ we associate its exponential

(3.191) exp(v) =

∞∑

n=0

vn

n!
∈ H∧,

which is to be understood as the element of the projective limit (3.190) consisting

of the class of the partial sum
∑n
m=0

vm

m! in H∧/Jn+1 for each n. This makes sense
because vn belongs to Jn1 by Lemma 3.186.

With a group-like element x ∈ H∧ we associate its logarithm

(3.192) log(x) =

∞∑

n=1

(−1)n+1 (x− 1)n

n
∈ H∧,

understood as above since it is part of the definition of a group-like element (Defi-
nition 3.188) that x− 1 belongs to J1.

Proposition 3.193. The series exp and log determine bijections

G(H∧)

log --
P (H∧)

exp
ll

inverse of each other.

Proof. The fact that the exponential and the logarithm are inverse of each
other is standard, so that we only need to check that the exponential sends primitive
elements to group-like elements and that the logarithm sends group-like elements
to primitive elements. For this, let v ∈ H∧ be a primitive element. Since the
exponential series starts with 1, the condition ϵ(exp(v)) = 1 holds Moreover,

∆

∞∑

n=0

vn

n!
=

∞∑

n=0

(1⊗ v + v ⊗ 1)n

n!

=

∞∑

n=0

n∑

p=0

(
n

p

)
vp ⊗ vn−p

n!

=

∞∑

p=0

∞∑

q=0

vp

p!
⊗ vq

q!

= exp(v)⊗ exp(v).

Thus, exp(v) is group-like. Let now x ∈ H∧ be a group-like element. The identity

log(1 + a+ b+ ab) = log((1 + a)(1 + b)) = log(1 + a) + log(1 + b)

translates into the equality of power series in commuting variables

(3.194)

∞∑

n=1

(−1)n
(a+ b+ ab)n

n
=

∞∑

n=1

(−1)n
an

n
+

∞∑

n=1

(−1)n
bn

n
.
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Using this identity, we compute

∆

∞∑

n=1

(−1)n
(x− 1)n

n
=

∞∑

n=1

(−1)n
(x⊗ x− 1⊗ 1)n

n

=

∞∑

n=1

(−1)n
(1⊗ (x− 1) + (x− 1)⊗ 1 + (x− 1)⊗ (x− 1))n

n

=

∞∑

n=1

(−1)n
(1⊗ (x− 1))n

n
+

∞∑

n=1

(−1)n
((x− 1)⊗ 1)n

n
,

which implies that ∆ log(x) = 1⊗log(x)+log(x)⊗1. Hence, log(x) is primitive. □

3.3.6. Free Lie algebras and the Baker–Campbell–Hausdorff formula. We now
study some properties of free Lie algebras and free associative algebras, and use
them to derive the Baker–Campbell–Hausdorff formula.

Definition 3.195. Let S be a set. The free Lie algebra Lie⟨S⟩ generated
by S is the unique Lie algebra with a map S → Lie⟨S⟩ that satisfies the following
universal property: for each Lie algebra L and each map S → L, there exists a
unique morphism of Lie algebras Lie⟨S⟩ → L that makes the diagram

S //

""

Lie⟨S⟩

��
L

commutative. Similarly, the free associative algebra k⟨S⟩ generated by S is the
unique associative k-algebra along with a map S → k⟨S⟩ such that, for each
associative k-algebra A and each map S → A, there exists a unique morphism
of k-algebras k⟨S⟩ → A that makes the following diagram commutative:

S //

!!

k⟨S⟩.

��
A

Observe that the free associative algebra generated by S is nothing but the
algebra of non-commuting polynomials introduced in Notation 1.148. Therefore,
if ⟨S⟩k is the k-vector space with basis S, then

k⟨S⟩ = T (⟨S⟩k)

is the tensor algebra generated by ⟨S⟩k. As the following result shows, the free
Lie algebra and the associative algebra generated by the same set of elements are
related by means of the universal enveloping algebra.

Proposition 3.196. Let S be a set. Then

U(Lie⟨S⟩) = k⟨S⟩.

Proof. Let X be an associative k-algebra, that we will also regard as Lie alge-
bra (Remark 3.83) or even as a bare set. We have the following chain of equalities



230 J. I. BURGOS GIL AND J. FRESÁN

that follow from the universal properties of the involved objects.

Homk-alg(U(Lie⟨S⟩), X) = HomLie(Lie⟨S⟩, X)

= Homsets(S,X)

= Homk-alg(k⟨S⟩, X).

By Yoneda’s Lemma, U(Lie⟨S⟩) = k⟨S⟩. □

We assume from now on that S is at most countable. From Proposition 3.196
and Corollary 3.102, we recover a theorem by Friedrichs (see [Jac62, V Thm. 9]).

Corollary 3.197. Let S be a countable set and let F = k⟨S⟩ be the free
associative algebra generated by S. Let ∆ be the coproduct on F determined by
being an algebra morphism and satisfying ∆x = 1⊗ x+ x⊗ 1 for all x ∈ S. Then
the space of primitive elements P (F ) is the free Lie algebra generated by S.

Proof. By Proposition 3.196, there is an isomorphism k⟨S⟩ = U(Lie⟨S⟩) that
respects the coproduct, and in particular sends primitive elements to primitive
elements. By Corollary 3.102, the primitive elements of U(Lie⟨S⟩) are given by

P (U(Lie⟨S⟩)) = Lie⟨S⟩,
which is what we needed to prove. □

We are now ready to prove the existence of the Baker–Campbell–Hausdorff
formula in the unipotent setting.

Theorem 3.198. There exists a power series

H(X,Y ) = X + Y +
1

2
[X,Y ] + · · · ∈ Q⟪X,Y ⟫,

whose entries are iterated commutators between X and Y with rational coefficients,
such that, for every pro-unipotent group U with Lie algebra u, every k-algebra R,
and every pair of elements x, y ∈ u⊗R, the following identity holds:

(3.199) exp(x) exp(y) = exp(H(x, y)).

Proof. We consider the case k = Q and let S = {X,Y } be the set with two
elements. We define the power series H(X,Y ) ∈ U(Lie⟨S⟩)∧ as

H(X,Y ) = log(exp(X) exp(Y )).

By Proposition 3.193 and Lemma 3.189, the element exp(X) exp(Y ) is group-like,
so H(X,Y ) is well-defined. By Proposition 3.193 again, H(X,Y ) is a primitive ele-
ment. If we induce a grading where X and Y are both of degree 1, the coproduct is a
graded morphism. Therefore, each homogeneous term in the power series H(X,Y )
is primitive as well. By Corollary 3.197, each homogeneous term in H(X,Y ) be-
longs to Lie⟨S⟩. Therefore, H(X,Y ) is a formal power series whose entries are
linear combinations of iterated commutators of X and Y with rational coefficients.

Since the equality (3.199) is true in the pro-nilpotent completion of the free
Lie algebra in two elements, it is also true for x and y two nilpotent matrices with
entries in any k-algebra R. Since any unipotent group is a closed subgroup of Upn
for some n, we deduce from Exercise 3.222 that formula (3.199) is true for any
unipotent group U with Lie algebra u, with exp now denoting the exponential map
from u ⊗ R to U(R). Note that, since u is nilpotent, H(x, y) is a polynomial in
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commutators between x and y, and hence a well defined element of u ⊗ R. Let
now U be a pro-unipotent group and u its Lie algebra. Write

U = lim←−
α

Uα, u = lim←−
α

uα.

Then there is a commutative diagram

(3.200) u

exp

��

// ∏
α uα∏

exp

��
U // ∏

α Uα.

For an element x in u⊗R or in U(R), we write (xα) for its image on the right-hand
side of the diagram (3.200). For x, y ∈ u⊗R, the chain of equalities

(exp(x) exp(y))α = exp(xα) exp(yα) = exp(H(xα, yα)) = exp(H(x, y))α

and the injectivity of the horizontal maps in diagram (3.200) show that (3.199) is
also true for U . This finishes the proof. □

Corollary 3.201. Let U1 and U2 be pro-unipotent groups and u1 and u2 their
Lie algebras. Any morphism of Lie algebras u1 → u2 induces a morphism of affine
group schemes U1 → U2.

Proof. Recall the map log from Definition 3.181. We define a morphism of
schemes as the composition

(3.202) U1
log−→ u1 −→ u2

exp−→ U2.

The fact that this map is a group morphism follows from the universality of the
Baker–Campbell–Hausdorff formula holds universally. More concretely, let φ be
the original morphism of Lie algebras and ψ the composition (3.202). Let R be
a k-algebra and x, y ∈ U1(R). Since formula (3.199) holds for any pro-unipotent
group, using that φ is a morphism of Lie algebras, we deduce

ψ(x · y) = ψ(exp(H(log(x), log(y))))

= exp(φ(H(log(x), log(y))))

= exp(H(φ(log(x)), φ(log(y))))

= exp(H(log(ψ(x)), log(ψ(y))))

= ψ(x) · ψ(y),

proving the compatibility of ψ and the product. □

We can use the previous ideas to recover the group of k-valued points of a
pro-unipotent group from its Lie algebra.

Proposition 3.203. Let U be a pro-unipotent group with Lie algebra u. As-
sume that u/[u, u] is finite-dimensional. Then the group U(k) is canonically iso-
morphic to the group G(U(u)∧).

Proof. The exponential map yields an isomorphism of schemes exp: u→ U ,
hence a bijection u(k) → U(k). On the other hand, the power series exp gives a
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bijection between the space of primitive elements of U(u)∧ and the set of group-
like elements of U(u)∧. By Corollary 3.187, we can identify the space of prim-
itive elements of U(u)∧ with u(k). Through this identification, the abstract ex-
ponential map gets identified with the power series exp, as in the proof of Theo-
rem 3.198. Hence, we obtain a bijection between U(k) and G(U(u)∧). Since the
Baker–Campbell–Hausdorff formula holds both for U(k) and G(U(u)∧), and the
identification of u with P (U(u)∧) respects the Lie bracket, we deduce that the
bijection U(k)→ G(U(u)∧) is a group isomorphism. □

3.3.7. Nilpotent representations. Let U be a unipotent affine algebraic group
and u its nilpotent Lie algebra. As the following example shows, a finite-dimensional
representation of u does not need to come from a representation of U .

Example 3.204. Consider the groups G = Gm and Ga. In both cases, the
Lie algebra of G is the one-dimensional algebra k with trivial bracket. Consider
the one-dimensional representation given by the identification Gm = GL1. This
defines a representation of k that sends an element a ∈ k to the matrix (a). This
representation of k does not come from an algebraic representation of Ga, as can
be seen, for instance, arguing that the exponential map exp: k → Ga(k) = k is the
identity, while as matrices, exp(a) does not need to be an element of k.

This example shows that an obstruction to lifting a representation ρ from u to
a representation of U comes from the fact that ρ(x) may be non-nilpotent and the
exponential of non-nilpotent elements does not need to be algebraic.

Definition 3.205. Let u be a finite-dimensional nilpotent Lie algebra. We
say that a finite-dimensional representation ρ : u → gl(V ) is nilpotent if ρ(x) is a

nilpotent endomorphism of V for all x ∈ u. We let Repnil(u) denote the category
of finite-dimensional nilpotent representations.

Nilpotent representations solve the lifting problem.

Proposition 3.206. Let U be a unipotent Lie group and u its nilpotent Lie
algebra. There is a canonical equivalence of categories

Rep(U) −→ Repnil(u)

given by ρ 7→ dρ.

Proof. Let ρ : U → GL(V ) be a representation of U . Since all representations
of U are unipotent, we can choose a basis of V such that the image of ρ is contained
in Upn. Therefore, dρ is contained in Lie(Upn) = un, the space of strictly upper

triangular matrices, which implies thatdρ is an object of Repnil(u). Conversely,
let ρ : u→ gl(V ) be a nilpotent representation of u. By Engel’s theorem (Proposi-
tion 3.168), there is a basis of V such that ρ(u) ⊂ un. By Corollary 3.201, there is
an algebraic group morphism µ : U → Upn satisfying dµ = ρ. □

3.3.8. Graded Lie algebras. In the sequel, we will need to deal with Lie alge-
bras L with infinite-dimensional abelianization L/[L,L], for which the pro-nilpotent
completion from Definition 3.171 does not have the properties we want. However,
in most cases of interest, L comes with a grading with finite-dimensional graded
pieces, and one can use the grading to define a better behaved notion.
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Definition 3.207. Let L =
⊕

n<0 Ln be a negatively graded Lie algebra such
that Ln is finite-dimensional for all n < 0, and let

FnL =
⊕

m⩽−n

Lm

be the associated decreasing filtration. The pro-nilpotent completion of L (with
respect to the grading) is the projective limit

L̂ = lim←−
n

L/FnL.

The next lemma shows that this is a reasonable definition.

Lemma 3.208. Let L =
⊕

n<0 Ln be a negatively graded Lie algebra.

i) If dimLn <∞ for all n < 0, then L̂ is pro-nilpotent.

ii) If dimL/[L,L] <∞, then dimLn <∞ for all n < 0 and the pro-nilpotent
completions from Definitions 3.171 and 3.207 are canonically isomorphic
to each other.

Proof. The equality L/FmL =
⊕m−1

i=1 L−i implies that the vector space Ln
is finite-dimensional for all n if and only if L/FnL is finite-dimensional for all n.
Moreover, L(i) is contained in F i+1 for all i ⩾ 0 since L is negatively graded, and
hence L/FnL is nilpotent. This proves i). For ii), we first observe that L/L(n)

surjects onto L/Fn+1L for all n ⩾ 0. Since the finite-dimensionality of L/[L,L]
implies that of L/L(n), we deduce that all graded pieces Li are finite-dimensional.
Besides, since L/[L,L] is finite-dimensional, there exists a finite set of homogeneous
Lie algebra generators of L. Letting r denote the largest degree among them, we
get F r(i+1) ⊂ L(i) for all i ⩾ 0. By a standard argument using projective limits,
the inclusions F r(i+1) ⊂ L(i) ⊂ F i+1 imply that the two pro-nilpotent completions
are canonically isomorphic to each other. □

Let L be a graded Lie algebra satisfying the conditions of Definition 3.207.
The Poincaré–Birkhoff–Witt theorem (Theorem 3.99) implies that the universal
enveloping algebra U(L) is a graded algebra with U(L)0 = k, U(L)n = 0 for
all n > 0 and dimU(L)n < ∞ for all n < 0. The decreasing filtration FnU(L) is
defined as before as

FnU(L) =
⊕

n′⩽−n

U(L)n.

Definition 3.209. The graded completion of U(L) is the projective limit

U(L)∨ = lim←−
n

U(L)/FnU(L).

Remark 3.210. One can give an analogous definition in the case when L is
concentrated in positive degrees.

The theory of graded Lie algebras applies notably to the following situation.

Definition 3.211. A graded pro-unipotent group is a a pro-unipotent group U
on which the group Gm acts compatibly with the pro-unipotent structure and the
group structure.
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The fact that the action is compatible with the pro-unipotent structure means
that we can write

U = lim←−
α

Uα,

with each Uα unipotent and that the group Gm acts on each Uα is such a way that
the maps πα,β : Uβ → Uα are Gm-equivariant.

On k-points, the compatibility with the group structures means that

(3.212)

t(g1g2) = t(g1)t(g2),

t(g−11 ) = t(g1)−1,

t(e) = e

hold for all t ∈ k× and g1, g2 ∈ Uα(k). As usual, these conditions can be translated
into diagrams of group schemes and diagrams of Hopf algebras.

Let U be a graded pro-unipotent group with Hopf algebra A = O(U). Then
A is a graded algebra. Indeed, as seen in Example 3.60, the Hopf algebra of Gm
is k[x, x−1] with coaction ∆x = x⊗ x and counit ϵ(x) = 1. The action of Gm on U
gives a coaction ∆: A→ A⊗ k[x, x−1], and we set An = ∆−1(A⊗ xn). For a ∈ A,
there is a decomposition into a finite sum

∆a =
∑

n∈Z
anx

n.

The properties of a coaction readily imply that

a =
∑

n

an, an ∈ An.

Therefore, A =
⊕

nAn. For a ∈ An and b ∈ Am, the computation

∆(ab) = ∆(a)∆(b) = a⊗ xn · b⊗ xm = ab⊗ xn+m

shows that ab belongs to An+m, so A is a graded algebra. Since e is a fixed point
for the action of Gm, we deduce that the ideal I is homogeneous. Hence, I and I/I2

inherit a structure of graded vector space.

Definition 3.213. Let U be a graded pro-unipotent affine group scheme. The
graded Lie algebra of U is defined as

ugr =
⊕

n

un =
⊕

n

((I/I2)−n)∨.

In general, ugr is not the Lie algebra of U but the following holds.

Lemma 3.214. Let U be a graded pro-unipotent group such that A = O(U) is
connected (that is, An = 0 for n < 0 and A0 = k) and satisfies dimAn < ∞ for
all n. If u = Lie(U), then

u = ûgr,

where ûgr denotes the pro-nilpotent completion from Definition 3.207.

Proof. Write u = lim←− uα as a limit of finite-dimensional graded Lie algebras,

and set Kα = Ker(u → uα). Since the Lie algebra uα is finite-dimensional, there
is an n ⩾ 0 such that Fnuα = 0. This implies that Fnu ⊂ Kα. On the other
direction, since the projective limit is compatible with the grading,

u/Fnu = lim←−
α

uα/F
nuα
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and, by the hypothesis, u/Fnu is finite-dimensional, for each n > 0 there is an α
such that u/Fnu = uα/F

nuα, hence Kα ⊂ Fnu. The two inclusions we have proved
imply that the limits

ûgr = lim←−
n

u/Fnu and u = lim←−
α

u/Kα

are canonically isomorphic. □

Several results that we stated in the case when L/[L,L] is finite-dimensional
can be generalized to the graded case.

Proposition 3.215. Let U be a graded pro-unipotent group such that A = O(U)
is connected and satisfies dimAn <∞ for all n. If u = Lie(U), then

i) there is a canonical isomorphism U(ugr)∧ = A∨;

ii) the group U(k) of k-points of U is canonically isomorphic to the group of
group-like elements G(U(ugr)∧).

We end this section discussing finite-dimensional graded representations.

Definition 3.216. Let U be a graded pro-unipotent affine group scheme. A
graded representation of U is a graded finite-dimensional k-vector space V along
with a Gm-equivariant morphism ρ : U → GL(V ), i.e. satisfying

ρ(tg) = tρ(g)t−1

for all t ∈ k× and all g ∈ U . We denote by RepGm
(U) the category of graded

finite-dimensional representations of U . Similarly, if L is a graded Lie algebra,
then RepGm

(L) denotes the category of graded finite-dimensional vector spaces V
along with a representation ρ : L→ End(V ) satisfying

ρ(Ln)Vm ⊂ Vn+m.
Theorem 3.217. Let U be a graded pro-unipotent group such that A = O(U)

is connected and satisfies dimAn < ∞ for all n > 0. Consider the pro-algebraic
group G = U ⋊Gm. Then there are equivalences of categories

Rep(G) ≃ RepGm
(U) ≃ RepGm

(ugr).

Proof. For simplicity of the exposition, we will argue using k-points of G
and U . Let ρ : G → GL(V ) be a finite-dimensional representation of G. Since G
is a semidirect product U ⋊ Gm, there is a group morphism Gm → G that we use
to identify Gm with a subtorus of G. Therefore, there is an induced representation
of Gm on V . By Exercise 3.219, this representation induces a grading on V . More-
over, the action of Gm on U is given by t(g) = tgt−1 for t ∈ Gm(k) and g ∈ U(k).
Consequently, ρ(t(g)) = tρ(g)t−1 and ρ defines an element of RepGm

(U). Con-
versely, if (ρ, V ) ∈ RepGm

(U), then V is a graded vector space, and hence carries

an action of Gm. The condition ρ(t(g)) = tρ(g)t−1 implies that the action of U and
the action of Gm on V are compatible with the semi-direct product G = U ⋊ Gm
and hence they define an element of Rep(G).

The existence of a functor RepGm
(U)→ RepGm

(ugr) is clear. The interesting
part is to show that every graded finite-dimensional representation of ugr comes
from a representation of U . Let V be such a representation. Let m be the differ-
ence between the maximal degree and the minimal degree of V . Then the action
of Fm+1ugr on V is trivial. By Lemma 3.214, there is a surjection

(3.218) u −→ ugr/Fm+1ugr
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compatible with the action of Gm, and V factors through a representation of the
finite-dimensional nilpotent Lie algebra ugr/Fm+1ugr. Write

U = lim←−
α

Uα

with Gm acting on each Uα and the maps U → Uα surjective. Let uα be the Lie
algebra of Uα. Since ugrn is finite-dimensional for all n, there is an α such that the
surjection (3.218) factors as

u //

%%

uα

��
ugr/Fm+1ugr.

Therefore, the representation V defines a graded representation of uα. Since uα
is a graded Lie algebra with only negative grades, we deduce that any graded
finite-dimensional representation of uα is nilpotent. By Proposition 3.206, this
representation of uα comes from a graded representation of Uα, and hence defines
a graded representation of U . □

⋆ ⋆ ⋆

Exercise 3.219. Let V =
⊕

n∈Z V
n be a graded k-vector space. Then there

is an induced left action of Gm on V given by λ · v = λnv on each v ∈ V n. In fact,
giving a Z-grading on V is equivalent to giving an action of Gm.

i) Prove that the coalgebra O(Gm) is isomorphic to the coalgebra H from
Example 3.55.

ii) Prove that the coaction of O(Gm) on V determined by Lemma 3.118
agrees with the coaction of H from Example 3.55.

Exercise 3.220. Let G be an affine group scheme. In this exercise, we show
that not every linear representation of the abstract group G(k) thas has “geometric
origin” is an algebraic representation of G. For instance, consider the complex
vector space V = K(P1

C) of rational functions on the complex projective line. The
group G(C) = SL2(C) acts on P1

C(C) by Möbius transformations
(
a b

c d

)
· z =

az + b

cz + d
,

and hence linearly on the vector space V .

i) Let W ⊂ V be a finite-dimensional vector subspace. Show that the set of
poles of the functions belonging to W is finite.

ii) Show that the set of poles of the functions in the G-orbit of t is infinite.

iii) Use Lemma 3.122 to conclude that the linear representation V of G(C)
does not come from a representation of the affine algebraic group G = SL2.

Exercise 3.221. Let L be a Lie algebra. Construct a surjective linear map

(L/[L,L])⊗n+1 −→ L(n)/L(n+1),

and prove that, if L/[L,L] is finite-dimensional, then so is L/L(n+1) for all n ⩾ 0.
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Exercise 3.222. Consider the unipotent group Upn with Lie algebra un. Prove
that the exponential map exp: un → Upn from Section 3.3.4 can be written explic-
itly as a truncated exponential series. Namely, for N ∈ un, it is given by

exp(N) =

n−1∑

k=0

Nk

k!
.

Exercise 3.223. Translate conditions (3.212) into the existence of commuta-
tive diagrams of affine schemes and the corresponding dual diagrams of algebras.

3.4. The pro-unipotent completion of a group. In this section, we de-
velop some abstract machinery that will be used in the sequel to rephrase the
constructions from Section 3.1 in a more conceptual way. There we saw that it-
erated integrals carry information about the fundamental group of a differentiable
manifold. The question we would like to address now is how much of it can be re-
covered using differential forms. Stated in a vaguer form: what information about
the fundamental group is “cohomological”, or even “motivic” if we are dealing with
algebraic varieties? Throughout, k still denotes a field of characteristic zero.

3.4.1. The abelianization of the fundamental group. The obvious piece of in-
formation that can be recovered via differential forms is the abelianization of the
fundamental group. Indeed, recall the isomorphism

π1(M,x)ab ≃ H1(M,Z)

from Theorem 3.14. Passing to the dual, Theorem 2.79 yields an isomorphism

H1
dR(M,R)

∼−→ Hom(π1(M,x)ab,R).

Moreover, in the case where k is a subfield of C and M = X(C) is the set of
complex points of a smooth variety X over k, we get

H1
dR(X)⊗ C ∼−→ Hom(π1(M,x)ab,C),

where the left-hand side stands for algebraic de Rham cohomology (as in Defini-
tion 2.95) and has thus a purely algebraic definition, in particular a k-structure.

However, the abelianization of the fundamental group is a very crude invariant
that only knows about abelian representations. We should be able to understand
much more than just the abelianization of the fundamental group using differential
forms. A glimpse of this appeared in Section 3.1, when we saw that iterated integrals
are related to nilpotent flat connections, in turn related to unipotent representations
of the fundamental group. In the next paragraphs, we elaborate on this idea.

3.4.2. The pro-unipotent completion. The central concept of the whole section
is the following construction attached to an abstract group.

Definition 3.224. Let Γ be an abstract group. The pro-unipotent comple-
tion Γun of Γ over k is the universal pro-unipotent affine group scheme G over k
endowed with a morphism of abstract groups Γ→ G(k). More precisely,

• Γun is a pro-unipotent affine group scheme over k with a morphism

Γ −→ Γun(k);

• for each pro-unipotent affine group scheme G over k along with a mor-
phism of groups Γ→ G(k), there exists a unique morphism of affine group
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schemes Γun → G such that the following diagram commutes:

Γ //

""

Γun(k).

��
G(k)

The pro-unipotent completion of Γ over Q will be simply called the pro-unipotent
completion of Γ.

The pro-unipotent completion was introduced by Quillen in [Qui69] based on
work by Malcev [Mal49]; it is also called the Malcev completion in the literature.
As it is always the case with universal objects, when the pro-unipotent completion
exists it is unique up to unique isomorphism. Following the same path, we can also
define the pro-algebraic completion of a group.

Definition 3.225. The pro-algebraic completion Γalg over k of an abstract
group Γ is an affine group scheme Γalg over k endowed with a morphism of abstract
groups Γ → Γalg(k) such that, for each affine group scheme G over k along with
a morphism of groups Γ → G(k), there exists a unique morphism of affine group
schemes Γalg → G making the following diagram commutative:

Γ //

""

Γalg(k)

��
G(k).

When k = Q, we will simply call it the pro-algebraic completion of Γ.

Remark 3.226. Whenever the pro-unipotent completion exists, the groups Γ
and Γun have the same finite-dimensional unipotent representations. Therefore, one
cannot recover Γ by just looking at this kind of representations.

We now present Quillen’s construction of the pro-unipotent completion of a
group satisfying a finiteness condition. Basically, the idea is to build an object
that looks like the completed universal enveloping algebra of a quasi-nilpotent Lie
algebra L such that L/[L,L] is finite-dimensional. For the moment, let Γ be any
abstract group and consider the Hopf algebra

k[Γ] = {
∑

g∈Γ
agg | ag ∈ k, ag = 0 except for finitely many g}

from Example 3.63, which is cocommutative but in general non-commutative. Its
counit is also called augmentation.

Definition 3.227. The augmentation of k[Γ] is the algebra morphism

ϵ : k[Γ] −→ k∑
g∈Γ agg 7−→

∑
g∈Γ ag

and its kernel J = Ker(ϵ) is called the augmentation ideal :

J = {
∑

g∈Γ
agg |

∑

g∈Γ
ag = 0}.
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The completion of k[Γ] with respect to J is the projective limit

k[Γ]∧ = lim←−
N

k[Γ]/JN+1,

where the transition maps are the projections k[Γ]/JM+1 → k[Γ]/JN+1 induced
by the inclusions JM+1 ⊆ JN+1 for M ⩾ N . The Hopf algebra structure on k[Γ]
induces a completed Hopf algebra structure on k[Γ]∧ in the sense of Definition 3.70.

The space k[Γ]∧ being infinite-dimensional, unless Γ is finite, its linear dual will
be intractable for most of our purposes. We will instead work with the inductive
limit of the linear duals of the quotients k[Γ]/JN+1, which is best behaved when
they are all finite-dimensional; for example, we will see that under this assumption
it carries the structure of a Hopf algebra.

Definition 3.228. Let V = lim←−N VN be a projective limit of finite-dimensional

k-vector spaces. The topological dual of V is the inductive limit

V ∨top = lim−→
N

V ∨N

of the linear duals V ∨N = Hom(VN , k) of the k-vector spaces VN .

Let us from now on assume that Γ satisfies the finiteness condition that Γab⊗Zk
is a finite-dimensional k-vector space. By Theorem 3.14, this is for instance satisfied
when Γ is the fundamental group of a topological space with the homotopy type of
a finite CW-complex, e.g. when Γ is the fundamental group of the space of complex
points X(C) of an algebraic variety X over C.

Lemma 3.229. If the vector space Γab ⊗Z k is finite-dimensional, then all the
quotients k[Γ]/JN+1 are finite-dimensional as well.

Proof. Taking the equality k[Γ] = k⊕J into account, it suffices to prove that
the quotient J/JN+1 is finite-dimensional for all N ⩾ 0. Looking at the filtration

JN+1 ⊆ JN ⊆ · · · ⊆ J2 ⊆ J,
this amounts to proving that the successive quotients J i/J i+1 are finite-dimensional
for all i ⩾ 1. To treat the case i = 1, we note that the map

Γ −→ J/J2

g 7−→ (g − 1) + J2

factors through the abelianization of Γ, as can be seen by writing

gh− 1 = (g − 1) + (h− 1) + (g − 1)(h− 1).

In fact, it induces an isomorphism

Γab ⊗Z k
∼−→ J/J2

(its inverse sends the class of a generator g− 1 to the class of g in Γab). This shows
that J/J2 is finite-dimensional. Taking into account that the multiplication map

(J/J2)⊗i −→ J i/J i+1

is surjective for all i ⩾ 1, the general result follows. □
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Proposition 3.230. Let Γ be a group such that Γab⊗Z k is finite-dimensional.
Then the topological dual of k[Γ]∧, given by the inductive limit

A = (k[Γ]∧)∨top = lim−→
N

(k[Γ]/JN+1)∨,

carries the structure of a Hopf algebra.

Proof. The proof relies on two key points. First, J is a Hopf ideal of k[Γ] (see
Example 3.78 i)), and hence k[Γ]∧ is a completed Hopf algebra by Proposition 3.81.
Second, each term k[Γ]/JN+1 appearing in the inductive limit is finite-dimensional
by Lemma 3.229, which implies that the completed Hopf algebra structure of k[Γ]∧

defines a Hopf algebra structure in the limit.
We first explain the construction of the coproduct of A. The product of k[Γ]

induces products

k[Γ]/JN+1 ⊗ k[Γ]/JN+1 −→ k[Γ]/JN+1

for each N ⩾ 0 that, using finite-dimensionality, give rise to coproducts

∆N : (k[Γ]/JN+1)∨ −→ (k[Γ]/JN+1)∨ ⊗ (k[Γ]/JN+1)∨

for each N ⩾ 0. For each a ∈ A, there exists a sufficiently large N such that a
is the image of an element aN ∈ (k[Γ]/JN+1)∨. Then ∆a is defined as the image
of ∆NaN in A⊗A; the resulting element is independent of the choices of N and aN
since the transition maps k[Γ]/JM+1 → k[Γ]/JN+1 are morphisms of algebras.

We next explain the construction of the product. The ideal J is also a coideal ,
which implies that k[Γ]/J is a coalgebra. By contrast, JN+1 is not a coideal, since
it only satisfies the inclusion

∆(JN+1) ⊂ k[Γ]⊗ JN+1 + JN ⊗ J + · · ·+ J ⊗ JN + JN+1 ⊗ k[Γ].

As a result, k[Γ]/JN+1 is not a coalgebra in general. Nevertheless, for M ⩾ 2N+1,
the coproduct on k[Γ] induces maps

∆: k[Γ]/JM −→ k[Γ]/JN+1 ⊗ k[Γ]/JN+1

that commute with the transition maps. Their duals give maps
(3.231)
(k[Γ]/JN+1)∨ ⊗ (k[Γ]/JN+1)∨ −→ (k[Γ]/JN+1 ⊗ k[Γ]/JN+1)∨ −→ (k[Γ]/JM )∨.

This is enough to define a product

lim−→
N

(k[Γ]/JN+1)∨ ⊗ lim−→
N

(k[Γ]/JN+1)∨ −→ lim−→
N

(k[Γ]/JN+1)∨.

Indeed, given a, b ∈ A choose representatives aN , bN ∈ (k[Γ]/JN+1)∨ for some big
enough N , and define the product a · b as the image of aN · bN ∈ (k[Γ]/J2N+1)∨

in A obtained by applying (3.231). The compatibility of (3.231) and the transition
maps implies that the result is independent of the choices.

The counit of A is induced from the maps (k[Γ]/JN+1)∨ → k, which are the du-
als of the compositions of the unit k → k[Γ] and the projection k[Γ]→ k[Γ]/JN+1,
and are compatible with the transition maps.

The unit of A is induced from the maps k[Γ]/JN+1 → k obtained from the
augmentation ε on noting that ε(JN+1) = 0, by dualizing and composing with the
natural map (k[Γ]/JN+1)∨ → A.
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Finally, the antipode S(g) = g−1 on k[Γ] satisfies S(JN+1) ⊆ JN+1 for all N ,
and hence induces a map

S : k[Γ]/JN+1 −→ k[Γ]/JN+1

compatible with the inductive system.
The compatibilities between the various operations in the definition of Hopf

algebra are easily deduced from the compatibilities between those on k[Γ]. □

We now turn to Quillen’s construction of the pro-unipotent completion of a
group. The following result can be deduced from [Qui69, App. A], although the
language there is different. A translation into the language of algebraic groups is
given in [Hai93, Thm. 3.3]. We sketch the proof.

Theorem 3.232 (Quillen [Qui69]). Let Γ be an abstract group such that the
vector space Γab⊗Z k is finite-dimensional. Then the pro-unipotent completion of Γ
over k is the affine group scheme G = Spec((k[Γ]∧)∨top).

Proof. As before, write A = (k[Γ]∧)∨top and G = Spec(A). The conilpotency
filtration of A is given by AnnA J

N+1k[Γ]∧. By the definition of k[Γ]∧ as a projective
limit, is clear that the equality

⋂

N⩾0

JN+1k[Γ]∧ = {0}

holds. Therefore, the conilpotency filtration of A is exhaustive. By Proposi-
tion 3.158, we deduce that G is pro-unipotent.

Let now H = Spec(B) be a pro-unipotent group and f : Γ → H(k) a group
morphism. Let B∨ be the non-commutative algebra dual to the coalgebra B. There
is an inclusion H(k) → B∨ given by evaluating functions at points. The map f
extends to a map k[Γ]→ B∨ also denoted by f . The augmentations of k[Γ] and B∨

are compatible with f . Thus, we obtain maps

k[Γ]/JN+1 −→ B∨/JN+1,

where J denotes the augmentation ideal in both algebras. Dualizing, we get

AnnB J
N+1 −→ AnnA J

N+1 ↪−→ A.

Since H is pro-unipotent, by Proposition 3.158 the conilpotency filtration of B is
exhaustive and we obtain a map B → A, and hence a morphism of pro-unipotent
groups G→ H. By construction, this is the only morphism of pro-unipotent groups
that preserves the image of Γ, so G satisfies the universal property defining Γun. □

The Lie algebra g of G satisfies the finiteness condition dim g/[g, g] < ∞,
so Theorem 3.182 provides an isomorphism k[Γ]∧ = U(g)∧. Therefore, Proposi-
tion 3.203 and Corollary 3.102 yield the following:

Proposition 3.233. Let Γ be a group with finite-dimensional Γab ⊗Z k. Then

G(k[Γ]∧) = Γun(k)

and the natural map Γ→ k[Γ]∧ agrees with the structural map Γ→ Γun(k). More-
over, the Lie algebra of Γun agrees with P (k[Γ]∧).
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Example 3.234. Let us illustrate the above proposition for Γ = Z. As we will
see in Exercise 3.242, the pro-unipotent completion of Γ is the additive group Ga
over k, so we need to show that group-like elements in kJyK are in one-to-one
correspondence with k. Let

∑
n⩾0 any

n be a group-like element. Then a0 = 1 and

(3.235) ∇∨

∑

n⩾0

any
n


 =


∑

n⩾0

any
n


⊗


∑

n⩾0

any
n


 .

Since ∇∨y = 1⊗ y + y ⊗ 1, we have

∇∨yn =

n∑

k=0

(
n

k

)
yk ⊗ yn−k.

Equation (3.235) is thus equivalent to the relation

akam =

(
k +m

k

)
ak+m

for all k,m ⩾ 0. In particular, all the coefficients an are determined by the first
one through the equality an = an1/n!. Hence, the group-like element

∑
n⩾0 any

n is

of the form exp(a1y) and this gives the correspondence G(k[Γ]∧) = Γun(k).

From the compatibility between the antipode, the product and the completed
coproduct we easily deduce the following (see Lemma 3.189 for a similar statement
and solve Exercise 3.244):

Lemma 3.236. If x is a primitive element, then S(x) = −x holds. If g is a
group-like element, then g is invertible in the algebra k[Γ]∧ and satisfies S(g) = g−1.

Example 3.237. Let Γ be the free group on two generators γ0 and γ1. In
this example, we compute the pro-unipotent completion of Γ over Q. Since the
elements γ0 − 1 and γ1 − 1 belong to the augmentation ideal, we can define

log(γ0) = log(1 + (γ0 − 1)) = γ0 − 1− (γ0 − 1)2

2
+ · · ·

log(γ1) = log(1 + (γ1 − 1)) = γ1 − 1− (γ1 − 1)2

2
+ · · ·

as elements of Q[Γ]∧. Recall the algebra Q⟪e0, e1⟫ from Example 3.74. We de-
fine a morphism of algebras Q⟪e0, e1⟫ → Q[Γ]∧ by sending e0 to log(γ0) and e1
to log(γ1). It is easy to verify that this map is an isomorphism compatible with all
the extra structures (unit, counit, completed coproduct, and antipode) carried by
these completed Hopf algebras. The pro-unipotent completion of Γ is hence

Γun = Spec(H),

where H is the Hoffman algebra from Example 3.64. In particular, we can identify
the group of rational points Γun(Q) with the set of group-like elements of Q⟪e0, e1⟫,
the Lie algebra Lie(Γun) with the set of primitive elements of Q⟪e0, e1⟫, and the
completed universal enveloping algebra of Lie(Γun) with Q⟪e0, e1⟫.
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3.4.3. The pro-unipotent completion of a torsor. Quillen’s construction can be
extended to define the pro-unipotent completion of a torsor.

Definition 3.238. Let Γ be a group. A left Γ-torsor is a non-empty set P
together with a free and transitive action Γ × P → P . Similarly, a right Γ-torsor
is a non-empty set P together with a free and transitive action P × Γ→ P .

Variant 3.239. Assume that Γab ⊗Z k is finite-dimensional and let A be as in
Proposition 3.230. Let P be a left Γ-torsor. We write k[P ] for the k-vector space
with basis P , which has the structure of a left k[Γ]-module. Moreover, there is a
commutative coproduct on k[P ] determined by ∆(p) = p⊗ p.

The completion of k[P ] is defined as

(3.240) k[P ]∧ = lim←−
N

k[P ]
/
JN+1k[P ].

Consider its topological dual, defined as

R = (k[P ]∧)∨top = lim−→
N

(k[P ]
/
JN+1k[P ] )∨.

Arguing as in the proof of Proposition 3.230, we deduce that R is a commutative
algebra provided with a comodule structure

(3.241) ∆: R −→ A⊗R,
where we set again A = (k[P ]∧)∨. In other words, R is a Hopf module over A. The
unipotent completion of P is defined as the spectrum

P un = Spec(R).

The coaction (3.241) induces an action

Γun × P un −→ P un

that turns P un into a left Γun-torsor. Mutatis mutandis, the same construction can
be made for a right Γ-torsor P ′. Our basic example will be the case when Γ is
the fundamental group π1(M,x) and P and P ′ are the torsors of paths π1(M ;x, y)
and π1(M ; y, x) respectively. In this case, there is also an antipode-like map

S : (Q[P ]∧)∨top −→ (Q[P ′]∧)∨top

induced by the rule S(γ) = γ−1 for a path γ ∈ P .

⋆ ⋆ ⋆

Exercise 3.242. Consider the group Γ = π1(S1, 1) ≃ Z. Let γ0 be a generator
of Γ and consider X0 = log(γ0) as a power series in (γ0− 1) ∈ J . Use γ0 and X0 to
describe explicitly all the following objects:

Q[π1(S1, 1)]/JN+1, Q[π1(S1, 1)]∧, O(π1(S1, 1)un),

π1(S1, 1)un, Lie(π1(S1, 1)un).

In particular, deduce that the pro-unipotent completion of Z is given by the additive
group Ga. Compare this with Exercise 4.74 in the next chapter.

Exercise 3.243. Prove that the pro-unipotent completion of the group Z/2Z
is the trivial group Spec(Q).

Exercise 3.244. Prove Lemma 3.236 using the diagram for the antipode in
Definition 3.47.
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3.5. The bar complex and Chen’s π1-de Rham theorem. In this section,
we make the relation between differential forms and the pro-unipotent completion
of the fundamental group of a smooth manifold precise. If one views the latter as
the singular side of a picture (or the Betti side if we are dealing with algebraic
varieties), then the de Rham side is given by the cohomology of the bar complex.
Both points of view will be related through Chen’s π1-de Rham Theorem 3.273.

3.5.1. The bar complex of a dg-algebra. We start with the definition of a dif-
ferential graded algebra.

Definition 3.245. Let k be a field of characteristic zero. A differential graded
algebra (dg-algebra for short) over k is the data A = (A∗,∧, d) of

• a graded k-vector space

A∗ =
⊕

n∈Z
An;

• a multiplication map

∧ : An ⊗Am −→ An+m

for all integers n,m ∈ Z that makes A into an associative k-algebra with
unit 1 ∈ A0;

• a differential d : A∗ → A∗+1 such that d2 = 0, d(An) ⊆ An+1, and

d(a ∧ b) = da ∧ b+ (−1)na ∧ db, a ∈ An.
We say that A is (graded) commutative if the relation

a ∧ b = (−1)nmb ∧ a
holds for a ∈ An and b ∈ Am, and connected if An = 0 for n < 0 and A0 = k. The
sign operator J: A→ A is defined on homogeneous elements by

J a = (−1)deg(a)a

and extended to the whole A by linearity.
A morphism of dg-algebras is a linear map compatible with the grading, the

multiplication, and the differential. The field k has the structure of a dg-algebra
concentrated in degree 0 with zero differential.

An augmentation of a dg-algebra A is a morphism of dg-algebras ϵ : A→ k. It
follows immediately from the definitions that a connected dg-algebra has a unique
augmentation.

An example to keep in mind throughout this section, when k = R or C, is the
algebra E∗(M,k) of smooth k-valued differential forms on a smooth manifold M ,
together with the wedge product ∧ and the exterior differential d (see Section 2.2.1).
A typical augmentation of this dg-algebra is the evaluation map on an point of M .
Note that E∗(M,k) is not connected. Similarly, for an arbitrary field k, if X is a
smooth affine variety over k, then Ω∗(X) is also a dg-algebra and every k-rational
point induces an augmentation by evaluation. As we will mainly apply the general
constructions to this setting, we chose the notation ∧ for the product in A. We refer
the reader to Section A.8 of the appendix for a crash course on simplicial objects.

Definition 3.246. Let A be a dg-algebra with augmentations ϵ1 and ϵ2. The
simplicial bar complex B•(A, ϵ2, ϵ1) is the simplicial complex of k-vector spaces

Bn(A, ϵ2, ϵ1) = A⊗n = A⊗ n. . .⊗A,



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 245

with faces

δ0[x1| . . . |xn] = ϵ2(x1)[x2| . . . |xn],

δi[x1| . . . |xn] = [Jx1| . . . | Jxi ∧ xi+1| . . . |xn] for i = 1, . . . , n− 1,

δn[x1| . . . |xn] = ϵ1(Jxn)[Jx1| . . . | Jxn−1],

and degeneracies

si[x1| . . . |xn] = [Jx1| . . . | Jxi−1|1|xi| . . . |xn] for i = 1, . . . , n.

In these formulas, we use the bar notation

[x1| . . . |xn] = x1 ⊗ · · · ⊗ xn, [ ] = 1.

The differential in the tensor complex A⊗n is defined as

dver[x1| . . . |xn] =

n∑

i=1

(−1)n−i[Jx1| . . . | Jxi−1|dxi|xi+1| . . . |xn].

Note that dver is not the usual differential in the tensor algebra, but has an extra
sign (−1)n−i in each term. This makes it commute with the faces and degeneracies,
so that B•(A, ϵ2, ϵ1) is a simplicial complex in the category of complexes of k-vector
spaces, and is also natural from the point of view of Leibniz’s rule (Remark 3.254).

Since B•(A, ϵ2, ϵ1) is a simplicial cochain complex, there are two complexes
that one can associate with it. On the one hand, we can take the associated chain
complex CB(A, ϵ2, ϵ1)∗ as in Definition A.230, which is a chain complex of cochain
complexes. We transform it into a double cochain complex by changing the sign
of the chain degree as in Definition A.13 vi), and then form the total complex
(Definition A.33). On the other hand, we can take the normalized chain com-
plex NB(A, ϵ2, ϵ1) as in Definition A.231, change it to a double cochain complex,
and then form the total complex. In both cases, we consider the simplicial degree
as the horizontal or first degree when forming the total complex.

Definition 3.247. The bar complex of (A, ϵ1, ϵ2) is defined as

B∗(A, ϵ2, ϵ1) = TotCB(A, ϵ2, ϵ1).

The reduced bar complex is defined as

B̃∗(A, ϵ2, ϵ1) = TotNB(A, ϵ2, ϵ1).

A direct consequence of Theorem A.232 is:

Theorem 3.248. There are natural quasi-isomorphisms

B̃∗(A, ϵ2, ϵ1) −→ B∗(A, ϵ2, ϵ1) −→ B̃∗(A, ϵ2, ϵ1).

The bar complex is enriched with the following extra structures. The grading
and the differential come from the construction as a total complex, while the others
are inherited from the tensor algebra.

Grading: An element of B∗(A, ϵ2, ϵi) of the form [x1| . . . |xn] is homogeneous
if all the components xi ∈ A are homogeneous. If this is the case, its
degree is defined by

(3.249) deg([x1| . . . |xn]) =

n∑

i=1

deg(xi)− n,
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where deg(xi) is the degree of xi in A∗. In particular, deg([xi]) = n−1 for
an element xi ∈ An, so the map xi 7→ [xi] does not preserve the degree.

Length filtration: It is the increasing filtration where

LmB
∗(A, ϵ2, ϵ1) ⊆ B∗(A, ϵ2, ϵ1)

is the subspace generated by elements [x1| · · · |xn] with n ⩽ m.

Differential: The differential is that of a total complex and is built out of the
differential, the product, and the augmentations of A as follows:

(3.250)

d[x1| · · · |xn] =

n∑

i=0

(−1)iδi[x1| · · · |xn] + (−1)ndver[x1| · · · |xn]

= ϵ2(x1)[x2| · · · |xn] + (−1)nϵ1(Jxn)[Jx1| · · · | Jxn−1]

+

n−1∑

i=1

(−1)i[Jx1| · · · | Jxi ∧ xi+1| · · · |xn]

+

n∑

i=1

(−1)i[Jx1| · · · | Jxi−1|dxi|xi+1| · · · |xn].

Product: It is the shuffle product

∇([x1| · · · |xr]⊗ [xr+1| · · · |xr+s]) =
∑

σ∈�(r,s)

η(σ)[xσ−1(1)| · · · |xσ−1(r+s)].

Here, η(σ) is the sign determined by the equation

(3.251) a1 ∧ · · · ∧ ar+s = η(σ)aσ−1(1) ∧ · · · ∧ aσ−1(r+s),

where deg(ai) = deg(xi)−1 = deg([xi]). Although η(σ) is not determined
by σ alone, but also depends on the degrees of the involved elements, this
abusive notation is the standard one.

Coproduct: If ϵ3 is a third augmentation (that may agree with the previous
ones), there is a coproduct

∆: B∗(A, ϵ3, ϵ1) −→ B∗(A, ϵ3, ϵ2)⊗B∗(A, ϵ2, ϵ1)

given by deconcatenation

∆[x1| · · · |xn] =

n∑

i=0

[x1| · · · |xi]⊗ [xi+1| · · · |xn].

Antipode: It is given by

(3.252) S([x1| · · · |xn]) = (−1)nη(τn)[xn| · · · |x1],

where the sign η(τn) is determined by equation (3.251) as before, for the
permutation given by τn(i) = n− i.

The above structures induce the corresponding structures on the reduced bar

complex B̃(A, ϵ2, ϵ1).
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Remark 3.253. The differential (3.250) can be rewritten, for homogeneous
elements, using the total degrees deg([xi]) = deg(xi)− 1 as follows:

d[x1| · · · |xn] = ϵ2(x1)[x2| · · · |xn] + (−1)
∑n

j=1 deg([xj ])ϵ1(xn)[x1| · · · |xn−1]

+

n−1∑

i=1

(−1)
∑i

j=1 deg([xj ])[x1| · · · |xi ∧ xi+1| · · · |xn]

−
n∑

i=1

(−1)
∑i−1

j=1 deg([xj ])[x1| · · · |dxi| · · · |xn].

In checking the compatibility of the differential with other structures, it might be
useful to remember that ϵ1(xn) is zero unless xn has degree 0.

Remark 3.254. There are many possible choices of signs in the definition of the
bar complex. For instance, in [BK94] the faces and degeneracies are not affected
by any sign, and the differential dver is the usual differential in the tensor complex.
By contrast, we follow the sign convention of [EM53] and [Hai87a] because in this
other convention, the coproduct defined below does not have any sign and the total
differential satisfies Leibniz’s rule with respect to the product in the tensor algebra
and the degree in the bar complex. See [EM53, § 10] for a discussion.

Remark 3.255. The bar complex B∗(A, ϵ1, ϵ2) only depends on the semisimpli-
cial structure (i.e. the faces and not the degeneracies) of B•(A, ϵ1, ϵ2) that does not
use the unit of A. Hence, it can be extended to non-unital algebras. By contrast,
the reduced bar complex also depends on the degeneracies and needs a unit.

3.5.2. The reduced bar complex of a connected dg-algebra. Let A be a dg-algebra
and ϵ an augmentation. We consider the non-unital algebra

IA = Ker(ϵ).

By Remark 3.255, we can define the bar complex

B∗(IA, ϵ2|IA, ϵ1|IA).

The augmentation, together with the unit of A defines a splitting A = k⊕IA, from
which we deduce the following result:

Lemma 3.256. Let (A, ϵ) be an augmented k-algebra, and let ϵ1 and ϵ2 be aug-
mentations. Then the splitting defined by the augmentation induces an isomorphism

B̃∗(A, ϵ2, ϵ1)
∼−→ B∗(IA, ϵ2|IA, ϵ1|IA)

that, together with Theorem 3.248, gives us a quasi-isomorphism

B∗(IA, ϵ2|IA, ϵ1|IA) −→ B∗(A, ϵ2, ϵ1).

Proof. By the definition of the degeneracies, the subcomplex DB∗(A, ϵ2, ϵ1)
consisting of degenerate elements (Definition A.231) is given by

DBn(A, ϵ2, ϵ1) =

n−1∑

i=0

A⊗i ⊗ k ⊗A⊗n−1−i ⊂ A⊗n.

Therefore, the splitting induces an isomorphism

Bn(A, ϵ2, ϵ1)/DBn(A, ϵ2, ϵ1)
∼−→ Bn(IA, ϵ2|IA, ϵ1|IA).
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From Theorem A.232, we derive an isomorphism of graded k-vector spaces. Since
all structures on both sides are given by the same formulas, we see that the isomor-
phism respects all the structures. □

We now make the definition of the reduced bar complex explicit in the case of
a connected dg-algebra. An advantage of working in this setting is that connected
dg-algebras have a unique augmentation ϵ, whose kernel is concentrated in positive
degrees. All augmentations (those entering the definition of the faces and the
coproduct and the one used to construct the splitting) will thus be equal. We omit
them from the notation, and write simply

B∗(A) = B̃∗(A, ϵ, ϵ).

Definition 3.257. Let (A∗,∧,d) be a connected dg-algebra over k. Set

A+ =
⊕

n>0

An.

The reduced bar complex B∗(A) associated with A is the total tensor algebra of A+:

B∗(A) = k ⊕ A+ ⊕ (A+⊗A+) ⊕ (A+⊗A+⊗A+) ⊕ . . .

The reduced bar complex is provided with the following structures:

Grading: An element of B∗(A) of the form [x1| . . . |xn] is homogeneous if all
the components xi ∈ A+ are homogeneous. If this is the case, its degree
is defined by

deg([x1| . . . |xn]) =

n∑

i=1

deg(xi)− n,

where deg(xi) is the degree of xi in A. In particular, if xi ∈ An, then
deg([xi]) = n− 1, so the map xi 7→ [xi] does not preserve the degree.

Length filtration: It is the increasing filtration where

LmB
∗(A) ⊆ B∗(A)

is the subspace generated by elements [x1| · · · |xn] with n ⩽ m.

Differential: The differential takes both the differential and the product struc-
tures of A into account:

(3.258) d[x1| · · · |xn] = −
n∑

i=1

(−1)
∑i−1

j=1 deg([xj ])[x1| · · · |dxi| · · · |xn]

+

n−1∑

i=1

(−1)
∑i

j=1 deg([xj ])[x1| · · · |xi ∧ xi+1| · · · |xn].

It is easy to check that d is homogeneous of degree 1 and satisfies d◦d = 0.
We will write d = dI − dC , where

dI [x1| · · · |xn] = −
n∑

i=1

(−1)
∑i−1

j=1 deg([xj ])[x1| · · · |dxi| · · · |xn],(3.259)

dC [x1| · · · |xn] = −
n−1∑

i=1

(−1)
∑i

j=1 deg([xj ])[x1| · · · |xi ∧ xi+1| · · · |xn].(3.260)

Here, I stands for “internal” and C for “combinatorial”.
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Product: It is the shuffle product

∇([x1| · · · |xr]⊗ [xr+1| · · · |xr+s]) =
∑

σ∈�(r,s)

η(σ)[xσ−1(1)| · · · |xσ−1(r+s)].

Here, η(σ) is the sign determined by the equation (3.251).

Coproduct: The coproduct is the deconcatenation coproduct

∆[x1| · · · |xn] =

n∑

i=0

[x1| · · · |xi]⊗ [xi+1| · · · |xn].

Antipode: It is given again by equation (3.252).

Since A+ is concentrated in positive degrees, we deduce that B∗(A) is concen-
trated in non-negative degrees. This has the following consequence:

Lemma 3.261. Let A = (A∗,d,∧) be a connected commutative dg-algebra. Then
the above operations endow H0(B∗(A)), the zeroth cohomology group of the reduced
bar complex, with the structure of a commutative Hopf algebra.

Proof. The bar complex B∗(A) is a commutative differential graded Hopf
algebra. This means that the product, coproduct, and antipode are compatible
with the grading and the differential. The latter compatibility is written as

d ◦ ∇ = ∇ ◦ d⊗,

∆ ◦ d = d⊗ ◦∆,

S ◦ d = d ◦ S,

where d⊗ is the induced differential in B∗(A) ⊗ B∗(A), which carries the usual
sign. All these statements can be checked directly. Once we know that all these
operations are compatible with the differential, they are transferred to cohomology.
Since they are compatible with the grading, they induce operations on H0, except,
maybe, the coproduct. In principle, the coproduct would give a map

∆: H0(B∗(A)) −→
⊕

i+j=0

Hi(B∗(A))⊗Hj(B∗(A)).

However, since B∗(A) is non-negatively graded, the only non-zero term on the right-
hand side is H0(B∗(A))⊗H0(B∗(A)), and hence the coproduct is also well defined
at the level of zeroth cohomology. □

Remark 3.262.

i) The commutativity of the product in A∗ is essential in the previous proof.
In fact, if the product on A∗ is not commutative, it is not true that the
shuffle product in B∗(A) is compatible with the differential.

ii) Since the complex B∗(A) is concentrated in non-negative degrees, the
cohomology we are interested in is simply

H0(B∗(A)) = Ker(d: B0(A) −→ B1(A)).

Note that B0(A) consists of k-linear combinations of [ ] and [x1| · · · |xn]
with n ⩾ 1 and deg(xi) = 1 for all i = 1, . . . , n. Also, observe that the
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restrictions of the differentials to B0(A) are given by the formulas

dI [x1| · · · |xn] = −
n∑

i=1

[x1| · · · |dxi| · · · |xn],

dC [x1| · · · |xn] = −
n−1∑

i=1

[x1| · · · |xi ∧ xi+1| · · · |xn].

In practice, one would like to use the de Rham dg-algebra E∗(M,k) that is not
connected, even if the manifold M is connected. In order to use Lemma 3.261, it
is convenient to replace it with a quasi-isomorphic connected dg-algebra.

Lemma 3.263. Take k = R or C and let M be a connected differentiable man-
ifold. Let x, y ∈ M and let A∗ ⊂ E∗(M,k) be a connected dg-subalgebra such that
the inclusion A∗ → E∗(M,k) is a quasi-isomorphism. Let ϵx and ϵy be the aug-
mentations given by evaluation at the points x and y respectively. Then there is a
quasi-isomorphism B∗(A)→ B(E∗(M,k), εy, εx). In particular,

H0(B∗(A∗)) = H0(B(E∗(M,k), εy, εx)).

Proof. Let f : A −→ B be a morphism of dg-algebras, and let ϵ1 and ϵ2 be
two augmentations on B. By composition, they induce augmentations ϵ′1 and ϵ′2
on A. Then there is a map

B(f) : B(A, ϵ′1, ϵ
′
2) −→ B(B, ϵ1, ϵ2).

A consequence of a result by Chen (see [Hai87a, Cor. 1.2.3]) is that if f is a
quasi-isomorphism, then B(f) is also a quasi-isomorphism. This, together with
Theorem 3.248 implies the result. □

3.5.3. The reduced bar complex and iterated integrals. Let M be a connected
differentiable manifold with the homotopy type of a finite CW complex. Recall the
dg-algebra E∗(M,C) of complex smooth differential forms on M . For simplicity
of the exposition, we will assume that we have chosen a complex dg algebra A∗

provided with an injective morphism of dg-algebras φ : A∗ −→ E∗(M) such that

i) A∗ is connected, that is A0 = C and An = 0 for n < 0;

ii) the induced map in cohomology

φ : H∗(A∗) −→ H∗(E∗(M,C))

is an isomorphism.

By Lemma 3.263, the reduced bar complex of A∗ is quasi-isomorphic to the bar
complex of E∗(M,C) with respect to any pair of augmentations, so it will be enough
to consider the reduced bar complex of A∗. A similar discussion can be made with
the bar complex of the whole dg-algebra E∗(M,C); see Exercise 3.280.

The condition of A∗ being connected implies that the elements of degree zero
of B0(A∗) are linear combinations of the shape

∑
[η1| · · · |ηr]

for 1-forms ηi ∈ A1 ⊂ E1(M). Thus, with any element x ∈ B0(A∗) we can associate
an iterated integral

[η1| · · · |ηr] 7−→
(
γ 7−→

∫

γ

η1 · · · ηr
)
.
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For each pair of points x, y ∈M , we define a pairing

(3.264)
⟨ , ⟩ : B0(A∗)⊗Q[ P(M)y x] −→ C

[η1| · · · |ηr]⊗ γ 7−→
∫
γ
η1 · · · ηr,

where P(M)y x is the set of piecewise smooth paths as in Section 3.1, and Q[ P(M)y x]
denotes the Q-vector space with basis P(M)y x.

We can now translate Theorem 3.19 into the language of the bar complex and
the pairing (3.264).

Theorem 3.265. Let η, η1, η2 ∈ B0(A∗) be degree zero elements of the reduced
bar complex of A∗, and let γ, γ1, γ2 be piecewise smooth paths in M . Then the
following three equalities are satisfied:

(3.266) ⟨S(η), γ⟩ = ⟨η, S(γ)⟩,

(3.267) ⟨η, γ1γ2⟩ = ⟨∆η, γ1 ⊗ γ2⟩,

(3.268) ⟨η1 ⊗ η2,∇∨γ⟩ = ⟨η1 � η2, γ⟩.
It follows from this theorem that the length filtration on B0(A∗) is dual to the

filtration by the augmentation ideal on the group algebra of paths.

Proposition 3.269. Let x and y be points of M . Let J ⊂ Q[ P(M)x x] be the
augmentation ideal, N ⩾ 0 an integer, and γ an element of either JN+1Q[ P(M)x y]

or Q[ P(M)y x]JN+1. If η ∈ LNB0(A∗) has length less than or equal to N , then

⟨η, γ⟩ = 0.

Proof. We only treat the case γ ∈ JN+1Q[ P(M)x y] (the other one is com-
pletely analogous). The proof proceeds by induction on N .

For N = 0, every element γ ∈ JQ[ P(M)x y] can be written as

γ =

r∑

i=1

qiγi, qi ∈ Q,
r∑

i=1

qi = 0, γi ∈ P(M)x y.

If η ∈ L0B
0(A∗), then η = α[ ] for some α ∈ C. Since

⟨[ ], γi⟩ = 1, for γi ∈ P(M)x y,

the result in the case N = 0 follows from the condition
∑r
i=1 qi = 0.

Now fix N > 0 and assume that the result holds for all integers N ′ < N . To
prove it for N , we may assume that γ = γ1γ2 with γ1 ∈ J and γ2 ∈ JNQ[ P(M)x y],
and η = [ω1| · · · |ωN ]. Then the relation (3.267) yields

⟨η, γ⟩ = ⟨∆η, γ1 ⊗ γ2⟩

=

N∑

i=0

⟨[ω1| · · · |ωi], γ1⟩⟨[ωi+1| · · · |ωN ], γ2⟩

= ⟨[ ], γ1⟩⟨[ω1| · · · |ωN ], γ2⟩+

N∑

i=1

⟨[ω1| · · · |ωi], γ1⟩⟨[ωi+1| · · · |ωN ], γ2⟩.

The first summand in the last equality vanishes since ⟨[ ], γ1⟩ = 0, and all the
factors ⟨[ωi+1| · · · |ωN ], γ2⟩ in the second sum vanish by the induction hypothesis.
Thus, ⟨η, γ⟩ = 0, as we wanted to show. □
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3.5.4. The reduced bar complex and the pro-unipotent completion of the funda-
mental group. One of the reasons why the reduced bar complex is interesting is that
it provides us with a criterion to decide whether an iterated integral is a homotopy
functional, thus solving the question raised in Section 3.1.

Theorem 3.270. Let ω ∈ B0(A∗). If dω = 0, then the iterated integral associ-
ated with ω is a homotopy functional.

Proof. Let x, y ∈ M be points. Consider two homotopic paths γ1 and γ2
from x to y, and let F be a homotopy between them. Recall from Definition 3.1
that F : [0, 1]2 →M satisfies the conditions

(3.271) F (t, 0) = γ1(t), F (t, 1) = γ2(t), F (0, s) = x, F (1, s) = y.

For simplicity, we will assume that F is smooth; the general case follows by taking
a polyhedral decomposition of [0, 1]2, as in the proof of Lemma 3.11. Set

Fi : [0, 1]n × [0, 1] −→ M,

((t1, . . . , tn), s) 7−→ F (ti, s).

The elements of B1(A∗) are linear combinations of ν = [ν1| · · · |νn], where one
of the νi is a 2-form and all the others are 1-forms. Given such a ν, with the 2-form
in the i-th position, we define the integral along F as∫

F

ν = (−1)i
∫

[0,1]×∆n

F ∗1 ν1 ∧ · · · ∧ F ∗nνn,

where the second integral is oriented by ds ∧ dt1 ∧ · · · ∧ dtn. As in Notation 1.114,
in this integral ∆n denotes the simplex

∆n = {(t1, . . . , tn) | 1 ⩾ t1 ⩾ · · · ⩾ tn ⩾ 0}.
The definition of the integral along F extends to B1(A∗) by C-linearity. We claim
that the equality

(3.272)

∫

γ2

ω −
∫

γ1

ω =

∫

F

dω,

holds, from which the theorem follows at once.
Formula (3.272) is proved by a careful application of Stokes’s theorem. To

prove it, we can assume that ω = [ω1 | · · · | ωn] ∈ B0(A∗). Note the equality

d(F ∗1 ω1 ∧ · · · ∧ F ∗nωn) =

n∑

i=1

(−1)i+1F ∗1 ω1 ∧ · · · ∧ F ∗i (dωi) ∧ · · · ∧ F ∗nωn

derived from the properties defining the exterior derivative (see Section 2.2.1) and
the commutativity of d and F ∗i . Combining this with the definitions of dI and the
integral along F , one gets:∫

F

dIω =

∫

[0,1]×∆n

d(F ∗1 ω1 ∧ · · · ∧ F ∗nωn).

We now apply Stokes’s theorem. Set Ω = F ∗1 ω1 ∧ · · · ∧ F ∗nωn. Then,∫

F

dIω =

∫

∂([0,1]×∆n)

F ∗1 ω1 ∧ · · · ∧ F ∗nωn

=

∫

s=1

Ω−
∫

s=0

Ω−
∫

t1=1

Ω +

n−1∑

i=1

(−1)i+1

∫

ti=ti+1

Ω− (−1)n
∫

tn=0

Ω.
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By the relations satisfied by F ,

Ω|s=1 = γ∗2ω1 ∧ · · · ∧ γ∗2ωn,
Ω|s=0 = γ∗1ω1 ∧ · · · ∧ γ∗1ωn,

Ω|ti=ti+1
= F ∗1 ω1 ∧ · · · ∧ F ∗i (ωi ∧ ωi+1) ∧ F ∗nωn,

and Ω|t1=1 (resp. Ω|tn=0) vanishes since in that case F1 (resp. Fn) is a constant
function. Besides,

∫

F

dCω =

n∑

i=1

(−1)i+1

∫

[0,1]×∆n−1

F ∗1 ω1 ∧ · · · ∧ F ∗i (ωi ∧ ωi+1) ∧ · · · ∧ F ∗nωn.

Putting everything together yields
∫

F

dIω =

∫

γ2

ω −
∫

γ1

ω +

∫

F

dCω,

which is exactly the content of the claim (3.272) noting that d = dI − dC . □

Let x ∈ M and write Γ = π1(M,x). The condition that M has the homotopy
type of a finite CW complex implies that H1(M) is finite-dimensional. Thus, Γ
satisfies the hypothesis of Theorem 3.232 and its pro-unipotent completion is given
by Spec((Q[Γ]∧)∨).

Recall that the zero cohomology group of the reduced bar complex of A∗ is just
the kernel of the differential map,

H0(B∗(A∗)) = Ker
(
d: B0(A∗) −→ B1(A∗)

)
,

which, by Theorem 3.270, consists of homotopy functionals.
Putting together Theorem 3.270 and Proposition 3.269, we obtain a map

H0(LNB
∗(A∗)) −→ ((Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1)⊗ C)∨.

Theorem 3.273 (Chen’s π1-de Rham theorem). For each integer N ⩾ 0 and
points x, y ∈M , the integration map gives an isomorphism

H0(LNB
∗(A∗))

∼−→ HomQ(Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1,C),

and consequently it induces an isomorphism of ind-vector spaces between

H0(B∗(A∗)) = lim−→
N

H0(LNB
∗(A∗))

and

(C[π1(M ; y, x)]∧)∨ = lim−→
N

(C[π1(M ; y, x)]/C[π1(M ; y, x)]JN+1)∨.

We will give a proof of this result in the next section. Note moreover, that
Theorem 3.265 implies that the last isomorphism of Theorem 3.273 is compatible
with the Hopf algebra structures on both sides.

Corollary 3.274. For every point x ∈ M , the iterated integral induces an
isomorphism of Hopf algebras

H0(B∗(A∗))
∼−→ O(π1(M,x)un)⊗ C.

Remark 3.275. The isomorphism of Corollary 3.274 depends on the choice of
a base point x.
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3.5.5. The case of P1 \ {0, 1,∞}. The main example to which we would like to
apply Corollary 3.274 is the manifold M = P1(C) \ {0, 1,∞}. This example will
be central for the remainder of the book. The fundamental group of M is the free
group in two generators. Thus, its pro-unipotent completion is isomorphic to the
spectrum of the Hoffman algebra H (Example 3.237). We want to recover this fact
as a particular case of Chen’s theorem. For this, consider the differential forms

(3.276) ω0 =
dt

t
, ω1 =

dt

1− t .

Let A∗C be the dg-algebra over C given by

A0
C = C, A1

C = Cω0 ⊕ Cω1, A⩾2
C = 0,

together with the trivial differential and the obvious multiplication. This algebra
has the rational structure A∗C = A∗ ⊗ C, where A is the Q-algebra introduced in
Example 2.284. In particular, the inclusion A∗C ⊂ E∗(M,C) is a quasi-isomorphism.

Since dω1 = dω2 = 0 and ω0∧ω1 = 0, formula (3.258) shows that the differential
in the reduced bar complex B∗(A∗) is identically zero, and hence

(3.277) H0(B∗(A∗)) = B0(A∗).

Moreover, there is an isomorphism of Hopf algebras

H0(B∗(A∗)) −→ H

ω0 7−→ x0

ω1 7−→ x1

that induces an isomorphism of Hopf algebras

H0(B∗(A∗C)) −→ H⊗Q C.
Following Notation 1.162, for a binary sequence α, we will denote by ωα the element
of H0(B∗(A∗C)) corresponding to xα.

⋆ ⋆ ⋆

Exercise 3.278. Show that the differentials dI and dC from equations (3.259)
and (3.260) in the definition of the bar complex satisfy

d2
I = d2

C = 0 and dIdC + dCdI = 0.

Deduce that d = dI − dC satisfies d2 = 0 as well.

Exercise 3.279. Let η1, η2, and η12 be 1-forms on a differentiable manifold.
What conditions should they satisfy for [η1|η2]− [η12] to be closed?

Exercise 3.280. Let M be a connected differentiable manifold with the ho-
motopy type of a finite CW complex and let E∗(M,C) be the differential graded
algebra of smooth complex-valued differential forms on M . Consider the projection

E1(M,C) −→ E1(M,C)/dE0(M,C).

Let r be any retraction of this projection as complex vector spaces. Show that

C⊕ Im(r)⊕
⊕

n⩾2

En(M,C) ⊂ E∗(M,C)

inherits the structure of a complex dg-algebra. It is connected and the inclusion is
a quasi-isomorphism.
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3.6. A geometric description of the pro-unipotent completion of the
fundamental group. We now explain a proof of Chen’s π1-de Rham theorem
(Theorem 3.273). This is not the classical proof that one can find for example in
Hain’s paper [Hai87b, § 4], but the strategy we follow will later enable us to exhibit
the motivic nature of the pro-unipotent completion of the fundamental group of an
algebraic variety. The first step in the proof is to show that the reduced bar complex
of the de Rham complex of a differentiable manifold can be seen as the de Rham
complex of a cosimplicial manifold.

3.6.1. The normalized cochain complex and the reduced bar complex. Let M be
a connected differentiable manifold with the homotopy type of a finite CW complex,
and let x, y ∈M be points.

Construction 3.281. We denote by M•y x the cosimplicial manifold with:

• components

Mn
y x = M × n· · · ×M ;

• coface maps

δi : Mn
y x −→ Mn+1

y x , i = 0, . . . , n+ 1,

given by the formulas

δi(x1, . . . , xn) =





(y, x1, . . . , xn), if i = 0,

(x1, . . . , xi, xi, . . . , xn), if 0 < i < n+ 1,

(x1, . . . , xn, x), if i = n+ 1;

• codegeneracy maps

σi : Mn+1
y x −→ Mn

y x , i = 0, . . . , n,

given by the formula

(3.282) σi(x1, . . . , xn+1) = (x1, . . . , xi, xi+2, . . . , xn+1).

As in Section 3.5.3, let E∗(M,C) be the dg-algebra of smooth complex-valued
differential forms on M . For simplicity, we will assume that we have chosen a
connected differential graded C-algebra A∗(M) ⊆ E∗(M,C) such that the inclusion
is a quasi-isomorphism (see Exercise 3.280). We set

A∗( Mn
y x ) = A∗(M)⊗ n· · · ⊗A∗(M).

In particular, A∗( M0
y x) = C. The assignment ∆n ⇝ A∗( Mn

y x ) being functorial
(Exercise 3.338), these complexes define a simplicial dg-algebra A∗( M•y x).

Remark 3.283. Since A∗(M) is connected, the dg-algebra A∗( M•y x) does not
depend on the base points x, y ∈ M . The reason to keep them in the notation is
that, later on, we will build out of A∗( M•y x) the de Rham component of a mixed
Hodge structure whose Betti component does depend on x and y.

The normalization NA∗( M•y x) (Definition A.231) is a chain complex of cochain
complexes. We transform it into a double cochain complex by changing the sign
of the chain degree as in Definition A.13 vi). We denote by TotNA∗( M•y x) the
associated total complex (Definition A.33), given by

TotnNA∗( M•y x) =
⊕

q−p=n
NAq( Mp

y x ).
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The subcomplexes σ⩽NNA∗( M•y x) define a filtration of TotNA∗( M•y x). Be
aware that the index N in the bête filtration refers only to the chain degree and
not to the total degree. Thus,

Totn σ⩽NNA∗( M•y x) =
⊕

q−p=n
p⩽N

NAq( Mp
y x ).

Lemma 3.284. The map

ψ : B∗(A∗(M)) −→ TotNA∗( M•y x)

[ω1| · · · |ωn] 7−→ (−1)
∑n

i=1(n−i) deg(ωi)ω1 ⊗ · · · ⊗ ωn
is an isomorphism of complexes that sends LNB

∗(A∗(M)) to Totσ⩽NNA∗( M•y x).
Similarly, if ε is the unique augmentation of A∗(M), then the same formula gives
us an isomorphism

B∗(A∗(M), ε, ε) −→ TotCA∗( M•y x),

where C denotes the associated chain complex (Definition A.230)

Proof. Recall the identification

B∗(A∗(M)) = TotNB•(A∗(M))

and that the constituents of B•(A
∗(M)) and of A∗( M•y x) are the same. The

only difference are some signs in the faces, degeneracies, and de Rham differen-
tial on B•(A

∗(M)). It follows that the map ψ is an isomorphism of graded vector
spaces that respects the filtrations. To compute the differential in the total com-
plex TotNA∗( M•y x), let

ω = ω1 ⊗ · · · ⊗ ωn ∈ NAm( Mn
y x ) ⊂ Totm−nNA∗( M•y x).

Then dω = d1ω+ (−1)nd2ω, where d1 is the differential in the normalized complex
and d2 is the differential in the de Rham complex. Therefore,

(3.285) dω =

n−1∑

i=1

(−1)iω1 ⊗ · · · ⊗ ωi ∧ ωi+1 ⊗ · · · ⊗ ωn

+ (−1)n
n∑

i=1

(−1)
∑i−1

j=1 deg(ωj)ω1 ⊗ · · · ⊗ dωi ⊗ · · · ⊗ ωn.

Comparing this formula with the differential from Definition 3.257 one checks the
equality ψ ◦ d = d ◦ ψ. This finishes the proof. □

3.6.2. A Mayer–Vietoris complex of sheaves. The next step is to construct a
complex of sheaves that computes certain relative cohomology groups. In fact, we
are giving a variant of Construction 2.114 that was used to compute the relative de
Rham cohomology in the case of a simple normal crossing divisor.

As in the previous sections, let M be a connected differentiable manifold which
has the homotopy type of a finite CW complex, and let Y0, . . . , YN be a finite
collection of closed subsets of M . Write

Y = Y0 ∪ · · · ∪ YN .
Notation 3.286. The following notation will be used:

• Recall that ∆N stands for the index set {0, . . . , N}.
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• For each subset I ⊆ ∆N , we write YI for the intersection
⋂
j∈I Yj . We

also write |I| for the cardinal of I.

• Given a topological space T , we denote by Q
T

the constant sheaf on T
with stalk Q. If there is a clear closed immersion ι : T → M , by abuse
of notation, we will denote also by Q

T
the extension by zero ι∗QT . For

example, if x ∈ M is a point, we will write Q
x

for the skyscraper sheaf
with stalk Q at x. For shorthand, in the situation at hand, we write Q

I
for the constant sheaf on YI extended by zero to M , that is,

Q
I

= (ιI)∗QYI
,

where ιI : YI ↪→M is the inclusion. In particular, Q∅ = Q
M

.

• Given subsets I ⊆ K ⊆ ∆N , there is an inclusion YK ⊆ YI . We denote
by dK,I : Q

I
→ Q

K
the corresponding restriction map.

• Given K = {i0, . . . , ip} with the indices iℓ ordered as i0 < · · · < ip, and

if I = {i0, . . . , îi, . . . , ip}, we set

ε(I,K) = (−1)i

as in equation (2.116). We also write

(3.287) ε(K) =
∏

i∈K
(−1)i.

For 0 ⩽ p ⩽ N , we define a morphism of sheaves

d:
⊕

|I|=p

Q
I
−→

⊕

|K|=p+1

Q
K

as d =
⊕

I⊂K
p=|I|=|K|−1

ε(I,K)dK,I .

We define the complex of sheaves K̃(M ;Y0, . . . , YN ) as

(3.288) 0 −→
⊕

|I|=0

Q
I
−→

⊕

|I|=1

Q
I
−→ · · · −→

⊕

|I|=N

Q
I
−→

⊕

|I|=N+1

Q
I
−→ 0,

where the sheaf
⊕
|I|=pQI sits in degree p.

We also define the complex K(M ;Y0, . . . , YN ) as

(3.289) 0 −→
⊕

|I|=0

Q
I
−→

⊕

|I|=1

Q
I
−→ · · · −→

⊕

|I|=N

Q
I
−→ 0.

Note that the second complex agrees with the first one except for the last term Q
∆N

that has been deleted.

Lemma 3.290. If Y is locally contractible, then

Hn(M, K̃(M ;Y0, . . . , YN )) = Hn(M,Y ;Q),

where the right-hand side is relative singular cohomology.

Proof. By Exercise 3.339, the sequence of sheaves

0 −→ Q
Y
−→

⊕

|I|=1

Q
I
−→ · · · −→

⊕

|I|=p

Q
I
−→ · · · −→

⊕

|I|=N+1

Q
I
−→ 0

is exact, so the complex K̃(M ;Y0, . . . , YN ) is quasi-isomorphic to

0 −→ Q
M
−→ Q

Y
−→ 0.
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Being a differential manifold, M is a paracompact, as well as all of its closed and
open subsets. Moreover, M is locally contractible. Since Y is also locally con-
tractible, the result then follows then from Theorem 2.51. □

We now specialize the previous construction to a particular case. Let x, y ∈M
be points and N ⩾ 0 an integer. Let MN be the N -fold cartesian product of M .
Given a point of MN , we denote by x1, . . . , xN its components. Consider the
union Y = Y0 ∪ · · · ∪ YN of the closed subspaces Yi ⊂MN given by:

Y0 = {y = x1},
Yi = {xi = xi+1}, i = 1, . . . , N − 1,

YN = {xN = x}.

Sometimes, it will useful to introduce the notation x0 = y and xN+1 = x, and write

Yi = {xi = xi+1}

for all i = 0, . . . , N. Applying the previous construction, we define the complexes

Ky x⟨N⟩ = K(MN ;Y0, . . . , YN ),

K̃y x⟨N⟩ = K̃(MN ;Y0, . . . , YN ).

If the base points x and y are different from each other, then Y0 ∩ · · · ∩ YN = ∅
and hence the two complexes agree: Ky x⟨N⟩ = K̃y x⟨N⟩. By Lemma 3.290, the
hypercohomology of Ky x⟨N⟩ also computes the relative cohomology group:

H∗(MN , Ky x⟨N⟩) = H∗(MN , Y ;Q), when x ̸= y.

In the case where x = y, the intersection Y0 ∩ · · · ∩ YN = {(x, . . . , x)} consists
of a single point and there is a short exact sequence of complexes

(3.291) 0 −→ Q
(x,...,x)

[−N − 1] −→ K̃x x⟨N⟩ −→ Kx x⟨N⟩ −→ 0.

Note that the hypercohomology of the leftmost complex is concentrated in de-
gree N + 1, where it is isomorphic to H0(MN ,Q

(x,...,x)
) = Q. Thus, taking hyper-

cohomology from (3.291) yields a long exact sequence

(3.292) 0 −→ HN (MN , Y ;Q) −→ HN (MN , Kx x⟨N⟩)
f−→ Q −→ · · ·

The map f is surjective because it fits into a commutative diagram

⊕
|I|=N H0(YI ,Q) //

))

HN (MN , Kx x⟨N⟩)

f

��
H0(MN ,Q

(x,...,x)
)

where the diagonal arrow is surjective. The kernel of f is thus HN (MN , Y ;Q) and
we get a short exact sequence

(3.293) 0 −→ HN (MN , Y ;Q) −→ HN (MN , Kx x⟨N⟩)
f−→ Q −→ 0.
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3.6.3. An isomorphism of cohomology groups. The next step is to relate the
cohomology of the cosimplicial manifold M•y x with that of the sheaf Ky x⟨N⟩. Since
we want an isomorphism on the level of singular cohomology over Q, we will use
smooth cochains instead of differential forms.

Given a differentiable manifold M , we denote by S∗(M,Q) the complex of
smooth singular cochains on M with rational coefficients as in Remark A.307. Re-
call that the complex S∗(M,Q) computes the singular cohomology of M and that
there is a quasi-isomorphism

E∗(M,C) −→ S∗(M,Q)⊗ C

given by integration of differential forms over smooth chains, that represents the
comparison isomorphism between de Rham and singular cohomology in the differ-
entiable case. As a consequence, there are quasi-isomorphisms

A∗(M)
∼−→ S∗(M,Q)⊗ C, A∗( Mn

y x )
∼−→ S∗(Mn,Q)⊗ C.

Consider the simplicial object

S∗• = S∗( M•y x ,Q)

in the category of complex of Q-vector spaces and there is a quasi-isomorphism

(3.294) TotN∗A∗( M•y x)
∼−→ TotN∗S∗• ⊗ C.

Moreover, we can apply to S∗• the functor C∗(∆N , ·) defined at the end of
Section A.8.2. To describe the resulting complex, for each ∅ ≠ I ⊂ ∆N we set

M I
y x = YIc ⊂MN ,

where Ic = ∆N \ I. Then

(3.295) M I
y x ≃M |I|−1

To realize this isomorphism, we just delete the redundant coordinates. For i ∈ Ic,
the i-th coordinate of (x0, . . . , xn) ∈ M I

y x coincides with the coordinate xi+1, so
is not needed. The first coordinate is always equal to y, so it is also redundant.
Hence, if I = (i0, . . . , ik) we only need to keep the coordinates xi1 , . . . , xik . More
precisely, we denote by ιI : M |I|−1 → MN the composition of the inverse of the
isomorphism (3.295) with the inclusion YIc →MN . Then, if I = (i0, . . . , in) and

p = (xi1 , . . . , xin) ∈ M I
y x ,

writing xi0 = y and xin+1
= x, we have

ιI(p) = (y1, . . . , yN ),

where the coordinates yi are defined as

yi = xmin{j∈I∪{n+1}|j⩾i}.

For instance, if N = 6 and I = {2, 3, 5}, the map ιI : M2 →M6 is given by

ιI(x3, x5) = (y, y, x3, x5, x5, x).

For K = {j0, . . . , jn} and I = {j0, . . . , ĵi, . . . , jn}, there is a face map

δI,K : M I
y x −→ MK

y x
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defined by the commutative diagram

(3.296) M I
y x

δI,K // MK
y x

YIc
� � // YKc .

Explicitly,

δI,K(xj1 , . . . , x̂ji , . . . , xjn) =





(y, xj2 , . . . , xjn), if i = 0,

(. . . , xji−1
, xji+1

, xji+1
, . . . ), if 0 < i < n,

(xj1 , . . . , xjn−1
, x), if i = n.

We now write

S∗I = S∗( M I
y x) ≃ S∗(M |I|−1) = S∗|I|−1.

Then, for each p ⩾ 0, we have

Cp(∆N , S
∗
•) =

⊕

I⊂∆N

|I|=p+1

S∗I

with differential d : Cp(∆N , S
∗
•)→ Cp−1(∆N , S

∗
•) given, as in equation (A.237), by

d =
⊕

I⊂K
ε(I,K)δ∗I,K .

By Proposition A.238, there is a functorial homotopy equivalence

(3.297) ϕ : Totσ⩽NN∗S∗•
∼−→ TotC∗(∆N , S

∗
•).

Explicitly, this morphism is given as follows. Let

ω = (ωi)0⩽i⩽N ∈ Tot∗ σ⩽NN∗S∗• .
Then ϕ(ω) = (ωI)I⊂∆N

, where

ωI =

{
ωi, if I = ∆i,

0, otherwise.

We next compare the cohomology of the complex TotC∗(∆N , S
∗
•) with that of

the complex of sheaves Ky x⟨N⟩. To this end, we represent the latter using also

smooth singular cochains. We define the double complex S∗,∗Y by

Sp,qY =
⊕

|I|=p

Sq(YI ,Q), p ⩾ 0, 0 ⩽ p < N,

with horizontal differential

d′ :
⊕

|I|=p−1

Sq(YI ,Q) −→
⊕

|K|=p

Sq(YK ,Q), d′ =
⊕

I⊂K
ε(I,K)dK,I .

Let Tot∗ SY be the associated total complex. By construction, there is an
isomorphism of rational vector spaces

H∗(MN , Ky x⟨N⟩[N ]) = H∗(Tot∗ SY [N ]).
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Lemma 3.298. There is a functorial isomorphism

TotC∗(∆N , S
∗
•)

∼−→ Tot∗ SY [N ]

that induces an isomorphism

H∗(TotC∗(∆N , S
∗
•))

∼−→ H∗(MN , Ky x⟨N⟩[N ]).

Proof. For each ∅ ≠ I ⊂ ∆N , we have M I
y x = YIc . Denote by

fI : S∗( M I
y x ,Q) −→ S∗(YIc ,Q)

the identity at the level of smooth singular cochains. As I runs through non-
empty subsets of ∆N , the morphisms fI define an isomorphism between the graded
Q-vector spaces TotC∗(∆N , S

∗
•) and Tot∗ SY [N ].

To obtain an isomorphism of complexes, we also need to check the compatibil-
ity with the differentials. Let ∅ ≠ I ⊂ K ⊂ ∆N be subsets with |K| = |I|+ 1. The
component of the horizontal differential of C∗(∆N , S

∗
•) from S∗K to S∗I is ε(I,K)δ∗I,K ,

while the component of the horizontal differential of S∗,∗Y [N ] from S∗(YKc) to S∗(YIc)
is (−1)Nε(Kc, Ic)dIc,Kc . By the commutativity of diagram (3.296), the maps δ∗I,K
and dIc,Kc agree. Hence, we only need to adjust the signs.

Let ε(I) =
∏
i∈I(−1)i be the sign introduced in (3.287). The equality

ε(I,K)ε(Kc, Ic) = ε(I)ε(K)

is immediate to check. It follows that the map

TotC∗(∆N , S
∗
•) −→ TotS∗,∗Y [N ]

that sends Sp( M I
y x ,Q) to Sp(YIc ,Q) through the map

(3.299) (−1)N |I|ε(I)fI

is an isomorphism of complexes. The sign (−1)N |I| accounts for the extra sign (−1)N

coming from the shift in the differential of the complex TotS∗,∗Y [N ]. □

Combining Lemma 3.298 with Lemma 3.284, the homotopy equivalence (3.297),
and the fact that E∗(M,C)→ S∗(M,Q)⊗C is a quasi-isomorphism for any differ-
entiable manifold M , we deduce the following result.

Corollary 3.300. There is a functorial morphism

LNB
∗(A∗(M)) −→ Tot∗ SY ⊗ C

that induces an isomorphism

H0(LNB
∗(A∗(M))) ≃ HN (MN , Ky x⟨N⟩)⊗ C.

In particular, if y ̸= x we deduce an isomorphism

H0(LNB
∗(A∗(M))) ≃ HN (MN , Y ;Q)⊗ C.
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3.6.4. Beilinson’s theorem, global version. The goal is to prove that the map

H0(LNB
∗(A∗(M))) −→

(
(Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1)⊗ C

)∨

discussed before Theorem 3.273 is an isomorphism. In view of Corollary 3.300, we
deduce a morphism

HN (MN , Ky x⟨N⟩)⊗ C −→
(
(Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1)⊗ C

)∨
.

We claim that it is defined over Q. To prove this, we directly construct another
morphism

HN (MN , Ky x⟨N⟩) −→
(
(Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1)

)∨

compatible with the previous one.
Let γ : [0, 1]→M be a smooth path satisfying γ(0) = x and γ(1) = y. For each

subset ∅ ≠ I ⊂ ∆N , consider the map

σN,Iγ,y : ∆|I|−1 −→ M I
y x = YIc ≃M |I|−1

(t1, . . . , t|I|−1) 7−→
(
γ(t1), . . . , γ(t|I|−1)

)
.

If |I| = 1, then YIc is reduced to a single point and the map σN,Iγ,y is constant. Using

the maps σN,Iγ,y , we define a map

σNγ,y : S∗,∗Y [N ] −→ Q

that sends ω = (ωI)I⊊∆N
to

(3.301) σNγ,y(ω) =
∑

I⊊∆N

(−1)
(|Ic|−1)(|Ic|−2)

2 (−1)N(|Ic|)ε(Ic)ωI(σ
N,Ic

γ,y ).

Observe the sign relation

(3.302) (−1)
(|Ic|−1)(|Ic|−2)

2 (−1)N(|Ic|) = (−1)
|I|(|I|+1)

2 (−1)
N(N−1)

2 .

The reason for the complicated sign in equation (3.301) will be apparent in the
proof of the next proposition.

Proposition 3.303. The maps σNγ,y for varying γ define a morphism

σy : HN (MN , Ky x⟨N⟩) −→
(
(Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1)

)∨

such that the diagram

H0(LNB
∗(A∗(M))) //

��

(
(Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1)⊗ C

)∨

��
HN (MN , Ky x⟨N⟩)⊗ C //

(
(Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1)⊗ C

)∨

is commutative.

Proof. We start by proving that, if ω is exact then σNγ,y(ω) = 0. For this, we

compute the boundary of the singular chain σN,Kγ,y and we obtain

(3.304) ∂σN,Kγ,y =
∑

I⊂K
|K|=|I|+1

ε(I,K)σN,Iγ,y .
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If ω = dη is exact in the complex S∗,∗Y [N ], then

(3.305) (−1)NωI = (−1)|I|dηI +
∑

K⊂I
|K|=|I|−1

ε(K, I)ηK |YI
.

Using the sign relation (3.302),

(−1)
N(N+1)

2 σNγ,y(ω) = (−1)N
∑

I

(−1)
|I|(|I|+1)

2 ε(Ic)ωI(σ
N,Ic

γ,y )

=
∑

I

(−1)
|I|(|I|+1)

2 ε(Ic)(−1)|I|dηI(σ
N,Ic

γ,y )

+
∑

I

∑

K⊂I
|K|=|I|−1

(−1)
|I|(|I|+1)

2 ε(Ic)ε(K, I)ηK(σN,I
c

γ,y )

=
∑

I

∑

K⊃I
|K|=|I|+1

(−1)
|I|(|I|+1)

2 ε(Ic)(−1)|I|ε(Kc, Ic)ηI(σ
N,Kc

γ,y )

+
∑

I

∑

K⊃I
|K|=|I|+1

(−1)
|K|(|K|+1)

2 ε(Kc)ε(I,K)ηI(σ
N,Kc

γ,y ).

In the above computation, the first equality is the definition of σNγ,y(ω), the second
equality is equation (3.305), and in the third equality we appy equation (3.304) to
the first term and we interchange the roles of I and K in the second term. The
vanishing σNγ,y(ω) = 0 follows from the sign identities

ε(I,K)ε(Kc, Ic) = ε(Ic)ε(Kc), and (−1)
|I|(|I|+1)

2 (−1)|I| = −(−1)
|K|(|K|+1)

2 ,

for I ⊂ K with |K| = |I|+1. Therefore, for ω closed, the value σNγ,y(ω) only depends

on the class of ω in HN (MN , Ky x⟨N⟩). In consequence, we obtain a pairing

HN (MN , Ky x⟨N⟩)⊗Q[ P(M)y x] −→ Q.
We next show that this pairing is compatible with (3.264). To write down some

morphisms explicitly, we recall the notation of external product. Let M1, . . . ,Mn

be differential manifolds and ωi a differential form on Mi for each i. Denote by

pri : M1 × · · · ×Mn −→Mi

the projection to the i-th component. Then the external product of the differential
forms ω1, . . . , ωn is the differential form on M1 × · · · ×Mn given by

ω1 ⊠ · · ·⊠ ωn = pr∗1ω1 ∧ · · · ∧ pr∗nωn.

Consider an element

[ω1| . . . |ωn] ∈ H0
(
LNB

∗(A∗(M))
)
.

Since the total degree of this element is zero, every component form ωi has degree
one, i.e. ωi ∈ A1(M). Then the isomorphism

H0
(
LNB

∗(A∗(M))
)
−→ HN (MN , Ky x⟨N⟩)⊗ C

sends [ω1| . . . |ωn] to the form ω = (ωI)I⊊∆N
, where ωI ∈ Sn(YI ,C) is given by

ωI =

{
(−1)

n(n−1)
2 (−1)N(n+1)ε(∆n)ω1 ⊠ · · ·⊠ ωn, if I = ∆c

n,

0, otherwise.
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From this we get equalities

(3.306)

σNγ,y(ω) = (−1)
n(n−1)

2 (−1)N(n+1)ε(∆n)ω∆c
n
(σN,∆n
γ,y )

= ω1 ⊠ · · ·⊠ ωn(σN,∆n
γ,y )

= ⟨[ω1| . . . |ωn], γ⟩,
where the last term is the pairing (3.264). The signs in equation (3.301) are chosen
to obtain the sign cancellation in (3.306) and the vanishing σNγ,y(ω) = 0 for exact ω.

Once we have stablished the compatibility with the pairing (3.264), Theo-
rem 3.270, Proposition 3.269, and Corollary 3.300 imply the proposition. □

The following result gives a cohomological interpretation of the finite-dimensional
pieces in the pro-unipotent completion of the fundamental group.

Theorem 3.307 (Beilinson). The map σy from Proposition 3.303 is an iso-
morphism. In particular, when x ̸= y there is an isomorphism

σy : HN (MN , Y ;Q) −→
(
(Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1)

)∨
.

The proof proceeds by induction on N and relies on a relative version of the
morphism σy that we discuss next.

3.6.5. Beilinson’s theorem, relative version. We next introduce a relative ver-
sion of the complex Ky x⟨N⟩, where we fix the point x but let y vary. For this, we
consider the (N + 1)-fold product

M1,N = M ×MN = MN+1

regarded as a fibration over M with fiber MN . That is to say, we consider coordi-
nates x0, . . . , xN on M1,N , and denote by

π : M1,N −→M

the projection to the first factor. We introduce the closed subsets

Zi = {xi = xi+1} ⊆M1,N , i = 0, . . . N,

where we are still using the convention xN+1 = x. For y ∈ M and i ∈ ∆N , under
the identification π−1(y) = MN , we have

Yi = Zi ∩ π−1(y),

so we can see Zi as the family of sets Yi for moving y (in fact, only Y0 depends
on y). Moreover, for any subset I ⊆ ∆N , we have

ZI ∩ π−1(y) = YI .

We now define the complexes of sheaves

K• x⟨N⟩ = K(M1,N ;Z0, . . . , ZN ),

K̃• x⟨N⟩ = K̃(M1,N ;Z0, . . . , ZN )

on M1,N , so that the following holds:

(3.308) K• x⟨N⟩|π−1(y) = Ky x⟨N⟩.
It is in this sense that K• x⟨N⟩ is a relative version of Ky x⟨N⟩.

The complexes K• x⟨N⟩ and Ky x⟨N⟩ satisfy a recurrence relation that will be

useful later. The identity morphism between M1,(N−1) and MN changes the num-
bering of the components, because in the convention we are using the coordinates
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of M1,(N−1) start with x0 while those of MN start with x1. This identification
sends the subset Zi ⊂M1,(N−1) to the subset Yi+1 ⊂MN for i = 0, . . . , N − 1.

Let ιy : MN−1 →MN be the map

ιy(x1, . . . , xN−1) = (y, x1, . . . , xN−1).

For each N ⩾ 1, there is an exact sequence of sheaves of complexes

(3.309) 0 −→ (ιy)∗ Ky x⟨N − 1⟩[−1] −→ Ky x⟨N⟩ −→ K̃• x⟨N − 1⟩ −→ 0.

To describe this sequence, we use the following notation: given I = (i1, . . . , ik), we
denote by I + 1 the multi-index

I + 1 = (i1 + 1, . . . , ik + 1).

Then, in degree 0 ⩽ j ⩽ N , the sequence (3.309) reads

0 −→
⊕

I⊂{0,...,N−1}
|I|=j−1

Q
Y{0}∪(I+1)

−→
⊕

I⊂{0,...,N}
|I|=j

Q
YI
−→

⊕

I⊂{1,...,N}
|I|=j

Q
YI
−→ 0.

To identify the rightmost term of this sequence with a piece of K̃• x⟨N − 1⟩ we
are using the identification between the sheaf Q

ZI
on M1,N−1 and the sheaf Q

YI+1

on MN . Finally, we have to be sure that the map

(ιy)∗ Ky x⟨N − 1⟩[−1] −→ Ky x⟨N⟩
is compatible with the differential. This amount to the sign relation

−ε(I,K) = ε
(
{0} ∪ (I + 1), {0} ∪ (K + 1)

)

for subsets I ⊂ K satisfying |I|+ 1 = |K|.
The exact sequence (3.291) induces an exact sequence

(3.310) 0 −→ Q
(x,...,x)

[−N ]→ K̃• x⟨N − 1⟩ −→ K• x⟨N − 1⟩ −→ 0.

When considering a relative situation, such as the family π : M1,N → M , the
analogue of the hypercohomology groups of the complex Ky x⟨N⟩ are the higher

direct image sheaves Riπ∗( K• x⟨N⟩). As explained in Section A.9.5, they are defined
as the sheaves of vector spaces associated with the presheaves that, to an open
subset U ⊆M , assign the vector space

Hi(π−1(U), K• x⟨N⟩).
To understand them, we shall use the following concrete description of the coho-
mology. As in the previous sections, let S∗(T,Q) denote the complex of smooth
singular cochains on a differentiable manifold T . Using the construction (3.289)
applied to M1,N and the subsets Z0, . . . , ZN , we obtain a double complex

(3.311)

0 −→
⊕

|I|=0

S∗(ZI ∩ π−1(U),Q)→
⊕

|I|=1

S∗(ZI ∩ π−1(U),Q) −→ . . .

· · · →
⊕

|I|=N

S∗(ZI ∩ π−1(U),Q) −→ 0,

which will be denoted by S∗(Z• ∩ π−1(U),Q). The associated total complex com-
putes the hypercohomology

Hi(π−1(U), K• x⟨N⟩) = Hi(Tot(S∗(Z• ∩ π−1(U),Q))).
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Lemma 3.312. For every contractible open subset U of M and every y ∈ U ,
the inclusion π−1(y) ⊂ π−1(U) and the identification π−1(y) ≃ MN induce an
isomorphism

Hi(π−1(U), K• x⟨N⟩)
∼−→ Hi(MN , Ky x⟨N⟩).

Proof. For every I ⊆ ∆N with |I| ⩽ N , the morphism π|ZI
: ZI → M is a

fibration. Therefore, given a contractible open subset U ⊆ M and a point y ∈ U ,
the inclusion ZI ∩ π−1(y)→ ZI ∩ π−1(U) is a homotopy equivalence. The induced
morphism of complexes

S∗(ZI ∩ π−1(U),Q) −→ S∗(ZI ∩ π−1(y),Q) = S∗(YI ,Q)

is a homotopy equivalence as well, from which the statement follows. □

Thanks Lemma 3.312, the sheaf Riπ∗( K• x⟨N⟩) is a local system on M whose
fiber at a point y is given by the hypercohomology group

Riπ∗( K• x⟨N⟩)y = Hi(MN , Ky x⟨N⟩).
Said differently, the sheaf Riπ∗( K• x⟨N⟩) “glues together” the hypercohomology
groups Hi(MN , Ky x⟨N⟩) for all possible base points y. We refer the reader to
Section A.9.10 for a quick reminder on the different ways to think about local
systems. In particular, The map f in the exact sequence (3.292) yields a morphism
from this local system to a skyscraper sheaf

(3.313) RNπ∗( K• x⟨N⟩) −→ Q
x
.

We now describe some local systems defined using the fundamental groupoid
instead of relative cohomology. The point x ∈ M continues to be fixed. There are
left actions of π1(M,x) on the Q-vector spaces

Q[π1(M,x)] and Q[π1(M,x)]/JN+1

given by path composition. These actions define local systems (see Section A.9.10)

Q[π1(M ; •, x)] and Q[π1(M ; •, x)]/Q[π1(M ; •, x)]JN+1.

The first local system may be of infinite rank, but the second one is always of finite
rank. The fiber at a point y of the first local system is given by

Q[π1(M ; •, x)]y = Q[π1(M ; y, x)].

For every contractible open subset U , the sections of Q[π1(M ; •, x)](U) are functions

s : U −→
∐

y∈U
Q[π1(M ; y, x)]

such that, for all points y, y′ ∈ U and classes of paths γ ∈ π1(U ; y, y′), the relation

s(y) = γ · s(y′)
holds. Note that, since U is assumed to be contractible, π1(U ; y, y′) contains a
single element. Therefore, for every point y ∈ U , there is a canonical identification

Q[π1(M ; •, x)](U) = Q[π1(M ; y, x)].

The description of Q[π1(M ; •, x)]/Q[π1(M ; •, x)]JN+1 is similar. Moreover, the
unit of π1(M ;x) induces maps

(3.314)
Q −→ Q[π1(M ; •, x)]x,

Q −→
(
Q[π1(M ; •, x)]/Q[π1(M ; •, x)]JN+1

)
x
.
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Our next goal is to construct a morphism of local systems from RNπ∗( K• x⟨N⟩)
to
(
Q[π1(M ; •, x)]/Q[π1(M ; •, x)]JN+1

)∨
that should be thought of as a relative

version of the map σy from Proposition 3.303.

Lemma 3.315. The maps σy of Proposition 3.303 for varying y glue together
to a morphism of local systems

σ : RNπ∗( K• x⟨N⟩) −→
(
Q[π1(M ; •, x)]/Q[π1(M ; •, x)]JN+1

)∨
.

Proof. We have two local systems and a collection of morphisms between
their fibers. To see that they glue together to a morphism of local systems, we
need to prove that they are compatible with parallel transport. Given local systems
F and G on M and linear maps fy : Fy → Gy for each y ∈ M , to glue all these
morphism we need to see that they are compatible with parallel transport. Namely,
given a contractible open subset U ⊂M and points y, y′ ∈ U , the diagram

Fy

fy

��

F (U)
≃ //≃oo Fy′

fy′

��
Gy G(U) ≃

//
≃

oo Gy′

should commute. If this is the case, one can show that the family fy defines a
morphism of representations of the fundamental group and apply Theorem A.315.

Let U ⊂ M be a contractible subset and y, y′ ∈ U two points. An element
of
(
Q[π1(M ; •, x)]/Q[π1(M ; •, x)]JN+1

)
y

is represented by a linear combination of

paths from x to y and the parallel transport is given by composition of paths. The
fiber of the first local system is

RNπ∗( K• x⟨N⟩)y = HN (π−1(y), Ky x⟨N⟩)
and the parallel transport is the composition

HN (π−1(y), Ky x⟨N⟩)
∼←− HN (π−1(U), K• x⟨N⟩)

∼−→ HN (π−1(y′), Ky′ x⟨N⟩).
Let ω ∈ SN (Z• ∩π−1(U),Q) be a closed singular cochain, and write ωy and ωy′ for
the restrictions of ω to S∗(Z•∩π−1(y),Q) and S∗(Z•∩π−1(y′),Q) respectively. Let
γ ∈ P(M)y x and γ′ ∈ P(U)y′ y be paths. By the previous discussion, to establish
the lemma, it suffices to prove the equality

σNγ,y(ωy) = σNγ′γ,y′(ωy′).

The idea is to construct a singular chain with boundary σNγ,y − σNγ′γ,y′ .
Recall that any oriented polyhedron P defines a singular chain after choosing a

triangulation, and that the chains obtained from different triangulations are coho-
mologous. Any facet of P (i.e. a codimension one face) inherits an orientation from
the orientation of P , and a triangulation of P defines a triangulation of the facets.
Fixing a triangulation of P and identifying P and its facets with the corresponding
singular chains, the equality

∂P =
∑

F facet of P

F

holds. In this expression, the signs of the boundary of a chain are concealed in the
orientation of the facets.
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We next observe that the map H : [0, 1]× [0, 1]→M defined as

H(s, t) = γ′γ
(
(1 + s)t/2

)

satisfies the following (use the definition (3.3) of composition of paths):

H(0, t) = γ(t), H(1, t) = γ′γ(t),

H(s, 0) = x, H(s, 1) = γ′(s).

In the previous section, we identified YIc with M |I|−1 by deleting the redun-
dant coordinates. In the same way, we can identify ZIc with M |I|. With this
identification, the projection ZIc →M is the projection over the first coordinate.

For each ∅ ≠ I ⊂ ∆N , we denote by

HN,I
γ,γ′ : [0, 1]×∆|I|−1 → ZIc ∩ π−1(U)

the map given by

HN,I
γ,γ′(s, t1, . . . , t|I|−1) =

(
γ′(s), γ′γ

(
(1 + s)t1/2

)
, . . . , γ

(
(1 + s)t|I|−1/2

))
.

After triangulating [0, 1] × ∆|I|−1, this defines a singular chain in ZIc ∩ π−1(U).
Viewed as a chain in π−1(U), it satisfies the boundary identity

∂HN,K
γ,γ′ = σN,Kγ,y − σN,Kγ′γ,y′ −

∑

I⊂K
|K|=|I|+1

ε(I,K)HN,I
γ,γ′ .

For a form η ∈ SN+1(Z• ∩ π−1(U),Q), we write

HN
γ,γ′(η) =

∑

I⊊∆N

(−1)
(|Ic|−1)(|Ic|−2)

2 (−1)N(|Ic|)ε(Ic)ηI(H
N,Ic

γ,γ′ ).

Then computing as in the first part of the proof of Proposition 3.303, we get

0 = HN
γ,γ′(dω) = σNγ,y(ωy)− σNγ′γ,y′(ωy′),

which concludes the proof of the lemma. □

The following result is the relative version of Theorem 3.307 that implies it.
It gives a cohomological interpretation of the finite-dimensional pieces in the pro-
unipotent completion of the fundamental group. There are two proofs of this the-
orem, due to Goncharov [Gon01, § 4] and Deligne–Goncharov [DG05, §3.3].

Theorem 3.316 (Beilinson).

i) The sheaf Riπ∗( K• x⟨N⟩) vanishes for all i ⩽ N − 1. In particular,

Hi(MN , Ky x⟨N⟩) = 0, i ⩽ N − 1.

ii) The map σ defined in Lemma 3.315 is an isomorphism of local systems

σ : RNπ∗( K• x⟨N⟩) −→
(
Q[π1(M ; •, x)]/Q[π1(M ; •, x)]JN+1

)∨
.

In particular, there are natural isomorphisms

HN (MN , Ky x⟨N⟩) −→
(
Q[π1(M ; y, x)]/Q[π1(M ; y, x)]JN+1

)∨
.



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 269

iii) The diagram of sheaves on M

RNπ∗( K• x⟨N⟩)
σ //

**

(
Q[π1(M ; •, x)]/Q[π1(M ; •, x)]JN+1

)∨
,

��
Q
x

where the diagonal arrow is (3.313) and the vertical arrow is induced by
the dual of the unit (3.314), is commutative.

Proof. We start with statement iii) in the theorem. Since (Q
x
)y = 0 holds

for y ̸= x, we only need to check what happens for y = x, in which case the
statement reduces to the commutativity of the diagram

(3.317) HN (MN , Kx x⟨N⟩) //

��

(Q[π1(M,x)]/JN+1)∨.

��
HN (MN ,Q

(x,...,x)
[−N ]) // Q

For simplicity, we compute HN (MN , Kx x⟨N⟩) as the cohomology of the complex

C∗ =
⊕

I⊂∆N

|I|⩽N

Tot∗(NS∗(YI ,Q)),

where NS∗ denotes the normalized complex of smooth cochains (see Section A.8.2
for the definition of the normalized complex associated with a simplicial abelian
group). The advantage of this point of view is that the elements of C∗ vanish on
degenerate chains, simplifying slightly the argument below.

Let γx be the constant path x in M . Since γx is constant, for a subset I ⊂ ∆N

with |I| ⩽ N , the singular chain σN,Iγx is supported on ZI ∩ π−1(x) ⊂ M1,N .

Identifying π−1(x) with MN , we can see it as a singular chain on YI . This chain is
degenerate unless |I| = N . When |I| = N , the chain σN,Iγx is the zero-dimensional
simplex supported at the point (x, . . . , x).

Let ω =
∑
I ωI ∈ CN be a closed element. The left vertical map on dia-

gram (3.317) followed by the bottom arrow sends ω to

(3.318)
∑

|I|=N

ε(I,∆N )ωI(x, . . . , x).

We apply the top arrow followed by the right vertical arrow to ω, using equa-
tion (3.301) and taking into account that we are working in the complex of normal-
ized cochains, and we obtain the element

(3.319)
∑

|I|=N

ε(Ic)ωI(σ
N,I
γx ).

The equality between (3.318) and (3.319) follows from the identity

ε(Ic) = ε(I,∆N )

for |I| = N , which proves iii).
We now turn to the proof of statements i) and ii) in the theorem. We proceed

by induction on N . The case N = 0 is obvious. Since we already now that σ is a
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morphism of sheaves, it is enough to prove the statements fiberwise. Let y ∈ M .
From the exact sequence (3.309), we deduce a long exact sequence

(3.320)

HN−1( K̃• x⟨N − 1⟩)

HN−1( Ky x⟨N − 1⟩) HN ( Ky x⟨N⟩) HN ( K̃• x⟨N − 1⟩)

HN ( Ky x⟨N − 1⟩)

ι

g

In this exact sequence, we have omitted the spaces as they can be deduced from
the sheaves. We now use the sequence (3.320) to write down the diagram
(3.321)

HN−1( Ky x⟨N − 1⟩) //

σ

��

ι // HN ( Ky x⟨N⟩) //

σ

��

Ker(g) // 0

0 // (Q[π1(M ; y, x)]/JN )∨ // (Q[π1(M ; y, x)]/JN+1)∨ // (JN/JN+1)∨ // 0

in which the first and the second rows are exact.
Claim: The left square in the above diagram is commutative.
Indeed, the first horizontal map sends a closed smooth cochain

ω =
∑

I⊆∆N−1

ωI

representing a class in HN−1(MN , Ky x⟨N − 1⟩) to the cochain

ι(ω) =
∑

I⊆∆N−1

ωI ,

where ωI is now seen as a cochain in Y{0}∪(I+1). For every class γ ∈ Q[π1(M ; y, x)],
we then get the equalities

σ(ω)(γ) =
∑

I⊆∆N−1

(−1)
|I|(|I|+1)

2
(N−1)(N−2)

2 ε(Ic)ωI(σ
N−1,I
γ ),

σ(ι(ω))(γ) =
∑

I⊆∆N−1

(−1)
(|I|+1)(|I|+2)

2
N(N−1)

2 ε((I ′)c)ωI(σ
N,I′

γ ),

where I ′ = {0} ∪ (I + 1). Since the chains σN−1,Iγ and σ
N,{0}∪I
γ agree and the

equality of signs

(−1)
|I|(|I|+1)

2
(N−1)(N−2)

2 (−1)
(|I|+1)(|I|+2)

2
N(N−1)

2 = (−1)N+|I| = ε(Ic)ε((I ′)c)

is satisfied, we deduce that the square commutes. □
Once we know this, an easy diagram chase yields a map

σ : Ker(g) −→ (JN/JN+1)∨,

which makes the rightmost square of the diagram (3.321) commutative.

Lemma 3.322.

i) The equality Hi(M1,N−1, K̃• x⟨N − 1⟩) = 0 holds for all i ⩽ N − 1.

ii) The map σ : Ker(g)→ (JN/JN+1)∨ is an isomorphism.
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Proof. Let π : M1,N−1 →M be the projection to the first factor. We compute

the hypercohomology Hi(M1,N−1, K̃• x⟨N − 1⟩) using the Leray spectral sequence
associated with π, that is

(3.323) Ep,q2 = Hp(M,Rqπ∗( K̃• x⟨N − 1⟩)) =⇒ Hp+q(M1,N−1, K̃• x⟨N − 1⟩).
Taking higher direct images with respect to π from the exact sequence of com-

plexes (3.310) yields isomorphisms

Riπ∗( K̃• x⟨N − 1⟩) ≃ Riπ∗( K• x⟨N − 1⟩), i ⩽ N − 2,

and an exact sequence of sheaves

(3.324) 0 −→ RN−1π∗( K̃• x⟨N − 1⟩) −→ RN−1π∗( K• x⟨N − 1⟩) −→ Q
x
−→ 0.

The exactness on the right follows, after passing to the fiber at x, from the surjec-
tivity of the map f in the sequence (3.292).

Now recall that the induction hypothesis in the proof of the theorem is that
the sheaf Riπ∗( K• x⟨N − 1⟩) vanishes for all i ⩽ N − 2, and hence

Riπ∗( K̃• x⟨N − 1⟩) = 0 for all i ⩽ N − 2.

Therefore, the Leray spectral sequence (3.323) looks as depicted in Figure 17. There

N − 1

N

N − 2

0

0 0 0 0 0

. . . . . . . . .

0 0 0 0 0
p

q

. . .

Figure 17. The Leray spectral sequence for K̃• x⟨N − 1⟩.

can also be non-zero terms above the Nth row, but the important feature is that
all rows strictly below the (N − 1)th row are zero.

From the shape of the spectral sequence, we deduce the equality

(3.325) Hi(MN , K̃• x⟨N − 1⟩) =

{
0, if i ⩽ N − 2,

H0
(
M,RN−1π∗( K̃• x⟨N − 1⟩)

)
, if i = N − 1,

and a short exact sequence of vector spaces

(3.326)
0 −→ H1

(
M,RN−1π∗( K̃• x⟨N − 1⟩)

)
→ HN (MN , K̃• x⟨N − 1⟩) −→

−→ H0
(
M,RNπ∗( K̃• x⟨N − 1⟩)

)
−→ 0.
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To prove statement i) in the lemma, it remains to show that

(3.327) H0
(
M,RN−1π∗( K̃• x⟨N − 1⟩)

)
= 0.

The long exact sequence of cohomology associated with the short exact sequence
of sheaves (3.324) yields

(3.328)

0 H0
(
RN−1π∗( K̃• x⟨N − 1⟩)

)
H0
(
RN−1π∗( K• x⟨N − 1⟩)

)
Q

H1
(
RN−1π∗( K̃• x⟨N − 1⟩)

)
H1
(
RN−1π∗( K• x⟨N − 1⟩)

)
0.

a

b

We shall prove that the map a is an isomorphism. From this, we will derive
the vanishing (3.327) and the fact that the map b is an isomorphism as well. For
this we need to compute the cohomology of the sheaf RN−1π∗( K• x⟨N − 1⟩). By
the induction hypothesis in the theorem, the map

(3.329) σ : RN−1π∗( K• x⟨N − 1⟩) −→ (Q[π1(M ; •, x)]/JN )∨

is an isomorphism and, in particular, the sheaf RN−1π∗( K• x⟨N − 1⟩) is a local
system on M with fiber

(3.330) RN−1π∗( K• x⟨N − 1⟩)x ≃ (Q[π1(M,x)]/JN )∨.

Set Γ = π1(M,x). By Theorem A.317, the cohomology of RN−1π∗( K• x⟨N−1⟩)
in degrees i = 0 and 1 can be computed as the group cohomology of Γ acting
on (3.330). In symbols,

Hi(M,RN−1π∗( K• x⟨N − 1⟩)) = Hi(Γ, (Q[Γ]/JN )∨) (i = 0, 1).

Consider the short exact sequence of Γ-modules

(3.331) 0 −→ (Q[Γ]/JN )∨ −→ Q[Γ]∨ −→ (JN )∨ −→ 0.

The Γ-module Q[Γ]∨ being injective, its cohomology is concentrated in degree zero
and there is an exact sequence

(3.332)

0 H0(Γ, (Q[Γ]/JN )∨) H0(Γ,Q[Γ]∨) H0(Γ, (JN )∨)

H1(Γ, (Q[Γ]/JN )∨) 0.

The cohomology in degree zero H0(Γ, A) of a Γ-module A is the group of invari-
ants AΓ. From this one easily checks:

• The cohomology H0(Γ,Q[Γ]∨) is the one-dimensional Q-vector space gen-
erated by the function

∑

γ∈Γ
aγ [γ] 7−→

∑

γ∈Γ
aγ ,

and the dual of the unit (3.314) induces an isomorphism

H0(Γ,Q[Γ]∨)
∼−→ Q.

• The cohomology H0(Γ, (JN )∨) is equal to (JN/JN+1)∨, and the map

H0(Γ,Q[Γ]∨) −→ (JN/JN+1)∨

in the long exact sequence (3.332) is the zero map.
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Putting together the above facts, the isomorphism (3.330), and the long exact
sequence (3.332), we deduce

H0(M,RN−1π∗( K• x⟨N − 1⟩)) ≃ Q,(3.333)

H1(M,RN−1π∗( K• x⟨N − 1⟩)) ≃ (JN/JN+1)∨.(3.334)

Besides, the map a in (3.328) agrees with the isomorphism (3.333) by statement iii)
in the theorem. From this and (3.325), we derive

HN−1(M1,N−1, K̃• x⟨N − 1⟩) = H0(M,RN−1π∗ K̃• x⟨N − 1⟩) = 0,

thus concluding the proof of statement i) in the lemma.
We now turn to the proof of ii). Combining the fact that the map b in (3.328)

is an isomorphism with (3.334), we get an isomorphism

H1
(
M,RN−1π∗( K̃• x⟨N − 1⟩)

)
≃ (JN/JN+1)∨.

Besides, by the exact sequence (3.326), there is an inclusion

H1
(
M,RN−1π∗( K̃• x⟨N − 1⟩)

)
⊆ HN (MN , K̃• x⟨N − 1⟩).

Claim: This subspace is equal to Ker(g).
To prove the claim, we consider the long exact sequence of sheaves

(3.335)
· · · −→RN−1π∗(ιy)∗( Ky x⟨N − 1⟩) φ−→ RNπ∗( Ky x⟨N⟩)

−→ RNπ∗( K̃• x⟨N − 1⟩) −→ RNπ∗(ιy)∗( Ky x⟨N − 1⟩) −→ · · ·
deduced from (3.309) by taking higher direct images. In this exact sequence, the
sheaves Rqπ∗(ιy)∗( Ky x⟨N−1⟩) are all skyscraper sheaves supported at y ∈M , and
hence their cohomology is concentrated in degree zero. Thus, in the exact sequence

(3.336)
0 −→ H1

(
M,RN−1π∗(ιy)∗( Ky x⟨N − 1⟩)

)
−→ HN (MN−1, Ky x⟨N − 1⟩)

−→ H0
(
M,RNπ∗(ιy)∗( Ky x⟨N − 1⟩)

)
−→ 0

obtained by applying the Leray spectral sequence to (ιy)∗( Ky x⟨N−1⟩), the leftmost
term vanishes and the last but one map is an isomorphism.

Let us introduce the sheaf F = Coker(φ) and consider the commutative dia-
gram with exact columns

0

��
H1
(
RN−1π∗( K̃• x⟨N − 1⟩)

)

��

// 0

��
HN (M1,N−1, K• x⟨N − 1⟩) g //

��

HN (MN−1, Ky x⟨N − 1⟩)

��
H0(F) // H0

(
RNπ∗( K̃• x⟨N − 1⟩)

)

��

e // H0
(
RNπ∗(ιy)∗( Ky x⟨N − 1⟩)

)
,

��
0 0
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where the first column is (3.326), the second column is (3.336), and the last row is
part of the exact sequence obtained by taking cohomology from (3.335). The above
diagram immediately gives an inclusion

H1
(
M,RN−1π∗( K̃• x⟨N − 1⟩)

)
⊆ Ker(g)

and to prove that this is an equality it is enough to show that H0(M,F) = 0. To
get this vanishing, we will show that the sheaf F is the extension by zero of a local
system on M \ {y}. We need to distinguish the cases when the base points x and y
are distinct or equal.

Case x ̸= y. Write U = M1,N−1 \ π−1(y). Since the complex (ιy)∗ Ky x⟨N − 1⟩ is

supported at π−1(y), one first gets from (3.309) an isomorphism

Ky x⟨N⟩|U ≃ K̃• x⟨N − 1⟩|U
and combining this with (3.310) one obtains a short exact sequence

0 −→ Q
(x,...,x)

[−N ] −→ Ky x⟨N⟩|U −→ K• x⟨N − 1⟩|U −→ 0.

In the associated long exact sequence

RN−1π∗( K• x⟨N − 1⟩|U )
h−→ RNπ∗Q(x,...,x)

[−N ] −→
RNπ∗( Ky x⟨N⟩|U ) −→ RNπ∗( K• x⟨N − 1⟩|U ) −→ 0,

the map h is surjective, by repeating the argument that yields the surjectivity of
the map f in (3.292). We thus get an isomorphism

RNπ∗( Ky x⟨N⟩)|M\{y} −→ RNπ∗( K• x⟨N − 1⟩)|M\{y}.
Since the right-hand side is a local system by Lemma 3.312, the same is true for
the left-hand side. Let now V ⊆ M be a contractible open subset containing y

but not x. Then the restrictions of K̃• x⟨N − 1⟩ and K• x⟨N − 1⟩ to π−1(V ) are
isomorphic, so that (3.309) induces a long exact sequence

· · · Hi(π−1(V ), Ky x⟨N⟩) Hi(π−1(V ), K• x⟨N − 1⟩)

Hi(π−1(y), Ky x⟨N − 1⟩) · · ·
j

By Lemma 3.312, the map j is an isomorphism in all degrees i ⩾ 0. This implies, in
particular, the vanishing HN (π−1(V ), Ky x⟨N⟩) = 0 for all contractible open sets V
containing the point y, and hence

RNπ∗( Ky x⟨N⟩)y = 0.

Finally, since the source of the map

φ : RN−1π∗(ιy)∗( K̃y x⟨N − 1⟩) −→ RNπ∗( Ky x⟨N⟩)
is a skyscraper sheaf supported at the point y, it follows that φ is identically zero.
We have thus shown that F = RNπ∗( Ky x⟨N⟩) is the extension by zero of a local
system on M \ {y}.
Case x = y. On U = M1,N−1 \ π−1(x), the exact sequence (3.310) yields an
isomorphism

Kx x⟨N⟩|U ≃ K• x⟨N − 1⟩|U ,
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which implies that F|M\{x} = RNπ∗( Kx x⟨N⟩)|M\{x} is a local system. Let V be
a contractible open subset of M containing x. In this case, it is no longer true
that Ky x⟨N⟩|π−1(V ) has vanishing hypercohomology. Identifying Y{1,...,N} with the
point (x, . . . , x), there is a map

Q
(x,...,x)

[−N ] −→ Ky x⟨N⟩|π−1(V ).

Using that V is contractible, this map induces an isomorphism in hypercohomology

Q = HN (π−1(V ),Q
(x,...,x)

[−N ]) ≃ HN (π−1(V ), Ky x⟨N⟩).
Therefore, the higher direct image sheaf satisfies

RNπ∗( Ky x⟨N⟩)x = Q ̸= 0.

In this case, the map

RN−1π∗(ιx)∗( K̃x x⟨N − 1⟩)x φ−→ RNπ∗( Kx x⟨N⟩)x
is surjective and we again deduce that Fx = 0. Therefore, H0(M,F) = 0 and

Ker(g) = H1
(
M,RN−1π∗( K̃• x⟨N − 1⟩)

)
≃ (JN/JN+1)∨.

This ends the proof of the claim. To prove the lemma, it remains to check that the
above isomorphism is compatible with the map σ. We leave this to the reader. □

End of the proof of Beilinson’s Theorem 3.316. Recall that statement i) is the
vanishing Hi(MN , Ky x⟨N⟩) = 0 in all degrees i ⩽ N − 1. By (3.320), this group
fits into a long exact sequence

· · · −→ Hi−1(MN−1, Ky x⟨N − 1⟩) −→ Hi(MN , Ky x⟨N⟩)
−→ Hi(M1,N−1, K̃• x⟨N − 1⟩) −→ · · ·

For i ⩽ N − 1, the leftmost term vanishes by the induction hypothesis, and the
rightmost term vanishes by Lemma 3.322, and hence so does the middle term.

Finally, to prove statement ii) we combine the long exact sequence (3.320),
Lemma 3.322, and the induction hypothesis to obtain that in the diagram
(3.337)

0 // HN−1(MN−1, Ky x⟨N − 1⟩) //

σ

��

ι // HN (MN , Ky x⟨N⟩) //

σ

��

Ker(g)

σ

��

// 0

0 // (Q[π1(M ; y, x)]/JN )∨ // (Q[π1(M ; y, x)]/JN+1)∨ // (JN/JN+1)∨ // 0

the rows are exact, and the first and third vertical maps are isomorphisms. By the
five lemma, the second vertical arrow is also an isomorphism, as wanted. □

3.6.6. Proof of Chen’s π1-de Rham theorem. We are now in position to prove
Chen’s π1-de Rham theorem using Beilinson’s theorem 3.316.

Proof of Theorem 3.273. If N = 0, then L0B
∗(A∗(M)) = C is given by

the constant functions, while

Q[π1(M ; y, x)]/Q[π1(M ; y, x)]J = Q.

Moreover, the morphism in Theorem 3.273 sends the constant function a ∈ C to
the map that sends 1 ∈ Q to a, that is clearly an isomorphism.
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Let us now fix N > 0. Applying Lemma 3.284 and Proposition A.238, we
obtain a quasi-isomorphism

LNB
∗(A∗(M))

∼−→ TotC∗(∆N , A
∗( M•y x)).

For each n, the composition

A∗(M)⊗n ⊗ C −→ E∗( Mn
y x ,C) −→ S∗( Mn

y x ,Q)⊗ C
is a quasi-isomorphism, functorial in n, from which we deduce a quasi-isomorphism

LNB
∗(A∗(M))⊗ C ∼−→ TotC∗(∆N , S

∗
•)⊗ C.

Combining this quasi-isomorphism with Lemma 3.298 and Theorem 3.316, we get
an isomorphism

H0(LNB
∗(A∗(M))⊗ C) −→

(
C[π(M ; y, x)]/C[π(M ; y, x)]JN+1

)∨
.

Therefore, we get an isomorphism

H0
(
B∗(A∗(M))⊗ C

)
= lim−→

N

H0
(
LNB

∗(A∗(M))⊗ C
)
−→

(
lim←−
N

C[π(M ; y, x)]/C[π(M ; y, x)]JN+1
)∨

=
(
C[π(M ; y, x)]∧

)∨
,

as we wanted to prove. □

⋆ ⋆ ⋆

Exercise 3.338. Let n,m ⩾ 0 be integers and f : ∆n → ∆m a non-decreasing
map. Using the fact that A∗(M) ⊂ E∗(M,C) is a subalgebra, prove that

f∗ : E∗(Mm,C) −→ E∗(Mn,C)

restricts to a morphism of dg-algebras

f∗ : A∗( Mm
y x ) −→ A∗( Mn

y x ),

thus making the assignment ∆n ⇝ A∗( Mn
y x ) functorial.

Exercise 3.339. Recall the finite ordered set ∆n = {0, . . . , n}. For each i ⩾ 0,
let Pi(∆n) denote the set of subsets of ∆n of cardinal i. Consider the complex

(3.340) 0 −→ QP0(∆n) d−→ QP1(∆n) d−→ · · · d−→ QPn(∆n) −→ 0,

where the differential d : QPi(∆n) → QPi+1(∆n) sends a function φ : Pi(∆n)→ Q to

dφ(K) =
∑

I⊂K
|I|=|K|−1

ε(I,K)φ(I).

(a) Show that (3.340) is exact [Hint: consider the homotopy

s : QPi(∆n) → QPi−1(∆n)

defined by sφ(I) = φ({0} ∪ I) if 0 /∈ I and sφ(I) = 0 otherwise].

(b) Let M be a topological space, let Y0, . . . , Yn be closed subspaces of M ,
and set Y = Y0 ∪ · · · ∪ Yn. Consider the complex

0 −→ Q
Y
−→

⊕

|I|=1

Q
I
−→ · · · −→

⊕

|I|=p

Q
I
−→ · · · −→

⊕

|I|=k+1

Q
I
−→ 0

from Lemma 3.290. Show that this complex is exact.
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3.7. A mixed Hodge structure on the pro-unipotent completion of
the fundamental group.

3.7.1. Construction of the mixed Hodge structure. Let M = X(C) be the set
of complex points of a smooth algebraic variety X. Hain [Hai87a] and Mor-
gan [Mor78] show that each of the quotients of the pro-unipotent completion of
the fundamental group of M carries a natural mixed Hodge structure. Using the
geometric interpretation of such quotients provided by Beilinson’s theorem (Theo-
rem 3.316), one can improve this result a little bit, showing that if X is defined over
a subfield k ⊂ C, then we obtain a mixed Hodge structure over k. We will later
see that Beilinson’s theorem allows us to upgrade these mixed Hodge structures to
motives. For the time being, the precise statement is the following.

Theorem 3.341. Let k be a subfield of C, let X be a smooth algebraic variety
over k, let M = X(C) be the set of complex points of X viewed as a differentiable
manifold, and let x, y ∈ X(k) ⊆ M be k-rational points. For each N ⩾ 0, the
finite-dimensional Q-vector space

(3.342) Q[π1(M ; y, x)]/JN+1Q[π1(M ; y, x)]

carries a mixed Hodge structure over k which is functorial with respect to morphisms
of pointed varieties. Moreover, given integers N1 ⩾ N2 ⩾ 0, the quotient map

Q[π1(X(C); y, x)]/JN1+1 −→ Q[π1(X(C); y, x)]/JN2+1

is a morphism of mixed Hodge structures over k.

Proof. The result is a direct consequence of Beilinson’s theorem. In fact,
Theorem 3.316 gives an isomorphism

HN (MN , Ky x⟨N⟩) −→ (Q[π(M ; y, x)]/JN+1Q[π(M ; y, x)])∨

for each N ⩾ 0. When x ̸= y, the groups HN (MN , Ky x⟨N⟩) can be interpreted as
relative singular cohomology groups of algebraic varieties over k by Lemma 3.290,
and hence they can be endowed with a mixed Hodge structure over k. For x = y,
the short exact sequence (3.292) can be upgraded to an extension of mixed Hodge
structures. Alternatively, we can use Lemma 3.298 and Proposition A.238 to iden-
tify the groups HN (MN , Ky x⟨N⟩) with certain singular cohomology groups of a
simplicial manifold M•y x . All the maps involved in M•y x are algebraic and defined
over k, and hence M•y x is the simplicial manifold obtained by taking complex points
of a simplicial smooth variety over k. Using a variant over k of the main construc-
tion of [Del74], we endow HN (MN , Ky x⟨N⟩) with a mixed Hodge structure over k.
By duality, the groups (3.342) are endowed with mixed Hodge structures defined
over k. The functoriality properties follow from the functorial properties of the
mixed Hodge structures on the cohomology of simplicial varieties. □

Taking the projective limit over N in Theorem 3.341, we obtain a pro-mixed
Hodge structure on the pro-unipotent completion of the fundamental group by
abstract means. Following Hain [Hai87a], Chen’s theorem provides us with a
very clear and transparent way to understand such mixed Hodge structure. We
now explain how to define the Hodge and weight filtrations when X is a smooth
complex variety. Consider the dg-algebra E∗

X
an(logD) from Section 2.8.5. It has two

augmentations ε1 and ε2 given by evaluating at x and y respectively. The Hodge
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and weight filtrations of E∗
X

an(logD) determine the Hodge and weight filtration

on B∗(E∗
X

an(logD)) as follows: if ωi ∈ F pi for i = 1, . . . , r, then

[ω1| · · · |ωr] ∈ F p1+···+pr ,
while, if ωi ∈Wni , then

[ω1| · · · |ωr] ∈Wn1+···+nr+r.

In words, the Hodge type is the sum of Hodge types, while the weight is the sum
of weights plus the length of the element. Then

F p H0
(
B∗(E∗

X
an(logD))

)
= Im

(
H0(F pB∗(E∗

X
an(logD))

)
,

Wm H0
(
B∗(E∗

X
an(logD))

)
= Im

(
H0(WmB

∗(E∗
X

an(logD))
)
.

3.7.2. The case of P1
Q \ {0, 1,∞}. We now specialize the general discussion

to the varieties X = P1
Q \ {0, 1,∞} and M = X(C), as in Section 3.5.5, and two

rational points x, y ∈ X(Q). As we have seen in Example 2.284, we do not need to
work with the whole infinite-dimensional dg-algebra E∗

X
an(logD), but we can work

with the smaller Q-algebra

A = Q⊕Qω0 ⊕Qω1.

The Hodge and the weight filtrations are given by

(3.343)
F 0A = W1A = A, F 2A = W−1A = 0,

F 1A = Qω0 ⊕Qω1 W0A = Q.

In this case, both augmentations ε1 and ε2 given by evaluating at x and y respec-
tively agree with the trivial augmentation

(3.344)

ε : A −→ Q
1 7−→ 1

ω0 7−→ 0

ω1 7−→ 0.

One advantage of working with A is that we obtain a mixed Hodge structure over Q.
Since A is connected, we can use the reduced bar complex. Arguing as in Sec-
tion 3.5.5, the Hopf algebra H0(B∗(A)) is isomorphic to the Hoffman algebra.

By (3.343), the Hodge filtration in each finite-dimensional subspace

H0(LNB
∗(AC))

is the decreasing filtration determined by

[ωi1 | · · · |ωip ] ∈ F p,
and the weight filtration is the increasing filtration determined by

[ωi1 | · · · |ωin ] ∈W2n.

We now describe an ind-mixed Hodge structure { AH,N
y x }N⩾0 that corresponds

to the algebra of functions over the pro-unipotent completion of the fundamental
group, as well as a dual pro-mixed Hodge structure { UH,N

y x }N⩾0 that corresponds
to the universal enveloping algebra of the Lie algebra of the pro-unipotent comple-
tion of the fundamental group.
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For the Betti part of AH,N
y x , we write

AB,N
y x =

(
Q[π(M ; y, x)]/JN+1Q[π(M ; y, x)]

)∨

with the weight filtration given, for −1 ⩽ p ⩽ N , by

W2p( A
B,N

y x ) = W2p+1( AB,N
y x )

=
(
Jp+1Q[π(M ; y, x)]/JN+1Q[π(M ; y, x)]

)⊥
.

For the de Rham side, we have

AdR,N
y x = LN H0(B∗(A∗))

with the weight filtration given, for −1 ⩽ p ⩽ N , by

W2p( A
dR,N

y x ) = W2p+1( AdR,N
y x ) = Lp H0(B∗(A∗)).

The Hodge filtration is given by defining

F p( AdR,N
y x )

as the subspace generated by words of length ℓ with p ⩽ ℓ ⩽ N . Note that only
the Betti part depends on the points x, y.

By duality, we write

UB,N
y x = Q[π(M ; y, x)]/JN+1Q[π(M ; y, x)]

UdR,N
y x = LN H0(B∗(A∗))∨,

and endow these spaces with the dual filtrations.
We denote by compdR,B the isomorphism of Theorem 3.273 and by compB,dR

its dual. Then the mixed Hodge structures

AH,N
y x = (( AB,N

y x ,W ), ( AdR,N
y x ,W, F ), comp−1dR,B)

form an inductive system of mixed Hodge structures over Q, and

UH,N
y x = (( UB,N

y x ,W ), ( UdR,N
y x ,W, F ), compB,dR)

form a projective system of mixed Hodge structures over Q.
The mixed Hodge structure we have constructed is of Hodge–Tate type.

Proposition 3.345. The filtrations F and W of AdR,N
y x satisfy the conditions

W2p = W2p+1, W2p−1 ∩ F p = {0}, W2p ⊂W2p−1 + Fp.

Therefore, the Hodge structure on GrW2p is of type (p, p) and the mixed Hodge struc-

ture AH,N
y x is of Hodge–Tate type for all x and y.

Proof. This is clear because the subspaces W2p and W2p+1 agree with the
subspaces of length less than or equal to p, while F p is generated by monomials of
length greater than or equal to p. □

In fact, we could have guessed the previous result by pure thought from The-
orem 3.307. Since the varieties MN , as well as the components of Y and their
intersections, that appear when applying that theorem to our case are constructed
from products of M = P1(C) \ {0, 1,∞}, whose cohomology is of Hodge–Tate type,
it is clear that the mixed Hodge structure we have constructed is of the same kind.
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3.7.3. Iterated integrals as periods of the fundamental group. We now show
that iterated integrals along paths between x and y are periods of the mixed Hodge
structure AH,N

y x . We keep the notation X = P1 \ {0, 1,∞} and M = X(C).

Example 3.346. Let s = (s1, . . . , sn) be a positive multi-index of weight N
and write bs(s) = (ε1, . . . , εN ) for the associated binary sequence. On the one
hand, we consider the element

[ωε1 | · · · |ωεN ] ∈ AdR,N
y x ,

where ω0 = dt/t and ω1 = dt/(1− t), as usual. Besides, every path γ : [0, 1] → M
with endpoints γ(0) = x and γ(1) = y determines an element

[γ] ∈ Q[π(M ; y, x)]/JN+1Q[π(M ; y, x)] = ( AB,N
y x )∨.

By the shape of the comparison isomorphism in Theorem 3.273, we deduce that
the period associated with these two classes is the iterated integral

(3.347) ⟨[ωε1 | · · · |ωεN ], [γ]⟩ =

∫

γ

ωε1 · · · ωεN .

Here, we have used points x, y ∈ X(Q). In order to obtain multiple zeta values
as values of the integral 3.347, we need to consider the case x = 0 and y = 1,
but these points do not belong to X(Q). For this reason we will need to consider
tangential base points in the next section.

Example 3.348. There is a more “classical” interpretation of the period of
Example 3.346 in terms of relative cohomology. For simplicity, we assume x ̸= y
and let s and bs(s) and γ be as in that example. We consider the differential form

ω = pr∗1ωε1 ∧ · · · ∧ pr∗NωεN

on XN , where pri : X
N → X denote the various projections. Since ω has maximal

degree, it defines a class [(ω, 0)] in the relative de Rham cohomology HN
dR(XN , Y ),

where Y is as in Section 3.6.5. From Lemmas 3.290, 3.298, and 3.284, as well as
Proposition A.238, we derive an isomorphism

HN
dR(XN , Y )

≃−→ AdR,N
y x

that sends ω to [ωε1 | · · · |ωεN ].
The path γ determines a singular simplex

σ : ∆N −→ MN

(t1, . . . , tN ) 7−→ (γ(t1), . . . , γ(tN )),

where ∆N is the simplex of Notation 1.114. Clearly, the chain ∂σ is supported on Y ,
so σ determines a class [σ] in the relative singular homology group HN (MN , Y,Q).
By Lemma 3.290 and Theorem 3.316, there is an isomorphism

HN (MN , Y ) = ( A B,N
y x )∨

that sends the class of σ to the class of γ.
The period associated with these two classes is the iterated integral

⟨[(ω, 0)], [σ]⟩ =

∫

σ

ω =

∫

γ

ωε1 · · · ωεN ,

which we have in this way realized the iterated integral as a period of the relative
cohomology HN (XN , Y ).
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⋆ ⋆ ⋆

Exercise 3.349. Give an explicit description of the mixed Hodge structure on
the pro-unipotent completion of the fundamental group of Gm.

3.8. Tangential base points. In this section, we keep working with the man-
ifold M = P1(C)\{0, 1,∞}, the differential forms ω0 and ω1, and the dg-algebra A∗C
from Section 3.5.5. Theorems 1.116 and 1.126 show that multiple zeta values and
polylogarithms can be seen as iterated integrals. Nevertheless, we face the following
technical problem: the differential forms ω0 and ω1 that appear in these theorems
have singularities at the points 0, 1 and ∞. They are differential forms on M , but
to obtain multiple zeta values we need to integrate along the straight path

(3.350)
dch : [0, 1] −→ P1(C),

t 7−→ t

which is not contained in M because the endpoints are 0 and 1. Since dch is not
a path in M , the formulas in Theorems 1.116 and 1.126 are not strictly speaking
iterated integrals. Thus, to see multiple zeta values and polylogarithms as iterated
integrals we have to consider tangential base points. As we will see, these are related
to the regularization discussed in Section 1.7. Tangential base points will also play
an important role later when we consider the algebraic structure of P1: since the
variety P1

Z \ {0, 1,∞} does not contain any integral point (Exercise 3.382), we will
need tangential base points to have a motivic version of the fundamental group
of P1

Z \ {0, 1,∞} defined over Z.
3.8.1. Paths with tangential base points. For simplicity, we will introduce tan-

gential base points only in the case of M = P1(C)\{0, 1,∞}, the only one we need,
but the reader should be aware that the constructions extend easily to any smooth
projective curve minus a finite number of points.

Definition 3.351. Let x ∈ {0, 1} be either the point zero or the point one
in P1(C). A tangential base point is a pair (x, v), where v is a non-zero tangent
vector to P1(C) at x. We will make special use of the tangential base points

(3.352) 0 = (0, 1) and 1 = (1,−1),

i.e. the tangent vector 1 at the point 0 and the tangent vector −1 at the point 1.

Intuitively, a path has an endpoint at a tangential base point (x, v) if the
endpoint is x and the tangent vector at the endpoint is v. However, the presence
of tangential base points causes a nuisance. On the one hand, in order to be able
to compose paths we need to allow tangential points to be reached by the paths at
intermediate points. On the other hand, to define a homotopy between paths in
an easy way it is better to avoid tangential points at intermediate points along the
path. To remedy this problem, we define two kind of paths: the ones that allow
tangential points at intermediate steps (and hence can be composed) and the ones
that avoid tangential points. The former will be called cuspidal paths because of
the shape we will impose at the tangential points, while the latter will be called
clean paths. Then we define a homotopy equivalence of clean paths and a map
from the space of cuspidal paths to the space of homotopy classes of clean paths.

The definition of piecewise smooth map given at the beginning of Section 3.1.1
implies the following: if γ : [0, 1] → M is a piecewise smooth map, then the right
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and left derivatives of γ exist at every point t ∈ (0, 1), although they may not agree.
They are denoted by

d+γ

dt
(t) and

d−γ

dt
(t)

respectively. The right derivative at t = 0 and the left derivative at t = 1 also exist.

Definition 3.353. Let x = (x, v) and y = (y, w) be two tangential base points.
A cuspidal path from x to y is a piecewise smooth map

γ : [0, 1] −→M ∪ {0, 1}
satisfying the following conditions:

i) the endpoints of the path are

γ(0) = x,
d+γ

dt
(0) = v,

γ(1) = y,
d−γ

dt
(1) = −w;

ii) the set {t ∈ (0, 1) | γ(t) ∈ {0, 1}} is finite. Moreover, if t0 belongs to this
set, then the left and right tangent vectors to γ at t0 are non-zero and
opposed to each other, that is

0 ̸= d+γ

dt
(t0) = −d−γ

dt
(t0).

This set is called the set of cusps of γ.

When the set of cusps is empty, γ is called a clean path from x to y.

The space of cuspidal paths from x to y is denoted by P(M)y x, while the

subspace of clean paths is denoted P(M)0y x. For instance, the path dch(t) = t
from (3.350) belongs to P(M)1 0.

3.8.2. Composition of paths with tangential base points. The composition of
paths (3.3) cannot be applied directly to define

P(M)z y ⊗ P(M)y x −→ P(M)z x

for tangential base points x, y and z because condition i) imposes that the deriv-
ative of the path at zero and one is a fixed vector, while the parametrization used
in (3.3) would multiply this vector by 2. Thus, to define the composition of paths
we consider the functions

ϕ1(t) = t+ 2t2, ϕ2(t) = 5t− 2− 2t2.

These functions are smooth and satisfy the properties

ϕ1(0) = 0, ϕ1(1/2) = 1, ϕ′1(0) = 1,

ϕ2(1/2) = 0, ϕ2(1) = 1, ϕ′2(1) = 1,

ϕ′1(t) > 0, t ∈ [0, 1/2], ϕ′2(t) > 0, t ∈ [1/2, 1],

ϕ′1(1/2) = ϕ′2(1/2).

Their graphs are depicted in Figure 18. In fact, any pair of smooth functions
satisfying all the above properties would serve for our purposes.
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Figure 18. The functions ϕ1 and ϕ2

We define the composition of paths as

P(M)z y ⊗ P(M)y x −→ P(M)z x,

(γ1, γ2) 7−→ γ1γ2

where γ1γ2 is the cuspidal path

(3.354) γ1γ2(t) =

{
γ2(ϕ1(t)), if 0 ⩽ t ⩽ 1

2 ,

γ1(ϕ2(t)), if 1
2 ⩽ t ⩽ 1.

3.8.3. Homotopy of paths. Let γ1, γ2 ∈ P(M)0y x be two clean paths. A homo-
topy between γ1 and γ2 is a map

F : [0, 1]× [0, 1] −→M ∪ {0, 1}

satisfying the following conditions:

F (t, 0) = γ1(t), F (t, 1) = γ2(t), t ∈ [0, 1]

F (0, s) = x, F (1, s) = y, s ∈ [0, 1]

∂F

∂t
(0, s) = v,

∂F

∂t
(1, s) = −w, s ∈ [0, 1]

F (t, s) ∈M, 0 < t < 1, 0 ⩽ s ⩽ 1.

The space π(M ;y,x) is the set of homotopy classes of clean paths from x to y.
Similar notation will be used when only one of the base points is tangential.

We next construct a map ψ from P(M)y x to π(M ;y,x). Let d(x, y) be the

standard Euclidean distance in C = P1(C) \ {∞}. Let γ ∈ P(M)y x. For each ti in

the set of cusps of γ, we can find real numbers εi, ηi, η
′
i ∈ (0, 12 ) such that:

i) ti is the only cusp in the interval [ti − η′i, ti + ηi] and γ is smooth in the
intervals [ti − η′i, ti) and (ti, ti + ηi];

ii) the intervals [ti − η′i, ti + ηi] are disjoint and do not contain 0 or 1;
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γ ψ(γ)

Figure 19. Retraction at a cusp

iii) the image of [ti − η′i, ti + ηi] satisfies

d(γ(ti + ηi), γ(ti)) = εi, d(γ(t), γ(ti)) < εi, for ti < t < ti + ηi

d(γ(ti − η′i), γ(ti)) = εi, d(γ(t), γ(ti)) < εi, for ti − η′i < t < ti;

iv) the tangent vector to γ satisfies
∥∥∥dγ

dt
(t)− d−γ

dt
(ti)
∥∥∥ ⩽ 1

2

∥∥∥d−γ

dt
(ti)
∥∥∥, for t ∈ [ti − η′i, ti)

∥∥∥dγ

dt
(t)− d+γ

dt
(ti)
∥∥∥ ⩽ 1

2

∥∥∥d+γ

dt
(ti)
∥∥∥, for t ∈ (ti, ti + η′i].

Note that condition iv) implies that the path γ cannot turn around the point γ(ti)
between ti − η′i and ti + ηi.

For each cusp ti, let B(γ(ti), εi) be the open ball of centre γ(ti) and radius εi,
and let ri : C \ {γ(ti)} → C \ B(γ(ti), εi) be the radial retraction. Then we define
a new path γ◦ outside the cusps by

(3.355) γ◦(s) =

{
γ(s), if s ̸∈ [ti − η′i, ti + ηi] for all i,

ri(γ(s)), if s ∈ [ti − η′i, ti + ηi] and s ̸= ti.

Condition ii) in the Definition 3.353 implies that γ◦ can be extended continuously to
the cusps ti, thus defining a clean path which is also denoted by γ◦. The retraction
at a cusp is represented in Figure 19.

Proposition 3.356. The homotopy class of clean paths of γ◦ does not depend
on the choice of the numbers εi, ηi, η

′
i.

Sketch of proof. First observe that the numbers εi determine ηi and η′i by
means of condition iii). To prove that the homotopy class of clean paths of γ◦

is independent of the choices, let ε′i ⩾ εi be another choice satisfying the same
requirements. Then the obvious homotopy that shows that the inclusion

C \
⋃

i

B(γ(ti), ε
′
i) ⊂ C \

⋃

i

B(γ(ti), εi)

is a deformation retract proves the claim. □

The homotopy class of γ◦ in π(M ;y,x) is denoted by ψ(γ). Using the map ψ,
we can define a composition of clean paths

π(M ; z,y)× π(M ;y,x) −→ π(M ; z,x).

Definition 3.357. Let x, y, and z be base points (tangential or not). Given
classes γ1 ∈ π(M ; z,y) and γ2 ∈ π(M ;y,x), choose representatives γ̃1 ∈ P(M)0z y

and γ̃2 ∈ P(M)0y x. Then γ̃1γ̃2 belongs to P(M)z x, and we define

γ1γ2 = ψ(γ̃1γ̃2).
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A slight variant of the proof of the same result for ordinary base points gives:

Proposition 3.358. The composition of clean paths given in Definition 3.357
does not depend on the choice of representatives, and turns π(M ;x,x) into a group
and π(M ;y,x) (resp. π(M ;x,y)) into a right (resp. left) π(M ;x,x)-torsor.

The fact that the fundamental groups with different base points are isomorphic
can be easily extended to tangential base points. The next proposition is proved
like the corresponding one for ordinary base points.

Proposition 3.359. Let x1,x2,x3,x4 be base points of M (tangential or not).
Let γ1 ∈ P(M)x4 x3

and γ2 ∈ P(M)x2 x1
. Then the map

π(M ;x3,x2) −→ π(M ;x4,x1)

γ 7−→ γ1γγ2

is a bijection. It is a group isomorphism if x1 = x4, x2 = x3, and γ2 = γ−11 .

3.8.4. Logarithmic asymptotic developments. We would like to extend the no-
tion of iterated integral to tangential base points. The main problem is that the
integral may diverge, so one needs to regularize it. We start by discussing some
preliminaries about asymptotic developments.

Definition 3.360. Let 0 < τ ⩽ 1 be a real number and f : (0, τ) → C a
continuous function. We say that f admits a logarithmic asymptotic development
(of degree less than or equal to r) if it can be written as

f(t) = f0(t) +

r∑

k=0

ak log(t)k

with |f0(t)| = O(tδ) as t→ 0 for some δ > 0 and ak ∈ C.

Lemma 3.361. Let 0 < τ ⩽ 1 be a real number and f : (0, τ)→ C a continuous
function. If f admits a logarithmic asymptotic development, then it is unique.

Proof. Let f : (0, τ)→ C be a continuous function that admits an asymptotic
development

f(t) = f0(t) +

r∑

k=0

ak log(t)k.

We can recover the coefficient ar as

ar = lim
t→0

f(t)

log(t)r
.

Once we know as+1, . . . , ar, we can recover as as

as = lim
t→0

f(t)−∑r
k=s+1 ak log(t)k

log(t)s
.

Finally, f0 = f(t)−∑r
k=0 ak log(t)k, so the logarithmic development is unique. □
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3.8.5. Asymptotic developments of iterated integrals. Recall the two tangential
base points 0 = (0, 1) and 1 = (1,−1). Let x,y ∈ {0,1} ∪ M be base points
(tangential or not), γ ∈ P(M)y x a piecewise smooth clean path, and (ε1, . . . , εr) a
binary sequence with εi ∈ {0, 1}. We consider the iterated integral

∫

γ

ωε1 · · · ωεr .

Since the form ω0 has a pole at 0 and the form ω1 has a pole at 1, this integral may
diverge. This is, for instance, the case for the integral∫

dch

ω0 =∞.

However, if the form ωε1 has no pole at the point y and the form ωεr has no pole
at the point x, then the above integral is convergent. For instance, if γ = dch,
the integral will be convergent when ε1 = 0 and εr = 1, that is, when the binary
sequence is admissible.

We now describe the regularization process. Let γ ∈ P(M)0y x be a clean path.

For 0 < η < 1
2 , we write

(3.362) γη(t) = γ(t(1− η) + (1− t)η).

This is a path from γ(η) to γ(1− η), and hence completely contained in M .

Lemma 3.363. Let (ε1, . . . , εr) be a binary sequence. The function

(0, 1/2) −→ C
η 7−→

∫
γη
ωε1 · · · ωεr

admits a logarithmic asymptotic development of degree ⩽ r.

Proof. We write

γη,1(t) = γ(t(1− η) + (1− t)/2),

γη,2(t) = γ(t/2 + (1− t)η).

The path γη,2 goes from γ(η) to γ(1/2), and γη,1 is a path from γ(1/2) to γ(1− η).
Moreover, γη = γη,1γη,2 (recall that, according to our convention for the composi-
tion of paths (3.3), this means that we first walk along γη,2, then along γη,1). Using
equations (3.20) and (3.21) in Theorem 3.19, it suffices to show that the functions

η 7−→
∫

γη,i

ωε1 · · · ωεr , i = 1, 2

admit a logarithmic asymptotic development of degree less than or equal to r.
Since both cases are analogous, we will only consider i = 2. We prove the existence
of a logarithmic asymptotic development by induction on r. The result is clear
for r = 0. Let us assume that it holds for a binary sequence of length less than r.
If γ∗η,2ωεi = gεi(t)dt and γ∗ωεi = hεi(t)dt, then:

∫

γη,2

ωε1 · · · ωεr =

∫

1⩾t1⩾···⩾tr⩾0

gε1(t1) · · · gεr (tr)dt1 · · · dtr

=

∫

1/2⩾t1⩾···⩾tr⩾η

hε1(t1) · · ·hεr (tr)dt1 · · · dtr.
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Now we compute

I(η) =

∫

1/2⩾t1⩾···⩾tr⩾η

hε1(t1) · · ·hεr (tr)dt1 · · · dtr

=

∫

1/2⩾tr⩾η

hεr (tr)
( ∫

1/2⩾t1⩾···⩾tr−1⩾tr

hε1(t1) · · ·hεr−1
(tr−1)dt1 · · · dtr−1

)
dtr.

By the shape of ωεr , we deduce the estimate

hεr (tr) = α/tr +O(1) as tr → 0,

where α is non-zero if ωεr has a pole at the point x and is zero otherwise. We also
apply the induction hypothesis to the inner integral to get

I(η) =

∫

1/2⩾tr⩾η

( α
tr

+O(1)
)(
O(tδr) +

r−1∑

k=0

bk log(tr)
k
)

dtr as tr → 0.

Estimating this integral, we deduce that I(η) admits a logarithmic asymptotic
development as η → 0 of the sought shape, thus proving the result. □

3.8.6. Regularized iterated integrals.

Definition 3.364. Let (ε1, . . . , εr) be a binary sequence and let γ ∈ P(M)0y x

be a clean path. Let
∫

γη

ωε1 · · · ωεr = f0(η) +

r∑

k=0

ak log(η)k

be the logarithmic asymptotic development provided by Lemma 3.363. Then the
regularized iterated integral along γ is defined as

∫ reg

γ

ωε1 · · · ωεr = a0.

Proposition 3.365. Let γ ∈ P(M)y x be a cuspidal path and γ◦ a representa-
tive of the class ψ(γ) obtained as in (3.355). The regularized integral

∫ reg

γ◦
ωε1 · · · ωεr

does not depend on the choice of γ◦.

Proof. Let γ◦1 and γ◦2 be two choices. Since γ◦1 and γ◦2 only differ from γ in a
small neighborhood of the cusps, for small enough η, the equalities

γ◦1 (η) = γ◦2 (η), γ◦1(1− η) = γ◦2 (1− η)

hold. Moreover, γ◦1,η and γ◦2,η are homotopic. As we saw in Section 3.5.5, there

is an equality H0(B∗(A∗)) = B0(A). Thus, all the iterated integrals that can be
constructed from ω0 and ω1 are homotopy functionals. Therefore,

∫

γ◦
1,η

ωε1 · · · ωεr =

∫

γ◦
2,η

ωε1 · · · ωεr

from which the result follows. □
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Definition 3.366. Let γ ∈ P(M)y x be a cuspidal path. Let γ◦ be a represen-
tative of the class ψ(γ) obtained as in (3.355). We define

∫ reg

γ

ωε1 · · · ωεr =

∫ reg

γ◦
ωε1 · · · ωεr .

Clearly, when the iterated integral is convergent, the value of the regularized
integral agrees with the value of the integral. Regularized iterated integrals share
many of the properties of iterated integrals. In particular, Theorem 3.19 can be
extended to the new setting.

Theorem 3.367. Let γ, γ1, γ2 be cuspidal paths in M whose endpoints are ei-
ther 0,1, or belong to M and such that γ2(1) = γ1(0) holds. Let (ε1, . . . , εr+s) be a
binary sequence. Then:

i) ∫ reg

γ

ωε1 · · · ωεr = (−1)r
∫ reg

γ−1

ωεr · · · ωε1 ;

ii)
∫ reg

γ1γ2

ωε1 · · · ωεr =

r∑

i=0

∫ reg

γ1

ωε1 · · · ωεi
∫ reg

γ2

ωεi+1 · · · ωεr ;

iii)
∫ reg

γ

ωε1 · · · ωεr
∫ reg

γ

ωεr+1
· · · ωεr+s

=
∑

σ∈�(r,s)

∫ reg

γ

ωεσ−1(1)
· · · ωεσ−1(r+s)

.

Proof. We first prove i). If γ is cuspidal and γ◦ is a clean path in the homotopy
class ψ(γ) obtained as in (3.355), then (γ◦)−1 is a clean path in the homotopy
class ψ(γ−1) obtained as in (3.355). Therefore, we can assume that γ is a clean
path. By construction (see formula (3.362)), the equality (γ−1)ε = (γε)

−1 holds.
By Theorem 3.19, the asymptotic expansions of

∫

γε

ωε1 · · · ωεr and (−1)r
∫ reg

γ−1
ε

ωεr · · · ωε1

agree. Thus, we have the equality of regularized integrals.
Statement iii) also follows from the corresponding statement in Theorem 3.19.
Statement ii) is slightly more tricky due to the possibility that the joining point

is a tangential base point. The proof goes as follows. Assume that γ1 and γ2 are
clean paths. Let γ = γ1γ2 be their composition and γ0 a clean path representing γ
as in (3.355). For sufficiently small η, the path (γ0)η is homotopic to γ1,ηγ0,ηγ2,η,
where γ0,η denotes the straight path from γ2(1− η) to γ1(η) (see Figure 20 below).

γ2,η γ1,η

γ0,η

Figure 20. (γ0)η ∼ γ2,ηγ0,ηγ1,η



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 289

By the usual formula for the composition of paths, the following holds:
∫

(γ0)η

ωε1 · · · ωεr

=

r∑

j=0

r∑

k=j

∫

γ1,η

ωε1 · · · ωεj
∫

γ0,η

ωεj+1
· · · ωεk

∫

γ2,η

ωεk+1
· · · ωεr .(3.368)

Lemma 3.369. One has
∫
γ0,η

ωεj+1 · · · ωεk = O(ηk−j) as η tends to 0.

Proof. The key point is that there are power series expansions

γ2(1− η) = γ2(1)− γ′2(1)η +O(η2),

γ1(η) = γ1(0) + γ′1(0)η +O(η2).

From the equalities γ2(1) = γ1(0) and γ′2(1) = −γ′1(0), we derive

|γ2(1− η)− γ1(η)| = O(η2).

Using the equation γ0,η = tγ1(η) + (1− t)γ2(1− η), one sees that

γ∗0,η
dz

z
=

(γ1(η)− γ2(1− η))dt

tγ2(η) + (1− t)γ2(1− η)
.

Since the numerator of this expression is O(η2) and the denominator is O(η), we
get the estimate γ∗0,ηω = O(η)dt, and hence

∫

γ0,η

ωεj+1
· · · ωk = O(ηk−j),

which proves the lemma. □

To conclude the proof of the theorem, we observe that
∫
γ0,η

ωεj+1
· · · ωεk does

not contribute to the constant term in the logarithmic asymptotic development
of (3.368) when k > j. Therefore,

const

∫

(γ0)η

ωε1 · · · ωεr =

r∑

j=0

(
const

∫

γ1,η

ωε1 · · · ωεj

)(
const

∫

γ2,η

ωεj+1
· · · ωεr

)
,

from which the result follows. Here, const means the constant term a0 in the
logarithmic asymptotic expansion. □

As we did for “honest” base points, the properties of iterated integrals can be
concisely rephrased in terms of a pairing between the bar complex and the vector
space generated by paths. If γ is a piecewise smooth path and η ∈ B0(A∗), set

⟨η, γ⟩reg =

∫ reg

γ

η.

Theorem 3.370. Let γ, γ1, γ2 be piecewise smooth paths with any base points
and let η, η1, η2 be elements of B0(A∗). Then the following holds:

i) ⟨η, γ⟩reg = ⟨S(η), γ−1⟩reg;

ii) ⟨η, γ1γ2⟩reg = ⟨∆η, γ1 ⊗ γ2⟩reg;

iii) ⟨η1, γ⟩reg · ⟨η2, γ⟩reg = ⟨η1 � η2, γ⟩reg.
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3.8.7. Regularized iterated integrals and regularized zeta values.

Example 3.371. Let us compute an example of a regularized iterated integral
in length 3, namely

ζ(1, 2)reg =

∫ reg

dch

ω1ω0ω1.

By definition, this is the constant term in the asymptotic logarithmic development
of the function

η 7−→
∫

1−η⩾t1⩾t2⩾t3⩾0

dt1dt2dt3
(1− t1)t2(1− t3)

.

To be completely precise, according to Definition 3.364 we should have also imposed
the condition t3 ⩾ η. Note, however, that the last form ω1 has no pole at 0, so the
constant term of the two asymptotic logarithmic developments agree.

We first compute the integral following the method of Examples 1.110 and 1.112
to obtain

(3.372)

∫

1−η⩾t1⩾t2⩾t3⩾0

dt1dt2dt3
(1− t1)t2(1− t3)

=
∑

m>n>0

(1− η)m

n2m
.

This power series converges for 0 < η < 1 but diverges for η = 0 and we have to
find an asymptotic expansion in log η. To this end, we use the equality

(3.373)

∫

1−η⩾t1⩾t2⩾t3⩾0

dt1dt2dt3
(1− t1)t2(1− t3)

=

∫

1−η⩾t2⩾t3⩾0
1−η⩾t1⩾0

dt1dt2dt3
(1− t1)t2(1− t3)

− 2

∫

1−η⩾t2⩾t1⩾t3⩾0

dt1dt2dt3
(1− t1)t2(1− t3)

,

which is a simple consequence of the decomposition of the integration domain,
together with the fact that the integrand is symmetric in t1 and t3 (this explains
why the last term appears twice). Observe the equality

∫

1−η⩾t1⩾0

dt1
1− t1

=
∑

k⩾1

(1− η)k

k
= − log(η).

Combining this with the power series expansions as in Example 1.112, one sees that
the right-hand side of (3.373) is equal to

(3.374) − log(η)
∑

n⩾1

(1− η)n

n2
− 2

∑

m>n⩾1

(1− η)m

m2n
.

One can directly check (see Exercise 3.383) that this expansion agrees with the
right-hand side of (3.372).

To see that the power expansion (3.374) is useful we need to prove that the
series appearing in that expansion define continuous functions of η.
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Lemma 3.375. The estimates

∑

n⩾1

(1− η)n

n2
= ζ(2) +O(η log η),(3.376)

∑

m>n⩾1

(1− η)m

m2n
= ζ(2, 1) +O(η log2 η)(3.377)

hold when η goes to 0+.

Proof. To prove estimate (3.376), we need to study

ζ(2)−
∑

n⩾0

(1− η)n

n2
=
∑

n⩾0

1− (1− η)n

n2
.

For 0 < η < 1, using the inequalities

0 < 1− (1− η)n < 1, 0 < 1− (1− η)n < nη,

we get the following:

0 <
∑

n⩾1

1− (1− η)n

n2
<

⌊ 1η ⌋∑

n=1

η

n
+
∑

n>⌊ 1η ⌋

1

n2
.

Since the first sum is O(η log η) and the second is O(η), the first estimate follows.
The second one is obtained in a similar way. □

From Lemma 3.375, we obtain
∫

1−η⩾t1⩾t2⩾t3⩾0

dt1dt2dt3
(1− t1)t2(1− t3)

= −2ζ(2, 1)− ζ(2) log η +O(η log2 η),

from which it follows that

ζ(1, 2)reg = −2ζ(2, 1).

Note that the value of ζ(1, 2)reg is equal to the one obtained by shuffle regular-
ization in Example 1.187. This is of course no coincidence, as we now prove.

Theorem 3.378. Let (ε1, . . . , εr) be a binary sequence and consider the corre-
sponding word w = xε1 · · · xεr . Then:

ζ�(w) =

∫ reg

γ

ωε1 · · · ωεr .

Proof. Thanks to Proposition 1.182, it suffices to show that the integral on
the right-hand side satisfies the conditions determining ζ�(w). Condition (1.183)
follows from Theorem 1.116 combined with the observation that for an admissible
binary sequence the regularized integral agrees with the usual integral. Condi-
tion (1.184) is checked by a direct computation. Finally, condition (1.185) is the
content of Theorem 3.367 iii). □
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3.8.8. Chen’s theorem for tangential base points. We finish this section by stat-
ing a version of Chen’s theorem with tangential base points. Recall that we are
writing M = P1(C) \ {0, 1,∞}, and A∗C is the dg-algebra from Section 3.5.5.

Theorem 3.379 (Chen’s π1 theorem for tangential base points). For each in-
teger N ⩾ 0 and each pair of points x,y (tangential or not), regularized iterated
integrals induce an isomorphism

LN H0(B∗(A∗C))
∼−→ HomQ

(
Q[π1(M ;y,x)]/JN+1Q[π(M ;x)],C

)
.

Passing to the limit, we deduce an isomorphism between H0(B0(A∗C)) and the topo-
logical dual (C[π1(M ;y,x)]∧)∨.

Proof. We need to show that the pairing between the spaces LN H0(B∗(A∗C))
and π1(M ;y,x)/JN+1 is non-degenerate. Since both are finite-dimensional, it suf-
fices to prove that there is no non-zero γ ∈ π1(M ;y,x)/JN+1 such that ⟨ω, γ⟩ = 0
holds for all ω. Indeed, assume that such a γ exists. Choose usual base points x′

and y′ and paths γ1 and γ2 going from x′ to x and from y to y′. Then, by Theo-
rem 3.370 ii), for ω ∈ LN H0(B∗(A∗))

⟨ω, γ2γγ1⟩ =
∑
⟨ω1, γ2⟩⟨ω2, γ⟩⟨ω3, γ1⟩,

where all the elements ω1, ω2, ω3 are of length ⩽ N . Thus, ⟨ω, γ2γγ1⟩ = 0 holds for
all ω ∈ LN H0(B∗(A∗)). From the usual Chen Theorem 3.273, we get γ2γγ1 = 0,
and hence the same is true for γ. □

3.8.9. A mixed Hodge structure in the case of tangential base points. We now
extend the definition of the ind-mixed Hodge structure { AH,N

y x }N⩾0 to the case of

tangential base points x and y. For the Betti part of AH,N
y x , we write

AB,N
y x =

(
Q[π(M ;y,x)]/JN+1Q[π(M ;y,x)]

)∨

with the weight filtration given by

W2p( AB,N
y x ) = W2p+1( AB,N

y x )

=
(
Jp+1Q[π(M ;y,x)]/JN+1Q[π(M ;y,x)]

)⊥

for −1 ⩽ p ⩽ N . For the de Rham side AdR,N
y x , we just copy the definition

of AdR,N
y x for honest base points x and y as the de Rham side is independent of

this choice. Now the comparison map compdR,B is given by Theorem 3.379 and the
inverse is denoted by compB,dR.

For usual base points, Beilinson’s theorem implies that the above structures
define a mixed Hodge structure. But Beilinson’s theorem is not available for tan-
gential base points, so we need to prove this fact in the case at hand.

Proposition 3.380. For every N ⩾ 0, the triple

H =
(
( AB,N
y x ,W ), ( AdR,N

y x ,W, F ), compB,dR

)

is a mixed Hodge structure over Q.

Proof. The fact that compdR,B is an isomorphism of filtered vector spaces is
the content of Theorem 3.379, so we only need to prove that the triple

GrWm H = (GrWm HB, (GrWm HdR, F
•), compB,dR)
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is a pure Hodge structure of weight m. Thanks to Proposition 3.345, we know
that GrW2p+1HdR = {0} and that the filtration F • induced on GrW2p HdR satisfies

F p GrW2p HdR = GrW2p HdR and F p+1 GrW2p HdR = {0}.
Therefore, regardless of the precise action of complex conjugation, the equality

GrWm HdR = F p ⊕ Fm+1−p

holds for all m and p, which completes the proof. □

Remark 3.381. As a consequence of Proposition 3.380 and Theorem 3.378,
we have exhibit all regularized multiple zeta values as periods of mixed Hodge
structures. Nevertheless, since we do not have Beilinson’s theorem for tangential
base points we do not know yet that these mixed Hodge structures come from
geometry as in Theorem 2.183. This will be discussed in Section 4.3.6.

⋆ ⋆ ⋆

Exercise 3.382. An integral point of the affine scheme X = P1
Z \ {0, 1,∞} is

a morphism of schemes Spec(Z)→ X, or equivalently a ring morphism

Z[t, t−1, (t− 1)−1] −→ Z.

Prove that X does not have integral points.

Exercise 3.383. By expanding the logarithm log(η) as a power series in (1−η),
prove the equality

∑

m>n>0

(1− η)m

n2m
= − log(η)

∑

n⩾0

(1− η)n

n2
− 2

∑

m>n⩾1

(1− η)m

m2n

of functions of the variable 0 < η < 1.

Exercise 3.384. Let n ⩾ 2 be an integer. Adapt Example 3.371 to compute
the regularized iterated integral

∫ reg

dch

ω1ω
n−1
0 ω1

and show that the result coincides with ζ�(1, n).

3.9. Polylogarithms and their monodromy. In this section, we explain
how to make the isomorphism of Chen’s Theorem 3.379 more explicit in the case
of M = P1(C) \ {0, 1,∞} by using polylogarithms.

3.9.1. Generators of the fundamental group of M . Recall the tangential base
points 0 and 1 from (3.352). The fundamental group π1(M,0) is generated by
the paths γ0 and γ1 of Figure 21. The space of paths π(M ;1,0) is generated as a
right π1(M,0)-module by the straight path dch also represented in Figure 21.

The fundamental group π1(M,1) is generated by the paths

γ′0 = dch · γ0 · dch−1 and γ′1 = dch · γ1 · dch−1,
and the space π(M ;0,1) is generated either as a right π1(M,1)-module or as a
left π1(M,0)-module by the path dch−1.
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0 1

(a) γ0

0 1

(b) γ1

0 1

(c) dch

Figure 21. Generators

3.9.2. The dual of Chen’s map. We saw in Section 3.5.5 that the cohomology in
degree zero of the reduced bar complex associated with A∗C is isomorphic, as a Hopf
algebra, to the complex Hoffman algebra H⊗C. In Example 3.74, we identified the
dual H∨ with the algebra Q⟪e0, e1⟫. We extend Notation 1.162 as follows.

Notation 3.385. Given a binary sequence α, we denote by xα the correspond-
ing word in the Hoffman algebra H, by ωα the differential form ωα in B0(A∗) ≃ H,
and by eα the dual element to xα in Q⟪e0, e1⟫.

Let x and y be base points (tangential or not) of M = P1(C)\{0, 1,∞}. Given
a path γ from x to y and ω ∈ B0(A∗C), we define

Lω(γ) =

∫ reg

γ

ω ∈ C.

In the notation of Theorem 3.370, this amounts to

Lω(γ) = ⟨ω, γ⟩reg.

For a binary sequence α, we set

Lα(γ) = Lωα
(γ).

Consider the generating series

L(γ) =
∑

α

Lα(γ)eα ∈ C⟪e0, e1⟫,

which satisfies L(γ)(ω) = Lω(γ) for all ω ∈ B0(A∗C) ≃ H⊗ C ≃ C⟪e0, e1⟫∨.
3.9.3. The map L and polylogarithms. Let s be a positive multi-index. Recall

from Definition 1.118 the polylogarithm Lis, a complex-valued function defined
on the open unit disc |z| < 1. The relation between the polylogarithm and the
generating series L is explained by the following lemma, whose proof is parallel to
that of Theorem 1.126. We leave the details to the reader.

Lemma 3.386. Let z be a complex number such that 0 < |z| < 1, γ a path
from 0 to z contained in the disk |z| < 1, and s a positive multi-index. Let bs(s)
denote the associated binary sequence. Then the following equality holds:

Lis(z) = Lbs(s)(γ).
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3.9.4. Computation of L(γ0). For any z ∈ C \ {0, 1}, any path γ from 0 to z,
and any binary sequence α, the complex number Lα(γ) is defined. By abuse of
notation, we will write Lα(z) and think of it as a multivalued function.

Example 3.387. Let z ∈ C \ {0, 1}. Let us show that, for each n ⩾ 1, the
following equality of multivalued functions holds:

(3.388) L0n(z) =
1

n!
(log z)n.

Let γ be any path from 0 to z. We argue by induction on n. First, for n = 1,
to compute the value

L0(γ) =

∫ reg

γ

dt

t
,

one needs to find a logarithmic asymptotic development for

η 7−→
∫ 1−η

η

γ∗(dt
t ) =

∫ 1−η

η

γ′

γ
dt

= log γ(1− η)− log γ(η).

Since γ(0) = 0 and γ′(0) = 1, one has γ(η) = η(1−O(η)) as η goes to zero. On the
other hand, γ(1− η) = z +O(η). Thus,

log γ(1− η)− log γ(η) = log z +O(η)− log η

and the regularization assigns the value

L0(z) = log z.

Let us now assume that the identity (3.388) holds for n− 1. Since the number
of shuffles of type (1, n − 1) is n by Exercise 1.143, Theorem 3.367 iii) gives the
result we want:

nL0n(z) =

∫ reg

γ

ω0

∫

γ

ω0 · · ·ω0︸ ︷︷ ︸
n−1

=
1

(n− 1)!
(log z)n.

Example 3.389. We are now ready to compute L(γ0). Arguing as in Exam-
ple 3.387, one gets

L0n(γ0) =
1

n!
(2πi)n.

If α is a non-empty positive binary sequence, then Lemma 3.386 implies

Lα(γ0) = 0.

In fact, it follows from Theorem 3.370 iii) and the compatibility with the shuffle
product that Lα0k(γ0) = 0 for all α ̸= ∅ and all k ⩾ 0. Summing up, we deduce

(3.390) L(γ0) =
∑

α

Lα(γ0)eα =
∑

n⩾0

(2πi)n

n!
en0 = exp(2πie0).

Thanks to the symmetry z 7→ 1− z, we then get the equality

(3.391) L(γ′1) = exp(2πie1).
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3.9.5. L evaluated at dch and the Drinfeld associator.

Example 3.392. Let α be a binary sequence. Theorem 3.378 implies the equal-
ity Lα(dch) = ζ�(xα), whence

(3.393) L(dch) =
∑

α

ζ�(xα)eα.

We write Φ(e0, e1) for this power series with real coefficients. We also write

(3.394) ΦKZ(e0, e1) = Φ(e0,−e1) =
∑

α

(−1)l(α)ζ�(xα)eα,

where l(α) is the number of entries equal to 1 in α as in Definition 1.132.

Definition 3.395. The power series ΦKZ(e0, e1) ∈ R⟪e0, e1⟫ is called the Drin-
feld associator.

Remark 3.396. The name associator comes from the theory of quantum groups,
where one seeks for “quantum” deformations of the Hopf algebra of a group. In
this context, asking for an associative coproduct is too rigid. Instead, one defines
the notion of a quasi-bialgebra, in which the coproduct is only associative up to
conjugation by an element called the associator. The Drinfeld associator is some
kind of universal associator that allows us to construct associators in many partic-
ular instances. We refer the reader to the book by Etingof and Schiffmann [ES02],
especially to Chapters 14 to 16, for more details.

3.9.6. Chen’s theorem revisited.

Theorem 3.397. For any two base points x and y, the map L can be extended
to a continuous C-linear isomorphism

L : C[π1(M ;y,x)]∧ −→ C⟪e0, e1⟫ = Hom(H,C).

The following properties hold:

i) If u ∈ C[π1(M ;y,x)]∧, then

S∨(L(u)) = L(S(u)).

In particular, if γ ∈ π1(M ;y,x) is a path, then S∨(L(γ)) = L(γ−1).

ii) Given three points x, y, and z, and elements v ∈ C[π1(M ;y,x)]∧ and
u ∈ C[π1(M ; z,y)]∧, one has

L(uv) = L(u)L(v).

iii) If u ∈ C[π1(M ;y,x)]∧, then

∇∨(L(u)) = (L⊗ L)(∆(u)).

In particular, if γ ∈ π1(M ;y,x) is a path, then L(γ) is group-like.

Proof. We first extend L by linearity to C[π1(M ;y,x)]. By construction, for
any path γ, the series L(γ) starts by one. Therefore, any element in the augmen-
tation ideal of C[π1(M ;y,x)] is sent to an element of the ideal generated by e0
and e1. Thus, it can be extended uniquely to a morphism

L : C[π1(M ;y,x)]∧ −→ C⟪e0, e1⟫ = Hom(H,C).

That this yields an isomorphism is a reformulation of Theorem 3.379. It is enough
to check properties i) to iii) on paths, all of which follow from Theorem 3.367.
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We start proving i) by using Theorem 3.370 i):

L(γ−1) =
∑

α

⟨ωα, γ−1⟩regeα

=
∑

α

⟨S(ωα), γ⟩regeα

=
∑

α

⟨ωα, γ⟩regS∨(eα)

= S∨(L(γ)).

We next prove ii) using 3.370 ii):

L(γ1γ2) =
∑

α

⟨ωα, γ1γ2⟩regeα

=
∑

α

⟨∆ωα, γ1 ⊗ γ2⟩regeα

=
∑

α′,α′′

⟨ωα′ ⊗ ωα′′ , γ1 ⊗ γ2⟩regeα′eα′′

= L(γ1)L(γ2).

Finally, we prove iii) using 3.370: iii).

∇∨(L(γ)) =
∑

α

⟨ωα, γ⟩reg∇∨eα

=
∑

α

⟨ωα, γ⟩reg
∑

α′,α′′

�(α′, α′′;α)eα′ ⊗ eα′′

=
∑

α′,α′′

⟨ωα′ � ωα′′ , γ⟩regeα′ ⊗ eα′′

=
∑

α′,α′′

⟨ωα′ , γ⟩reg⟨ωα′′ , γ⟩regeα′ ⊗ eα′′

= L(γ)⊗ L(γ).

This concludes the proof. □

Example 3.398. From Theorem 3.397 iii), we deduce that

Φ(e0, e1) = L(dch)

is a group-like element. In particular, it is the exponential of a primitive element,
and its inverse as power series is given by its antipode

(3.399) L(dch−1) = Φ(e0, e1)−1 = S∨(Φ(e0, e1)).

From Examples 3.389 and 3.392, as well as the compatibility of L with the
composition of paths in Theorem 3.397 ii), we can compute L on the remaining
generators of π1(M,0) and π1(M,1). We get:

L(γ1) = Φ(e0, e1)−1 exp(2πie1)Φ(e0, e1),

L(γ′0) = Φ(e0, e1) exp(2πieo)Φ(e0, e1)−1.
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3.9.7. The Knizhnik–Zamolodchikov equation. Theorem 3.397 encodes all the
properties of the series L, and hence of polylogarithms. The first property we can
extract from it is that L satisfies the so-called Knizhnik–Zamolodchikov equation:

Proposition 3.400. L(z) satisfies the differential equation

d

dz
L(z) =

(
e0
z

+
e1

1− z

)
L(z).(3.401)

Proof. Fix z ∈ M , let γ be a path with endpoint z, and let γε(t) = z + tε.
To compute the derivative of L(z), we need to evaluate the limit

lim
ε→0

L(γεγ)− L(γ)

ε
.

From Theorem 3.397 ii) we get

L(γεγ)− L(γ) = (L(γε)− 1)L(γ).

Moreover, the equality

L(γε)− 1 =

∫ reg

γε

ω0e0 +

∫ reg

γε

ω1e1 +O(ε2)

holds. Taking the values of the limits

lim
ε→0

1

ε

∫

γε

ω0 =
1

z
and lim

ε→0

1

ε

∫

γε

ω1 =
1

1− z
into account, we conclude

d

dz
L(z) =

(
e0
z

+
e1

1− z

)
L(z),

as we wanted to show. □

3.9.8. The monodromy of L. The second property we want to derive is an
explicit description of the monodromy of L as a multivalued function.

Theorem 3.402. Let z ∈M and γ a path from 0 to z. Then,

L(γ · γ0) = L(γ) exp(2πie0),

L(γ · γ1) = L(γ)Φ(e0, e1)−1 exp(2πie1)Φ(e0, e1).

Proof. The statement follows immediately from Theorem 3.397 ii) and Ex-
amples 3.389 and 3.398. □

3.9.9. Further properties of the Drinfeld associator. We next derive the basic
properties of the Drinfeld associator ΦKZ. Let Ua4 be the universal enveloping
algebra of the Lie algebra of the pro-unipotent completion of the pure braid group
on 4 strings. Concretely, it is the algebra of power series in letters

ti,j for 1 ⩽ i, j ⩽ 4,

subject to the relations

ti,i = 0, ti,j = tj,i,

[ti,j , ti,k + tj,k] = 0, for i, j, k different,

[ti,j , tk,l] = 0, for i, j, k, l different.
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Theorem 3.403 (Drinfeld [Dri90]). The Drinfeld associator ΦKZ satisfies the
following relations:

i) Symmetry relation: ΦKZ(e0, e1)ΦKZ(e1, e0) = 1.

ii) Hexagon relation: set e∞ = −e0 − e1. Then

eiπe0ΦKZ(e∞, e0)eiπe∞ΦKZ(e1, e∞)eiπe1ΦKZ(e0, e1) = 1.

iii) Pentagon relation: For ti,j ∈ Ua4, we have

ΦKZ(t1,2, t2,3 + t2,4)ΦKZ(t1,3 + t2,3, t3,4)

= ΦKZ(t2,3, t3,4)ΦKZ(t1,2 + t1,3, t2,4 + t3,4)ΦKZ(t1,2, t2,3).

Proof. We start proving i). Consider the automorphism z 7→ 1 − z of M .
This automorphism sends the form ωi to −ω1−i for i = 0, 1, and hence it sends e0
to −e1, and e1 to −e0. Moreover, it sends dch to dch−1. Therefore, we get the
equalities L(dch−1) = Φ(−e1,−e0) and

1 = L(dch)L(dch−1) = Φ(e0, e1)Φ(−e1,−e0),

which is equivalent to i).
To prove ii), we need to introduce more tangential points and paths:

• Let 0− = (0,−1) be the tangent vector −1 at 0, and 1− = (1, 1) be the
tangent vector 1 at 1.

• Consider the point ∞ with local coordinate u = 1/z and write

∞ = (∞, 1) and ∞− = (∞,−1)

for the tangent point 1 and −1 at ∞ with respect to this coordinate

• We denote by δ0 ∈ π(M ;0,0−) the path that starts in 0−, gives half a
turn around zero in the counterclockwise direction, and ends in 0.

• Similarly, δ1 ∈ π(M ;1−,1) is the path that starts in 1, gives half a turn in
the counterclockwise direction and ends in 1− and δ∞ ∈ π(M ;∞−,∞)
is the path that starts in ∞, gives half a turn in the counterclockwise
direction, and ends in ∞−.

• Finally, we denote by dch∞,1 ∈ π(M ;∞,1−) the straight path that starts
in 1− and ends in ∞ through the real numbers greater than one and,
similarly, by dch0,∞ ∈ π(M ;0−,∞−) the straight path that starts in ∞−

and ends in 0− through the negative real numbers.

All these paths are represented in Figure 22.

0 1dch dch∞,1dch0,∞

δ0 δ1 δ∞

∞

Figure 22. More tangential base points and paths

Clearly, the composition

δ0 · dch0,∞ · δ∞ · dch∞,1 · δ1 · dch
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is homotopically equivalent to the trivial path. Therefore, from Theorem 3.397 ii)
we get the equality

(3.404) L(δ0)L(dch0,∞)L(δ∞)L(dch∞,1)L(δ1)L(dch) = 1.

Arguing as in Example 3.389, we can see that

L(δ0) = exp(πie0).

We now consider the automorphism z 7→ 1/(1− z) of M . This map sends δ0 to δ1,
and δ1 to δ∞. It also sends dch to dch∞,1, and dch∞,1 to dch0,∞.

Moreover, the pull back by this automorphism sends the form ω0 to the form ω1,
and the form ω1 to the form −ω0−ω1. Dualizing, we deduce that this automorphism
sends e0 to −e1, and e1 to e0 − e1. We deduce the equalities

L(δ1) = exp(−πie1), L(δ∞) = exp(πi(e1 − e0)),

L(dch∞,1) = Φ(−e1, e0 − e1), L(dch0,∞) = Φ(e1 − e0,−e0).

Thus, equation (3.404) reads

eiπe0Φ(e1 − e0,−e0)eiπ(e1−e0)Φ(−e1, e0 − e1)e−iπe1Φ(e0, e1) = 1,

which is equivalent to

eiπe0ΦKZ(e1 − e0, e0)eiπ(e1−e0)ΦKZ(−e1, e1 − e0)e−iπe1ΦKZ(e0,−e1) = 1.

The hexagon relation is obtained by replacing e1 with −e1.
The proof of iii) involves considering a path in the moduli space M0,5 which is

a complex surface. To write it properly, we would need to discuss tangential base
points and local monodromy in higher dimensions, so we will omit it. □

3.9.10. The associator relations and the extended double shuffle relations. We
close this section by quoting the following result:

Theorem 3.405 (Furusho [Fur10], [Fur11]).

i) Let (ζs(α))α be a collection of real numbers, one for each binary sequence.
Denote by ζs : H0 → R the map obtained from these numbers by linearity.
If the power series ∑

α

(−1)αζs(α)eα

is group-like and satisfies the associator relations from Theorem 3.403,
then the pair (R, ζs) satisfies the extended double shuffle relations from
Definition 1.202.

ii) Let φ ∈ R⟪e0, e1⟫ be a group-like element such that the coefficient of e0e1
is equal to −ζ(2) = −π2/6. If φ satisfies the pentagon relation from The-
orem 3.403 iii), then it satisfies the symmetry relation i) and the hexagon
relation ii) from the same theorem.

⋆ ⋆ ⋆

Exercise 3.406. Compute explicitly the terms up to degree 5 of the Drinfeld
associator ΦKZ(e0, e1). Show that, with the exception of the unit in degree 0, they
can be all written as commutators.
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Exercise 3.407. In this exercise, we show how Theorem 3.402 encodes the
monodromy of multiple polylogarithms in one variable. We start with Li3, which
is the coefficient of e0e0e1 in L. Let z ∈ P1(C)\{0, 1,∞} and γ a path from 0 to z.

i) Find the coefficient of e0e0e1 in L(γγ0) and L(γγ1). The resulting expres-
sions give the monodromy of Li3.

ii) Compute the monodromy along γ0 and γ1 of the functions

L∅ = 1, L0, L1, L0001, L01001.

3.10. The fundamental groupoid of P1 \ {0, 1,∞}. We continue studying
the manifold M = P1(C)\{0, 1,∞}, but we now view it as the set of complex points
of the algebraic variety X = P1

Q\{0, 1,∞} defined over Q. Recall the dg-algebra A∗

from Example 2.284 that computes the algebraic de Rham cohomology of X.
3.10.1. Summary of structures. For convenience and to fix notation, we start

by summarizing some results from the previous sections.

Summary 3.408. Let x,y, z ∈ {0,1} ∪ X(Q) be base points (tangential or
not). We have at our disposal the following structures.

Betti side: An affine pro-algebraic scheme over Q

ΠB
y x = π1(P1

Q \ {0, 1,∞};y,x)un,

a pro-Q-vector space

UB
y x = Q

[
π1(P1

Q \ {0, 1,∞};y,x)
]∧
,

the subspace of primitive elements

LB
y x = {x ∈ UB

y x | ∇∨x = 1⊗ x+ x⊗ 1},
and an ind-Q-algebra

AB
y x = O( ΠB

y x) = ( UB
y x )∨.

De Rham side: An affine pro-algebraic scheme over Q

ΠdR
y x = Spec(H),

a pro-Q-vector space

UdR
y x = Q⟪e0, e1⟫,

the subspace of primitive elements

LdR
y x = {x ∈ UdR

y x | ∇∨x = 1⊗ x+ x⊗ 1},
and an ind-Q-algebra

AdR
y x = H.

Comparison isomorphisms:

compΠ
dR,B : ΠB

y x ×Q C ∼−→ ΠdR
y x ×Q C,

compUdR,B : UB
y x ⊗̂QC

∼−→ UdR
y x ⊗̂QC,

compLdR,B : LB
y x⊗̂QC

∼−→ LdR
y x ⊗̂QC,

compAB,dR : AdR
y x ⊗Q C ∼−→ AB

y x ⊗Q C.
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Recall that ΠB
y x and ΠdR

y x are affine schemes over Q. The notation ×QC
is a shorthand for ×Spec(Q) Spec(C). All the comparison isomorphisms

comp?
B,dR are given by the regularized iterated integrals. For instance,

compUdR,B : UB
y x −→ UdR

y x

agrees with the map L from Theorem 3.397.

Additional structures: For ? = B,dR, there are morphisms

(3.409) Π?
z y × Π?

y x −→ Π?
z x

of pro-algebraic schemes induced from the composition of paths on the
Betti side and the coproduct of H on the de Rham side. These mor-
phisms turn Π?

x x into a pro-unipotent group scheme, and Π?
y x into a right

Π?
x x-torsor and a left Π?

y y-torsor. Therefore, the pro-Q-vector spaces U ?
y x

are endowed with the following structures:
i) a composition of paths

∆∨ : U ?
z y ⊗ U ?

y x −→ U ?
z x;

ii) unit

η∨x : Q −→ U ?
x x;

iii) a completed coproduct

∇∨ : U ?
y x −→ U ?

y x⊗̂ U ?
y x;

iv) counit

ϵ∨ : U ?
y x −→ Q;

v) a dual antipode

S∨ : U ?
y x −→ U ?

x y.

The ind-algebras A?
y x are endowed with the dual structures. These addi-

tional structures are compatible with all the comparison isomorphisms.

Mixed Hodge structures: Extending the construction of Section 3.7.2 to
tangential base points as in Section 3.8.9, we see that UB

y x and AB
y x are

equipped with a weight filtration W , and UdR
y x and AdR

y x with a weight
filtration W and a Hodge filtration F in such a way that

AH
y x = (( AB

y x ,W ), ( AdR
y x ,W, F ), compB,dR)

is an object of ind-MHS(Q), and

UH
y x = (( UB

y x ,W ), ( UdR
y x ,W, F ), comp−1dR,B)

is an object of pro-MHS(Q).
The filtrations on U ?

y x induce a weight filtration on LB
y x , and a weight

and a Hodge filtration on LdR
y x , so that

LH
y x = (( LB

y x ,W ), ( LdR
y x ,W, F ), comp−1dR,B)

is also an object of pro-MHS(Q).
Moreover, all the previous additional structures of AH

• • and UH
• • un-

derlie morphisms of ind-MHS(Q) and pro-MHS(Q) respectively.
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Remark 3.410. Observe that the de Rham side on Summary 3.408 is indepen-
dent of the base points. In fact, there is a canonical de Rham path 1dRy x in ΠdR

y x

(it is the unit element in the affine group scheme Spec(H) and corresponds to the
kernel of the counit ε : H → Q). Therefore, for base points x, y, and z, there are
canonical isomorphisms

ΠdR
y x −→ ΠdR

z x ,

γ 7−→ 1dRz y · γ
ΠdR

y x −→ ΠdR
y z .

γ 7−→ γ · 1dRx z

Since the pro-algebraic scheme ΠdR
y x is independent of the base points, we will

suppress them from the notation, and simply write ΠdR = Spec(H).

For future reference, we make the ind-mixed Hodge structure on AH
y x more

explicit. This result follows directly from Proposition 3.345 and its proof.

Proposition 3.411. The ind-mixed Hodge structure AH
y x is of Hodge–Tate

type. Moreover, the associated grading (Lemma 2.237) on

AdR
y x = H = Q⟨x0, x1⟩

is the multiplicative grading that assigns degree 1 to the elements x0 and x1, and
degree 0 to the constants.

Variant 3.412. The same structures are available for other varieties. For
instance, everything can be easily generalized to any variety of the form X ′ = P1

Q\S
for a finite subset S ⊂ P1(Q). In this case, we will use Π(X ′)By x to denote the
pro-algebraic scheme in the Betti side and similar notation for the other structures.
In the sequel, we will only need the case X ′ = Gm, in which case we have

Π(Gm)dRy x = A1
Q = Ga,

A(Gm)dRy x = Q[x0],

U(Gm)dRy x = QJe0K,

L(Gm)dRy x = Qe0.
We will also denote by L the morphism

compUdR,B : U(Gm)By x −→ U(Gm)dRy x .

3.10.2. The fundamental groupoid and the local monodromy. From now on, we
focus our attention on the pro-unipotent group picture Π?

y x. The reader will have

no difficulty in writing the analogous statements for U?, L?, and A?.

Definition 3.413. The diagram consisting of the four schemes

Π?
y x, x,y ∈ {0,1}

along with the composition of paths will be called the tangential fundamental
groupoid of P1 \ {0, 1,∞}. It is represented schematically in Figure 23.

We want to enrich this construction of the tangential fundamental groupoid by
adding the local monodromies around 0 and 1. We start with the local monodromy
around 0 in the de Rham side. The morphism of Hopf algebras H → Q[x] that
sends every word containing x1 to zero, and x0 . . . x0︸ ︷︷ ︸

n

to xn/n! can be seen as a map

AdR
0 0 −→ A(Gm)dR0 0



304 J. I. BURGOS GIL AND J. FRESÁN
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Figure 23. The fundamental groupoid

that induces maps

Ga = Π(Gm)dR0 0 −→ ΠdR
0 0 and U(Gm)dR0 0 −→ UdR

0 0 .

The local monodromy around 0 in the Betti side is obtained topologically as
follows. Let ∆∗ be a small punctured disc around zero in P1(C) \ {0, 1,∞}. The
local monodromy is the composition of the inverse of the isomorphism

π1(∆∗,0)un −→ π1(Gm,0)un = Ga
with the natural map

π1(∆∗,0)un −→ π1(P1 \ {0, 1,∞},0)un.

Similarly, the de Rham side of the local monodromy around 1 is induced by
the morphism of Hopf algebras H → Q[x] that sends every word containing x0 to
zero, and x1 · · ·x1 to xn/n!, and the Betti side is obtained by considering a small
punctured disc around 1.

The local monodromy maps are morphisms of ind-MHS(Q) in the case of A
and morphism of pro-MHS(Q) in the case of U . This means that the pair of maps

AdR
0 0 −→ A(Gm)dR0 0 AB

0 0 −→ A(Gm)B0 0

is a morphism of ind-MHS(Q)

AH
0 0 −→ A(Gm)H0 0 ,

while the pair of maps

U(Gm)dR0 0 −→ UdR
0 0 U(Gm)B0 0 −→ UB

0 0

is a morphism of pro-MHS(Q)

U(Gm)H0 0 −→ UH
0 0 ,

and the same is true for the local monodromy maps around 1.

Definition 3.414. We will denote by DdR the diagram consisting of the four
schemes ΠdR

y x , for x,y ∈ {0,1}, the morphisms given by the composition of paths,
the scheme Ga, and the two local monodromies

Ga −→ ΠdR
0 0 and Ga −→ ΠdR

1 1 .

Similarly, we write DdR
U and DdR

A for the corresponding diagram for the vector
spaces U and the algebras A together with all the additional structures discussed
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in Summary 3.408. That is, the unit, counit, product, completed coproduct and
dual antipode for U , and the dual structures for A. Similarly, we will denote by DB

?

the corresponding diagrams on the Betti side. Finally, we will denote by DH
U the

pair of diagrams DB
U and DdR

U viewed together as a diagram of pro-MHS(Q).

We will see in Section 4.5 that the diagram DH
U is “motivic”.

3.10.3. The automorphisms of DdR. We denote by Aut(DdR) the group of au-
tomorphisms ofDdR in the following sense: to give an element of Aut(DdR) amounts
to giving an automorphism of pro-algebraic schemes of each ΠdR

y x and an automor-
phism of Ga that are compatible with the composition of paths (3.409) and the
local monodromy maps. The group Aut(DdR) is a pro-algebraic group.

Similarly, we denote by Aut(DdR
U ) the automorphisms of the diagram DdR

U

compatible with all the structures. Since the diagrams DdR and DdR
U determine

each other, there is a canonical identification between Aut(DdR
U ) and Aut(DdR).

Hence, we will only work with the latter. We denote by Aut0(DdR) the subgroup
of Aut(DdR) that acts as the identity on Ga. There is an exact sequence

0 −→ Aut0(DdR) −→ Aut(DdR) −→ Gm −→ 0.

Using the tools from the next sections, one can show that the group Aut0(DdR) is
pro-unipotent (Exercise 3.435).

Lemma 3.415. There is an isomorphism of schemes

Aut0(DdR) −→ ΠdR
0 0 ,

f 7−→ γf

where γf is determined by the equation

f( 1dR1 0 ) = 1dR1 0 · γf .
Proof. Recall that the dual of the Hoffman algebra H is Q⟪e0, e1⟫. It also

agrees with the completed universal enveloping algebra of Lie( ΠdR
0 0 ). Let R be

a Q-algebra. The elements of ΠdR
0 0 (R) are the group-like elements of R⟪e0, e1⟫.

Moreover, there are identities

ΠdR
1 0 (R) = 1dR1 0 · ΠdR

0 0 (R),

ΠdR
0 1 (R) = ΠdR

0 0 (R) · 1dR0 1 ,(3.416)

ΠdR
1 1 (R) = 1dR1 0 · ΠdR

0 0 (R) · 1dR0 1 .

Let f ∈ Aut0(DdR)(R). Since f is the identity on Ga, we deduce the equalities

f(exp(e0)) = exp(e0),

f( 1dR1 0 · exp(e1) · 1dR0 1 ) = 1dR1 0 · exp(e1) · 1dR0 1 .

We also have f( 1dR0 0 ) = 1dR0 0 and 1dR0 1 · 1dR1 0 = 1dR0 0 . Therefore, the fact that f
is compatible with the composition of paths implies that it is determined by the
image of 1dR1 0 . We write

f( 1dR1 0 ) = 1dR1 0 · γf
for an element γf ∈ ΠdR

0 0 (R) ⊂ R⟪e0, e1⟫.
Conversely, every γ ∈ ΠdR

0 0 (R) = Spec(H)(R) is a group-like element of the
algebra R⟪e0, e1⟫. To give an element of Aut( ΠdR

0 0 )(R) is equivalent to give a
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continuous automorphism of R⟪e0, e1⟫ that is compatible with the completed co-
product and the antipode. We define

(3.417) fγ(e0) = e0, fγ(e1) = γ−1 · e1 · γ.
This determines a continuous automorphism of R⟪e0, e1⟫. To show that it is com-
patible with the completed coproduct, it is enough to check that this property holds
for the generator e1. On the one hand,

fγ(∇∨(e1)) = fγ(1⊗ e1 + e1 ⊗ 1)

= 1⊗ (γ−1 · e1 · γ) + (γ−1 · e1 · γ)⊗ 1.

On the other hand, using that γ is group-like, we get

∇∨(fγ(e1)) = ∇∨(γ−1 · e1 · γ)

= γ−1 ⊗ γ−1 · (1⊗ e1 + e1 ⊗ 1) · γ ⊗ γ
= 1⊗ (γ−1 · e1 · γ) + (γ−1 · e1 · γ)⊗ 1.

The fact that fγ is compatible with the dual antipode follows from S∨(γ) = γ−1,
which holds by Lemma 3.236 since γ is group-like.

To sum up, fγ determines an element of Aut( ΠdR
0 0 )(R). Writing

fγ( 1dR1 0 ) = 1dR1 0 · γ, fγ( 1dR0 1 ) = γ−1 · 1dR0 1

and using the identities (3.416), we obtain R-automorphisms of the schemes ΠdR
y x

for x,y ∈ {0,1}. By construction, these automorphisms are compatible with the
composition of paths. Moreover, they are compatible with the identity automor-
phism of Ga through any of the two local monodromies. They thus define an
element fγ ∈ Aut0(DdR)(R).

Clearly, the assignments f 7→ γf and γ 7→ fγ are inverse to each other, and this
concludes the proof of the lemma. □

3.10.4. A new product structure. The isomorphism of schemes of Lemma 3.415
is not a morphism of groups, and hence induces a new group structure on Spec(H).

Definition 3.418. We denote by (Π, ◦) the scheme Π = Spec(H) with the
product structure induced by the isomorphism from Lemma 3.415.

This new product structure on the scheme Π = ΠdR = ΠdR
0 0 gives rise to

• a new Lie bracket on the Lie algebra of Π, i.e. the set of Lie-like elements
of Q⟪e0, e1⟫, that is called the Ihara bracket ;

• a new coproduct on H = Q⟨x0, x1⟩ that is called the Goncharov coproduct .

We now make all these structures explicit. We start by computing the new
product ◦ of Π. This product is determined by the equation

fγ(fµ( 1dR1 0 )) = 1dR1 0 · (γ ◦ µ).

Given a group-like element γ, we write ⟨γ⟩0 for the restriction of fγ to ΠdR
0 0 , as

well as for the corresponding continuous automorphism of Q⟪e0, e1⟫. According to
equation (3.417), it is given by

(3.419) ⟨γ⟩0(e0) = e0, ⟨γ⟩0(e1) = γ−1 · e1 · γ.
Since fγ is compatible with the composition of paths, we get

fγ(fµ( 1dR1 0 )) = fγ( 1dR1 0 · µ) = fγ( 1dR1 0 ) · fγ(µ) = 1dR1 0 · γ · ⟨γ⟩0(µ),
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and hence the equality

(3.420) γ ◦ µ = γ · ⟨γ⟩0(µ).

3.10.5. The Ihara bracket. We now compute the new bracket induced on the
set of primitive elements of Q⟪e0, e1⟫. Recall the notion of derivation from Defini-
tion 2.81. Given a primitive element x ∈ Q⟪e0, e1⟫, consider the derivation

(3.421)

∂x : Q⟪e0, e1⟫ −→ Q⟪e0, e1⟫

y 7−→ ∂x(y) =
d

dt

(
⟨exp(tx)⟩0(y)

)∣∣∣
t=0

.

Explicitly, this derivation is determined by

∂xe0 = 0, ∂xe1 = −x · e1 + e1 · x,
and the continuity of the map ∂x, which allows for its computation term by term.

Let x and y be primitive elements of Q⟪e0, e1⟫. We denote by

[x, y] = x · y − y · x
the Lie bracket corresponding to the composition of paths. The Lie bracket induced
by ◦ will be denoted by {x, y}. It is determined by the equality

{x, y} =
d

du

d

dv

(
exp(ux) ◦ exp(vy) ◦ exp(−ux) ◦ exp(−vy)

)∣∣∣
u=0
v=0

.

Explicitly, it is given by the formula

(3.422) {x, y} = [x, y] + ∂xy − ∂yx.
3.10.6. The Goncharov coproduct. We now turn to the computation of the co-

product on the algebra H = Q⟨x0, x1⟩. Following Notation 3.385, if α is a binary
sequence, we will write xα ∈ H for the corresponding word in the alphabet {x0, x1},
and eα ∈ H∨ = Q⟪e0, e1⟫ for the corresponding word in the alphabet {e0, e1}. Re-
garded as a function xα ∈ H = O(Π), the word xα sends a group-like element
of Q⟪e0, e1⟫ to the coefficient of the word eα.

By Lemma 3.236 and Example 3.74, the dual antipode of a group-like element γ
is given by S∨(γ) = γ−1, and that of a word w = eε1 . . . eεn by

S∨(w) = w∗ = (−1)neεn . . . eε1 .

We deduce that, if γ =
∑
w γww is a group-like element, then

(3.423) γ−1 =
∑

w

γww
∗.

The Goncharov coproduct ∆Γ is the coproduct induced in H by the product ◦
and is determined by the equation

(3.424) ∆Γ(x)(γ ⊗ µ) = x(γ ◦ µ) = x(γ · ⟨γ⟩0(µ)).

Note that the product ◦ can be defined, for a group-like element γ and an
arbitrary element e ∈ Q⟪e0, e1⟫ by

(3.425) γ ◦ e = γ · ⟨γ⟩0(e).

This product is linear in the variable e. Using the explicit description (3.419) we
see that, for a word w in the alphabet {e0, e1}, the product γ ◦ w is described as
follows:
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i) if the word w starts with e0, then add γ at the beginning, while if the
word starts with e1, then do not add anything at the beginning;

ii) if the word ends with e1, then add γ at the end, while if the word ends
with e0, then do not add anything at the end;

iii) between e0 and e1, insert γ−1, and between e1 and e0, insert γ;

iv) between two consecutive occurrences of e0 or two consecutive occurrences
of e1, do not insert anything.

For instance, this procedure yields

γ ◦ (e0e0e1e0e1e1) = γe0e0γ
−1e1γe0γ

−1e1e1γ.

To give a more compact description of this product, we introduce the notation

γ1 0 = γ, γ0 1 = γ−1, γ0 0 = 1, γ1 1 = 1.

For a binary sequence α = (ε1, . . . , εn), we then have

(3.426) γ ◦ eα = γ1 ε1 · eε1 · γε1 ε2 · eε2 · · · eεn · γεn 0 .

Given the shape (3.426) of the product ◦ and the inversion formula (3.423), for
any binary sequence α, we introduce the following symbols:

(3.427)

I(1;α; 0) = xα,

I(0;α; 1) = x∗α,

I(0;α; 0) = I(1;α; 1) =

{
1, if α = ∅,
0, if α ̸= ∅.

All of them are elements of H, and hence functions on Π. For a binary sequence α,
a group-like element γ ∈ Π(Q), and elements ε, ε′ ∈ {0, 1}, we have the duality

(3.428) xα(ε′γε) = I(ε′;α; ε)(γ).

Armed with this notation, we can give an explicit formula for Goncharov’s co-
product. Let α be a binary sequence, let γ and µ be group-like elements of Q⟪e0, e1⟫.
Write µ =

∑
w µww. Then, from equation (3.424), we derive

(∆Γ xα)(γ ⊗ µ) = xα(γ ◦ µ)

= xα(
∑

w

µwγ ◦ w)

= xα
[∑

w

µw(1γε1(w) · eε1(w) · · · eεwt(w)
· εwt(w)(w)γ0)

]
,

where wt(w) denotes the weight of w as in Definition 1.132, and εi(w) is defined
to be 0 or 1 depending wether the i-th letter appearing in w is e0 or e1. Let us
write α = ε1 · · · εn, and set ε0 = 1 and εn+1 = 0.

We need to compute the coefficient of the word eα in the above bracketed
expression. We will get a contribution for each subword of eα corresponding to
a binary subsequence εi1 · · · εik of α. It is easy to see that the coefficient we are
looking for is given by:

∑

0=i0<i1<···
<ik<ik+1=n+1

I(ε0; εi1 · · · εik ; εn+1)(µ)

k∏

p=0

I(εip ; εip+1 · · · εip+1−1; εip+1
)(γ).
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The upshot of these computations is the following result, which was first obtained
by Goncharov [Gon05, Thm. 1.2].

Proposition 3.429. Let ε0 · · · εn+1 be a binary sequence. By transport of
structure, the isomorphism from Lemma 3.415 induces the coproduct

∆Γ I(ε0; ε1 · · · εn; εn+1) =

∑

0=i0<i1<···
<ik<ik+1=n+1

k∏

p=0

I(εip ; εip+1 · · · εip+1−1; εip+1)⊗ I(ε0; εi1 · · · εik ; εn+1)

on the Hoffman algebra H.

Proof. The case ε0 = 1 and εn+1 = 0 was settled above. The other cases
follow immediately from (3.427). □

Example 3.430. For n = 1, the formula specializes to

∆Γ I(ε0;ε1; ε2)

= I(ε0; ε1; ε2)⊗ I(ε0; ε2) + I(ε0; ε1)I(ε1; ε2)⊗ I(ε0; ε1; ε2)

= I(ε0; ε1; ε2)⊗ 1 + 1⊗ I(ε0; ε1; ε2).

Indeed, I(ε′; ε) is always equal to 1 regardless of the values of ε and ε′.

Example 3.431. For n = 2, we get contributions from k = 0, 1, 2. As before,
the term indexed by k = 0 corresponds to the choice of the empty subsequence and
gives the value I(ε0; ε1ε2; ε3)⊗ 1, whereas k = 2 represents the choice of the whole
sequence and contributes with 1⊗ I(ε0; ε1ε2; ε3). For k = 1, we obtain two terms,
corresponding to i1 = 1 and i1 = 2. In both cases, the product contains only one
non-trivial factor (p = 1 if i1 = 1 and p = 0 if i1 = 2). Putting everything together,
the expression for the coproduct becomes

∆Γ I(ε0; ε1ε2; ε3) = I(ε0; ε1ε2; ε3)⊗ 1

+ I(ε1; ε2; ε3)⊗ I(ε0; ε1; ε3)

+ I(ε0; ε1; ε2)⊗ I(ε0; ε2; ε3)(3.432)

+ 1⊗ I(ε0; ε1ε2; ε3).

Specializing formula (3.432) to the cases (1; 1, 0; 0) and (1; 0, 1; 0), we get

∆Γ(x0x1) = x0x1 ⊗ 1 + x0 ⊗ x1 + x1 ⊗ x0 + 1⊗ x0x1,
∆Γ(x1x0) = x1x0 ⊗ 1 + 1⊗ x1x0.

Just for fun, let us verify the compatibility with shuffle product. On the one hand,

∆Γ(x0 � x1)

= ∆Γ(x0x1 + x1x0)

= (x0x1 + x1x0)⊗ 1 + 1⊗ (x0x1 + x1x0) + x0 ⊗ x1 + x1 ⊗ x0.
On the other hand,

(∆Γ x1)� (∆Γ x2)

= (1⊗ x0 + x0 ⊗ 1)� (1⊗ x1 + x1 ⊗ 1)

= 1⊗ (x0 � x1) + x0 ⊗ x1 + x0 ⊗ x1 + (x0 � x1)⊗ 1,

and we see that the expressions are equal.
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As the previous examples show, the formula for Goncharov’s coproduct in
Proposition 3.429 contains many trivial factors. Later in Chapter 5 we will give a
linearization which is more suitable for computation.

⋆ ⋆ ⋆

Exercise 3.433. Prove formula (3.422).

Exercise 3.434. Calculate the number of terms appearing in Goncharov’s
coproduct.

Exercise 3.435. The goal of this exercise is to prove that the group Aut0(DdR)
is pro-unipotent.

i) Let ◦ denote the product on H∨ = Q⟪e0, e1⟫ induced by the Goncharov
coproduct on H. Prove the inequality

length(a ◦ b) ⩾ length(a) + length(b).

ii) Let Ci be the conilpotency filtration on the algebra H. Prove that Ci

contains all the monomials of length less than i.

iii) Use Proposition 3.158 to conclude that Aut0(DdR) is pro-unipotent.

Exercise 3.436. Prove that the derivation ∂x from (3.421) is continuous with
respect to the natural topology on Q⟪e0, e1⟫.
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4. Mixed Tate motives

The ultimate goal of this chapter is to give a precise meaning to the statement
that the diagram DH

U from Definition 3.414 has motivic origin. This will keep us
busy for a while. We start with the definition of tannakian category in Section 4.1.
This notion is an abstraction of the properties of the category of representations of
an affine group scheme endowed with the forgetful functor to vector spaces. The
main theorem of the theory is then that each tannakian category is indeed equiv-
alent to the category of representations of an affine group scheme. This is very
useful in cases where this is not obvious a priori, for it allows one to see objects
as representations and translate categorical properties into properties of the group.
One of Grothendieck’s motivations to develop the theory of tannakian categories
was to study motives, which were envisioned by him as a universal cohomology
theory for algebraic varieties. Ideally, a category of motives should be a tannakian
category equipped with a Betti realization functor in which Hom groups are de-
scribed in terms of algebraic cycles. In Section 4.2, we sketch the construction of
Voevodsky’s triangulated category of motives, which is a candidate for the derived
category of motives. We explain how to compute Hom groups in this category in
terms of K-theory, and how the Hodge realization to the derived category of mixed
Hodge structures works. It is expected that there exists a t-structure on DM(k)
whose heart yields the sought after category of motives. As we explain in Sec-
tion 4.3, at the time of writing, it is only known how to do that when k is a number
field and DM(k) is replaced by the subcategory consisting of iterated extensions of
the simplest objects Q(n). This yields the abelian category of mixed Tate motives
over k. The construction relies on Borel’s computation of the K-theory of num-
ber fields. We introduce the t-structure constructed by Levine and prove that the
Hodge realization functor is fully faithful. The rest of the chapter deals with k = Q.
For certain purposes, the category MT(Q) is still too big. In Section 4.4, we intro-
duce a subcategory MT(Z) of mixed Tate motives over Z, which has the advantage
that all extension groups are finite-dimensional. It is a tannakian category endowed
with two fiber functors: Betti and de Rham. We determine the structure of the
associated tannakian group: it is a semidirect product of Gm and a pro-unipotent
group whose graded Lie algebra is free with one generator in each negative odd
degree ⩽ −3. We also explain the torsor of motivic periods. In Section 4.5, we
construct after Deligne and Goncharov a pro-mixed Tate motive over Z that con-
tains all multiple zeta values among its periods and whose Hodge realization is the
fundamental groupoid of P1 \ {0, 1,∞} from Chapter 3. As a pro-object of the cat-
egory MT(Z), this motivic fundamental groupoid is acted upon by the tannakian
fundamental group. The structure of this representation will yield the additional
structures that are used in the proofs of Theorems A and B about multiple zeta
values. A remarkable side effect is that this object generates the whole category.

4.1. Tannakian formalism. The link between structural properties of mixed
Tate motives over Z and numerical properties of multiple zeta values is made
through the “group of symmetries” of the former. To make this idea precise, we
will need the formalism of tannakian categories that we summarize in this section.

4.1.1. Motivation. One of the major inspirations for the theory of tannakian
categories is the Tannaka–Krein reconstruction theorem, which roughly says that
a compact topological group can be recovered from the category of its continuous
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finite-dimensional complex representations. We begin this motivational section by
a brief discussion of this theorem, following the presentation in [JS91].

Let G be a locally compact abelian topological group. A unitary character
on G is a continuous homomorphism χ : G→ S1. The set G∨ of unitary characters
forms an abelian group; endowed with the topology of uniform convergence, it is
a locally compact topological group. For example, the unitary characters on S1

are all of the form z 7→ zn for some integer n, and (S1)∨ is isomorphic to Z with
the discrete topology. It is a general feature that G∨ is discrete if and only if G is
compact. Pontryagin’s duality is the theorem that the map

G −→ (G∨)∨

g 7−→
(
χ 7→ χ(g)

)

is an isomorphism of topological groups. In particular, G can be reconstructed from
the unitary characters on G∨.

In case G is not abelian, characters are not enough to recover the group, and
one needs to bring all representations into play. A completely satisfactory theory
only seems to exist for compact groups. Let G be a compact topological group, and
let RepC(G) be the category of complex linear continuous representations of G. Its
objects are pairs (V, πV ) consisting of a finite-dimensional C-vector space V and a
continuous homomorphism πV : G→ GL(V ). Consider the forgetful functor

ω : RepC(G) −→ VecC .

(V, πV ) 7−→ V

We define the endomorphisms of ω as the set End(ω) of families

λ = (λV )V ∈Ob(RepC(G))

of C-linear maps λV : V → V such that the diagram

V

f

��

λV // V

f

��
W

λW // W

commutes for each morphism f : V → W in the category RepC(G), that is, for
each linear map satisfying f(πV (g)) = πW (f(g)) for all g ∈ G. For example, the
very definition of a morphism of representations amounts to saying that the family

π(g) = (πV (g))V ∈Ob(RepC(G))

belongs to End(ω) for all g ∈ G, hence a map

π : G −→ End(ω).

We endow End(ω) with the coarsest topology making all projections λ 7→ λV
from End(ω) to End(V ) continuous.

One of the crucial insights of the theory is that the image of G inside End(ω)
can be characterized using the tensor product of representations. Namely, one intro-
duces the subset T (G) ⊂ End(ω) of those endomorphisms satisfying the following:

i) λV⊗W = λV ⊗ λW ;

ii) λ1 = Id1, where 1 is the one-dimensional trivial representation;
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iii) λ = λ, where λ = (λV ) is defined in terms of the conjugate vector space V

and the antilinear “identity” map x 7→ x as λV (x) = λV (x).

In contrast with the whole End(ω), this subset T (G) is a topological group (each
endomorphism λV is invertible thanks to the existence of the dual representation V ∨

and the compatibilities i) and ii); see [JS91, Prop. 3]). It is even compact (one
proves that each λV preserves a positive definite hermitian form by using iii) as
well; see [JS91, Prop. 6]). The map π takes values in T (G).

Theorem 4.1 (Tannaka–Krein). The map

π : G −→ T (G)

g 7−→ (πV (g))V ∈Ob(RepC(G))

is an isomorphism of topological groups.

The proof relies on two incarnations of the Peter–Weyl theorem for compact
groups [Kow14, §5.4]. The first one is the fact that finite-dimensional complex
representations “separate points”: for each g ∈ G\{e}, there exists an object (V, πV )
of RepC(G) such that πV (g) is not the identity IdV ; this immediately implies that
the map π is injective. The second one is the fact that every continuous function
on a compact group G can be uniformly approached by matrix coefficients, that is,
by complex linear combinations of functions of the form

G −→ C
g 7−→ f(πV (g)(v))

where (V, πV ) is a finite-dimensional complex representation, v ∈ V is a vector, and
f ∈ V ∨ = Hom(V, k) is a linear form. This is the main tool in proving the equality

∫

T (G)

φ(u)du =

∫

G

φ(π(g))dg

for all continuous functions φ : T (G) → C, and hence the surjectivity of π since
otherwise one could pick a function with support on T (G)\G and non-zero integral
that will contradict the above; see [JS91, Thm. 20]. The theory of tannakian
categories plays the same role for affine group schemes over an arbitrary field instead
of compact topological groups. As we will see, one key idea is to reconstruct the
Hopf algebra of regular functions on the group from matrix coefficients.

Another major inspiration of the theory of tannakian categories is Grothen-
dieck’s approach to Galois theory in terms of étale algebras. Let k be a field and
let ksep be a separable closure of k. A k-algebra F of finite degree over k is said to
be étale if F is isomorphic to a product of finite separable field extensions of k; one
then says that Y = Spec(F ) is a finite étale k-scheme. Then the ksep-points of Y
form a finite set Y (ksep) of cardinality [F : k], on which the absolute Galois group

Gal(ksep/k) = {σ ∈ Aut(ksep) | σ|k = Id} = lim←−
k⊂L⊂ksep
finite Galois

Gal(L/k)

acts continuously, i.e. the action factors though a finite quotient of this profinite
group. Grothendieck noticed that the Galois group can be recovered as the group
of automorphisms of the functor

(4.2)
{finite étale k-schemes} −→ {finite sets}.

Y 7−→ Y (ksep)
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That is, Gal(ksep/k) is canonically isomorphic to the group of families σ = (σY )Y ,
where Y runs through finite étale k-schemes and σY is a permutation of Y (ksep),
which are compatible with all morphisms of finite étale k-schemes, and the func-
tor (4.2) induces an equivalence of categories

{finite étale k-schemes} −→
{

finite sets with a continuous
action of Gal(ksep/k)

}
.

Several natural generalizations arise from this point of view. First, by replacing
finite étale k-schemes with finite étale covers of a general base scheme X and (4.2)
with the fibre functor

Fibx̄ : {finite étale covers of X} −→ {finite sets}
(Y → X) 7−→ Yx̄ = Y ×X Spec(Ω)

associated with a geometric point x̄ : Spec(Ω)→ X, Grothendieck defines the étale
fundamental group πét

1 (X, x̄) as the automorphism group of Fibx̄. It is again a
profinite group, which in case we start with an algebraic variety X over the field
of complex numbers, turns out to be isomorphic to the profinite completion of the
topological fundamental group of its complex points:

πét
1 (X,x) ∼= lim←−

N◁G
finite index

πtop
1 (X(C), x)/N.

Another natural generalization is to work with finite-dimensional Q-vector
spaces instead of finite sets, that is, to consider the linearization functor





finite sets with a
continuous action of

Gal(ksep/k)



 −→





finite-dimensional
Q-vector spaces with a

continuous action of
Gal(ksep/k)




.

that maps a Gal(ksep/k)-set S to the vector space QS of functions f : S → Q
together with the action (g · f)(s) = f(g−1s). The right-hand side is now equipped
with a tensor product, and the Galois group can be recovered as the group of
automorphisms of the forgetful functor





finite-dimensional Q-vector
spaces with a continuous action

of Gal(ksep/k)



 −→ VecQ

that are compatible with this tensor product. In Grothendieck’s vision, this is the
category of Artin motives, a universal cohomology theory for algebraic varieties of
dimension zero (note that, for k ⊂ C, the vector space QY (k̄) is nothing but the
Betti cohomology H0

B(Y )). His goal was then to construct a category of motives
for all smooth projective varieties and prove that it is equivalent to the category
of finite-dimensional representations of an affine group scheme over Q: the motivic
Galois group. In order to realize this program, his student Saavedra-Rivano [SR72]
and later Deligne [Del90] gave an abstract characterization of the categories of
representations of affine group schemes that allows one to recognize them among
all tensor categories; this is the notion of tannakian category.

We will mainly follow the exposition in [DM82], to which the reader is referred
for further details. Throughout this section, we fix a field k (of any characteristic
unless explicitly mentioned), that will play the role of field of coefficients.
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4.1.2. Tensor categories. The definition of a tannakian category gathers the
characteristic properties of the category Repk(G) of finite-dimensional k-linear
representations of an affine group scheme G, as introduced in Section 3.2.13. First
of all, since morphisms between k-linear representations form a k-vector space, we
need the concept of a k-linear category. Recall the notion of additive category and
additive functor from Definitions A.1 and A.2 of the appendix.

Definition 4.3. A k-linear category C is an additive category in which the
abelian groups HomC(X,Y ) are endowed with the structure of a k-vector space for
all objects X,Y ∈ Ob(C), in such a way that the composition maps

HomC(X,Y )×HomC(Y, Z) −→ HomC(X,Z)

are bilinear for all objects X,Y, Z ∈ Ob(C).
Let C and C′ be k-linear categories. A k-linear functor F : C → C′ is an additive

functor such that the induced map on morphisms

HomC(X,Y ) −→ HomC(F (X), F (Y ))

is k-linear for all objects X,Y ∈ Ob(C).

The tensor product of two k-linear representations carries a “diagonal” action
of G, making it into another k-linear representation. Therefore, a tannakian cate-
gory should be endowed with some tensor product, which is a special kind of bilinear
functor. To explain bilinear functors, we begin with the product category C × C,
which has objects Ob(C × C) = Ob(C)×Ob(C), and morphisms

(4.4) HomC×C((X,Y ), (X ′, Y ′)) = HomC(X,X
′)×HomC(Y, Y

′).

Definition 4.5. Let C be a k-linear category. A functor F : C × C → C is said
to be bilinear if the induced map on morphisms

HomC(X,X
′)×HomC(Y, Y

′) −→ HomC(F (X,Y ), F (X ′, Y ′))

is a bilinear map of k-vector spaces.

We now introduce an abstract version of the usual associativity and commuta-
tivity of the tensor product of vector spaces.

Definition 4.6. Let C be a k-linear category, together with a bilinear functor

⊗ : C × C −→ C.

i) An associativity constraint for (C,⊗) is a natural transformation

ϕ = ϕ·,·,· : · ⊗(· ⊗ ·) −→ (· ⊗ ·)⊗ ·

of functors from C × C × C to C such that:
a) For all X,Y, Z ∈ Ob(C), the map ϕX,Y,Z is an isomorphism.
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b) (Pentagon axiom) For all X,Y, Z, T ∈ Ob(C), the following diagram
commutes:

X ⊗ (Y ⊗ (Z ⊗ T ))

Id⊗ϕY,Z,T

tt

ϕX,Y,Z⊗T

**
X ⊗ ((Y ⊗ Z)⊗ T )

ϕX,Y ⊗Z,T %%

(X ⊗ Y )⊗ (Z ⊗ T ).

ϕX⊗Y,Z,Tyy
(X ⊗ (Y ⊗ Z))⊗ T

ϕX,Y,Z⊗Id
// ((X ⊗ Y )⊗ Z)⊗ T

ii) A commutativity constraint is a natural transformation

ψ = ψ·,∗ : · ⊗∗ −→ ∗ ⊗ ·
of functors from C × C to C such that:

a) For all objects X,Y ∈ Ob(C), the map ψX,Y is an isomorphism.

b) The composition

ψY,X ◦ ψX,Y : X ⊗ Y −→ X ⊗ Y
is equal to the identity.

iii) (Hexagon axiom) An associativity and a commutativity constraint are
said to be compatible with each other if the diagram

X ⊗ (Y ⊗ Z)

Id⊗ψY,Z

vv

ϕX,Y,Z // (X ⊗ Y )⊗ Z
ψX⊗Y,Z

((
X ⊗ (Z ⊗ Y )

ϕX,Z,Y ((

Z ⊗ (X ⊗ Y )

ϕZ,X,Yvv
(X ⊗ Z)⊗ Y

ψX,Z⊗Id
// (Z ⊗X)⊗ Y

commutes for all objects X,Y, Z ∈ Ob(C).
iv) Finally, we say that a pair (U, u) consisting of an object U ∈ Ob(C) and

an isomorphism u : U → U ⊗U is an identity object if the functors from C
to C given on objects by

X 7−→ U ⊗X and X 7−→ X ⊗ U
and on morphisms by tensoring with IdU are equivalences of categories.

All the ingredients needed to define tensor categories, which are one of the
underlying structures of tannakian categories, have now been introduced.

Definition 4.7. A k-linear tensor category is a quadruple

(C,⊗, ϕ, ψ)

consisting of a k-linear category C, a bilinear functor ⊗ : C × C → C, and compat-
ible associativity and commutativity constraints ϕ and ψ, such that C contains an
identity object. The constraints ϕ and ψ are usually omitted from the notation,
and one simply writes (C,⊗) for a k-linear tensor category.
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Remark 4.8 (Extending the tensor product). The significance of the penta-
gon axiom in the definition of an associativity constraint is that it allows for an
essentially unique extension of the tensor product ⊗ to a functor

⊗ : C × · · · × C︸ ︷︷ ︸
n

−→ C

for each n ⩾ 1; see [DM82, Prop. 1.5] for a precise statement. In what follows,
we will sometimes consider tensor products of more than three objects, and it will
then be tacitly understood that such an extension has been chosen.

Remark 4.9 (Uniqueness of identity objects). Let (U, u) be an identity object.
For each object X ∈ Ob(C), there exist canonical isomorphisms

αUX : X
∼−→ X ⊗ U and βUX : U ⊗X ∼−→ X

that are functorial in X. Indeed, since the functor X 7→ X ⊗ U is an equivalence
of categories by definition of an identity object, the map

HomC(X,X ⊗ U) −→ HomC(X ⊗ U, (X ⊗ U)⊗ U)

is a bijection. Using the associativity constraint, one gets a bijection

HomC(X,X ⊗ U) −→ HomC(X ⊗ U,X ⊗ (U ⊗ U)).

The isomorphism αUX is defined as the preimage of IdX ⊗u under this map. In
particular, αUU agrees with the morphism u which defines the identity object.

Similarly, βUX is the preimage of u−1 ⊗ IdX under the bijection

HomC(U ⊗X,X)→ HomC((U ⊗ U)⊗X,U ⊗X)

given by the equivalence of categories X 7→ U ⊗X and the associativity constraint.
In particular, βUU agrees with u−1.

From the existence of these isomorphisms, it follows that two identity objects
of C are canonically isomorphic: given (U, u) and (U ′, u′), the morphism

βUU ′ ◦ αU ′

U : U −→ U ′

is an isomorphism. In fact, it is the unique morphism f : U → U ′ making

U

u

��

f // U ′

u′

��
U ⊗ U f⊗f // U ′ ⊗ U ′

a commutative diagram.

From now on, we will fix an identity object and denote it by (1, e).

Definition 4.10. Let C be a k-linear tensor category. An object L ∈ Ob(C) is
called invertible if the functor from C to C given on objects by

(4.11) X 7−→ L⊗X
and on morphisms by tensoring with IdL is an equivalence of categories.

An object L ∈ Ob(C) is invertible if and only if there exists an object L′ ∈ Ob(C)
and an isomorphism L⊗L′ ≃ 1. Then, L′ is also invertible. Indeed, if (4.11) is an
equivalence of categories, then the identity object 1 belongs to its essential image,
hence the existence of L′ and L⊗L′ ≃ 1. Conversely, given such an object and an
isomorphism, the functor X 7→ L′ ⊗X is a quasi-inverse to (4.11).
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Definition 4.12. Let (C,⊗) and (C′,⊗′) be k-linear tensor categories. We
call k-linear tensor functor from (C,⊗) to (C′,⊗′) a pair (F, c) consisting of a k-linear
functor F : C → C′ and a natural transformation

c = c·,· : F (·)⊗ F (·) −→ F (· ⊗ ·)
of functors from C to C′ such that:

i) For all X,Y ∈ Ob(C), the map cX,Y is an isomorphism.

ii) (Compatibility with associativity constraints) If ϕ and ϕ′ are the associa-
tivity constrains of C and C′ respectively, then the diagram

F (X)⊗
(
F (Y )⊗ F (Z)

)

Id⊗cY,Z

ww

ϕ′
//
(
F (X)⊗ F (Y )

)
⊗ F (Z)

cX,Y ⊗Id

''
F (X)⊗ F (Y ⊗ Z)

cX,Y ⊗Z
''

F (X ⊗ Y )⊗ F (Z)

cX⊗Y,Z
ww

F
(
X ⊗ (Y ⊗ Z)

)
F (ϕX,Y,Z)

// F
(
(X ⊗ Y )⊗ Z

)

commutes for all objects X,Y, Z ∈ Ob(C).
iii) (Compatibility with commutativity constraints) If ψ and ψ′ are the com-

mutativity constrains of C and C′ respectively, then the diagram

F (X)⊗ F (Y )
cX,Y //

ψ′
F (X),F (Y )

��

F (X ⊗ Y )

F (ψX,Y )

��
F (Y )⊗ F (X)

cY,X // F (Y ⊗X)

commutes for all objects X,Y ∈ Ob(C).
iv) (Compatibility with identity objects) If (U, u) is an identity object of C,

then (F (U), F (u)) is an identity object of C′.
4.1.3. Rigid categories. The vector space of k-linear maps between two repre-

sentations carries a natural action of the group; in particular, a representation on a
vector space induces a representation on the dual vector space. Thus, a tannakian
category should contain internal Hom objects and duals, as we now define them.

Definition 4.13. Let (C,⊗) be a k-linear tensor category and X,Y ∈ Ob(C).
The functor T 7→ HomC(T ⊗X,Y ) from C to the category of k-vector spaces is said
to be representable if there exist an object Z ∈ Ob(C) and functorial isomorphisms

HomC(T,Z)
∼−→ HomC(T ⊗X,Y )

for all T ∈ Ob(C). If this is the case, then we denote Z by HomC(X,Y ) and we call
it the internal Hom between the objects X and Y . Thus, there are isomorphisms

(4.14) HomC(T,HomC(X,Y )) ∼= HomC(T ⊗X,Y ).

Whenever it exists, the internal Hom object HomC(X,Y ) is unique up to unique
isomorphism, which makes it functorial in Y . In the language of adjoint functors
(see Section A.1.4), the isomorphism (4.14) means that HomC(X,−) is a right
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adjoint of − ⊗X. Plugging T = HomC(X,Y ) in (4.14), the image of the identity
morphism IdHomC(X,Y ) is a morphism which will be denoted by

evX,Y : HomC(X,Y )⊗X −→ Y.

This is the value on Y of the general natural adjoint transformation FG → Id
associated with a pair of adjoint functors (F,G).

Example 4.15. The notation evX,Y is justified by the example of the category
of k-vector spaces, in which the internal Hom is the k-vector space Homk(X,Y )
of k-linear maps from X to Y , and evX,Y is the evaluation map given by

evX,Y (f ⊗ x) = f(x)

on a linear map f : X → Y and a vector x ∈ X.

Note that Yoneda’s lemma implies that ev1,Y is an isomorphism

(4.16) HomC(1, Y )
∼−→ Y

for all Y ∈ Ob(C), as both objects represent the functor T 7→ HomC(T, Y ) after
taking the canonical isomorphism T ⊗ 1 ∼= T into account.

Definition 4.17. Let (C,⊗) be a k-linear tensor category with identity ob-
ject 1. When it exists, the dual X∨ of X ∈ Ob(C) is defined as the internal Hom

X∨ = HomC(X,1).

Therefore, there is an evaluation morphism

(4.18) evX : X∨ ⊗X −→ 1.

If both X∨ and (X∨)∨ exist, then there are isomorphisms

HomC(X, (X
∨)∨) = HomC(X,HomC(HomC(X,1),1))

∼= HomC(X ⊗HomC(X,1),1)

= HomC(X ⊗X∨,1)

thanks to the bijection (4.14). We thus obtain a natural morphism

X −→ (X∨)∨

from evX and the commutativity constraint. If C is the category of k-vector spaces,
this is nothing but the usual map that sends x ∈ X to the linear form X∨ → k
given by evaluating a linear form ℓ : X → k at the vector x.

Definition 4.19. An object X is called reflexive if the morphism X → (X∨)∨

is an isomorphism.

Example 4.20. In Section 4.1.4, we will see that a vector space is reflexive if
and only if it is finite-dimensional.

We next introduce the concept of a rigid tensor category. As above, let (C,⊗) be
a k-linear tensor category. Assume that all internal Hom objects (Definition 4.13)
exist, and consider the morphism

(HomC(X1, Y1)⊗X1)⊗ (HomC(X2, Y2)⊗X2)
evX1,Y1

⊗ evX2,Y2−−−−−−−−−−−−→ Y1 ⊗ Y2.
Upon identifying its source with

(HomC(X1, Y1)⊗HomC(X2, Y2))⊗ (X1 ⊗X2)
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through the associativity and commutativity constraints, this morphism corre-
sponds by means of the bijection (4.14) to a morphism

(4.21) HomC(X1, Y1)⊗HomC(X2, Y2) −→ HomC(X1 ⊗X2, Y1 ⊗ Y2).

Definition 4.22. A k-linear tensor category (C,⊗) is said to be rigid if the
following three conditions hold:

i) the internal Hom object HomC(X,Y ) exists for all X,Y ∈ Ob(C). In
particular, the dual object X∨ exists for all objects X ∈ Ob(C);

ii) the map (4.21) is an isomorphism for all X1, X2, Y1, Y2 ∈ Ob(C);
iii) all objects of C are reflexive.

Remark 4.23. Let X,Y ∈ Ob(C) be objects of a rigid k-linear tensor category.
Plugging X1 = X, Y1 = X2 = 1, and Y2 = Y into (4.21) and using (4.16), we
obtain an isomorphism

X∨ ⊗ Y ∼= HomC(X,Y ).

Remark 4.24. Let (C,⊗) be a rigid k-linear tensor category and let X ∈ Ob(C)
be an object. The functor Y 7→ Y ⊗X∨ is right adjoint to Y 7→ Y ⊗X. Indeed,

HomC(T, Y ⊗X∨) = HomC(T, Y ⊗HomC(X,1))

= HomC(T,HomC(X,Y ))

= HomC(T ⊗X,Y ),

where the second equality follows from (4.21) applied to the objects X1 = Y2 = 1,
Y1 = Y , and X2 = X. Then evX can be deduced from the adjunction morphism

Y ⊗X∨ ⊗X −→ Y

applied to the object 1. Similarly, the adjuntion Y → Y ⊗ X ⊗ X∨ applied to 1
gives rise to a coevaluation map

(4.25) coevX : 1 −→ X ⊗X∨.
Remark 4.26 (Another point of view on duality). Let X be an object of a

rigid k-linear tensor category (C,⊗). To find a dual of X, it is enough to find an
object Y ∈ Ob(C) along with morphisms ev : Y ⊗ X → 1 and coev : 1 → X ⊗ Y
such that the compositions

X ∼= 1⊗X coev⊗ IdX−−−−−−−→ (X ⊗ Y )⊗X ∼= X ⊗ (Y ⊗X)
IdX ⊗ ev−−−−−→ X ⊗ 1 ∼= X,

Y ∼= Y ⊗ 1
IdX ⊗ coev−−−−−−−→ Y ⊗ (X ⊗ Y ) ∼= (Y ⊗X)⊗ Y ev⊗ IdY−−−−−→ 1⊗ Y ∼= Y

are the identity maps on X and Y respectively. In fact, this property characterizes
rigid categories. Namely, a k-linear tensor category C is rigid if and only if every
object X admits a dual in the sense of this remark; see [Del90, §2.1 to §2.5].

In a rigid category C, the assignment X 7→ X∨ underlies a contravariant duality
functor, given on morphisms by sending f : X → Y to the unique tf : Y ∨ → X∨

that makes the following diagram commutative:

Y ∨ ⊗X
tf⊗IdX //

IdY ∨ ⊗f
��

X∨ ⊗X.
evX

��
Y ∨ ⊗ Y evY // 1
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For k-vector spaces, tf maps a linear form ℓ : Y → k to the linear form ℓ◦f : X → k,
and the commutativity of the diagram amounts to the equality tf(ℓ)(x) = ℓ(f(x)).

4.1.4. Vector spaces. The first example of a rigid k-linear tensor category is
that of finite-dimensional vector spaces.

Example 4.27. The category Veck of finite-dimensional vector spaces over k,
along with the usual tensor product of vector spaces and the obvious associativity
and commutativity constraints

(4.28) ϕX,Y,Z(x⊗ (y ⊗ z)) = (x⊗ y)⊗ z, ψX,Y (x⊗ y) = y ⊗ x

forms a k-linear rigid tensor category. An identity object is the one-dimensional
vector space k with the k-linear map u : k → k ⊗ k that sends 1 to 1⊗ 1.

The condition of being finite-dimensional is necessary for the category to be
rigid. In fact, in the category of vector spaces, finite-dimensional vector spaces are
reflexive, whereas infinite-dimensional ones are not. The former is a standard fact
that appears in any textbook on linear algebra. The latter is less standard; we
sketch a proof from [Jac75, Chap. IX §5]. Let V be a vector space over a field k,
and let B be a basis of V . A basis always exist if one assumes the axiom of choice,
in the form of Zorn’s lemma. Every element of V can be written in a unique
way as a finite linear combination of elements of B, so that we can identify the
set underlying V with the set k(B) of functions from B to k with finite support
(here, the support of a function is the set of elements on which it takes non-zero
values). The set underlying the dual vector space V ∨ can then be identified with
the set kB of all functions from B to k. Indeed, a function f ∈ kB corresponds to
the element ωf ∈ V ∨ defined by the formula

ωf (

r∑

j=1

ajej) =

r∑

j=1

ajf(ej)

for all finite k-linear combinations of basis elements ej .
To prove that an infinite-dimensional vector space and its dual are not isomor-

phic, we will use a few facts about cardinals. In what follows, we denote by |A|
the cardinality of a set A. We first observe that it is not enough to compare the
cardinality of V to that of V ∨, since it may happen that |k(B)| and |kB | are equal
when k is big compared to B. We will instead compare the cardinality of bases
of V and V ∨. We define the dimension of a vector space as the cardinality of a
basis. This is well defined, since it can be proved that any two basis have the same
cardinality. The dimension of V is greater than or equal to the cardinality of any
set of linearly independent vectors.

Let V be an infinite-dimensional vector space with basis B. We first claim that

(4.29) |V | = |k(B)| = max(dimV, |k|).

This is seen by writing k(B) as the union of the sets k
(B)
n of functions whose support

consists of n elements, and using the equalities of cardinals

|k(B)
n | = |Bn × kn| = |B × k| = max(|B|, |k|),
|k(B)| =

∣∣ ⋃

n⩾0

k(B)
n

∣∣ = |B × k| = max(|B|, |k|).
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Besides, since a field has at least two elements, there is an inequality

|kB | ⩾ |2B | = |P (B)| > |B|,
where P (B) denotes the set of subsets of B, whose cardinality is bigger than that
of B. Combined with (4.29), this gives

dim(V ) = |B| < |kB | = |V ∨| = max(dimV ∨, |k|).
We are thus reduced to proving the inequality dimV ∨ ⩾ |k|. Since B is infinite,

it contains a countable subset B0 = {en}n⩾0. For each c ∈ k, consider the linear
form ωc ∈ V ∨ uniquely determined by

ωc(en) = cn, ωc(v) = 0, for v ∈ B \B0.

The non-vanishing of Vandermonde determinants implies that the set {ωc}c∈k con-
sists of linearly independent elements of V ∨. Therefore, dimV ∨ ⩾ |k| holds.

Putting everything together, we get dimV ∨ > dimV , and hence

dim(V ∨)∨ > dimV ∨ > dimV,

which shows that the vector space V is not reflexive. This negative result is one of
the reasons why, when dealing with infinite-dimensional vector spaces, it is often
convenient to endow them with a topology.

4.1.5. Neutral tannakian categories. The category Repk(G) of finite-dimen-
sional k-linear representations of an affine group scheme G over k has other rel-
evant properties besides those that we have already discussed. First, it is not
only a k-linear category but an abelian category (Definition A.5). Second, the
one-dimensional representation given by the vector space k with trivial G-action is
an identity object 1 that satisfies End(1) = k. Finally, the functor from Repk(G)
to the category Veck of finite-dimensional vector spaces that forgets the action of G
is exact, faithful, and compatible with the tensor structure on both categories (i.e. a
tensor functor in the sense of Definition 4.12). As we will see in the next section,
these are all the necessary ingredients to identify the categories of finite-dimensional
representations of affine groups schemes among all tensor categories.

Definition 4.30. A neutral tannakian category over k is a rigid k-linear abelian
tensor category (C,⊗) with identity object 1 satisfying EndC(1) = k and such that
there exists an exact k-linear tensor functor

ω : C −→ Veck .

Any such functor is called a fiber functor .

Remark 4.31. There is a more general notion of tannakian category in which
one only requires the existence of an exact k-linear tensor functor ω : C → VecF
with values in the category of finite-dimensional vector spaces over some unspecified
field extension F of k. Some natural categories such as pure motives over a finite
field are expected to be tannakian in this more general sense without being neutral
tannakian. Since we will never consider non-neutral tannakian categories in the
sequel, we will drop the adjective “neutral” and call them “tannakian categories”.

The following compatibilities are part of the definition of tensor functor:

(4.32) ω(X ⊕ Y ) ∼= ω(X)⊕ ω(Y ), ω(X ⊗ Y ) ∼= ω(X)⊗ ω(Y ), ω(1) ∼= k.

Combining them with rigidity, it follows that ω is also compatible with duals, and
hence with internal Homs in view of Remark 4.23. Indeed, using the point of
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view from Remark 4.26 that the dual X∨ is an object Y such that there exist
morphisms ev : Y ⊗X → 1 and coev : 1→ X ⊗ Y satisfying the compatibilities of
loc. cit., one finds that ω(Y ) along with the morphisms ω(ev) : ω(Y ) ⊗ ω(X) → k
and ω(coev) : k → ω(X)⊗ ω(Y ) is a dual of ω(X), hence an isomorphism

(4.33) ω(X∨) ∼= ω(X)∨.

The assumption EndC(1) = k in Definition 4.30 ensures that the identity ob-
ject 1 is simple, i.e. has no non-trivial subobjects. Indeed, [DM82, Prop. 1.17]
proves that there is a one-to-one correspondence between subobjects of 1 and idem-
potents in the ring EndC(1).

Proposition 4.34. A fiber functor is faithful.

Proof. We first notice that it suffices to show that ω maps a non-zero object
of C to a non-zero vector space. Indeed, let f : X → Y be a morphism in the abelian
category C. Applying the exact functor ω to the epimorphism f : X → Im(f), we
find that ω(f) : ω(X)→ ω(Im(f)) is also epimorphism, and hence

Im(ω(f)) = ω(Im(f)).

Therefore, if ω(f) is zero, then Im(f) and hence f is zero as well, so that the map

HomC(X,Y ) −→ Homk(ω(X), ω(Y ))

is injective. Let now X ∈ Ob(C) be a non-zero object. Then the evaluation mor-
phism evX : X∨ ⊗ X → 1 from (4.18) is non-zero, and since 1 has no non-trivial
subobject, it is an epimorphism. The functor ω maps evX to the epimorphism

evω(X) : ω(X)∨ ⊗ ω(X)→ k,

and this prevents ω(X) from being zero. □

Remark 4.35. The implication of Proposition 4.34 has the following converse,
proved in [CEOP21, Thm. 2.4.1]. Let C be a rigid k-linear tensor category satis-
fying EndC(1) = k and ω : C → Veck a tensor functor. If ω is faithful, then ω is
exact, so it is a fiber functor in the sense of Definition 4.30.

Examples 4.36.

i) The rigid k-linear abelian tensor category of finite-dimensional k-vector
spaces Veck (Example 4.27), along with the identity as a fiber functor, is
a tannakian category.

ii) Let GrVeck be the category of finite-dimensional graded k-vector spaces.
Its objects are pairs (V, (Vn)n∈Z) consisting of a finite-dimensional k-vector
space V and a direct sum decomposition V =

⊕
n∈Z Vn, and its morphisms

are k-linear maps f : V → W satisfying f(Vn) ⊆ Wn for all n ∈ Z. The
tensor structure comes from the tensor product of vector spaces, graded as

(V ⊗W )n =
⊕

i+j=n

Vi ⊗Wj .

Together with the obvious associativity and commutative constraints (tho-
se from Example 4.27) and the one-dimensional vector space k sitting in
degree 0 as an identity object, GrVeck forms a k-linear abelian tensor
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category. The dual of a graded vector space V =
⊕

n∈Z Vn is the usual
dual vector space V ∨ with the grading

V ∨ =
⊕

n∈Z
(V ∨n )−n

(that is, V ∨n sits in degree −n). With this structure, GrVeck forms a
rigid k-linear abelian tensor category. The forgetful functor

(4.37)
ω : GrVeck −→ Veck

(V, (Vn)n∈Z) 7−→ V

is a fiber functor making GrVeck into a tannakian category.

iii) Let us consider the category GrVeck again, but replace the usual com-
mutativity constraint with Koszul’s sign rule, given by

ψX⊗Y (x⊗ y) = (−1)mn(y ⊗ x)

on homogenous elements x and y of degrees m and n respectively (that is,
when swapping x and y we also change sign if their degrees have different
parity). We denote it by SGrVeck, as in super graded vector spaces, to
distinguish it from GrVeck. Then SGrVeck is a rigid k-linear abelian
tensor category satisfying End(1) = k, but the forgetful functor (4.37) is
not a fiber functor, as the compatibility with commutativity constraints
(Definition 4.12 iii)) fails. In fact, SGrVeck does not admit any fiber
functor, and hence is not a tannakian category (see Exercise 4.67).

iv) Let Γ be an abstract group and let Repk(Γ) denote the category of finite-
dimensional k-linear representations of Γ. Let

ω : Repk(Γ) −→ Veck

be the functor that forgets the action of Γ. Then Repk(Γ) is a tannakian
category over k and ω is a fiber functor.

v) Let F and L be subfields of the complex numbers. Let us consider the
category VecF,L whose objects are triples

H = (HdR, HB, cH)

consisting of a finite-dimensional F -vector space HdR, a finite-dimensional
L-vector space HB, and an isomorphism

cH : HdR ⊗F C ∼−→ HB ⊗L C
of complex vector spaces. A morphism f : H → H ′ between such objects
is a pair f = (fdR, fB) consisting of an F -linear map fdR : HdR → H ′dR
and an L-linear map fB : HB → H ′B such that the diagram

HdR ⊗F C
fdR⊗F IdC //

cH

��

H ′dR ⊗F C

cH′

��
HB ⊗L C

fB⊗LIdC // H ′B ⊗L C

commutes. The category VecF,L is (F ∩L)-linear. It is endowed with the
tensor product

H ⊗H ′ = (HdR ⊗H ′dR, HB ⊗H ′B, cH ⊗ c′H),
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for which 1 = (F,L, IdC) is an identity object. It satisfies End(1) = F ∩L.
The forgetful functors

ωdR : VecF,L −→ VecF , H 7−→ HdR,

ωB : VecF,L −→ VecL, H 7−→ HB

are exact faithful tensor functors, and hence VecF,L is an eventually
non-neutral tannakian category. If the field F ∩ L is equal to either F
or L, then VecF,L is a neutral tannakian category. For example, if L = Q,
then VecF,L is a neutral tannakian category over Q with fiber functor ωB.

vi) Let MHS(k) be the category of mixed Hodge structures over k, and let

ωdR : MHS(k) −→ Veck

ωB : MHS(k) −→ VecQ

be the forgetful functors from Definition 2.227. Then MHS(k) is a tan-
nakian category over Q and ωB is a fiber functor. In case k = Q, another
fiber functor is given by ωdR.

vii) Let M be a path-connected topological space. The category Lock(M) of
locally constant sheaves (also known as local systems) of finite-dimensional
k-vector spaces is a tannakian category. The tensor product V ⊗ V ′ of
local systems V and V ′ is the sheaf associated with the presheaf

U 7−→ V (U)⊗ V ′(U),

which is again locally constant. The identity object is the trivial local sys-
tem kM given by locally constant k-valued functions on M . The condition
that M is connected guarantees that End(kM ) is reduced to k (otherwise,
one can multiply locally constant functions by different scalars on different
connected components). For each point x ∈M , the functor

ωx : Lock(M) −→ Veck

V 7−→ Vx

that sends a local system V to its fiber at x is a fiber functor. Indeed, ωx is
an exact k-linear tensor functor, since taking stalks is an exact operation
on the category of sheaves and the stalk of a sheafification is equal to that
of the presheaf, namely (V ⊗ V ′)x = Vx⊗ V ′x. Note that the functor ωx is
not faithful if M is not connected. The fiber functors ωx and ωy associ-
ated with distinct points x, y ∈M are non-canonically isomorphic: every
path γ from x to y induces a functorial isomorphism Vx ∼= Vy by means
of parallel transport.

4.1.6. The fundamental group of a tannakian category. Now that we have sin-
gled out the notion of tannakian category, our next goal consists in proving that
all tannakian categories are equivalent to Repk(G) for some affine group scheme G
over k. As in the case of the Tannaka–Krein theorem discussed in the motivational
section, the group will arise as the automorphisms of a fiber functor.

Definition 4.38. Let (C,⊗) be a tannakian category over k, along with a fiber
functor ω : C → Veck. For every k-algebra R, let Aut⊗(ω)(R) denote the set of
families λ = (λX)X∈Ob(C) of R-linear automorphisms

λX : ω(X)⊗R −→ ω(X)⊗R
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such that, for all objects X,Y ∈ Ob(C) and all morphisms α ∈ HomC(X,Y ), the
following three diagrams are commutative:

(4.39) ω(X ⊗ Y )⊗R

∼

��

λX⊗Y // ω(X ⊗ Y )⊗R

∼

��
ω(X)⊗ ω(Y )⊗R

∼
��

ω(X)⊗ ω(Y )⊗R

∼

��
(ω(X)⊗R)⊗R (ω(Y )⊗R)

λX⊗RλY // (ω(X)⊗R)⊗R (ω(Y )⊗R),

(4.40) ω(1)⊗R λ1 //
∼

��

ω(1)⊗R

∼

��
R

Id // R,

(4.41) ω(X)⊗R λX //

ω(α)⊗Id
��

ω(X)⊗R
ω(α)⊗Id
��

ω(Y )⊗R λY // ω(Y )⊗R.

.

In the above diagrams, all unlabeled tensor products of vector spaces are over k,
and the unnamed arrows are isomorphisms obtained from the compatibilities (4.32)
of the fiber functor and the obvious properties of tensor products.

We think of Aut⊗(ω)(R) as the set of automorphisms of ω with coefficients
in R. In particular, we define

Aut⊗(ω) = Aut⊗(ω)(k).

This is the group of k-linear automorphisms of the functor ω.
The main theorem of the theory of tannakian categories is

Theorem 4.42 ([DM82, Thm. 2.11]). Let (C,⊗) be a tannakian category over k,
together with a fiber functor ω. Then:

i) the functor R 7→ Aut⊗(ω)(R) is representable by an affine group scheme
over k that we denote by Aut⊗(ω);

ii) for every object X ∈ Ob(C), the group Aut⊗(ω) acts naturally on the
k-vector space ω(X), and the functor

C −→ Repk(Aut⊗(ω))

X 7−→ ω(X)

is an equivalence of categories.

Definition 4.43. The affine group scheme Aut⊗(ω) is called the Tannaka
group of (C, ω). Whenever we want to stress the category we are considering, we
will write Aut⊗C (ω) instead of Aut⊗(ω).



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 327

Given a second fiber functor ω′, we denote by Iso⊗(ω, ω′)(R) the set of families
µ = (µX)X∈Ob(C) of R-linear isomorphisms

µX : ω(X)⊗R −→ ω′(X)⊗R
such that the diagrams of Definition 4.38, with ω replaced by ω′ on the right-hand
side, commute. There are right and left group actions

(4.44)
Iso⊗(ω, ω′)(R)×Aut⊗(ω)(R) −→ Iso⊗(ω, ω′)(R)

Aut⊗(ω′)(R)× Iso⊗(ω, ω′)(R) −→ Iso⊗(ω, ω′)(R)

given by precomposition and postcomposition respectively.

Theorem 4.45 ([DM82, Thm. 3.2]). The functor from k-algebras to sets

R 7−→ Iso⊗(ω, ω′)(R)

is representable by an affine scheme Iso⊗(ω, ω′) over k, which is a right torsor
under Aut⊗(ω) and a left torsor under Aut⊗(ω′).

4.1.7. Matrix coefficients. Instead of proving Theorem 4.42, we will content
ourselves with a description of the Hopf algebra of the Tannaka group using the
notion of matrix coefficients from [Del90, § 4.7] (see also [Bro17], and compare
this with the notion of framed objects from [BGSV90]).

Definition 4.46. Let C be a tannakian category over k, together with fiber
functors ω1 and ω2. A matrix coefficient in (C, ω1, ω2) is a triple

(X, f, v)

consisting of an object X of C and elements

v ∈ ω1(X) and f ∈ ω2(X)∨ = Hom(ω2(X), k).

Let Hω1,ω2 be the k-vector space generated by all matrix coefficients, and let

V ω1,ω2 ⊆ Hω1,ω2

be the sub-vector space spanned by:

Bilinearity relations: for matrix coefficients (X, f, v1) and (X, f, v2), and
scalars λ, µ ∈ k, the relation

(X, f, λv1 + µv2)− λ(X, f, v1)− µ(X, f, v2) ∈ V ω1,ω2 .

For matrix coefficients (X, f1, v) and (X, f2, v), and λ, µ ∈ k, the relation

(X,λf1 + µf2, v)− λ(X, f1, v)− µ(X, f2, v) ∈ V ω1,ω2 .

Compatibility relations: for all X,X ′ ∈ Ob(C), all ϕ ∈ HomC(X,X
′), and

elements v ∈ ω1(X) and f ′ ∈ ω2(X ′)∨, the relation

(4.47) (X,ω2(ϕ)∨f ′, v)− (X ′, f ′, ω1(ϕ)v) ∈ V ω1,ω2 .

We consider the quotient

Aω1,ω2 = Hω1,ω2/V ω1,ω2 ,

and write [X, f, v] for the class of a matrix coefficient (X, f, v) in Aω1,ω2 . Whenever
all fiber functors are equal ω1 = ω2 = ω, we will write Aω instead of Aω1,ω2 .

The vector space Aω1,ω2 is equipped with the following structures:
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Product: The tensor structure of C induces the product

(4.48) [X, f, v] · [X ′, f ′, v′] = [X ⊗X ′, f ⊗ f ′, v ⊗ v′].
The associativity and commutativity constraints together with the com-
patibility relation imply that this product is associative and commutative.

Unit: Let 1 be an identity object of C. For every fiber functor ω on C, there is
a canonical isomorphism ω(1) ≃ k. Let v ∈ ω1(1) and f ∈ ω2(1)∨ be the
elements corresponding to 1 ∈ k and to its dual respectively. Then [1, f, v]
is a unit for the product.

Coaction: For any fiber functor ω3 on C, there is a map

∆: Aω1,ω3 −→ Aω2,ω3 ⊗Aω1,ω2

given as follows: for each object X of C, choose a basis (e1, . . . , en)
of ω2(X), let (e∗1, . . . , e

∗
n) denote the dual basis, and define

(4.49) ∆[X, f, v] =

n∑

j=1

[X, f, ej ]⊗ [X, e∗j , v].

One checks that (4.49) does not depend on the choice of the basis.

In the case where the fiber functors ω1, ω2 and ω3 are all equal, say to ω, the
coaction gives rise to a coproduct

Coproduct:

(4.50) ∆[X, f, v] =

n∑

j=1

[X, f, ej ]⊗ [X, e∗j , v].

Moreover, for ω = ω1 = ω2, there are two extra structures:

Counit: The counit is the map ϵ : Aω → k given by

(4.51) ϵ([X, f, v]) = f(v).

Antipode: The antipode is the map S : Aω → Aω given by

(4.52) S([X, f, v]) = [X∨, v, f ]

under the identifications ω(X∨) ≃ ω(X)∨ and ω(X∨)∨ ≃ ω(X) that allow
one to swap v and f .

It is straightforward to prove the following result.

Proposition 4.53. Together with the above structures,

i) Aω1 and Aω2 are commutative Hopf algebras;

ii) Aω1,ω2 is a right Aω1-Hopf module and a left Aω2-Hopf module.

Taking Theorem 4.42 for granted, we can show that A = Aω is the Hopf algebra
of the Tannaka group G = Aut⊗(ω). More precisely,

Proposition 4.54. The map φ : A→ O(G) given by

φ([X, f, v])(λ) = f(λX(v))

is an isomorphism of Hopf algebras.
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Proof. We only prove that φ is bijective, leaving to the reader the task of
carefully checking that φ is a morphism of Hopf algebras.

By Theorem 4.42, the category C is equivalent to the category Repk(G) of
finite-dimensional k-linear representations of G, and we can identify ω with the
forgetful functor Repk(G)→ Veck.

We first prove that φ is surjective. The right action of G on itself given by
multiplication induces a left group action of G on O(G) given by

(λh)(µ) = h(µλ).

By Lemma 3.122, O(G) is the union of its finite-dimensional subrepresentations:
given h ∈ O(G), there exists a finite-dimensional subrepresentation (V, ρ) of O(G)
containing h. It determines an object X of C such that h belongs to ω(X) = V .
Let f ∈ V ∨ be the element determined by f(u) = u(e), where e is the unit of G
and u ∈ V ⊆ O(G). Then, for each element λ ∈ G, the equality

[X, f, h](λ) = f(λh) = (λh)(e) = h(eλ) = h(λ)

holds. Therefore, φ([X, f, h]) = h and φ is surjective.
Let us now prove that φ is injective. Assume that φ([X, f, v]) = 0. We iden-

tify X with a finite-dimensional representation (V, ρ) of G such that v ∈ V . Let V ′

be the smallest subrepresentation of V containing v. As vector space, V ′ is gener-
ated by elements of the form λv for λ ∈ G. From φ([X, f, v]) = 0, we get f |V ′ = 0.
Let X ′ be the object of C corresponding to (V ′, ρ). By the compatibility relations
for matrix coefficients (4.47), the equality

[X, f, v] = [X ′, f |V ′ , v] = [X ′, 0, v] = 0

holds, thus completing the proof. □

The same techniques used in Proposition 4.54 also give the next result.

Proposition 4.55. The map Aω1,ω2 → O(Iso⊗(ω1, ω2)) given by

φ([X, f, v])(λ) = f(λX(v))

is an isomorphism of algebras. Moreover, the Hopf module structures from Propo-
sition 4.53 are compatible with the actions (4.44).

Example 4.56 (Graded vector spaces). Consider the tannakian category

(GrVeck, ω)

of finite-dimensional graded k-vector spaces along with the forgetful functor from
Example 4.36 ii). In this category, every object is a direct sum of one-dimensional
objects kn, one for each n ∈ Z, which are concentrated in degree n and satisfy

Hom(kn, km) =

{
k, if n = m,

0, if n ̸= m,
kn ⊗ km = kn+m, ω(kn) ≃ k.

This implies that we can identify k0 with the identity object, and k−n with the dual
of kn. Hence, from the compatibilities (4.32) and (4.33) of a tensor functor, we get
canonical identifications ω(k0) ≃ k and ω(kn) ≃ ω(k−n)∨. Choose a non-zero
element u1 ∈ ω(k1), and write

un =





u⊗n1 , if n > 0,

1 ∈ k, if n = 0,

u∨−n, if n < 0.
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For n > 0, the vector u∨n ∈ ω(kn)∨ = ω(k−n) is defined by u∨n(un) = 1; we extend
the notation u∨n to n ⩽ 0 as well. Then every matrix coefficient can be written as
a linear combination of the elements

[kn, u
∨
n , un], n ∈ Z.

Moreover, the product (4.48) reads

[kn, u
∨
n , un] · [km, u∨m, um] = [kn+m, u

∨
n+m, un+m],

so that, setting t = [k1, u
∨
1 , u1], there is an isomorphism of k-algebras

O(Aut⊗(ω)) = k[t, t−1].

Since the coproduct (4.50), the counit (4.51), and the antipode (4.52) are given by

∆t = t⊗ t, ϵ(t) = ϵ(t−1) = 1, S(t) = t−1,

we deduce from Example 3.60 ii) that Aut⊗(ω) is the multiplicative group Gm. We
have thus seen that the main theorem of tannakian categories yields in this case
the equivalence of categories

GrVeck ∼= Repk(Gm).

Example 4.57 (Split real mixed Hodge structures). A split real mixed Hodge
structure is a finite-dimensional real vector space H equipped with a bigrading

HC =
⊕

p,q∈Z
Hp,q

that is symmetric with respect to complex conjugation:

(4.58) Hp,q = Hq,p.

Together with morphisms of real vector spaces preserving the given bigradings,
these objects form a category C. Let

ω : C −→ VecR

be the forgetful functor that sends a pair (H, (Hp,q)) to H. It is a simple matter
of unraveling the definitions to check that (C, ω) is a neutral tannakian category
over R. In what follows, we determine its Tannaka group. For a different determi-
nation of the group using matrix coefficients, see Exercise 4.71.

The subgroup of GL2(R) consisting of matrices of the form
( x y
−y x

)
can be

identified with C× = Gm(C) through the group isomorphism
( x y
−y x

)
7−→ x+ iy.

Being a closed algebraic subgroup of GL2(R), it can also be identified with the real
points of a real affine algebraic group S over R called the Deligne torus. That is,
the Deligne torus is a real affine algebraic group over R whose real points are the
complex points of Gm. A way to define it is as the Weil restriction

S = ResC/R(Gm),

which means that S is the functor mapping an R-algebra A to the group

S(A) = Gm(A⊗R C) = (A⊗R C)×.
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In particular, S(R) = C×. The complex points of S consist of those matrices
of GL2(C) of the form ( u v

−v u ) and there is an isomorphism

S(C) −→ C∗ × C∗

( u v
−v u ) 7−→ (u+ iv, u− iv)

through which the action of complex conjugation on S(C) corresponds to

(α, β) 7−→ (β̄, ᾱ).

In particular, the group of real points S(R) is the subgroup of elements (α, α).
We claim that the category of split real mixed Hodge structures is equivalent

to the category of finite-dimensional real representations of S. That is,

Aut⊗C (ω) = S.

Indeed, if V is such a representation, then S(C) acts on VC. Since S(C) is the
torus C∗ × C∗, the complex representation VC decomposes as a direct sum

VC =
⊕

p,q

V p,q,

where V p,q is the eigenspace on which S(C) acts through

(α, β) · v = αpβqv.

Note that the subgroup S(R) acts on V p,q through α · v = αpαqv. Since the
representation we started with is defined over R, we have

(α, β) · v̄ = (α, β) · v = (β̄, ᾱ) · v = β̄pᾱqv = αqβpv̄

for each v ∈ V p,q, and hence V p,q = V q,p holds. This yields a functor

(4.59) RepR(S) −→ C,
which is compatible with the forgetful functors on both sides.

Conversely, given a split real mixed Hodge structure H, we define an action
of S(C) on HC by letting (α, β) ∈ C∗ × C∗ act on Hp,q as multiplication by αpβq.
The condition (4.58) readily implies that the resulting representation comes from a
real representation S→ GL(H) by extension of scalars, and we obtain in this way
a quasi-inverse to the functor (4.59).

4.1.8. The tannakian dictionary. One of the reasons why the tannakian for-
malism is so powerful is that properties of a tannakian category C ∼= Repk(G) can
be rephrased in terms of the affine group scheme G. Here are some examples:

• The affine group scheme G is finite if and only if there exists X ∈ Ob(C)
such that every object of C is isomorphic to a subquotient of X⊕n for
some integer n ⩾ 0 (see [DM82, Prop. 2.20 (a)]).

• The affine group scheme G is algebraic (i.e. of finite type over k) if and
only if there exists an object X ∈ Ob(C) such that every object of C is
isomorphic to a subquotient of a finite direct sum

⊕

i

X⊗mi ⊗ (X∨)⊗ni

for some integers mi, ni ⩾ 0 (see [DM82, Prop. 2.20 (b)]).
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• If k is of characteristic zero, then the affine group scheme G is connected
if and only if the category C does not contain any non-trivial (i.e. which
is not a sum of copies of 1) object X such that the full subcategory of C
consisting of subquotients of X⊕n for all n ⩾ 0 is stable under tensor
product (see [DM82, Cor. 2.22]).

• If k is of characteristic zero, then the affine group scheme G is pro-reductive
if and only if the category C is semisimple, i.e. every object is isomorphic
to a finite direct sum of simple objects (see [DM82, Prop. 2.23]).

The properties of functors between tannakian categories can also be inter-
preted in terms of the corresponding affine group schemes. Let F : C′ → C be
an exact k-linear tensor functor (Definition 4.12) of tannakian categories, and
let ω : C → Veck be a fiber functor on C. Then

ω′ = ω ◦ F : C′ −→ Veck

is a fiber functor on C′, and there is an induced morphism of affine group schemes

f = F ∗ : G = Aut⊗(ω) −→ G′ = Aut⊗(ω′)

given on R-points by sending λ = (λX)X∈Ob(C) to f(λ) = (λF (Y ))Y ∈Ob(C′), which
taking the equality ω′ = ω ◦ F into account is a family of R-linear automorphisms
of ω′(Y )⊗R. Conversely, every morphism f : G→ G′ of affine group schemes gives
rise to an exact k-linear tensor functor of tannakian categories

F = f∗ : Repk(G′) −→ Repk(G)

which is compatible with the forgetful functors.

Proposition 4.60 ([DM82, Prop. 2.21]). Let F : C′ → C be an exact k-linear
tensor functor of tannakian categories, and let f : G → G′ be the associated mor-
phism between their Tannaka groups.

i) f is a monomorphism (i.e. a closed immersion) if and only if every ob-
ject X ∈ Ob(C) is isomorphic to a subquotient of an object F (Y ) for some
object Y ∈ Ob(C′);

ii) f is an epimorphism (i.e. faithfully flat) if and only if F is fully faithful
and its essential image is stable under taking subobjects (i.e. for each ob-
ject Y ∈ Ob(C′), each subobject of F (Y ) is isomorphic to the image by F
of a subobject of Y ).

Recall from Example 4.56 that the tannakian category GrVeck of finite-dimen-
sional graded k-vector spaces is equivalent to Repk(Gm). A straightforward, yet
very useful, application of the above proposition is the general fact that the present
of a grading in a tannakian category results in a cocharacter of the Tannaka group,
i.e. a morphism from Gm.

Example 4.61. Let C be a tannakian category, and let ω : C → Veck be a fiber
functor. Write G = Aut⊗(ω). Assume that a functorial grading is given on all
vector spaces ω(X), so that ω factors as

C F //

ω
##

GrVeck.

forg

��
Veck



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 333

We then obtain a morphism of affine group schemes F ∗ : Gm → G. Recall from
Example 4.56 that the category GrVeck is semisimple with simple objects kn.
According to Proposition 4.60 i), the morphism F ∗ is a closed immersion if and
only if for every integer n, there exists an object X ∈ Ob(C) such that ω(X)
contains a non-trivial graded piece of degree n. Using the tensor product and the
existence of duals, this is equivalent to asking that there exists a single object X
such that ω(X) contains a non-trivial graded piece of degree 1. For example, applied
to the tannakian category of split real mixed Hodge structures from Example 4.57,
this produces the subtorus Gm ⊂ S of diagonal matrices.

4.1.9. Tannakian subcategories. Given an object Y of a tannakian category C,
we denote by ⟨Y ⟩ the full subcategory of C that contains Y and is stable by taking
sums, tensor products, dual, and subquotients. Its objects are all subquotients of
all finite direct sums

⊕
Y ⊗mi ⊗ (Y ∨)⊗ni for all integers mi, ni ⩾ 0. Together with

the restriction of any fiber functor ω on C, the category ⟨Y ⟩ is again tannakian. The
action of G = Aut⊗C (ω) on the vector space ω(Y ) induces a map G → GL(ω(Y )).
The following is shown in the proof of [DM82, Prop. 2.8].

Lemma 4.62. The image GY ⊂ GL(ω(Y )) of G by the above map is a closed
subgroup which agrees with the Tannaka group Aut⊗⟨Y ⟩(ω) of the subcategory ⟨Y ⟩.

We can order the subcategories of the form ⟨Y ⟩ for Y an object of C by inclusion,
so that they form a directed system. Indeed, if Y,Z are objects of C, then

⟨Y ⟩ ⊂ ⟨Y ⊕ Z⟩ ⊃ ⟨Z⟩.
Assume ⟨Y ⟩ ⊂ ⟨Z⟩. Then, by restricting a family (λX)X∈Ob(⟨Z⟩) to (λX)X∈Ob(⟨Y ⟩),
we obtain a morphism

(4.63) Aut⊗⟨Z⟩(ω) −→ Aut⊗⟨Y ⟩(ω).

The following lemma exhibits the pro-algebraic nature of G.

Lemma 4.64. Let C be a tannakian category with fiber functor ω. Then:

Aut⊗C (ω) = lim←−
⟨Y ⟩

Aut⊗⟨Y ⟩(ω) = lim←−
⟨Y ⟩

GY .

Proof. By Lemma 4.62, there is a surjection G → Aut⊗⟨Y ⟩(ω) for every ob-

ject Y of C. These surjections are compatible with the maps Aut⊗⟨Z⟩(ω)→ Aut⊗⟨Y ⟩(ω)

induced by an inclusion ⟨Y ⟩ ⊂ ⟨Z⟩. Therefore, there is a surjection

G −→ lim←−
⟨Y ⟩

Aut⊗⟨Y ⟩(ω).

This map is also injective, because if an element of G is sent to the unit, then it
acts trivially on ω(Y ) for every object Y , and is thus the unit of G. □

Example 4.65. Let Γ be an abstract group, and let Repk(Γ) be the tannakian
category of finite-dimensional k-linear representations of Γ, along with the forgetful
fiber functor ω : Repk(Γ) → Veck from Example 4.36 iv). The main theorem of
tannakian categories (Theorem 4.42) yields an equivalence

Repk(Γ) ∼= Repk(Aut⊗(ω)).

In general, the groups Γ and Aut⊗(ω) are not isomorphic, since Aut⊗(ω) is an
affine group scheme over k and Γ is only an abstract group. Thanks to Lemma 4.64,
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the Tannaka group Aut⊗(ω) admits the following description. Let Y = (V, ρ) be
a finite-dimensional k-linear representation of Γ. The algebraic group GY from
Lemma 4.64 is the Zariski closure of the image of ρ : Γ → GL(V ), that is, the
smallest closed algebraic subgroup H of GL(V ) defined over k such that ρ(Γ) is
contained in the k-points H(k). Let Y ′ = (V ′, ρ′) be another representation such
that there is an inclusion ⟨Y ′⟩ ⊂ ⟨Y ⟩. By (4.63), there is a restriction map

GY = ρ(Γ)
Zar −→ GY ′ = ρ′(Γ)

Zar
,

and Aut⊗(ω) is isomorphic to the projective limit

Aut⊗(ω) ∼= lim←−
⟨(V,ρ)⟩

ρ(Γ)
Zar
,

taken with respect to the subcategories ⟨(V, ρ)⟩ ordered by inclusion. According to
Exercise 4.72, this is an equivalent description of the pro-algebraic completion Γalg

over k introduced in Definition 3.225.

4.1.10. Tannakian categories and the fundamental group. We finish this section
by explaining what information about the fundamental group of a topological space
can be recovered by means of the tannakian formalism. This namely includes the
pro-unipotent completion from Section 3.4.

Let M be a path-connected topological space that is sufficiently nice to have a
well-behaved notion of fundamental group, so that giving a locally constant sheaf
on M is equivalent to giving a representation of the fundamental group. In the
examples of interest for us, M will be a Hausdorff, second countable, locally compact
and locally contractible topological space (see Theorem A.315).

Let x be a point of M , and let π1(M,x) be the fundamental group of M
with base point x. By Example 4.36 vii), the category Lock(M) of local systems
of finite-dimensional k-vector spaces over M is a tannakian category with fiber
functor ωx : Lock(M)→ Veck. Recall that π1(M,x) acts on the fiber at x of each
local system V and that associating with V the monodromy representation

ρV : π1(M,x) −→ GL(ωx(V ))

yields an equivalence of categories from Lock(M) to Repk(π1(M,x)). Thus, we
are in the situation of Example 4.65, and we find that the Tannaka group of the
category Lock(M) is the pro-algebraic completion over k of the fundamental group:

Aut⊗(ωx) = π1(M,x)alg.

Similarly, the pro-unipotent completion of the fundamental group can be recov-
ered from the tannakian formalism. A local system V is said to be unipotent if the
monodromy representation ρV is unipotent (Definition 3.154). Since being unipo-
tent is stable under direct sums, tensor products, duals, and subquotients, the full
subcategory ULock(M) of Lock(M) consisting of unipotent local systems is a tan-
nakian subcategory. It is equivalent to the category of finite-dimensional unipotent
k-linear representations of π1(M,x), and its Tannaka group is the quotient

π1(M,x)un = lim←−
⟨(V,ρV )⟩ unip.

ρV (π1(M,x))
Zar

of the pro-algebraic completion π1(M,x)alg in which the limit only runs through
the subcategories generated by unipotent representations. This is an alternative
description of the pro-unipotent completion of π1(M,x) over k.
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⋆ ⋆ ⋆

Exercise 4.66. Prove that the condition EndC(1) = k in the definition of a
tannakian category (Definition 4.30) is necessary to deduce that an exact k-linear
tensor functor ω : C → Veck is faithful.

Exercise 4.67. Let (C,⊗) be a rigid k-linear tensor category with identity
object 1 satisfying EndC(1) = k. Let X ∈ Ob(C) be an object of C. Recall the
evaluation evX and coevaluation coevX morphisms from (4.18) and (4.25). The
dimension of X is defined as the composition

1
coevX−−−−→ X ⊗X∨ ψX,X∨−−−−→ X∨ ⊗X evX−−→ 1,

viewed as an element dim(X) ∈ EndC(1) = k.

i) Prove that in the tensor category of finite-dimensional k-vector spaces,
this agrees with the usual notion of dimension.

ii) Prove that every fiber functor ω : C → Veck satisfies

dim(X) = dim(ω(X))

for all objects X ∈ Ob(C), and deduce that a necessary condition for a
rigid k-linear tensor category with EndC(1) = k to be tannakian is that
the dimension of every object is a non-negative integer.

iii) Prove that the dimension of a super graded vector space V =
⊕

n∈Z Vn,
i.e. an object of the category SGrVeck from Example 4.36 iii), equals

dim(V ) =
∑

n even

dimVn −
∑

n odd

dimVn.

Deduce that SGrVeck is not a tannakian category.

Exercise 4.68. Consider the tannakian category Veck with the identity as
the fiber functor ω. Prove that Aut⊗(ω) is the trivial group Spec(k).

Exercise 4.69. Prove the equality of matrix coefficients

[X ⊕ Y, f ⊕ g, u⊕ v] = [X, f, u] + [Y, g, v].

Exercise 4.70. Give a direct construction of an equivalence between the cat-
egories GrVeck and Repk(Gm).

Exercise 4.71. In this exercise, we give a new presentation of Example 4.57
using matrix coefficients. Let C be the tannakian category of split real mixed Hodge
structures with fiber functor ω. Let V be a real vector space of dimension 2 along
with a bigrading V ⊗ C = V 1,0 ⊕ V 0,1 satisfying V 1,0 = V 0,1.

i) Prove that all split real mixed Hodge structures of the same type as V
are isomorphic to each other in C.

ii) Show that any object H ∈ Ob(C) admits a decomposition

H =
⊕

k∈Z

⊕

j⩾0

Hk,j ,

where each Hk,j is a direct summand of V ⊗k.

iii) Conclude from ii) that G = Aut⊗C (ω) is a closed subgroup of GL(V ).
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iv) Let w ∈ V 1,0 be a non-zero vector, and write

v1 = (w + w̄)/2, v2 = (w − w̄)/2i,

so that {v1, v2} is a basis of V . Let {f1, f2} be the dual basis. Prove that
the R-algebra O(G) is generated by the matrix coefficients

αi,j = [V, fi, vj ] (1 ⩽ i, j ⩽ 2).

v) To find relations among the matrix coefficients αi,j , we study the auto-
morphisms of V in C. Let φ : V → V be the linear map represented by
the matrix

(
a b
c d

)
in the basis {v1, v2}. Prove that φ is an automorphism

of the object V ∈ Ob(C) if and only if a = d, b = −c, and a2 + b2 ̸= 0.

vi) From v), the linear map represented by the matrix
(

0 1
−1 0

)
is an auto-

morphism of V in C. Use the compatibility relations (4.47) of matrix
coefficients to obtain the equalities

α1,1 = α2,2, α1,2 = −α2,1.

Deduce that Aut⊗C (ω) is a closed subgroup of the Deligne torus S.

vii) Use v) and ii) to prove that there is an inclusion

S(R) ⊂ Aut⊗C (ω)(R),

when both groups are viewed as subsets of GL2(R), and then deduce the
equality Aut⊗C (ω) = S from vi).

Exercise 4.72 (The pro-algebraic completion of a group). Let k be a field and
let Γ be an abstract group. In this exercise, we present three equivalent construc-
tions of the pro-algebraic completion of Γ, which is an affine group scheme G = Γalg

over k together with a group morphism Γ→ G(k).

i) Let C be the category of finite-dimensional k-linear representations of Γ.
Equipped with the forgetful functor, it is a tannakian category. Let G
be its Tannaka group. A k-point of G is thus a collection (λV )V ∈Ob(C) of
automorphisms λV : V → V satisfying the constraints of Definition 4.38.
To each element γ ∈ Γ one associates the collection of automorphisms
λγ = (λγV )V defined as λγV (v) = λ · γ. This yields the map Γ→ G(k).

ii) Consider the collection of pairs (H,φH) consisting of an affine group
scheme H over k and a group morphism φH : Γ → H(k) with Zariski
dense image. We define a partial order by setting (H,φH) ⩽ (H ′, φH′)
whenever there exists a morphism f : H → H ′ such that the induced map
on k-points commutes with φH and φH′ and we define the pro-algebraic
completion G as the projective limit

G = lim←−
(H,φH)

H.

iii) The pro-algebraic completion G is an affine group scheme over k with a
group morphism φ : Γ → G(k) such that, for any affine group scheme H
over k and any group morphism φH : Γ → H(k), there exists a unique
morphism of affine group schemes f : G→ H satisfying f ◦ φ = φH .

Prove that the three constructions give the same pro-algebraic group.

Exercise 4.73. Prove that a local system is unipotent if and only if can be
written as an iterated extension of trivial local systems.
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Exercise 4.74. Consider the unit circle S1 as a topological space. Its funda-
mental group π1(S1, 1) is isomorphic to Z. Prove that the pro-algebraic comple-
tion Zalg is an affine group scheme that is not algebraic, while the pro-unipotent
completion is the additive group:

Zun ≃ Ga.
[Hint: for the second part, use that giving a unipotent representation of Z is equiv-
alent to giving a finite-dimensional vector space V together with a unipotent en-
domorphism of V , as well as the explicit description of the Hopf algebra of the
Tannaka group from Proposition 4.54].

Exercise 4.75. Let C be a tannakian category with fiber functor ω. Show that
the action of Aut⊗C (ω) on the objects of C extends in a unique way to the objects
of the pro and the ind-categories Pro(C) and Ind(C).

4.2. Voevodsky’s category of motives.
4.2.1. A universal cohomology. Different cohomology theories have been proved

useful in the study of algebraic varieties. For instance, as we saw in Chapter 2, to
any variety X over a subfield k of C, it is attached the Betti cohomology

H∗B(X) = H∗(X(C),Q),

which is a finite-dimensional graded Q-vector space. If, in addition, X is smooth,
there is also the de Rham cohomology

H∗dR(X) = H∗(X,Ω∗X),

which is a finite-dimensional graded k-vector space. Recall from Theorem 2.168
that de Rham and Betti cohomology are related by the comparison isomorphism

(4.76) H∗dR(X)⊗k C ∼−→ H∗B(X)⊗Q C.
Another important example is ℓ-adic cohomology defined, for a variety X over

a field k of arbitrary characteristic p, a choice of a separable closure ks of k, and a
prime number ℓ different from p, as the limit

H∗ℓ (X) = lim←−H∗ét(Xks ,Z/ℓn)⊗Zℓ
Qℓ.

When ks is embeddable into C, Artin proved that there is a canonical isomorphism

(4.77) H∗ℓ (X) ≃ H∗B(X)⊗Q Qℓ.
A fundamental feature of these cohomology theories is that the corresponding

vector spaces are usually enriched with extra structures. We have already seen that
Betti cohomology can be provided with a mixed Hodge structure. Similarly, ℓ-adic
cohomology carries a continuous Qℓ-linear action of the Galois group Gal(ks/k).
This suggests to think of cohomology theories as functors from the category of
varieties over k into a tannakian category.

All the cohomology theories we have mentioned satisfy similar properties, such
as homotopy invariance, Poincaré duality, Künneth formulas, Mayer–Vietoris exact
sequences, etc. The similarities between them, as well as the existence of comparison
isomorphisms such as (4.76) or (4.77), led Grothendieck to postulate the existence
of a universal cohomology theory which factors all the others: this should be the
motive of the variety. Since its introduction by Grothendieck, the theory of motives
has inspired a wealth of research. Although tremendous progress has been made,
many fundamental questions remain still unanswered.
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Restricting to smooth proper varieties, Grothendieck constructed a category of
pure motives over a field k with some of the desired properties. However, in order to
prove that it has all of them, he stated a set of conjectures, the standard conjectures,
that have proved to be extremely challenging and seem to be still out of reach.
Nevertheless, some of the sought properties of the category of pure motives, like
Jannsen’s theorem [Jan92] that the category of motives up to numerical equivalence
is semisimple, have been proved without the standard conjectures.

The terminology “pure” comes from the fact that smooth proper varieties al-
ways have certain properties that are encoded in the statement “the n-th cohomol-
ogy Hn(X) is pure of weight n”. For instance, if X is a smooth proper complex
variety, the group Hn

B(X,C) has a Hodge decomposition

Hn
B(X)⊗Q C ≃

⊕

p+q=n

Hp,q(X).

The fact that only factors with p + q = n appear means that its Hodge structure
is pure of weight n. For varieties over a finite field, the corresponding purity is
reflected by the fact that the eigenvalues of the action of Frobenius on the étale
cohomology H∗ℓ (X) have absolute value qn/2.

When resolution of singularities is at disposal, the cohomology of a singular non-
necessarily proper variety can be expressed in terms of the cohomology of smooth
proper varieties, but in this expression cohomologies of different degrees get mixed.
As we have seen in Section 2.6.2 this gives rise to a mixed Hodge structure in the
cohomology of X. Thus, the motive of a smooth proper variety should be pure while
the motive of a singular or non-proper variety should be mixed. Since Grothendieck,
there has been a great effort to develop a theory of mixed motives.

Abstractly we can think of a cohomology theory in the following way. Fix a
field k, denote by Vark the category of varieties over k, and let A be an abelian
category (or more precisely a tannakian category). The derived category Db(A)
of A is a triangulated category provided with a t-structure (see Section A.5 for a
definition) that allows us to recover A from Db(A). A cohomology theory (with
values in A) is a contravariant functor

H: Vark −→ Db(A)

satisfying certain properties. Out of this functor, we can recover the “cohomology
groups” of X using the t-structure:

Hn(X) = t⩽nt⩾n H(X) ∈ Ob(A).

Voevodsky was able to define a triangulated category DMgm(k) as a candidate
for the derived category of mixed motives over k. The main missing piece is a suit-
able “motivic” t-structure. Beilinson [Bĕı12] showed that, when k has characteris-
tic zero, the existence of such motivic t-structure implies the standard conjectures.
Conversely, Hanamura proved in [Han99] that, over any field k, the conjunction of
the standard conjectures and conjectures by Murre and Beilinson–Soulé implies the
existence of the motivic t-structure. Thus, we seem to be back to Grothendieck’s
insight that a full theory of motives relies on the standard conjectures.

4.2.2. The triangulated category of mixed motives. Let k be a field. In what
follows, we give a sketch of Voevodsky’s construction of a triangulated category of
mixed motives over k with rational coefficients, which will be denoted by

DM(k) = DMgm(k)Q.
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Among the various possible approaches to this category, we present the one based
on complexes of smooth varieties and finite correspondences which is the most
elementary and will be tailored for the study of the motivic fundamental group.
However, let us emphasize that the important theorems of the theory are proved
using a different point of view, namely that of sheaves for a suitable topology on the
category of smooth varieties. For more details, we refer the reader to Voevodsky’s
original paper [Voe00], the lecture notes [MVW06], or André’s book [And04].

4.2.3. First step: the category of finite correspondences. We start with the cate-
gory Sm(k) of smooth varieties over k. This category is not additive, for it does not
make sense to “sum” two morphisms of varieties. The first step of the construction
will be to enlarge the set of morphisms through the notion of finite correspondence.
Grothendieck’s main insight on the theory of motives was that morphisms should be
related to algebraic cycles, generalizing morphisms of algebraic varieties f : X → Y
seen as graphs Γf ⊂ X × Y . Composition of morphisms then corresponds to in-
tersection of cycles, which is in general only defined after “moving” them through
an adequate equivalence relation. This is how the standard conjectures enter the
picture. One of Voevodsky’s main insight was that if we only consider a special type
of algebraic cycles, then composition is defined without any equivalence relation.

Definition 4.78. Let X and Y be smooth varieties over k. A finite correspon-
dence from X to Y is a Z-linear combination of integral closed subschemes

W ⊆ X × Y
such that the projection W → X is finite and surjective over an irreducible com-
ponent of the variety X.

Finite correspondences form an abelian subgroup of the group of algebraic
cycles ZdimY (X × Y ), which will be denoted by c(X,Y ).

Example 4.79. The graph Γf ⊆ X × Y of a morphism of schemes f : X → Y
is a finite correspondence. In general, we can think of finite correspondences as
multivalued maps on an irreducible component of X.

Given smooth varieties X,Y, Z over k, we will denote by pXY , pXZ , and pY Z
the projections from X × Y × Z to X × Y , X × Z and Y × Z respectively:

X × Y × Z
pY Z

��

pXZ

&&

pXY

xx
X × Y Y × Z X × Z.

Lemma 4.80. Let X,Y, Z be smooth varieties over k. Given finite correspon-
dences W ∈ c(X,Y ) and W ′ ∈ c(Y, Z), the cycles p∗XY (W ) and p∗Y Z(W ′) intersect
properly on X × Y × Z. Moreover, the projection of the cycle

(pXZ)∗(p
∗
XY α · p∗Y Zβ)

is finite over X and surjective over an irreducible component.

This is proved, for instance, in [MVW06, Lem. 1.7]. Thanks to the this lemma,
we can define a composition of finite correspondences as follows

(4.81)
◦ : c(X,Y )× c(Y,Z) −→ c(X,Z)

(α, β) 7−→ α ◦ β = (pXZ)∗(p
∗
XY α · p∗Y Zβ).
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The category SmCor(k) has the same objects as Sm(k), but the morphisms
are given by finite correspondences with Q-coefficients:

HomSmCor(k)(X,Y ) = c(X,Y )⊗Z Q.

There is a functor Sm(k) → SmCor(k) that is the identity on objects and sends
a map f : X → Y to its graph Γf . By Exercise 4.109, the composition of maps
is compatible with the composition (4.81) of finite correspondences. We denote
by [X] the image in SmCor(k) of a smooth variety X.

The direct sum in SmCor(k) is given by the disjoint union of varieties. This
category is also equipped with the tensor product

[X]⊗ [Y ] = [X ×k Y ].

Along with these structures, SmCor(k) is a Q-linear tensor category.
4.2.4. Second step: a triangulated category satisfying homotopy invariance and

Mayer–Vietoris. The second step is similar to the construction of the derived cat-
egory of an abelian category. We start with the category

Cb(SmCor(k))

of bounded chain complexes in SmCor(k). The objects are diagrams

· · · −→ [Xn]
∂n−→ [Xn−1] −→ · · · ,

where Xi is an object of Sm(k) and ∂n ∈ c(Xn, Xn−1)⊗Q are finite correspondences
such that ∂n−1 ◦ ∂n = 0. Then we define the homotopy category

Kb(SmCor(k))

as the one having the same objects as Cb(SmCor(k)), and morphisms given by
homotopy classes of morphisms of complexes. It is a triangulated category as
explained in Section A.3.2.

Two examples of objects of Kb(SmCor(k)) are:

A1-homotopy complex: for any X in Sm(k), the complex

[X × A1]
1

pr−→ [X]
0

placed in degrees 1 and 0, as the indices show. In the future, we will use
such kind of indices to indicate the degree.

Mayer–Vietoris complex: for any smooth scheme X in Sm(k) and any open
cover X = U ∪ V , the complex

[U ∩ V ]
2

iU∩V,U + iU∩V,V−−−−−−−−−−−→ [U ]⊕ [V ]
1

iU,X − iV,X−−−−−−−→ [X]
0
,

where the arrows iU,X , iV,X , iU∩V,U , and iU∩V,V are the inclusions.

We want to force the homotopy invariance and the Mayer–Vietoris property,
which mean that the above two complexes should become acyclic. To this end, we
take the Verdier localization (see Section A.3.3) of Kb(SmCor(k)) with respect to
the thick triangulated subcategory generated by all homotopy and Mayer–Vietoris
complexes. As in Proposition A.90, this localization is again endowed with the
structure of a triangulated category.
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4.2.5. Third step: the pseudo-abelian envelope. We next turn the quotient from
the previous step into a category in which some morphisms have kernels. The
relevant notion is that of a pseudo-abelian category, an additive category in which
every idempotent (i.e. every morphism p ∈ HomC(X,X) satisfying p2 = p) admits
a kernel. There is a canonical way to make an additive category pseudo-abelian,
which roughly speaking consists in formally adding those kernels.

Definition 4.82. Let C be an additive category. The pseudo-abelian envelope
of C is the category Cpa with

• objects: (X, p) with X ∈ Ob(C) and p ∈ HomC(X,X) an idempotent;

• morphisms: HomCpa((X, p), (Y, q)) ⊆ HomC(X,Y ) is the subgroup of
those morphisms f : X → Y satisfying f = q ◦ f ◦ p.

The functor C → Cpa sending X to (X, Id) is fully faithful. Moreover, each
idempotent p defines a morphism p : (X, p)→ (X, Id) in Cpa, which is a monomor-
phism. Indeed, if some morphisms g, h : (Z, q) → (X, p) satisfy p ◦ g = p ◦ h, then
the equalities g = p ◦ g ◦ q, h = p ◦ h ◦ q, and p2 = p imply g = h. If p is an
idempotent, then so is Id−p, and the object (X, Id−p) is a kernel of p : X → X
viewed in the category Cpa. In fact, there is a direct sum decomposition

(X, Id) = (X, p)⊕ (X, Id−p).
This will be crucial when we want to talk about “pieces of the cohomology”.

Definition 4.83. The category DMeff
gm(k) is defined as the pseudo-abelian

envelope of the category obtained in the previous step.

Remark 4.84. By a result of Balmer and Schlichting [BS01], the pseudo-
abelian envelope Tpa of a triangulated category T has a unique structure of trian-

gulated category such that the functor T → Tpa is triangulated. Thus, DMeff
gm(k)

is still a triangulated category.

There is a functor M : Sm(k) → DMeff
gm(k) sending X to [X], regarded as a

complex concentrated in degree zero. The category DMeff
gm(k) is also equipped with

a tensor product that is characterized by the property

M(X)⊗M(Y ) = M(X × Y ).

The identity object is the motive of the base field, which will be denoted by

Q(0) = M(Spec(k)).

Note also that there is a functor

(4.85) Cb(SmCor(k)pa) −→ DMeff
gm(k)

from the category of bounded complexes in the pseudo-abelian envelope of the
category SmCor(k) to the category of effective motives DMeff

gm(k).
4.2.6. Fourth step: inversion of the Tate motive. Given a smooth variety X

over k, we can think of the structure morphism X → Spec(k) as a complex

(4.86) [X]
0
−→ [Spec(k)]

−1
.

Definition 4.87. The reduced motive of X is the object M̃(X) of DMeff
gm(k)

determined by the complex (4.86).
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When X has a k-rational point, the motive of X decomposes as a direct sum

M(X) = Q(0)⊕ M̃(X),

and this decomposition is independent of the choice of the point (see Exercise 4.110).

Definition 4.88. The Tate motive Q(1) is M̃(P1
k)[−2]. For each integer n ⩾ 0,

one defines Q(n) as Q(1)⊗n.

The last step of the construction of DM(k), necessary to obtain a rigid tensor
category, is to formally invert the motive Q(1). By this we mean the following:
an object of the new category DM(k) is a pair (M,m), where M is an object

of DMeff
gm(k) and m ∈ Z. Morphisms are given by

HomDM(k)((M,m), (N,n))

= lim−→
r⩾−m,−n

HomDMeff
gm(k)(M ⊗Q(m+ r), N ⊗Q(n+ r)).

The resulting category has the following property:

Theorem 4.89 (Voevodsky). The category DM(k) is a rigid tensor Q-linear
triangulated category.

Proof. See [MVW06, Thm. 20.17]. □

4.2.7. Properties of DM(k). All the usual machinery to compute the homology
of algebraic varieties is still available in Voevodsky’s category.

Künneth: M(X × Y ) = M(X)⊗M(Y ).

A1-homotopy invariance: The projection map X ×A1 → X induces an iso-
morphism

M(X × A1) = M(X).

Mayer–Vietoris: For X = U ∪ V as before, there is a distinguished triangle

M(U ∩ V ) −→M(U)⊕M(V ) −→M(X) −→M(U ∩ V )[1].

Gysin: If Z ⊂ X is a smooth closed subscheme of codimension c of a smooth
scheme X, then there is a distinguished triangle

(4.90) M(X \ Z) −→M(X) −→M(Z)(c)[2c] −→M(X \ Z)[1],

where the first morphism is the one induced by the immersion Z ↪→ X.

Blow-up: Let Z ⊆ X be a smooth closed subscheme of a smooth scheme.
Let BlZ X the the blow-up of X along Z and E the exceptional divisor.
Then there is a distinguished triangle

M(E) −→M(BlZ X)⊕M(Z) −→M(X) −→M(E)[1].

Moreover, if Z has codimension c, this yields a canonical isomorphism

M(BlZ X) = M(X)⊕
c−1⊕

i=1

M(Z)(i)[2i].

Duality: There is a duality functor A 7→ A∨ that, for X smooth and proper
of dimension d, satisfies

M(X)∨ = M(X)(−d)[−2d].



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 343

Adjunction: The duality and tensor product are related by

Hom(A⊗B∨, C) = Hom(A,C ⊗B),

Hom(A⊗B,C) = Hom(B,A∨ ⊗ C).

In other words, these functors are adjoint to each other.

Remark 4.91. The functor from Sm(k) to DM(k) is covariant, and hence
is a “homological” functor, in contrast to the contravariant functor chosen by
Grothendieck for pure motives that was cohomological.

Example 4.92 (Motive of projective space). Let us combine some of the above
properties to prove that the motive of projective space Pn is equal to

M(Pn) = Q(0)⊕Q(1)[2]⊕ · · · ⊕Q(n)[2n]

for each n ⩾ 0. This equality is to be compared with the computation of the
Hodge structure on the cohomology of Pn (Example 2.221), but keeping in mind
that M(Pn) is the universal homology of Pn rather than its cohomology.

We proceed by induction on n, the cases n = 0 and n = 1 being reduced to the
definitions of Q(0) and Q(1). For n ⩾ 2, choosing a closed immersion Pn−1 ⊆ Pn
with complement Pn \ Pn−1 = An, we get the Gysin distinguished triangle

(4.93) M(An) −→M(Pn) −→M(Pn−1)(1)[2] −→M(An)[1].

Note that the structure morphism An → Spec(k) induces an isomorphism

M(An) ≃M(Spec(k)) = Q(0),

as one can prove by repeatedly applying the A1-homotopy invariance. Factorizing
that structure morphism as An → Pn → Spec(k), we also see that the composition

M(An) −→M(Pn) −→M(Spec(k)) = M(An)

is the identity map Q(0)→ Q(0). Thus, the triangle (4.93) is split (Definition A.75
and Proposition A.76) and

M(Pn) = Q(0)⊕M(Pn−1)(1)[2].

The result then follows by induction.

Remark 4.94. To understand the different roles of the twist and the shift, it
is instructive to compare the reduced motives of P1 and Gm. In the first case,

M̃(P1) = Q(1)[2]

by the definition of the right-hand side. In the second case, the Mayer–Vietoris
triangle for the open cover P1 = U ∪V , with U = P1 \ {0} and V = P1 \ {∞} reads

M(Gm) −→ Q(0)⊕Q(0) −→ Q(0)⊕Q(1)[2] −→M(Gm)[1].

From the octahedron axiom (see the version in Remark A.72), we deduce a distin-
guished triangle

M(Gm) −→ Q(0) −→ Q(1)[2] −→M(Gm)[1].

By the discussion in Example 4.92, the middle arrow in the previous triangle is
zero, from which it follows that M(Gm) = Q(0)⊕Q(1)[1], and hence

(4.95) M̃(Gm) = Q(1)[1].
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This can be compared with the fact that, for any of the classical cohomology theo-
ries, the groups H1(Gm) and H2(P1) are isomorphic, but they lie in different degree.
In particular, the Hodge structure H2(P1) is pure of weight 2 and Hodge type (1, 1).
The same is true for H1(Gm), but, since this last group lies in degree one, we con-
sider it as a mixed Hodge structure.

Example 4.96 (Relative motive). Let ι : Z → X be a closed immersion of
smooth schemes. We define the relative motive of the pair (X,Z) as

M(X,Z) = M([Z → X]),

where Z sits in degree 1 and X in degree 0. In Exercise 4.111, you will see that
there is a distinguished triangle

M(Z) −→M(X) −→M(X,Z) −→M(Z)[1].

Example 4.97 (Motive of a union of smooth closed subschemes in good po-
sition). Let X be a smooth scheme and let Y0, Y1, . . . , Yn be smooth closed sub-
schemes of X such that, for each I ⊂ {0, . . . , n}, the schematic intersection

YI =
⋂

i∈I
Yi

is smooth. A variant of the construction from Section 3.6.2 allows us to define the
motive of Y =

⋃
Yi. Namely, consider the complex

CY =


0 −→

⊕

|I|=n+1

YI −→
⊕

|I|=n

YI −→ · · · −→
⊕

|I|=1

YI −→ 0


 ,

where the piece
⊕
|I|=k YI sits in degree k and the differentials are the same as in

Section 3.6.2. Then we define

M(Y ) = M(CY )[−1].

The relative motive M(X,Y ) is defined as the motive of the complex

CX,Y =


0 −→

⊕

|I|=n+1

YI −→
⊕

|I|=n

YI −→ · · · −→
⊕

|I|=1

YI −→ X −→ 0


 .

By Exercise 4.111, there is a distinguished triangle

(4.98) M(Y ) −→M(X) −→M(X,Y ) −→M(Y )[1].

4.2.8. Motivic cohomology. Voevodsky also computed some morphism groups
in the category DM(k). In particular, he defined the following:

Definition 4.99. The motivic cohomology of X is

Hn
M(X,Q(p)) = HomDM(k)(M(X),Q(p)[n]).

Before stating the next result, we need to make a short digression about alge-
braic K-theory. For more details on algebraic K-theory, see for instance [Wei13]
and the references therein.

Remark 4.100. With every smooth variety X over k, Quillen [Qui73] has
associated a graded ring

K∗(X) =
⊕

n⩾0

Kn(X).
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There is a family (ψℓ)ℓ⩾0, of functorial ring endomorphisms of K∗(X) called the
Adams operations, which satisfy the relations ψℓ ◦ ψm = ψℓm. In particular, the
Adams operations commute among themselves. These operations allow us to de-
compose the K-groups into eigenspaces. More concretely, we write

(4.101) (Kn(X)⊗Z Q)(p)

for the maximal subspace of Kn(X) ⊗Z Q where the endomorphism ψℓ − ℓp Id is
nilpotent. The subspaces (4.101) are called the eigenspaces for the Adams opera-
tions. Then there is a decomposition

Kn(X)⊗Z Q =
⊕

p⩾0

(Kn(X)⊗Z Q)(p).

In this book, we will only need the case X = Spec(k).

The eigenspaces for the Adams operations acting on algebraic K-theory, can be
seen as a universal cohomology theory with coefficients in Q that has characteristic
classes for vector bundles. In fact, using Bloch’s formula relating higher Chow
groups and K-theory ([Voe02], [Blo86], [Lev94]), Voevodsky proves the following:

Theorem 4.102 (Voevodsky). Given a smooth variety X over k, the motivic
cohomology groups of X are isomorphic to

Hn
M(X,Q(p)) = (K2p−n(X)⊗Z Q)(p).

4.2.9. The normalization of a cosimplicial scheme. To every variety X over
a field k, not necessarily smooth, one attaches a motive M(X) in Voevodsky’s
category DM(k). Using tools from homological algebra, one can construct more
general motives, for instance the motive of a cosimplicial variety.

Recall that in Section A.8.2 we defined the normalized complex associated with
a cosimplicial object in an abelian category. It turns out that it is enough to work
in a pseudo-abelian category.

Lemma 4.103. Let X• be a cosimplicial object of the category Sm(k). Given
integers m > n ⩾ 0, the endomorphism

pn = (1− δ0σ0)(1− δ1σ1) · · · (1− δnσn) : [Xm] −→ [Xm]

in an idempotent in the category SmCor(k).

Proof. We argue by induction on n. For n = 0, the relation σ0δ0 = Id implies
that δ0σ0 is an idempotent, and hence the same holds for 1 − δ0σ0. Let us now
assume that pn−1 is idempotent. We next observe that, for i = 0, . . . , n − 1, the
face σn commutes with δiσi. Indeed, by relations (c) and (b) in (A.224),

σn(δiσi) = δiσn−1σi = (δiσi)σn.

Moreover, relation (d) in (A.224) implies the equality σn(1− δnσn) = 0. These two
equations together imply

(4.104) σn(1− δ0σ0) · · · (1− δnσn) = 0.
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We now compute, using equation (4.104), and the induction hypothesis,

p2n = (1− δ0σ0) · · · (1− δn−1σn−1)︸ ︷︷ ︸
pn−1

(1− δnσn)

(1− δ0σ0) · · · (1− δn−1σn−1)︸ ︷︷ ︸
pn−1

(1− δnσn)

= p2n−1(1− δnσn) = pn−1(1− δnσn) = pn,

as we wanted to show. □

Since pn is idempotent, Im(pn) is an object of the pseudo-abelian envelope
of SmCor(k). By convention, we write p−1 = Id.

Definition 4.105. Let X• be a cosimplicial object in Sm(k). The normaliza-
tion of X• is the complex in SmCor(k)pa given by

N (X•)n = Im(pn−1 : [Xn] −→ [Xn]),

together with the differential

d =

n+1∑

i=0

(−1)iδi : N (X•)n −→ N (X•)n+1.

If the cosimplicial object X• is not bounded, then the complex N (X•) is not
bounded in general. To obtain a bounded complex, we consider the bête trunca-
tion σ⩽NN (X•) defined as

σ⩽NN (X•)n =

{
N (X•)n, if n ⩽ N,

0, if n > N.

This is now an element of Cb(SmCor(k)pa). For each N ⩾ 0, applying the func-
tor (4.85), we obtain a motive

[σ⩽NN (X•)].

Clearly, given integers M ⩾ N ⩾ 0, there is a morphism of complexes

σ⩽MN (X•) −→ σ⩽NN (X•).

The system ([σ⩽NN (X•)])N⩾0 is a pro-object in DM(k).

Remark 4.106. The advantage of using Lemma 4.103 is that it provides us
with an explicit idempotent cutting out the normalized complex from the cochain
complex. However, we could have also constructed it directly by abstract means,
as J. Ayoub pointed to us. Recall from Definition A.1 that a category is said
to be preadditive if the morphism sets are abelian groups and the composition of
maps is bilinear. Given a preadditive category A, let Ab(A) denote the category of
presheaves of abelian groups on A, by which we simply mean additive contravariant
functors from A to the category Ab of abelian groups. Then Ab(A) is an abelian
category, and Yoneda’s lemma ensures that the natural functor

h : A −→ Ab(A)

X 7−→ Hom(−, X)

is fully faithful. Assume now that A is pseudo-abelian. If Y ′ is a direct factor
of an object of the form h(X), then projecting to the complement one gets an
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idempotent p of h(X) such that Y ′ = Ker(p). By fully-faithfulness, we can see p
as an idempotent of X, and the object Y = Ker(p) in A, determined up to unique
isomorphism, satisfies h(Y ) = Y ′. If X• is a cosimplicial object in A, then the
associated cochain complex CX∗ is a complex in A whose formation commutes
with the functor h, in the sense that h(CX∗) = C∗(h(X•)) holds. Since Ab(A) is
abelian, the normalized complex N ∗(h(X•)), as introduced in Section A.8.2, is a
direct factor of C∗(h(X•)). Proceeding as above, one gets a complex (up to unique
isomorphism) NX∗ such that h(NX∗) = N ∗(h(X•)).

4.2.10. Hodge realization. We now assume that k is a subfield of the complex
numbers, and discuss the construction of a Hodge realization functor with values
in the derived category of mixed Hodge structures over k.

Theorem 4.107. There is a Q-linear tensor triangulated functor

RH : DM(k) −→ Db(MHS(k)).

We sketch a proof of this theorem following [DG05, § 1.5]. The main difficulty
is the covariance for finite correspondences. As in loc. cit., we will give a cohomo-
logical version of the construction which fits better within the framework we have
developed to construct mixed Hodge structures.

Let X∗ be a bounded homological complex in SmCor(k). We can assume that
each term Xm is a quasi-projective smooth scheme over k. The differential

d : Xm −→ Xm−1

is given by a correspondence Γm. The first step is the following result that follows
from [DG05, Lem. 1.5.1].

Lemma 4.108. For each m, there exists a smooth projective scheme Xm and an
open immersion Xm → Xm such that Dm = Xm \Xm is a simple normal crossing
divisor, and a correspondence Γm : Xm → Xm−1 extending the correspondence Γm
and such that X∗ is still a complex.

After applying Lemma 4.108 to the complex X∗, each pair (Xm, Dm) gives rise
to a mixed Hodge complex

AH
Xm

(logDm) = ((AdR,W, F ), (AB,W ), (AC,W ), α, β)

by the construction of Definition 2.279. Here,

(AdR,W, F ) = (Γ(Xm,Gd(Ω∗
Xm

(logDm))),W, F ),

(AB,W ) =
(

Γ(X
an

m , j∗Gd(Q)), τ
)
,

and (AC,W ) is a cone of cones whose components are global sections of Godement
resolutions of sheaves of holomorphic differentials.

We need to show that the finite correspondence Γm induces a morphism of
Hodge complexes

Γ∗m : AH
Xm−1

(logDm−1) −→ AH
Xm

(logDm)

By linearity, we can assume that Γm is an irreducible subvariety of Xm × Xm−1
which is finite over Xm and dominant over an irreducible component of Xm. The
Betti component of Γ∗m is given by the map TrΓm/Xm

◦p∗2, where p2 : Γm → Xm−1
is the restriction to Γm of the second projection, and

TrΓm/Xm
: (p1)∗p

∗
2j∗Gd(Q)→ j∗Gd(Q)
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is the trace map from Example A.281, the unique extension of the map given by

TrΓm/Xm
(s)(x) =

∑

p1(y)=x

s(y)

on the open subset of Xm where the projection p1 : Γm → Xm is étale (here, we are
considering the sections of Q as locally constant functions).

The construction of the algebraic de Rham component of the morphism, which
also uses a variant of the trace map, is more involved. The argument is sketched
in [DG05, §1.5]. Similar techniques can be adapted to define also a trace at the
level of holomorphic de Rham complexes, and hence for (AC,W ). Since all the
maps are defined using traces one can check that the constructed morphisms are
compatible with the comparison isomorphisms α and β. It is also possible to check
that putting together all the different mixed Hodge complexes for different m’s
and the differential d′ obtained from the correspondences, one obtains a dg-mixed
Hodge complex as in Definition 2.267. By Proposition 2.270, the associated total
complex is a mixed Hodge complex, which thanks to Theorem 2.266 defines an
object of the derived category Db(MHS(k))

The method we sketched applies in particular to the motive [σ⩽NN (X•)] from
the previous section. In this case, things are a little simpler because the maps
defining the motive [σ⩽NN (X•)] are morphisms of schemes and not general cor-
respondences, so usual functoriality is enough and we do not need to use traces.
Let X• be a cosimplicial object in Sm(k). Assume that there is an embedding

j• : X• −→ X
•

of cosimplicial smooth varieties over k such that the variety X
n

is smooth and
proper, and Dn = X

n \ Xn is a simple normal crossing divisor for each n. We
obtain a simplicial mixed Hodge complex AH

X
•(logD•). Taking the normalization

in the category of mixed Hodge complexes, we obtain a dg-mixed Hodge complex

NAH
X

•(logD•).

The bête truncation σ⩽NNAHX•(logD•) is still a dg-mixed Hodge complex, and

Tot
(
σ⩽NNAHX•(logD•)

)

is a mixed Hodge complex representing the Hodge realization RH([σ⩽NNX•]).

⋆ ⋆ ⋆

Exercise 4.109. Prove that the composition of the finite correspondences given
by the graphs of two morphisms of algebraic varieties f : X → Y and g : Y → Z,
as defined in (4.81), is the graph of the composition g ◦ f : X → Z.

Exercise 4.110. Let X be a smooth variety over k and x : Spec(k) → X a
k-point. Consider the composition

p : X −→ Spec(k)
x−→ X.

i) Show that p is a projector and the class of (X, 1− p) agrees with the re-

duced motive M̃(X) from Definition 4.87. Thus, there is a decomposition

M(X) = Q(0)⊕ M̃(X),

that does not depend on the choice of the point x.
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ii) Show that there is an isomorphism M̃(X) ≃M(X,x).

Exercise 4.111. Let

C = [0 −→ Xn −→ Xn−1 −→ · · · −→ X0 −→ 0]

be a complex in SmCor(k), and write C ′ for its truncation

C ′ = [0 −→ Xn −→ Xn−1 −→ · · · −→ X1 −→ 0].

Show that there is a distinguished triangle

M(X0) −→M(C) −→M(C ′) −→M(X0)[1]

in DM(k). Conclude that, if ι : Z → X is a closed immersion of smooth schemes,
then there is a distinguished triangle

M(Z) −→M(X) −→M(X,Z) −→M(Z)[1].

4.3. Mixed Tate motives over a number field. As already mentioned, we
do not know how to find a t-structure on Voevodsky’s triangulated category DM(k)
that would give rise to an equivalence

DM(k) ∼= Db(MM(k))

with the derived category of the sought-after tannakian category of mixed mo-
tives. Instead of working with the whole DM(k), one can first try to consider the
triangulated subcategory DMT(k) generated by the simplest non-trivial objects:
all pure Tate motives Q(n). The objects of this subcategory are to motives what
mixed Tate Hodge structures are to all mixed Hodge structures. When k is a num-
ber field, Levine [Lev93] figured out how to define a t-structure on DMT(k); its
heart is the abelian category of mixed Tate motives over k. The keystone of the
construction is Borel’s computation of the K-theory of number fields, which ensures
the necessary vanishing of morphism groups for a t-structure to exist.

4.3.1. The triangulated category of mixed Tate motives. Recall that Voevod-
sky’s category DM(k) is a rigid tensor Q-linear category with identity object

Q(0) = M(Spec(k)),

and that it contains the Tate motive

Q(1) = M̃(P1
k)[−2].

The Lefschetz motive Q(−1) is defined as its dual

Q(−1) = Q(1)∨,

and the object Q(n) as the tensor power

Q(n) = Q(1)⊗n,

with the usual convention of replacing Q(1) with Q(−1) for negative n. Therefore,
there are canonical isomorphisms:

Q(n)⊗Q(m) ∼= Q(n+m), Q(n)∨ = Q(−n).

As these are the simplest objects of Voevodsky’s category, it is natural to investigate
what can be built out of them.

Definition 4.112. The triangulated category of mixed Tate motives over k is
the smallest triangulated full subcategory of DM(k) that contains the objects Q(n)
for all n ∈ Z. We denote it by DMT(k).
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Concretely (see Definition A.70 for the notion of a triangulated subcategory),
this means that DMT(k) contains all shifts Q(n)[m] and that, if

A −→ B −→ C −→ A[1]

is a distinguished triangle in DM(k) such that two objects among A,B,C belong to
the subcategory DMT(k), then so does the third. Hence, every object of DMT(k)
is an iterated extension of the objects Q(n)[m].

Example 4.113. Let C = P1 \ S be the complement of a non-empty finite set
of k-points S in the projective line P1. By the Gysin triangle (4.90), the motive of
the curve C sits into a distinguished triangle

M(C) −→M(P1) −→M(S)(1)[2] −→M(C)[1]

in the category DM(k). The motives M(P1) = Q(0)⊕Q(1)[2] and M(S) = Q(0)|S|

belong to DMT(k), and hence so does M(C). Since S is non-empty, we can also
write C = A1 \ S′ and consider the Gysin triangle

M(C) −→M(A1) −→M(S′)(1)[2] −→M(C)[1].

This has the advantage that the leftmost arrow now factors through the diagram

M(C) //

##

M(A1),

zz
Q(0)

cc ::

in which the diagonal morphisms are induced by the structure morphisms and
the inclusion of a k-rational point of C. The maps between Q(0) and M(A1) are
isomorphisms inverse to each other, hence a retraction M(A1) → M(C) making
the distinguished triangle split by Proposition A.76. We deduce

M(C) = Q(0)⊕Q(1)|S|−1[1].

This is to be compared to Example 2.307, in which we computed the mixed Hodge
structure H∗(C).

Let us now discuss the structure of the extension groups between the building
blocks of the category DMT(k). By analogy with the case of the derived category
of an abelian category (Proposition A.116), we define

ExtiDMT(k)(Q(n),Q(m)) = HomDMT(k)(Q(n),Q(m)[i])

for all integers i ∈ Z. Using the adjunction (4.28), the fact that DMT(k) is a full
subcategory of DM(k), and the comparison results between motivic cohomology
and K-theory (Theorem 4.102), we find

ExtiDMT(k)(Q(n),Q(m)) ∼= ExtiDMT(k)(Q(0),Q(m− n))

= HomDM(k)(M(Spec(k)),Q(m− n)[i])

∼= (K2(m−n)−i(k)⊗Q)(m−n),

where (K2(m−n)−i(k)⊗Q)(m−n) denotes the eigenspace with respect to the Adams
operations acting on rational K-theory (Remark 4.100).

The K-theory groups of general fields are still largely unknown, but Borel
computed their ranks when k is a number field.
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Theorem 4.114 (Borel, [Bor74]). Let k be a number field with r1 real embed-
dings and 2r2 complex embeddings. Then:

(K2t−i(k)⊗Q)(m−n) ∼=





Q, if i = 0 and t = 0,

k× ⊗Z Q, if i = 1 and t = 1,

Qr1+r2 , if i = 1 and t ⩾ 3 is odd,

Qr2 , if i = 1 and t ⩾ 2 is even,

0, otherwise.

We summarize the information that we should retain from Borel’s theorem in
the following straightforward corollary.

Corollary 4.115. Let k be a number field. The extension groups

ExtiDMT(k)(Q(n),Q(m))

in the triangulated category of mixed Tate motives over k satisfy the following:

i) the only non-zero extension groups occur for i = 0, 1;

ii) the morphism group HomDMT(k)(Q(n),Q(m)) vanishes unless m = n, in
which case it is equal to Q Id;

iii) the extension group Ext1DMT(k)(Q(n),Q(m)) vanishes for all n ⩾ m;

iv) the only infinite-dimensional extension groups are

Ext1DMT(k)(Q(n),Q(n+ 1)).

In particular, when k = Q is the field of rational numbers, there are r1 = 1 real
embeddings and 2r2 = 0 complex embeddings, hence

Ext1DMT(Q)(Q(0),Q(n)) ∼=





Q× ⊗Z Q, if n = 1,

Q, if n ⩾ 3 is odd,

0, otherwise.

Along with the fact that ExtiDMT(Q)(Q(0),Q(n)) vanishes for i ⩾ 2, this will de-
termine the structure of the category of mixed Tate motives over Q.

4.3.2. Kummer motives. It is now time to give some examples of non-trivial
extensions in the category of mixed Tate motives over k.

Example 4.116 (Kummer motives). In view of the isomorphism

Ext1DMT(k)(Q(0),Q(1)) = k× ⊗Z Q,

there are plenty of non-trivial extensions of Q(0) by Q(1) in the category DMT(k).
They are all rational linear combinations of Kummer motives, defined as follows:

Definition 4.117. For each t ∈ k×, the Kummer motive KMot
t is the class

in DM(k) of the complex in SmCor(k) given by

(4.118) [Spec(k)]⊕ [Spec(k)]
0

ft−→ [Gm]
−1

,

where ft is the finite correspondence [(∗1, 1)]− [(∗2, t)].
In order to spell out the definition of ft, write Spec(k) ⨿ Spec(k) = {∗1, ∗2}.

Since the direct sum [Spec(k)] ⊕ [Spec(k)] is given by [Spec(k) ⨿ Spec(k)], each
morphism of the shape (4.118) is a linear combination of closed subvarieties of

(∗1 ×Gm)⨿ (∗2 ×Gm).
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This is the meaning of [(∗1, 1)] and [(∗2, t)]. The condition that the projection to
an irreducible component of {∗1, ∗2} is finite is in this case automatic.

Recall from formula (4.95) and Exercise 4.110 ii) the decomposition

M(Gm) = Q(0)⊕Q(1)[1]

of the motive of Gm, and that the second summand is isomorphic to the relative
motive M(Gm, 1) given by the complex

[Spec(k)]
1

1−→ [Gm]
0
.

Therefore, we obtain a commutative diagram

Q(0)
1 //

��

M(Gm) //

Id

��

Q(1)[1]
0 // Q(0)[1]

��
Q(0)⊕Q(0)

ft // M(Gm) // KMot
t [1] //

(
Q(0)⊕Q(0)

)
[1],

where the rows are distinguished triangles. By axiom (T3) of triangulated cate-
gories, there is a morphism Q(1) → KMot

t . Using a variant of the construction of
Remark A.72, the octahedron axiom implies that this map can be extended to a
distinguished triangle

Q(1) −→ KMot
t −→ Q(0)

gt−→ Q(1)[1].

Hence, KMot
t is an extension of Q(0) by Q(1). In the exceptional case t = 1, the

Kummer motive KMot
1 is the trivial extension of Q(0) by Q(1). Indeed, the map gt

is given by the commutative diagram

Q(0)

t

��

gt

%%
Q(0)

1 // M(Gm) // Q(1)[1],

where the bottom row is a distinguished triangle. Since the composition of two
consecutive arrows in a distinguished triangle is zero (Remark A.71), we get g1 = 0.
By Proposition A.76, the motive KMot

1 is a trivial extension.
The Hodge realization of the Kummer motive is the Kummer mixed Hodge

structure from Example 2.258 (see also Exercise 4.140).

4.3.3. The Beilinson–Soulé vanishing conjecture. We now turn to the question
of finding a t-structure on the triangulated category of mixed Tate motives. Let
us first assume that it exists, that its heart MT(k) contains the objects Q(n), and
that DMT(k) is equivalent to Db(MT(k)). Then

(K2n−i(k)⊗Q)(n) ∼= ExtiDMT(k)(Q(0),Q(n)) = HomDb(MT(k))(Q(0),Q(n)[i]).

From the fact that there are no non-zero morphisms to a negative shift in a derived
category (Example A.140), we deduce that a necessary condition for the existence
of a t-structure is that the left-hand side vanishes for i < 0. This is precisely the
content of the Beilinson–Soulé conjecture.

Conjecture 4.119 (Beilinson–Soulé vanishing). If k is a field, then Kn(k)
(r)
Q

vanishes for all n > 2r.
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Another case where K-theory is well understood is that of finite fields, which
was completely computed by Quillen in [Qui72, Thm. 8], shortly after he introduced
the definition of higher algebraic K-theory:

Theorem 4.120 (Quillen, [Qui72]). Let Fq be a finite field with q elements.
The K-theory groups of Fq are equal to

Ki(Fq) =





Z, if i = 0,

Z/(qn − 1), if i = 2n− 1,

0, otherwise.

An immediate corollary of Borel and Quillen’s theorems is:

Corollary 4.121. The Beilinson–Soulé vanishing conjecture holds when k is
either a number field or a finite field.

4.3.4. A t-structure on mixed Tate motives (after Levine). Let k be a field for
which the Beilinson–Soulé vanishing conjecture holds. In [Lev93], Levine proved
that the derived category of mixed Tate motives has a t-structure that allows us to
define an abelian category of mixed Tate motives. We sketch here his construction.
For more details and proofs of the different steps, we refer the reader to [Lev93].

For each pair of integers a and b, let us denote by T[a,b] the strictly full triangu-
lated subcategory of DMT(k) generated by the objects Q(n) for a ⩽ −2n ⩽ b. We
denote T[a,a] simply by Ta, and we extend the definition to cover the cases a = −∞
or b =∞ as well. In particular, T(−∞,∞) coincides with the whole DMT(k).

Lemma 4.122. Let a ⩽ b ⩽ c be integers (the cases a = −∞ and c = ∞ are
also allowed). Then (T[a,b−1], T[b,c]) is a t-structure on T[a,c].

In particular, the pair (T(−∞,b], T[b+1,∞)) is a t-structure on DMT(k) for each
integer b. Let us emphasize that this is not the t-structure we are looking for, since
its heart is reduced to zero. However, it will allow us to define a weight structure.

The truncation functors for the t-structure (T(−∞,b], T[b+1,∞)) on DMT(k) will
be denoted by

W⩽b : DMT(k) −→ T(−∞,b]
W>b : DMT(k) −→ T[b+1,∞).

The reason for the subindex or superindex is that one will give rise to an increasing
filtration, whereas the other will give rise to a decreasing filtration.

Let W⩾b denote W>b−1, and define

GrWb (M) = W⩾bW⩽b(M).

For each even integer a, let T ⩽0
a (resp. T ⩾0

a ) be the full subcategory of Ta generated

by Q(−a/2)[n] for n ⩽ 0 (resp. n ⩾ 0). Finally, let T ⩽0
[a,b] (resp. T ⩾0

[a,b]) be the full

subcategory of T[a,b] generated by the objects M such that GrWc (M) belongs to T ⩽0
c

(resp. T ⩾0
c ) for all a ⩽ c ⩽ b.

Theorem 4.123 (Levine [Lev93]). Assume that the field k satisfies the Beilin-
son–Soulé vanishing conjecture. Then the pair of strictly full subcategories

(T ⩽0
(−∞,∞), T

⩾0
(−∞,∞))

forms a non-degenerate t-structure on DMT(k).
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Definition 4.124. The category MT(k) of mixed Tate motives over k is the
heart of the t-structure of Theorem 4.123.

The category MT(k) has the following properties:

i) It is a tannakian category with simple objects Q(n) for n ∈ Z.

ii) Each object M of MT(k) has an increasing weight filtration W with
graded pieces

GrW−2nM ≃ Q(n)⊕kn and GrW−2n+1 = 0

for some natural numbers kn.

iii) A fiber functor is given by

(4.125) ω(M) =
⊕

n

Hom(Q(n),GrW−2nM).

iv) The extension groups in the category MT(k) are determined by

(4.126) Ext1MT(k)(Q(0),Q(n)) =





k× ⊗Z Q, if n = 1,

Qr2 , if n ⩾ 2 is even,

Qr1+r2 , if n ⩾ 3 is odd,

0, otherwise,

and the vanishing ExtiMT(k)(Q(0),Q(n)) = 0 for all i ⩾ 2.

Moreover, Wildeshaus [Wil09, Thm. 1.3] proved that there exists a canonical
equivalence of categories

(4.127) F : Db(MT(k)) −→ DMT(k).

The functor F is t-exact, induces the identity on the heart MT(k), and has the
property that the composition with the cohomology functor H0 associated with
the t-structure as in (A.152) coincides with the canonical cohomology functor

Db(MT(k))→MT(k).

In view of Remark A.150, the main difficulty does not lie in proving that the two
categories are equivalent but in constructing a functor between them.

4.3.5. Examples. If the motive of a variety X is of mixed Tate type, i.e. belongs
to the subcategory DMT(k) of DM(k), then decomposing the dual of M(X) by
means of Levine’s t-stucture we obtain the cohomology motives

hi(X) = t⩽0t⩾0(M(X)∨[i]) ∈ Ob(MT(k)).

Thus, we can isolate the different cohomological degrees, something we do not know
how to do for general motives.

Example 4.128. By Example 4.92, the motive of the projective space M(Pnk )
is of mixed Tate type and satisfies

hi(Pnk ) =

{
Q(−m), if i = 2m and 0 ⩽ m ⩽ n,

0, otherwise.

Using properties of DMT(k) such as the homotopy invariance or the Gysin
distinguished triangle, we can show that certain motives are mixed Tate. For in-
stance, if a variety X possesses a stratification such that the motive of each locally
closed stratum is mixed Tate, then the whole M(X) is a mixed Tate motive.
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Example 4.129 (Motive of the moduli space M0,n). Let n ⩾ 3 be an integer.
Recall the moduli spaces M0,n from Section 2.5.2. In this example, we show that the
motive M(M0,n) belongs to DMT(Q) by mimicking the proof of Proposition 2.309.
We proceed by induction on n. The result holds for n = 3, since M0,3 = Spec(k),
and for n = 4 since M0,4 = P1 \ {0, 1,∞} and we saw in Example 4.113 that the
motive of a punctured projective line belongs to DMT(Q). For n ⩾ 5, we write

M0,n ≃ X \ Z, X = M0,4 ×M0,n−1, Z =

n−3⊔

i=2

M0,n−1.

By the Künneth formula and the induction hypothesis, both the motives M(X)
and M(Z) belong to DMT(Q). Besides, the Gysin triangle reads

M(M0,n) −→M(X) −→M(Z)(1)[2] −→M(M0,n)[1],

and since M(X) and M(Z)(1)[2] belong to DMT(Q), so does M(M0,n).

Example 4.130. Let L = L1 ∪ · · · ∪ Ln1
and M = M1 ∪ · · · ∪Mn2

be two
collections of linear subspaces of the projective space Pnk . We consider the motive

M = M(Pnk \ L,M \ (M ∩ L)) ∈ Ob(DM(k))

from Example 4.97. We want to see that it belongs to DMT(k). If either Li or Mj

is equal to Pnk , then we obtain the zero motive, so we may assume that the linear
subspaces are strict. If n = 0, then Pnk = Spec(k) and L = M = ∅. In this case,
the motive M = M(Spec(k)) belongs to DMT(k). Assume n ⩾ 1 and n2 = 0. If
n1 = 0, then M = M(Pnk ) belongs to DMT(k). If n1 ⩾ 1, write

L′ = L1 ∪ · · · ∪ Ln1−1.

By the Gysin property from Section 4.2.7, there is a distinguished triangle

M(Pnk \ L) −→M(Pnk \ L′) −→M(Ln1
\ Ln1

∩ L′)(c)[2c] −→M(Pnk \ L)[1]

in DM(k), where c is the codimension of Ln1
in Pnk . By induction (both on n

and n1), the motives M(Pnk \L′) and M(Ln1
\Ln1

∩L′) belong to DMT(k). Since
this last category is closed under extensions, it also contains the motive M(Pnk \L).

Using the previous case, Exercise 4.111 and the fact that DMT(k) is closed
under extensions, we deduce that M(M \L) lies in DMT(k). By the distinguished
triangle (4.98), the motive M(Pnk \ L,M \M ∩ L) also belongs to DMT(k).

Applying the t-structure of DMT(k), we obtain mixed Tate motives

hr(Pn \ L,M \ (M ∩ L)) ∈ Ob(MT(k)).

4.3.6. Realizations. The functor RH from Theorem 4.107 restricts to a functor

DMT(Q) −→ Db(MHS(Q))

which takes values in the derived category of MHTS(Q), the category of mixed
Hodge–Tate structures over Q from Definition 2.235. As explained in Exam-
ple A.140, the category on the right-hand side has a canonical t-structure. We
have also defined a t-structure on DMT(Q). In fact, this t-structure has the prop-
erty that any realization functor is t-exact in the sense of Definition A.137, and
hence restricts to a functor on the hearts. This applies in particular to RH, so we
obtain a functor from MT(Q) to MHS(Q). Since the Hodge realization of a mixed
Tate motive is a mixed Hodge–Tate structure, we actually get a functor

(4.131) RH : MT(Q) −→MHTS(Q)
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which respects the weight filtrations.

Remark 4.132. It is important to keep in mind that the category MHTS(Q) is
much bigger than MT(Q). For instance, compare the uncountable set of extensions
of Q(m) and Q(n) in the category MHTS(Q) given by Theorem 2.256 with the
countable set of extensions in MT(Q) given by Theorem 4.114. For this reason, it
is important to know which mixed Hodge structures come from geometry.

This discussion leads to a precise meaning of the word “motivic” when speaking
about a mixed Hodge–Tate structure.

Definition 4.133. We say that a mixed Hodge–Tate structure over Q is mo-
tivic if it lies in the essential image of the functor RH. The same definition applies
to pro-mixed Hodge–Tate structures. More generally, we say that a diagram of
pro-mixed Hodge–Tate structures is motivic if it is isomorphic to the image by the
functor RH of a diagram of pro-mixed Tate motives.

Even if MHTS(Q) is much bigger than MT(Q), the realization functor be-
tween these categories is fully faithful and stable by subobjects. This is a very
useful result to prove that many mixed Hodge structures have motivic origin. We
should mention that to determine whether the Hodge realization functor from the
hypotetical category of mixed motives is fully faithful (i.e. bijective on Hom sets)
would be a extremely difficult problem. For instance, if the realization functor re-
stricted to the category of pure motives is fully faithful, then the Hodge conjecture
holds. That we can prove it for MT(Q) relies once again on Borel’s results about
the K-theory of number fields.

Proposition 4.134 (Deligne–Goncharov). The realization functor (4.131) is
fully faithful and its essential image is stable under subobjects.

Proof. The key point of the argument is that the realization functor RH

determines injections

(4.135) Ext1MT(Q)(Q(0),Q(n)) −→ Ext1MHS(Q)(Q(0),Q(n))

into the extension groups which were computed in Theorem 2.256. For n = 1, this
follows from the injectivity of

log : Q× ⊗Z Q −→ C/2πiQ.

For n > 1, the injectivity follows by interpreting Ext1MT(Q)(Q(0),Q(n)) as a part

of the motivic cohomology of Spec(Q), which can be computed using K-theory:

Ext1MT(Q)(Q(0),Q(n)) = H1
M(Spec(Q),Q(n)) = K2n−1(Q)⊗Q,

then interpreting Ext1MHS(Q)(Q(0),Q(n)) as Deligne cohomology groups:

Ext1MHS(Q)(Q(0),Q(n)) = H1
D(Spec(Q),Q(n)).

Under this interpretation, the realization map (4.135) should correspond to the
Borel regulator map mentioned in Digression 1.12, which is known to be injective
by the work of Borel.

Consider the fiber functors ωdR on MHS(Q) and ω on MT(Q) from Defi-
nition 2.227 and equation (4.125). These fiber functors are compatible with the
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Hodge realization functor, in the sense that the diagram

MT(Q)
RH
//

ω
&&

MHTS(Q)

ωdR

��
VecQ

commutes, and hence induce morphisms of Tannaka groups

(4.136) GH
ωdR

= Aut⊗MHTS(Q)(ωdR) −→ Aut⊗MT(Q)(ω) = Gω.

By the tannakian dictionary (Proposition 4.60), the functor RH is fully faithful if
and only if the morphism (4.136) is surjective.

To prove the latter, we argue as follows: taking into account that both GH
ωdR

and Gω can be written as the semidirect product of Gm and a pro-unipotent group

GH
ωdR

= UH
ωdR

⋊Gm, Gω = Uω ⋊Gm,

the injectivity of (4.135) implies the surjectivity of (4.136) (the precise relationship
between the Ext groups and the Lie algebra of Uω is worked out on the way of
proving Theorem 4.180). □

Example 4.137. Let n > 0 be an even integer and H a mixed Hodge structure
over Q that is an extension of Q(0) by Q(n). If this extension is non-trivial, then H
is not motivic over Q, in the sense that it cannot be the Hodge realization of a
motive over Q. Indeed, assume that there is a mixed Tate motive over Q whose
Hodge realization is H. Since the functor RH is fully faithful, the exact sequence

0 −→ Q(n) −→ H −→ Q(0) −→ 0

is the Hodge realization of an exact sequence of mixed Tate motives

0 −→ Q(n) −→M −→ Q(0) −→ 0.

The vanishing Ext1DMT(Q)(Q(0),Q(n)) = 0 implies that this extension is split, and
hence the original extension of mixed Hodge structures is also split.

Of course, in view of (4.126), there exist motivic non-trivial extensions of Q(0)
by Q(n) defined over number fields that are not totally real.

⋆ ⋆ ⋆

Exercise 4.138. Prove that the pair of subcategories (T ⩽0, T ⩾0) from Exam-
ple A.140 forms a t-structure.

Exercise 4.139. Let Gr(d, n) be the Grassmanian scheme of d-planes in kn.
Show that the motive M(Gr(d, n)) belongs to DMT(k).

Exercise 4.140. Prove that the Kummer motive KMot
t of Example 4.116 be-

longs to MT(k).
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4.4. Mixed Tate motives over Z. From now on, we further specialize the
discussion on the category of mixed Tate motives to the case of the field k = Q of
rational numbers. The category MT(Q) is still too large for our purposes, because
of the infinite-dimensional extension group

Ext1MT(Q)(Q(0),Q(1)) ≃ Q× ⊗Z Q ≃
⊕

p prime

Q

from (4.126). To remedy this, Goncharov [Gon01, § 3] defined the category MT(Z)
of mixed Tate motives over Z as a subcategory of MT(Q).

4.4.1. Definition and basic properties.

Definition 4.141. A motive M in MT(Q) is said to be everywhere unramified
if, for each integer n, there is no subquotient E of M which fits into a non-split
extension 0→ Q(n+ 1)→ E → Q(n)→ 0.

The full subcategory MT(Z) of MT(Q) consisting of everywhere unramified
motives is called the category of mixed Tate motives over Z.

With a motive M over Q and a prime number ℓ, we can associate the ℓ-adic
realization ofM . For instance, with the motive corresponding to a smooth varietyX
over Q we associate the dual of the ℓ-adic cohomology H∗ét(XQ,Qℓ). The ℓ-adic
realization of M is a finite-dimensional Qℓ-vector space, together with a continuous
action of Gal(Q/Q). Let p be a prime number distinct from ℓ. The choice of
an algebraic closure Qp of Qp and a field embedding Q ↪→ Qp allows one to see

the local Galois group Gal(Qp/Qp) as a subgroup of Gal(Q/Q). By restriction, we

obtain a representation of Gal(Qp/Qp). Besides, the Galois group of the maximal

unramified extension Qp ⊂ Qur
p ⊂ Qp is isomorphic to Gal(Fp/Fp), and the inertia

subgroup Ip is defined by the exact sequence

1 −→ Ip −→ Gal(Qp/Qp) −→ Gal(Fp/Fp) −→ 1.

Definition 4.142. Let ρ : Gal(Q/Q) → GL(V ) be an ℓ-adic representation,
and let p be a prime number distinct from ℓ. We say that ρ is unramified at p if its
restriction to the inertia subgroup Ip ⊆ Gal(Qp/Qp) is trivial.

We have at our disposal the following criterion to decide whether a mixed Tate
motive over Q belongs to MT(Z).

Proposition 4.143 (Deligne–Goncharov). A mixed Tate motive M over Q
belongs to MT(Z) if and only if, for each prime number p, there exists a prime
number ℓ ̸= p such that the ℓ-adic realization ωℓ(M) is unramified at p.

Proof. See [DG05, Prop. 1.8]. □

Example 4.144. Let t ∈ Q× be a non-zero rational number and KMot
t the

Kummer motive from Example 4.116. For each prime ℓ, the ℓ-adic realization
of KMot

t is the extension

0 −→ Qℓ(1) −→ Kℓ
t

f−→ Q(0) −→ 0

corresponding to the Qℓ(1)-torsor given by the projective limit of ℓn-th roots of
unity of t. This is unramified everywhere if and only if t ∈ Z×. Thus, taking
into account that Z× ⊗Z Q = 0, the only Kummer motive that belongs to MT(Z)
is the trivial one KMot

1 . This solves the problem of the extension groups being
infinite-dimensional.
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The main properties of the category MT(Z) are summarized as follows:

Theorem 4.145.

i) MT(Z) is a tannakian category generated by Q(n) for all integers n ∈ Z.
ii) Each object M of MT(Z) has a canonical increasing weight filtration W

indexed by even integers satisfying

GrW2nM ≃ Q(−n)⊕kn

for some integers kn ⩾ 0.

iii) The extension groups in the category MT(Z) are given by

ExtiMT(Z)(Q(n),Q(m)) =





Q, if i = 0 and m− n = 0,

Q, if i = 1 and m− n ⩾ 3 is odd,

0, otherwise.

Hence, they are all finite-dimensional.

Since MT(Z) ⊂ MT(Q) is stable under subobjects, we immediately deduce
from Proposition 4.134:

Corollary 4.146. The realization functor

R : MT(Z) −→MHTS(Q)

is fully faithful with essential image stable under subobjects.

4.4.2. Fiber functors. In this section, we introduce various fiber functors on the
tannakian category MT(Z) of mixed Tate motives over Z. We will then compute
the corresponding Tannaka groups in the next section.

The first fiber functor (see Exercise 4.185) is defined using the filtration on
mixed Tate motives given by Theorem 4.145 ii). Namely, we write

ωn(M) = HomMT(Z)(Q(−n),GrW2n(M))

for each object M ∈ Ob(MT(Z)) and each integer n ∈ Z, and we define a functor

(4.147)
ω : MT(Z) −→ VecQ

M 7−→ ω(M) =
⊕

n ωn(M).

Observe that ω factors through finite-dimensional graded Q-vector spaces.
From the Hodge realization of a motive, we obtain two more fiber functors. The

de Rham fiber functor, denoted by ωdR, is the de Rham component of the Hodge
structure. For a motive M ∈ Ob(MT(Z)), the vector space ωdR(M) is equipped
with two filtrations: the decreasing Hodge filtration F , and the increasing weight
filtration W . Since (ωdR(M), F,W ) is part of a mixed Hodge structure of Tate
type, these filtrations are opposed to each other. Namely, writing

ωdR(M)n = FnωdR(M) ∩W2nωdR(M),



360 J. I. BURGOS GIL AND J. FRESÁN

Lemma 2.237 implies the existence of functorial isomorphisms

ωdR(M) =
⊕

n

ωdR(M)n,

F pωdR(M) =
⊕

m⩾p

ωdR(M)m,

W2nωdR(M) =
⊕

m⩽n

ωdR(M)m.

Thus, the de Rham fiber functor ωdR also factors through graded vector spaces.

Lemma 4.148. The de Rham fiber functor ωdR is canonically isomorphic to the
fiber functor ω.

Proof. By Exercise 2.240, there is a canonical isomorphism

ωdR(M)n ≃ HomMHTS(Q(−n),GrWn (RH(M))).

The fully-faithfulness of the Hodge realization functor (Corollary 4.146) then im-
plies the existence of a canonical isomorphism ωn(M) ≃ ωdR(M)n. □

There is also a Betti fiber functor ωB given by the Betti component of the Hodge
realization. The rational vector space ωB is provided with a weight filtration W ,
but not a Hodge filtration. Note that ωB does not factor canonically through the
category of graded vector spaces. Finally, there is a comparison isomorphism

(4.149) compB,dR : ωdR ⊗Q C −→ ωB ⊗Q C.

Example 4.150. In this example, we explicitly compute the de Rham realiza-
tion, the Betti realization, and the comparison isomorphism for the motive Q(1).
We begin with the smooth variety

X = P1
Q \ {0,∞} = A1

Q \ {0} = Gm,Q = Spec(Q[x, x−1]),

which by Remark 4.94 has motive

M(X) = Q(0)⊕Q(1)[1].

Therefore, the cohomology of M(X) with respect to the t-structure is

t⩽0t⩾0(M(X)[−i]) =

{
Q(i), if i = 0, 1,

0, otherwise.

We work on the compactificationX ⊂ P1
Q. Explicitly, the complex of differential

forms on P1
Q with logarithmic poles along {0,∞} is given as follows:

i) Ω0
P1
Q
(log{0,∞}) ≃ OP1

Q
is the sheaf of regular functions on P1

Q.

ii) Ω1
P1
Q
(log{0,∞}) is the OP1

Q
-module generated by the differential form

dx

x
= −dx−1

x−1
.

As a sheaf, Ω1
P1
Q
(log{0,∞}) is isomorphic to OP1

Q
.
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Although P1
Q is not affine, thanks to the vanishing

Hi(P1
Q,OP1

Q
) = 0, for i > 0,

there is no need to search for a resolution of the complex Ω∗P1
Q
(log{0,∞}): we can

use directly the complex of global sections to compute de Rham cohomology as

Γ(P1
Q,Ω

0
P1
Q
(log{0,∞})) = Q[x, x−1],

Γ(P1
Q,Ω

1
P1
Q
(log{0,∞})) = Q[x, x−1]

dx

x
.

The differential is given by dxn = nxn−1. Hence,

H0
dR(X) = Q, H1

dR(X) = Q
dx

x
.

From this we can find the de Rham realization

ωdR(Q(1)) =
(
Q

dx

x

)∨
.

Thus, ωdR(Q(1)) is a one-dimensional vector space with generator (dx/x)∨.
The Betti realization is given by the singular homology of the complex points

ωB(Q(1)) = H1(C \ {0},Q)

This is again a rational vector space of dimension 1, spanned by the unit circle γ
oriented counterclockwise.

The comparison isomorphism is obtained from the integration of differential
forms along singular chains. Since

∫

γ

dx

x
= 2πi,

we deduce that compdR,B(γ) = (dx/x)∨ ⊗ (2πi).

4.4.3. Tannaka groups of MT(Z). We now turn to the description of the affine
group schemes associated with the various fiber functors on the category of mixed
Tate motives over Z.

Notation 4.151. The following notation will be used throughout:

GdR = Aut⊗(ω) = Aut⊗(ωdR),(4.152)

GB = Aut⊗(ωB),(4.153)

PB,dR = Iso⊗(ωdR, ωB),(4.154)

PdR,B = Iso⊗(ωB, ωdR).(4.155)

Observe that compB,dR (resp. compdR,B) is a complex point of PB,dR (resp. PdR,B).

Since the spaces PB,dR and PdR,B have a complex point, they also have a Q-point.
This implies that they are both GdR-torsors.

In what follows, we will use the subscript dR/B for properties which are com-
mon to GdR and GB.

Lemma 4.156. The groups GdR/B fit into an exact sequence

(4.157) 1 −→ UdR/B −→ GdR/B −→ Gm −→ 1,

where UdR/B is a pro-unipotent group.
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Proof. Recall that the category MT(Z) contains the object Q(−1). Since its
realization ωdR/B(Q(−1)) is a one-dimensional Q-vector space, we get a morphism

(4.158) tdR/B : GdR/B −→ GL(ωdR/B(Q(−1))) = Gm.

We define UdR/B as the kernel of this morphism.
The action of GdR/B is compatible with the tensor product, which means that

an element g ∈ GdR/B acts on ωdR/B(Q(−n)) as tdR/B(g)n. Since the weight
filtration is a filtration in the category of motives, GdR/B respects the weight fil-
tration: for all g ∈ GdR/B and X ∈ Ob(MT(Z)), the action of g on ωdR/B(X)
sends W2nωdR/B(X) = ωdR/B(W2nX) to W2nωdR/B(X). Therefore, GdR/B acts

on the graded piece GrW2n ωdR/B(X). Since GrW2n ωdR/B(X) is a sum of copies

of ωdR/B(Q(−n)), an element g acts on GrW2n ωdR/B(X) as tdR/B(g)n, and the action
of an element u ∈ UdR/B on the same space is trivial. This implies that UdR/B is a
pro-unipotent affine group scheme. □

At this level, an advantage of using the de Rham fiber functor ω = ωdR instead
of the Betti fiber functor ωB is that the exact sequence (4.157) admits a canonical
splitting, as the following lemma shows.

Lemma 4.159. There exists a canonical section τ : Gm → GdR that induces an
action of Gm on UdR, and hence a semi-direct product decomposition

GdR = UdR ⋊Gm.

Proof. The existence of the canonical section comes from the fact that the
functor ω = ωdR factors through the category of graded vector spaces. Hence, it
decomposes as ω =

⊕
ωn. Given t ∈ Gm, define τ(t) ∈ GdR as the element that

acts as multiplication by tn on ωn. This defines a section τ : Gm → GdR of tdR.
Hence, GdR is a semidirect product. □

Lemma 4.160. The action of Gm on UdR is compatible with the structure of
pro-unipotent group. Therefore, UdR is a graded pro-unipotent group.

Proof. Recall from Lemma 4.64 how the pro-algebraic structure of GdR is
defined. For every Y ∈ Ob(MT(Z)), we consider the tensor category ⟨Y ⟩ generated
by Y . Then GYdR = Aut⊗⟨Y ⟩(ωdR) is a closed subgroup of GL(ωdR(Y )), which implies

that is is algebraic, and

GdR = lim←−
Y

GYdR.

Since the objects Y ⊕Q(1) form a cofinal system, we can also write

GdR = lim←−
Y

G
Y⊕Q(1)
dR .

The restriction of the functor ωdR to ⟨Y ⊕Q(1)⟩ also factors through the category
of graded vector spaces. From this, we deduce the existence of two commutative
diagrams (with the horizontal arrows to the right or to the left)

GdR
//

��

Gmoo

G
Y⊕Q(1)
dR

//
Gm.oo
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Writing U
Y⊕Q(1)
dR = Ker(G

Y⊕Q(1)
dR → Gm), we identify UdR with the limit

UdR = lim←−
Y

U
Y⊕Q(1)
dR ,

in which every U
Y⊕Q(1)
dR is a unipotent algebraic group. Moreover, the action of Gm

on UdR comes from compatible actions of Gm on each U
Y⊕Q(1)
dR . □

Corollary 4.161. Any GdR-torsor defined over Q is trivial.

Proof. Let us first recall that a GdR-torsor is a scheme P defined over Q,
together with an action GdR × P → P such that, after base change to an alge-
braic closure Q, there is an isomorphism PQ ≃ GdR,Q that transforms the action
of GdR on P into the left multiplication of GdR on itself. A GdR-torsor is triv-
ial if and only if the isomorphism can be chosen to be defined over Q. In fact,
a GdR-torsor P is trivial if and only if P (Q) is non-empty. The set of isomorphism
classes of GdR-torsors is in bijection with the Galois cohomology

(4.162) H1(Gal(Q/Q), GdR(Q)),

as explained in [Wat79, Thm. 17.6]. Since GdR(Q) is non-abelian, this H1 is not a
group, but only a pointed set.

Thus, the key ingredient in the proof of the corollary is the vanishing of (4.162),
that we are going to derive from the vanishing of the Galois cohomology groups

H1(Gal(Q/Q),Gm(Q)) = H1(Gal(Q/Q),Ga(Q)) = 0,

proved, for instance, in [Wat79, § 18.2] or [Ser94, Chap. II, § 1.2, Prop. 1]. In this
case, they cohomologies are groups because Gm and Ga are abelian. It follows that

H1(Gal(Q/Q), U(Q)) = H1(Gal(Q/Q), G(Q)) = 0

are also trivial for any unipotent algebraic group U or any extension G of Gm by U
(see [Ser94, Ch. III, Prop. 6]).

Now, the group GdR can be written as

GdR = lim←−
N

GNdR,

where each GNdR is an extension of Gm by a unipotent algebraic group and all
transition maps are surjective. Using a non-abelian version of the Mittag–Leffler
theorem (see Proposition A.168 for the abelian version), one can prove that the
projective limit commutes with Galois cohomology, hence the vanishing

H1(Gal(Q/Q), GdR(Q)) = lim←−
N

H1(Gal(Q/Q), GNdR(Q)) = 0,

which implies that any GdR-torsor defined over Q is trivial. □

This corollary has the following important consequence, which will be exploited
in the next chapter.

Proposition 4.163. There exists an element a ∈ GdR(C) such that the iso-
morphism of functors compB,dR ◦ a : ωdR ⊗C→ ωB ⊗C sends ωdR to ωB. In other
words, for every motive M of MT(Z), the linear map

(compB,dR ◦ a)M : ωdR(M)⊗ C→ ωB(M)⊗ C
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satisfies the following:

(4.164) ωB(M) = (compB,dR ◦ a)M (ωdR(M)) ⊂ ωB(M)⊗ C.

Moreover, a can be chosen of the form a = u0 · τ(2πi)−1 with u0 ∈ UdR(R) and τ
the canonical section from Lemma 4.159.

Proof. We follow [Del89, § 8.10]. Recall from (4.154) that

PB,dR = Iso⊗(ωdR, ωB)

is a GdR-torsor defined over Q. By Corollary 4.161, this torsor is already trivial
over Q. Therefore, it has a rational point, and hence there exists an isomorphism
of fiber functors α : ωdR

∼−→ ωB. Define

(4.165) a = compdR,B ◦α.
By construction, a is an element of GdR(C) and compB,dR ◦ a = α holds, from which
equality (4.164) follows. Note also that any other element of GdR(C) satisfying this
property is of the form aγ for some γ ∈ GdR(Q).

Let us now turn to the assertion that a can be chosen of the form u0 · τ(2πi)−1

for some u0 ∈ UdR(R). This uses in a crucial way the compatibility between the
comparison isomorphism and complex conjugation explained in Proposition 2.187.
In fact, the morphism ρ in that proposition can be extended to motives to define
an automorphism of the functor ωB. Hence, we obtain a rational point ρ ∈ GB(Q).
The compatibility of complex conjugation with the comparison isomorphism in our
context says that the diagram of fiber functors

ωdR
α //

a

''
ωB
� � // ωB ⊗ C

comp // ωdR ⊗ C

ωdR

a

77α
// ωB
� � //

ρ

OO

ωB ⊗ C
comp //

ρ⊗c

OO

ωdR ⊗ C

Id⊗c

OO

is commutative, where c is complex conjugation on the coefficients. The complex
conjugate of a is a = Id⊗c ◦ a. Define x = a−1a. By the commutativity of the
diagram, x = α−1ρα holds. Thus, x belongs to GdR(Q) and has order two.

Let us apply the isomorphism (4.165) to the motive Q(−1). Recall the homo-
morphism tdR : GdR → Gm from Lemma 4.156. Since

compdR,B : ωB(Q(−1)) −→ ωdR(Q(−1))

is multiplication by (2πi)−1 by Example 4.150, and

α|Q(1) : ωdR(Q(1))→ ωB(Q(1))

is an invertible map of one-dimensional Q-vector spaces, tdR(a) ∈ Gm(C) belongs
to (2πi)−1Q×. This implies the equality tdR(a−1a) = −1. Since τ is a section of tdR
defined over Q, up to replacing a with aγ for some γ ∈ GdR(Q), we can assume

(4.166) a−1a = τ(−1).

Any other element satisfying both the identities (4.164) and (4.166) is of the form aγ
for some γ ∈ GdR(Q) such that γ−1τ(−1)γ = τ(−1). In particular, any γ ∈ τ(Q×)
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works. Therefore, replacing a with aγ for some γ ∈ τ(Q×), one can choose a
satisfying tdR(a) = (2πi)−1. This amounts to a = u0 · τ(2πi)−1 with u0 ∈ UdR(C).

It remains to show that u0 belongs to UdR(R). By (4.166), the equality

τ(2πi)u−10 u0τ(−2πi)−1 = τ(−1)

holds, and writing τ(−1) = τ(2πi)τ(−2πi)−1, one gets u0 = u0. □

4.4.4. The period map and the period conjecture. Recall from the previous sec-
tions that PdR,B denotes the scheme of tensor isomorphisms between ωB and ωdR,
which has the structure of a pro-algebraic variety over Q. The ring of regular
functions O(PdR,B) forms an ind-object in the category of Q-algebras of finite type.

Definition 4.167. The period map is the ring morphism

(4.168) per : O(PdR,B) −→ C
given by evaluation at the point compdR,B:

per(f) = f(compdR,B).

Similarly, evaluation at the point compB,dR yields a period map

O(PB,dR) −→ C.
The following is a variant of Grothendieck’s period conjecture for the category

of mixed Tate motives over Z (see also [And04, § 25.2]).

Conjecture 4.169 (Grothendieck). The point compdR,B is generic.

To give a meaning to the word “generic”, we observe that the torsor PB,dR

can be written as the projective limit of the torsors PYB,dR for the different mixed
Tate motives Y , in analogy with Lemma 4.64. Generic then means that, for every
quotient PB,dR → PYB,dR the image compYB,dR of the point compB,dR in PYB,dR is not
contained in any strict subvariety defined over Q. Therefore, compB,dR is generic
if and only if, for every mixed Tate motive, the period map

per = evcompY
B,dR

: O(PYB,dR) −→ C

is injective. Moreover, if compB,dR is generic, then the transcendence degree of the

residue field of compYB,dR is equal to the dimension of PYB,dR.
From the previous discussion, we see that Grothendieck’s period conjecture for

mixed Tate motives is equivalent to the following:

Conjecture 4.170. The period map (4.168) is injective.

4.4.5. Lie algebras. By means of the tannakian formalism, the fiber functor ωdR

yields an equivalence of categories between MT(Z) and the finite-dimensional rep-
resentations of GdR. We can now apply the theory of graded Lie algebras explained
in Section 3.3.8 to the semi-direct product decomposition

GdR = UdR ⋊Gm.
By Lemma 4.160, the group UdR is a graded pro-unipotent group (Definition 3.211).
Let udR be the Lie algebra of UdR and ugrdR the associated graded Lie algebra as
in Definition 3.213. We want to derive from Theorem 4.145 a structure theorem
for the Lie algebras udR and ugrdR. To this end, we need to extract some finiteness
consequences from Theorem 4.145 that will allow us to use the full force of the
theory of graded Lie algebras.
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Lemma 4.171. The Lie algebra ugrdR is negatively graded. That is,
⊕

n⩾0

(ugrdR)n = 0.

Proof. The proof goes in several steps. First, we write UdR as a limit

UdR = lim←−
α

Uα

of unipotent algebraic groups Uα with surjective morphisms UdR → Uα surjective
(Exercise 3.149) and with an action of Gm on each Uα that is compatible with the
action of Gm on UdR (Lemma 4.160). For each α, let uα denote the Lie algebra
of Uα. It is finite-dimensional and nilpotent.

The second step is to show the implication

(4.172)
⊕

n⩾0

(uα)n ̸= 0 =⇒
⊕

n⩾0

(uα/[uα, uα])n ̸= 0

for each finite-dimensional nilpotent Lie algebra uα, Indeed, if the right-hand side
does not hold, then ⊕

n⩾0

(uα)n ⊂ [uα, uα].

Since a bracket of non-negative degree between homogeneous elements should con-
tain at least one non-negative element, we deduce the inclusion

⊕

n⩾0

(uα)n ⊂


uα,

⊕

n⩾0

(uα)n


 .

The nilpotency of uα implies the vanishing
⊕

n⩾0(uα)n = 0, and hence (4.172).

Let now LQ(−n) be the abelian graded one-dimensional Lie algebra over Q
concentrated in degree n. The third step is the observation that if (uα/[uα, uα])n ̸=
0, then one can construct a surjective homomorphism of graded Lie algebras

uα −→ LQ(−n).

The fourth step is the computation

(4.173) Ext1RepGm
(LQ(−n))(Q(n),Q) ̸= 0.

The notation RepGm
(LQ(−n)) is explained in Definition 3.216. To prove (4.173),

we consider the graded vector space E = Qv0 ⊕ Qv−n with v0 in degree zero
and v−n in degree −n. Let an be a generator of LQ(−n) sitting in degree n. The
graded action of LQ(−n) on E determined by anv−n = v0 turns E into a graded
representation of LQ(−n). It is then easy to check that this representation is a
non-trivial element of the extension group

Ext1RepGm
(LQ(−n))(Q(n),Q).

Finally, assume that there is an integer n ⩾ 0 such that (ugrdR)n ̸= 0 holds. Then
there is an α satisfying (ugrα )n ̸= 0. By the second and third steps in the proof, there
is an n′ ⩾ 0 and a surjective graded Lie algebra homomorphism uα → LQ(−n′).
Since the map

Ext1RepGm
(LQ(−n′))(Q(n′),Q) −→ Ext1RepGm

(uα)(Q(n′),Q)
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is injective, we deduce the non-vanishing

Ext1RepGm
(Uα)(Q(n′),Q) = Ext1RepGm

(uα)(Q(n′),Q) ̸= 0

from the fourth step. Since the map UdR → Uα is surjective, the map

Ext1RepGm
(Uα)(Q(n′),Q) −→ Ext1RepGm

(UdR)(Q(n′),Q) = Ext1Rep(GdR)(Q(n′),Q)

is also injective. Therefore, Ext1Rep(GdR)(Q(n′),Q) ̸= 0, in contradiction with The-

orem 4.145. From this, we get (ugrdR)n = 0 for all n ⩾ 0. □

Lemma 4.174. The finiteness condition

dim(ugrdR)n <∞
holds for all n < 0.

Proof. The idea is similar to that in the proof of Lemma 4.171. Assume
that there exist integers n < 0 such that dim(ugrdR)n = ∞, and let n0 be the
maximum among them. Then, dim(ugrdR/[u

gr
dR, u

gr
dR])n0

= ∞. This implies that
we can construct a linearly independent infinite family of graded Lie algebra ho-
momorphism ωi : u

gr
dR → LQ(−n0), for all i ⩾ 0. Arguing as in the proof of

Lemma 4.171, we can construct a linearly independent infinite family of extensions
in Ext1Rep(GdR)(Q(n0),Q), which contradicts the finite-dimensionality. □

Corollary 4.175. The graded Lie algebra O(UdR) is connected and satisfies

dimO(UdR)n <∞
for all n ⩾ 0.

Proof. The ideal I ⊂ O(UdR) corresponding to the unit e ∈ UdR is homoge-
neous, and there is a decomposition as Q-vector spaces

O(UdR) = Q⊕ I
with Q in degree zero. It is then enough to show that I has only positive degrees.
We use the inductive limit

(4.176) O(UdR) = lim−→
α

(O(Uα))

Let Iα ⊂ O(Uα) be the restriction of I to O(Uα), which is still a homogeneous ideal.
As a consequence of the proof of Lemma 4.171, the condition (uα)n = 0 holds for
all n ⩾ 0. From this, we deduce the vanishing

(Iα/I
2
α)n = 0

for all n ⩽ 0. Since O(Uα) is finitely generated, this implies (Iα)n = 0 for all n ⩽ 0.
From the fact that the inductive limit is compatible with the grading we deduce
that In = 0 for all n ⩽ 0 and O(UdR) is connected.

By Lemma 4.174, dim(I/I2)n <∞ holds for all n > 0. Since the grading of I
is positive, this implies dim In <∞ for all n > 0 and ends the proof. □

After Corollary 4.175, Theorem 3.217 yields an equivalence of categories

Rep(GdR) = RepGm
(ugrdR).

Let GrModfd
U(ugr

dR) be the category of left U(ugrdR)-modules whose underlying

Q-vector spaces are finite-dimensional. There is a natural equivalence of categories

RepGm
(ugrdR) = GrModfd

U(ugr
dR) .
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Let GrModfg
U(ugr

dR)
be the category of finitely generated left U(ugrdR)-modules.

Lemma 4.177. There is an equality of groups of Yoneda extensions

ExtiGrModfd
U(u

gr
dR

)

(Q(n),Q) = Exti
GrModfg

U(u
gr
dR

)

(Q(n),Q).

Proof. There is a canonical morphism

(4.178) ExtiGrModfd
U(u

gr
dR

)

(Q(n),Q) −→ Exti
GrModfg

U(u
gr
dR

)

(Q(n),Q).

We first show that this map is surjective. Let ξ ∈ Exti
GrModfg

U(u
gr
dR

)

(Q(n),Q) be

an extension, written as

ξ : 0 −→ Q −→ E1 −→ · · · −→ Ei −→ Q(n) −→ 0

For any graded left U(ugrdR)-module E we write

FnE =
⊕

n′⩽n

En′ .

Since U(ugrdR) is non-positively graded, FnE is a submodule of E. Set a = max(−n, 0)
and b = min(−n, 0). Then there is a diagram of equivalences of Yoneda extensions

Faξ

  zz
Faξ/Fbξ ξ.

Since each Ei is finitely generated and U(ugrdR)n is finite-dimensional for each n,

the extension Faξ/Fbξ belongs to ExtiGrModfd
U(u

gr
dR

)

(Q(n),Q), thus showing that the

morphism (4.178) is surjective.
The proof of the injectivity of the map (4.178) follows the same principle. The

trivial extension is

ξ0 : 0 −→ Q Id−→ Q −→ 0 . . . 0 −→ Q(n)
Id−→ Q(n) −→ 0,

with the obvious variants for i = 1, 2. An extension ξ ∈ ExtiGrModfd
U(u

gr
dR

)

(Q(n),Q)

is sent to zero in Exti
GrModfg

U(u
gr
dR

)

(Q(n),Q) if there exists an extension ξ1 of finitely

generated left U(ugrdR)-modules and a diagram of equivalences

ξ1

����
ξ0 ξ.

Now Faξ1/Fbξ1 is an extension of finite-dimensional modules and the diagram

Faξ1/Fbξ1

$$zz
ξ0 ξ.

shows that ξ was already equivalent to the trivial extension. □
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Since the category GrModfg
U(ugr

dR)
has enough projectives, the Yoneda extension

groups can be computed using projective resolutions. By Theorem A.354,

ExtiGrMod
U(u

gr
dR

)fg
(Q(n),Q) = ExtiGrModU(u

gr
dR

)
(Q(n),Q) = Hi(K∗(ugrdR)n),

where K∗ stands for the Koszul complex from Definition A.349. Combining this
with the previous equalities, we obtain

(4.179) ExtiRep(GdR)(Q(n),Q) = Hi(K∗(ugrdR)n).

4.4.6. The structure of ugrdR. The main result of this section is the following:

Theorem 4.180. The graded Lie algebra ugrdR is free with one generator in each
odd degree n ⩽ −3, and udR is the completion of ugrdR with respect to the grading.

Proof. Applying (4.179), Proposition A.353, and Theorem 4.145, we deduce
that H1(K∗(u

gr))n is one-dimensional for n ⩽ −3 odd, and is zero otherwise,
and that H2(K∗(u

gr
dR)) is zero. Then Proposition A.355 implies that ugrdR is free

with one generator in each odd degree ⩽ −3. The second statement follows from
Lemma 3.214 and Corollary 4.175. □

Remark 4.181.

i) The grading on ugrdR that we consider is the one coming from the action
of Gm as the identity on Q(−1). This is the opposite of the grading used
in [DG05] and [Del13], but agrees with that of [And04] or [Bro12].

ii) Consider the abelianization

(ugrdR)ab = ugrdR/[u
gr
dR, u

gr
dR],

which is a graded vector space. The proof of Theorem 4.180 yields a
canonical identification

(ugrdR)abn = (Ext1MT(Z)(Q(0),Q(n)))∨.

Moreover, ugrdR is isomorphic to the free Lie algebra generated by (ugrdR)ab.

Nevertheless, there is no canonical section from (ugrdR)ab to ugrdR, and hence
no canonical isomorphism between ugrdR and the free Lie algebra generated

by (ugrdR)ab.

iii) Note also that udR and ugrdR are not isomorphic. In fact, udR is the com-
pletion of ugrdR with respect to the grading, which implies that udR is not
a free Lie algebra.

4.4.7. The Hilbert–Poincaré series. From Theorem 4.180, we deduce that the
universal enveloping algebra U(ugrdR) of ugrdR is the free associative graded alge-
bra with one generator in each odd degree ⩽ −3. The algebra of regular func-
tions O(UdR) is also graded and is the dual of the completed universal enveloping

algebra Û(ugrdR) in the graded sense (therefore, it is positively graded). In fact, its
Hilbert–Poincaré series is equal to

HO(UdR)(t) =
∑

n⩾0

dimQ(O(UdR)n)tn =
∑

n⩽0

dimQ(U(ugrdR)n)t−n = HU(ugr
dR)(t

−1).
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Since U(ugrdR) is the free associative graded algebra with one generator in each odd
degree n ⩽ −3, the rightmost Hilbert–Poincaré series is equal to

HU(ugr
dR)(t

−1) =
1

1− t3 − t5 − t7 − · · · =
∑

k⩾0

(t3 + t5 + t7 + · · · )k,

as follows from the fact that the number of words of degree n made out of the
letters a3, a5, a7, . . . with ar in degree r is exactly the coefficient of tn in the above
series. (Compare this with Lemma 1.77, where we computed the Hilbert–Poincaré
series of a free commutative algebra.) Therefore, we obtain

(4.182) HO(UdR)(t) =
1

1− t3 − t5 − t7 − · · · =
1− t2

1− t2 − t3 .

Let us now, somehow artificially, introduce the algebra

(4.183) HMT = O(UdR)⊗Q Q[f2],

where f2 is given degree 2. Note that HMT is isomorphic to the space of functions
on UdR ×A1. Therefore, it can be seen as a relative of O(GdR) = O(UdR ×Gm) of
“just the right size”. From (4.182), we immediately deduce:

Lemma 4.184. The Hilbert–Poincaré series of HMT is given by

HHMT (t) =
1

1− t2 − t3 =
∑

k⩾0

dkt
k,

where the integers dk are the same as in Zagier’s Conjecture 1.71.

Following Deligne–Goncharov and Terasoma, in order to prove the upper bound
dimZk ⩽ dk of Theorem A, we will construct in Chapter 5 a Q-algebra H, which
injects into HMT , and comes together with a surjective graded map

H −→
⊕
Zk.

This will imply immediately the bound. The reason we have changed the grading
of O(UdR) is precisely to make this map compatible with the degree. We have
already seen that multiple zeta values appear as periods of the pro-unipotent com-
pletion of the fundamental group of P1

Q \ {0, 1,∞}. The motivic interpretation of
this pro-unipotent completion will give the link between H and

⊕Zk. We discuss
this interpretation in the next section.

⋆ ⋆ ⋆

Exercise 4.185. Use Theorem 4.145 to prove that the functor ω from (4.147)
is a fibre functor on the tannakian category MT(Z).

Exercise 4.186. In this exercise, we study the dimensions of the graded pieces
of the Lie algebra ugrdR.

i) Compute dim undR for n ⩽ 15.

ii) Deduce that there are many possible sections of the map ugrdR → (ugrdR)ab.
In particular, there is no canonical choice.

iii) Prove that the dimensions are given by the formula

dim undR =
∑

d|n

µ(d)

d

∑

s3,s5,...∈Z⩾0

n/d=3s3+5s5+···

(s3 + s5 + · · · − 1)!

s3!s5! · · · ,
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where µ(d) denotes the Möbius function.

Exercise 4.187. In this exercise, we compare the representations of GdR

and UdR using the functors of induction and restriction of representations. We de-
note by Rep∞Q (GdR) and Rep∞Q (UdR) the categories of possibly infinite-dimensional
representations of these affine group schemes. The inclusion UdR → GdR gives rise
to a restriction functor

ResGdR

UdR
: Rep∞Q (GdR) −→ Rep∞Q (UdR).

This functor admits a left adjoint functor denoted by IndGdR

UdR
(see Section A.1.4).

By definition of a left adjoint functor, there is a natural bijection

HomRep∞
Q (UdR)(R,ResGdR

UdR
(S)) = HomRep∞

Q (GdR)(IndGdR

UdR
(R), S)

for all representations R of UdR and S of GdR.

i) Prove the equalities

ResGdR

UdR
(Q) = Q and IndGdR

UdR
(Q) =

∏

n∈Z
Q(n).

ii) Prove that the adjoint property can be extended to the groups of exten-
sions. Namely, there is a natural bijection

ExtiRep∞
Q (UdR)(Q,ResGdR

UdR
(Q)) = ExtiRep∞

Q (GdR)(IndGdR

UdR
(Q),Q).

4.5. The motivic fundamental groupoid of P1 \ {0, 1,∞}. We continue
considering the algebraic variety

X = P1
Q \ {0, 1,∞}

over Q, and the complex manifold

M = X(C) = P1(C) \ {0, 1,∞}.
As in Section 3.10, we use the following notation:

• 0 is the tangential base point (0, 1), i.e. the tangent vector 1 at 0,

• 1 is the tangential base point (1,−1), i.e. the tangent vector −1 at 1.

Let x,y ∈ X(Q) ∪ {0,1} be rational or tangential base points. The aim of
this section is to explain that the pro-unipotent completion of the torsor of paths
from x to y, as well as the extra structures given by composition of paths and local
monodromy, are motivic in the sense of Definition 4.133. In fact, we want to add
to Summary 3.408 a motivic side whose Betti and de Rham realizations give the
Betti and de Rham sides of that summary. To exhibit the motivic nature of the
affine group schemes and torsors in that summary, it seems necessary to use the
language of algebraic geometry over a tannakian category [Del89, § 6]. In order to
avoid this language, we will only consider the motivic analogues of U ?

• • and L?
• •.

4.5.1. The pro-mixed Tate motive UMot
y x . We start with the case of two ra-

tional base points x, y ∈ X(Q) ⊆ M . Recall the cosimplicial manifold M•y x from
Construction 3.281. As we already used in Section 3.7.1, when endowing the funda-
mental group with a mixed Hodge structure over Q, all the maps involved in M•y x

are algebraic and defined over Q, because the points x, y are rational. We will
denote by X•y x the corresponding cosimplicial object in the category Sm(Q).

As explained in Section 4.2.9, to X•y x one associates a family of motives

{[σ⩽NN X•y x ]}N⩾0.
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By construction, given integers M ⩾ N ⩾ 0, there is a morphism

σ⩽MN X•y x −→ σ⩽NN X•y x

making {[σ⩽NN X•y x ]}N⩾0 into a projective system of motives.

Lemma 4.188. The object [σ⩽NN X•y x ] belongs to DMT(Q).

Proof. Exercise 4.216. □

We can therefore consider the cohomology of this object with respect to the
t-structure of the triangulated category DMT(Q).

Definition 4.189. For each N ⩾ 0, we define a mixed Tate motive

UMot,N
y x = H0([σ⩽NN X•y x ]) ∈MT(Q).

As N varies, these motives fit into a pro-mixed Tate motive UMot
y x .

We also consider the constant cosimplicial variety Spec(Q)• given by Spec(Q) in
all degrees, with coface and codegeneracy maps all equal to the identity. Applying
the previous construction to Spec(Q)•, one finds

H0([σ⩽NN Spec(Q)•]) = Q(0).

for all N ⩾ 0 (see Exercise 4.217).
4.5.2. The structures of UMot

y x . We next introduce some extra structures car-

ried by UMot
y x : the unit and counit, the completed coproduct, the composition of

paths, and the antipode. The idea is to give a geometric analogue of the construc-
tions in the reduced bar complex of a connected dg-algebra (Definition 3.257), in
such a way that they are compatible with the isomorphism from Lemma 3.284.

We start with the unit and counit. Each point x ∈ X(Q) determines a mor-
phism of cosimplicial varieties

(4.190) η∨x : Spec(Q)• −→ X•x x

which sends Spec(Q)n = Spec(Q) to the point (x, . . . , x) ∈ Xn
x x . Besides, we have

for each pair of points x, y ∈ X(Q) a map of cosimplicial varieties

(4.191) ϵ∨ : X•y x −→ Spec(Q)•

given by the structural map in all degrees. They induce morphisms

η∨x : Q(0) −→ UMot
x x ,

ϵ∨ : UMot
y x −→ Q(0),

which are called unit and counit respectively.

Remark 4.192. To understand the notation we will use in the following con-
structions, recall from Section 4.2.3 that the direct sum in the category SmCor(Q)
corresponds to the disjoint union of varieties, whereas the tensor product is given
by the cartesian product of varieties. Note also that all descriptions of morphisms
should be understood in terms of correspondences. For instance, the antipode we

write below is the cycle (−1)
n(n+1)

2 Γ in Xn × Xn, where Γ is the graph of the
morphism (x1, . . . , xn) 7→ (xn, . . . , x1).
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For any rational points x, y ∈ X(Q), consider the unbounded complex C∗( X•y x)
in the category SmCor(Q) given by

Cn( X•y x) = Xn
y x ,

together with the differential

d =

n+1∑

i=0

(−1)iδi : Cn( X•y x) −→ Cn+1( X•y x).

We consider the morphism

[X]⊗n −→
⊕

p+q=n

[X]⊗p ⊗ [X]⊗q

in SmCor(Q) that sends the point (x1, . . . , xn) to

(4.193)
∑

p+q=n

∑

σ∈�(p,q)

(−1)σ(xσ(1), . . . , xσ(p))⊗ (xσ(p+1), . . . , xσ(n)),

where (−1)σ is the sign of the permutation σ.

Remark 4.194. Notice that what appears in this expression is the permuta-
tion σ instead of σ−1 as in Proposition 1.160 or Definition 3.257. This is due to
the contravariant nature of differential forms.

One can check that this map induces a morphism of complexes

∇∨ : C∗( X•y x) −→ C∗( X•y x)⊗ C∗( X•y x).

Now, for points x, y, z ∈ X(Q), and integers p, q ⩾ 0, we consider the map

(4.195)
[X]⊗p ⊗ [X]⊗q −→ [X]⊗(p+q)

(x1, . . . , xp)⊗ (y1, . . . , yq) 7−→ (x1, . . . , xp, y1, . . . , yq).

Varying p and q, we obtain a morphism of complexes

∆∨ : C∗( X•z y )⊗ C∗( X•y x) −→ C∗( X•z x).

Finally, the correspondence [X]⊗n → [X]⊗n given by

(4.196) (x1, . . . , xn) 7−→ (−1)
n(n+1)

2 (xn, . . . , x1)

defines a morphism of complexes, called the dual antipode,

S∨ : C∗( X•y x) −→ C∗( X•x y ).

The next step consists in inducing morphisms at the level of the normalized
complexesN ( X•y x). For this, one needs to check that the chain morphisms commute
with the projector pn of Lemma 4.103 and take care of the truncations. The precise
statement is the following lemma, whose proof is elementary.

Lemma 4.197. Let N,M ⩾ 0 be integers.

i) If N ⩾ 2M , then the map ∇∨ induces a morphism of complexes

∇∨ : σ⩽NN ( X•y x) −→ σ⩽MN ( X•y x)⊗ σ⩽MN ( X•y x).

ii) If N ⩾M , then the map ∆∨ induces a morphism of complexes

∆∨ : σ⩽NN ( X•z y )⊗ σ⩽NN ( X•y x) −→ σ⩽MN ( X•z x).
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iii) If N ⩾M , then the map S∨ induces a morphism of complexes

S∨ : σ⩽NN ( X•y x) −→ σ⩽MN ( X•x y ).

Moreover, when N and M vary within the above constraints, the three morphisms
yield maps of projective systems.

As a consequence of Lemma 4.197, we obtain the following result:

Proposition 4.198. Given any three points x, y, z ∈ X(Q), there are mor-
phisms of pro-mixed Tate motives:

i) a composition of paths

∆∨ : UMot
z y ⊗ UMot

y x −→ UMot
z x ;

ii) a unit
η∨x : Q(0) −→ UMot

x x ;

iii) a completed coproduct

∇∨ : UMot
y x −→ UMot

y x ⊗̂ UMot
y x ;

iv) a counit
ϵ∨ : UMot

y x −→ Q(0);

v) a dual antipode
S∨ : UMot

y x −→ UMot
x y .

4.5.3. The motivic nature of the fundamental groupoid of P1
Q \ {0, 1,∞}.

Theorem 4.199 (Deligne–Goncharov [DG05]). For x, y ∈ X(Q), the Hodge
realization of UMot

y x agrees with the pro-mixed Hodge structure UH
y x described in

Summary 3.408. In symbols,

RH( UMot
y x ) = UH

y x .

Moreover, RH is compatible with the composition of paths, the unit, the completed
coproduct, the counit, and the dual antipode. In particular, the diagram UH

• ∗ for •, ∗
varying among rational base points, is motivic.

Proof. Let A∗ be the differential graded algebra from Example 2.284, that is,

A0 = Q, A1 = Qω0 ⊕Qω1

with zero differential. The product in this algebra satisfies ω0∧ω1 = 0. The Hodge
filtration is given by

F 0 = A∗ ⊃ F 1 = A1 ⊃ F 2 = 0,

and the weight filtration by

W−1 = 0 ⊂W0 = A0 ⊂W1 = A∗.

As we saw in Proposition 2.287, the dg-algebra A∗ allows us to compute the de
Rham cohomology of P1

Q \ {0, 1,∞} with its weight and Hodge filtration. We also

saw in Section 3.7.2 that it can be used to compute the de Rham side of UH
• ∗ .

We will now use this algebra to compute the de Rham side of RH( UMot
y x ).

Consider the variety (P1
Q)n and the divisor Dn consisting of all points with one

coordinate equal to 0, 1, or ∞. This is a simple normal crossing divisor. For all
points x, y ∈ X(Q), the n-th component of the cosimplicial scheme X•y x is given by

Xn
y x = (P1

Q)n \Dn.
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Let (E∗P1(C)n(logDn), F,W ) be the de Rham algebra of complex-valued smooth

differential forms on (P1(C))n with logarithmic poles along Dn with its Hodge and
weight filtration (see Section 2.8.5). We set

A∗( Xn
y x ) = A∗ ⊗ n. . .⊗A∗.

The Hodge and weight filtrations ofA∗ induce Hodge and weight filtrations onA∗( Xn
y x ).

For all rational points x, y and integer n ⩾ 0, there is an inclusion

A∗( Xn
y x ) ↪−→ E∗P1(C)n(logDn)

1⊗ · · · ⊗ ωεi ⊗ · · · ⊗ 1 7−→ ωεi(ti),

where εi = 0, 1, the 1-form ωεi is in i-th position, and ti is the i-th coordinate
of AnC ⊂ (P1

C)n. From the fact that

A∗ ⊗ C −→ E∗P1(C)(logDn)

is a bifiltered quasi-isomorphism (see the end of Example 2.284), we deduce that

A∗( Xn
y x )⊗ C ↪−→ E∗P1(C)n(logDn)

is also a bifiltered quasi-isomorphism. Thus, A∗( Xn
y x ) determine the Hodge and

weight filtration of the de Rham cohomology of Xn
y x , even with its Q-structure.

Moreover, all the above inclusions are functorial with respect to any morphism
involved in the structures of Xn

y x . More precisely, the following holds:

Lemma 4.200. The family of inclusions

(4.201) A∗( Xn
y x ) ↪−→ E∗P1(C)n(logDn),

for x, y ∈ X(Q) and n ⩾ 0 is functorial with respect to

i) the coface and codegeneracy maps of the cosimplicial schemes X•y x;

ii) the maps (4.190) and (4.191), where we identify Spec(Q) with X0
y x through

the structure map of Q-schemes;

iii) the maps (4.193), (4.195) and (4.196) that will induce the product, the
coproduct, and the antipode.

Moreover, each map in the family is a filtered quasi-isomorphism.

Proof. The fact that each map in the family is a quasi-isomorphism has al-
ready been discussed. To be precise about what functoriality means in this lemma,
we spell out the case of a coface. All the other maps are treated in a similar way.
Consider the coface

δ0 : Xn
y x −→ Xn+1

y x

given by δ0(x1, . . . , xn) = (y, x1, . . . , xn), and the diagram

A∗( Xn+1
y x ) // E∗P1(C)n+1(logDn+1)

(δ0)∗

��
A∗( Xn

y x ) // E∗P1(C)n(logDn).

The statement of the lemma means that there is a unique morphism

A∗( Xn+1
y x ) −→ A∗( Xn

y x )
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completing the diagram to a commutative square. We also denote it by (δ0)∗. From
the fact that the horizontal arrows are injective, the unicity is clear and it suffices
to prove the existence. The sought after map is obviously given by

(δ0)∗(a1 ⊗ · · · ⊗ an+1) = ε(a1)a2 ⊗ · · · ⊗ an+1,

where ε is the augmentation of A∗ given by (3.344). All the remaining maps are de-
fined in a similar way. The compatibility of all the morphims with the composition
of maps is just a consequence of the injectivity of the morphisms (4.201). □

The main consequence of Lemma 4.200 is that to compute the de Rham re-
alization functor of UMot

y x as explained in Section 4.2.10, we can use the alge-
bras A∗( Xn

y x ). From this, we derive an isomorphism

RdR( UMot
y x )∨ = lim−→

N

H0

(
Totσ⩽NNA∗( M•y x)

)
.

By Lemma 3.284, there is a canonical isomorphism

TotNA∗•
∼−→ B∗(A∗).

Taking the truncation, the cohomological functor H0, and the inductive limit, we
deduce that RdR( UMot

y x )∨ = AdR
y x . By duality we get

RdR( UMot
y x ) = UdR

y x .

The next step is to check the compatibility with the structures on both sides. This
is the content of next lemma.

Lemma 4.202. The morphism ψ of Lemma 3.284 is compatible with the shuffle
product, the coproduct, and the antipude.

Proof. Since the various structures do not depend on the rational points x, y,
we omit them from the notation. We begin by proving the compatibility with the
shuffle product. For non-negative integers p, q, r, s, the map (4.193) induces a map

∇ : Ar(Xp)⊗As(Xq) −→ Ar+s(Xp+q)

given by the formula

∇ ((ω1(x1) ∧ · · · ∧ ωp(xp))⊗ (ωp+1(xp+1) ∧ · · · ∧ ωp+q(xp+q))) =
∑

σ∈�(p,q)

(−1)σ(−1)psω1(xσ(1)) ∧ · · · ∧ ωp+q(xσ(p+q)).

The sign (−1)σ comes from the definition of the map (4.193), while the sign (−1)ps

comes from the fact that we have to swap the simplicial degree p and the differential
degree s. We now compute

∇(ψ([ω1| . . . |ωp])⊗ ψ([ωp+1| . . . |ωp+q])) =
∑

σ∈�(p,q)

(−1)
∑p+q

i=1 i deg(ωi)(−1)σω1(xσ(1)) ∧ · · · ∧ ωp+q(xσ(p+q)).

Here, we have used the equality

(4.203)

p∑

i=1

i deg(ωi) +

q∑

j=1

j deg(ωp+j) + p

q∑

j=1

deg(ωp+j) =

p+q∑

i=1

i deg(ωi).
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We also compute

ψ(∇([ω1| . . . |ωp]⊗ [ωp+1| . . . |ωp+q])) =
∑

σ∈�(p,q)

η(σ)(−1)
∑p+q

i=1 i deg(ωσ−1(i))ωσ−1(1)(x1) ∧ · · · ∧ ωσ−1(p+q)(xp+q),

where η(σ) is the sign determined by equation (3.251). To see that the signs in
both expressions agree, let us introduce formal variables a1 . . . ap+q of degree −1,
and put a = a1 ∧ · · · ∧ ap+q. On the one hand,

η(σ)(−1)
∑p+q

i=1 i deg(ωσ−1(i))ωσ−1(1)(x1) ∧ · · · ∧ ωσ−1(p+q)(xp+q) ∧ a
= η(σ)a1 ∧ ωσ−1(1)(x1) ∧ · · · ∧ ap+q ∧ ωσ−1(p+q)(xp+q)

= aσ(1) ∧ ω1(xσ(1)) ∧ · · · ∧ aσ(p+q) ∧ ωp+q(xσ(p+q)),
while, on the other hand,

(−1)
∑p+q

i=1 i deg(ωi)(−1)σω1(xσ(1)) ∧ · · · ∧ ωp+q(xσ(p+q)) ∧ a
= (−1)

∑p+q
i=1 i deg(ωi)ω1(xσ(1)) ∧ · · · ∧ ωp+q(xσ(p+q)) ∧ aσ(1) ∧ · · · ∧ aσ(p+q)

= aσ(1) ∧ ω1(xσ(1)) ∧ · · · ∧ aσ(p+q) ∧ ωp+q(xσ(p+q)).
This proves the compatibility with the shuffle product.

We next prove the compatibility with the coproduct. The maps (4.195) induce
morphisms

∆: At(Xn) −→
⊕

r+s=t

⊕

p+q=n

Ar(Xp)⊗As(Xq)

given by

∆(ω1(x1) ∧ · · · ∧ ωn(xn))

=

n∑

p=0

(−1)p
∑n

i=p+1 deg(ωi)ω1(x1) ∧ · · · ∧ ωp(xp)⊗ ωp+1(xp+1) ∧ · · · ∧ ωn(xn),

where the sign comes again from the swap of a simplicial degree and a differential
degree. The equality ∆ ◦ ψ = ψ ◦∆ is easily checked using equation (4.203).

Finally, the map (4.196) induces a morphisms

S : A∗(Xn) −→ A∗(Xn)

given by the formula

S(ω1(x1) ∧ · · · ∧ ωn(xn)) = (−1)
n(n+1)

2 ω1(xn) ∧ · · · ∧ ωn(x1).

The proof of the compatibility of the antipode S with the map ψ follows the same
method as the previous compatibilities. □

It follows from this lemma that the de Rham realization RdR( UMot
y x ) is isomor-

phic to UdR
y x in a compatible way with all the additional structures. To conclude,

RB( UMot
y x ) = UB

y x

follows from Theorem 3.316, Lemma 3.298, Proposition A.238, and the description
of the Betti realization functor in Section 4.2.10. □
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4.5.4. The case of tangential base points. It remains to prove that the space
of paths with tangential base points is also motivic. We start with the particular
case of Gm = P1

Q \ {0,∞} and the tangential base point 0 = (0, 1). Recall from

Variant 3.412 that the method used to study P1
Q \ {0, 1,∞} also works for Gm. In

this case, we use the dg-algebra A(Gm) = Q⊕Qω0 to obtain U(Gm)dRy x = QJe0K

Proposition 4.204. There is an isomorphism

U(Gm)H0 0
∼−→ U(Gm)H1 1 .

Moreover, if x ∈ Gm(Q), then there is an isomorphism

U(Gm)H0 x
∼−→ U(Gm)H1 x .

Proof. We only prove the second statement. The proof of the first one is
similar. We define the de Rham component of the sought isomorphism as the
identity, so it is clearly compatible with the Hodge and the weight filtrations. As
was the case of P1

Q \ {0, 1,∞}, the de Rham side is independent of the base points.
Recall the straight path dch between 0 and 1, given by dch(t) = t for t ∈ [0, 1].

We define the Betti part of the isomorphism as the map induced by the composition
of paths which sends a path γ ∈ π1(Gm;0, x) to dch ·γ ∈ π1(Gm; 1, x). We need to
prove that both isomorphisms are compatible with the comparison isomorphism.
Since comp = compdR,B is given by the iterated integral map

comp(γ) =
∑

n⩾0

en0

∫

γ

ω0
n. . .ω0

and satisfies comp(γ · γ′) = comp(γ) comp(γ′), we only need to check

comp(dch) = 1.

This last equality follows by taking the limit z → 1 in Example 3.387.
That the Betti part of the isomorphism is compatible with the weight filtration

is now a consequence of the fact that the de Rham side is. □

From the proposition we immediately deduce:

Corollary 4.205. The pro-mixed Hodge structures U(Gm)H0 x and U(Gm)H0 0

are motivic (i.e. they belong to the essential image of RH).

The next lemma describes the structure of U(Gm)H0 0 .

Lemma 4.206. The pro-mixed Hodge structure U(Gm)H0 0 is split and agrees with
∏

n⩾0

Q(n).

In particular, L(Gm)H0 0 = Q(1).

Proof. Let fn and bn be generators of Q(n)dR and Q(n)B respectively; they
satisfy comp(bn) = (2πi)nfn. Let γ0 be the generator of π1(Gm,0) introduced in
Section 3.9.1. By Example 3.389, we know that compdR,B(γ0) = exp(2πie0) holds.
Consider the power series

log(γ0) = log(1 + (γ0 − 1)) ∈ Q[π1(Gm,0)]∧.

For each n, we define a map

(4.207) φn : Q(n)→ U(Gm)H0 0
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which sends fn to en0 ∈ Q⟪e0⟫, and bn to log(γ0)n ∈ Q[π1(Gm,0)]∧. This map is
compatible with the comparison isomorphism:

compdR,B(φn(bn)) = compdR,B(log(γ0)n)

= (2πi)nen0

= φn(compdR,B(bn)).

Moreover, taking into account that

log(γ0)n ∈ JnQ[π1(Gm,0)]∧ = W−2nQ[π1(Gm,0)]∧

and en0 ∈ F−n∩W−2nQ⟪e0⟫, the map (4.207) is a morphism of mixed Hodge struc-
tures. The maps φn induce the sought isomorphism of pro-mixed Hodge structures.
The second statement follows immediately from the first one. □

We next reduce the question of showing that the mixed Hodge structure of the
universal enveloping algebra is motivic to that of the Lie algebra.

Lemma 4.208. Let x and y be base points of M (tangential or not). Then the
pro-mixed Hodge structure UH

y x is motivic if and only if the structure LH
y x is.

Proof. Recall that LH
y x is a sub-mixed Hodge structure of UH

y x . By Proposi-

tion 4.134, if UH
y x is motivic, then LH

y x is also motivic. Conversely, assume that LH
y x

is motivic. Recall that LH
y x is a projective limit

LH
y x = lim←−

N

LH
y x/( LH

y x )⩾N+1.

By Proposition 4.134, each quotient in this limit is motivic. From

AH
y x = lim−→

N

Sym∗( LH
y x/( LH

y x )⩾N+1)∨,

we deduce that AH
y x is motivic. By duality, the same holds for UH

y x . □

Now let x ∈ X(Q) = P1(Q) \ {0, 1,∞} be a rational point and 0 the tangential
base point (0, 1). By Lemma 4.208, to show that UH

0 x is motivic, it is enough to
show that LH

0 x is. To show that LH
0 x is motivic, we will embed it into a motivic

mixed Hodge structure. Once this is proved, that UH
1 x is motivic follows from the

symmetry of X that sends x to 1− x.
Let f : X → Gm be the natural inclusion. Then f induces a morphism of mixed

Hodge structures

(4.209) φ1 : LH
0 x −→ L(Gm)H0 x .

The map f also induces a local monodromy map

f∗ : U(Gm)H0 0 −→ UH
0 0 .

Consider the composition of morphisms of mixed Hodge structures

UH
0 x ⊗ U(Gm)H0 0

∇∨⊗Id−−−−→ UH
0 x ⊗̂ UH

0 x ⊗ U(Gm)H0 0

S∨⊗Id⊗ Id−−−−−−−→ UH
x 0 ⊗̂ UH

0 x ⊗ U(Gm)H0 0 −→ UH
x x ,

where the last morphism is induced by the composition of paths

γ1 ⊗ γ2 ⊗ γ3 7−→ γ1 · f∗(γ3) · γ2.
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Restricting to Lie type elements, we obtain a map

(4.210) LH
0 x ⊗ L(Gm)H0 0 −→ LH

x x ,

which taking the identification L(Gm)H0 0 = Q(1) into account induces a morphism
of pro-mixed Hodge structures

(4.211) φ2 : LH
0 x −→ LH

x x (−1).

Lemma 4.212. The morphism of pro-mixed Hodge structures

φ1 + φ2 : LH
0 x −→ L(Gm)H0 x′ ⊕ LH

x x (−1)

is injective.

Proof. It is enough to check the injectivity on the de Rham side. Let L be the

free Lie algebra with generators e0 and e1 on degree −1. Let L̂ be the completion

of L with respect to this grading. Then we have LdR
0 x = L̂ and L(Gm)H0 x = Q e0.

Clearly, the map φ1 is the projection to the e0 component. By construction, the

map (4.210), is given by a ⊗ e0 7→ [e0, a]. Therefore, the map φ2 : L̂ → L̂ is given
by a 7→ [e0, a]. Let φ′2 : L → L denote the map given by the same formula. The
kernel of φ′2 is equal to Q e0 by [Reu93, Thm. 2.10]. It is then an easy exercise
in projective limits to show that this implies that the kernel of φ2 is also Q e0.
Since φ1 does not vanish on the kernel of φ2, we deduce the lemma. □

Combining Proposition 4.204 and Theorem 4.199, we know that the pro-mixed
Hodge structure L(Gm)H0 x ⊕ LH

x x (−1) is motivic. By Proposition 4.134, we deduce
that LH

0 x is motivic and, by Lemma 4.208, that UH
0 x is motivic.

Let us now consider the case of two tangential base points x,y ∈ {0,1} of X.
Let z ∈ X(Q) = P1(Q) \ {0, 1,∞} be a rational point. The composition of paths
gives us a surjection

UH
y z ⊗ UH

z x −→ UH
y x .

Since we already know that the structures on the left-hand side are motivic, we
deduce that UH

y x is also motivic. Once we know that, for all x,y ∈ {0,1}, the mixed

Hodge structure UH
y x is motivic, the realization functor RH being fully faithful,

any morphism among them is also motivic. Therefore, the composition of paths,
the completed coproduct, the antipode, the unit and the counit, and the local
monodromy maps are all motivic.

4.5.5. The main theorem. From the previous discussion, we deduce

Theorem 4.213 (Deligne–Goncharov [DG05]). For each pair of tangential
base points x,y ∈ {0,1} of X, there is a pro-mixed Tate motive UMot

y x whose

Hodge realization is isomorphic to UH
y x . By the fully faithfulness of the realization

functor, UMot
y x is unique up to unique isomorphism. Moreover, the unit and the

counit, the composition of paths, the completed coproduct, the antipode, and the
local monodromy maps are motivic.

In fact, more is true:

Theorem 4.214 (Deligne–Goncharov [DG05]). For each pair of tangential
base points x,y ∈ {0,1}, the pro-mixed Tate motive UMot

y x defines a pro-object in

the category MT(Z). The motive U(Gm)Mot
0 0 belongs to MT(Z).

Proof. The proof relies on showing that the ℓ-adic realizations of these mo-
tives are unramified (see [DG05, Prop. 4.17]), so that Proposition 4.143 applies. □
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Corollary 4.215. The diagram DH
U of Definition 3.414 is motivic over Z.

The importance of this result is that it connects a very abstract and non-
explicit group GdR = Aut⊗(ωdR), but with known structure (see Sections 4.4.3
and 4.4.5), with a very concrete combinatorial group Aut(DdR

U ) (see Section 3.10.3).
The group GdR is the group of symmetries of the category MT(Z) and the fiber
functor ωdR, so it acts on the de Rham realization of every mixed Tate motive
over Z. By Exercise 4.75, it also acts on the de Rham realization of any pro-mixed
Tate motive over Z or even of any diagram of pro-mixed Tate motives over Z. By
Theorem 4.214, the group GdR acts on the diagram DdR

U , which gives rise to a
group homomorphism

GdR −→ Aut(DdR
U ) = Aut(DdR).

The subgroup UdR ⊂ GdR acts trivially on the motive Q(1), which implies that its
image acts trivially on L(Gm)dR0 0 , and hence on U(Gm)H0 0 . Therefore, the image
of UdR is contained in Aut0(DdR), and we obtain a commutative diagram

0 // UdR
//

��

GdR
//

��

Gm // 0

0 // Aut0(DdR) // Aut(DdR) // Gm // 0.

The next chapter will be mainly devoted to extract consequences of this diagram.

⋆ ⋆ ⋆

Exercise 4.216. Use that [X] belongs to DMT(Q) and the fact that the
category DMT(Q) is closed under products and extensions to prove by induction
that the object [σ⩽NN X•y x ] belongs to DMT(Q).

Exercise 4.217. Show that the complex N Spec(Q)• in C(SmCor(Q)pa) is
isomorphic to the complex Spec(Q) concentrated in degree zero, and deduce that

H0(σ⩽NN Spec(Q)•) = Q(0)

holds for all integers N ⩾ 0.
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5. Motivic multiple zeta values
(after Brown, Deligne, and Goncharov)

The end is nigh! In this final chapter, we pull together all the techniques
developed so far to prove Theorems A and B from the preface. The strategy is
to upgrade multiple zeta values, which are real numbers, to motivic multiple zeta
values, which are functions on a certain subscheme of the de Rham fundamental
groupoid of P1 \ {0, 1,∞}. As such, they carry an action of the motivic funda-
mental group GdR of the category of mixed Tate motives MT(Z). This will be
a powerful tool for understanding the relations among multiple zeta values, in the
same way that usual Galois theory is for algebraic numbers. More precisely, there is
a scheme ΠdR

1 0 defined over Q whose algebra of functions is the Hoffman algebra H

and that contains a real point dchdR, the de Rham counterpart of the straight path
from 0 to 1. Evaluation at this point yields a map from H to multiple zeta values
that agrees with the shuffle regularization. Every closed subscheme of ΠdR

1 0 that

is defined over Q and contains the point dchdR gives rises to an ideal of rational
polynomial relations between multiple zeta values. Hence, the problem of finding
all of them amounts to finding the smallest such subscheme. A natural candidate
from the point of view of the theory of motives is the closure Y of the GdR-orbit
of dchdR. According to the period conjecture, it should be the smallest one. Motivic
multiple zeta values are functions on Y. Theorem A is proved in Section 5.1. We
begin by summarizing the main properties of the category MT(Z) and the graded
algebra HMT that were established in the last chapter. To relate the known di-
mensions of the graded pieces of HMT to multiple zeta values, we perform a close
study of the algebra H = O(Y). By construction, H surjects onto the algebra Z of
multiple zeta values. Besides, using the geometric of Y we will show that H injects
into HMT . The upper bound in Theorem A follows from the combination of these
results. In Section 5.2, we define motivic multiple zeta values ζm(s1, . . . , sℓ) as cer-
tain elements of H, and we recast Goncharov’s coproduct on iterated integrals as a
formula for the action of GdR on these elements. Working modulo products gives
a simpler expression to deal with, the so-called infinitesimal coaction. The main
result of this section is that simple motivic multiple zeta values ζm(n) span the ker-
nel of this infinitesimal coaction. Using this result, we prove in Section 5.3 that the
motivic multiple zeta values of the form ζm(2, . . . , 2, 3, 2, . . . , 2) are rational linear
combinations of products of ζm(2n+ 1) and ζm(2, . . . , 2). The computation of the
actual coefficients of the linear combination is due to Zagier. Interestingly, the exis-
tence of such a relation among motivic zeta values is predicted by the infinitesimal
coaction, but its precise shape can only be obtained working with numbers and is
lifted to a motivic relation afterwards. In Section 5.4, we start analyzing the sub-
space H2,3 ⊂ H spanned by motivic multiple zeta values with exponents si ∈ {2, 3}.
A basic tool is the so-called level filtration by the number of 3s and a level lowering
operator defined in terms of the infinitesimal coaction. This will be used in Sec-
tion 5.5 to prove by induction that the generators of H2,3 are linearly independent
and that H2,3 is equal to the whole H. Theorem B follows at once. At the end of
the chapter, we state some remarkable consequences of both theorems, including
the facts that the category of mixed Tate motives over Z is tensor generated by
the motivic fundamental groupoid of P1 \ {0, 1,∞}, all periods of mixed Tate mo-
tives over Z are Q[(2πi)−1]-linear combinations of multiple zeta values, and Zagier’s
conjecture implies the algebraic independence of π, ζ(3), ζ(5), . . .
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5.1. The upper bound. In this section, we prove Theorem A. That is, we
establish the upper bound dk for the dimension of the Q-vector space Zk generated
by multiple zeta values of weight k. Recall that the sequence (dk)k⩾0 is given by

∑

k⩾0

dkt
k =

1

1− t2 − t3 .

5.1.1. Setting. Recall from Section 4.4 that the category MT(Z) of mixed Tate
motives over Z has as simple objects the Tate motives Q(n), one for each n ∈ Z.
They satisfy the tensor relation

Q(n+m) = Q(n)⊗Q(m).

The structure of the category is determined by the extension groups

(5.1) Ext1MT(Z)(Q(0),Q(n)) ≃
{
Q, if n ⩾ 3 is odd,

0, otherwise,

and the vanishing of all higher extension groups:

ExtiMT(Z)(Q(0),Q(n)) = 0 for i ⩾ 2.

The fiber functor

ω : MT(Z) −→ VecQ

M 7−→ ω(M) =
⊕

n ωn(M)

from (4.147) makes MT(Z) into a tannakian category. Namely, MT(Z) is equiva-
lent to the category of representations of the pro-algebraic Q-group

GdR = Aut⊗(ω).

We already determined the structure of GdR using the computation of the
extension groups (Lemma 4.159). It is a semidirect product

(5.2) GdR ≃ UdR ⋊Gm,

where UdR is a pro-unipotent affine group scheme over Q. The action of Gm on UdR

induces an action of Gm on the Lie algebra

udR = Lie(UdR),

and the associated graded Lie algebra ugrdR ⊂ udR is non-canonically isomorphic to
the free Lie algebra with one generator in each odd degree ⩽ −3 (Theorem 4.180).
The whole Lie algebra udR is the completion of ugrdR.

Besides, in Section 3.10 we introduced the algebraic group Aut(DdR) of symme-
tries of the de Rham fundamental groupoid of P1 \ {0, 1,∞} and its pro-unipotent
part Aut0(DdR). Among other things, this fundamental groupoid consists of the
pro-algebraic scheme ΠdR

1 0 = Spec(H), where H = (Q⟨x0, x1⟩,�) is the Hoffman
algebra. It is thought of as the de Rham counterpart of the space of paths from 0
to 1. We showed in Lemma 3.415 that there is an isomorphism of Q-schemes

Aut0(DdR) ≃ ΠdR
1 0 .

This led us to define (Definition 3.418) a pro-algebraic group (Π, ◦) with underlying
scheme ΠdR

1 0 and multiplication induced by the composition ◦ in Aut(DdR). Recall
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from Remark 3.410 the canonical de Rham path 1dR1 0 ∈ ΠdR
1 0 (Q), corresponding

to the counit map H→ Q. The group (Π, ◦) acts on ΠdR
1 0 , and the map

Π −→ ΠdR
1 0

v 7−→ v( 1dR1 0 )

is an isomorphism of schemes. Thus, ΠdR
1 0 is a trivial torsor under (Π, ◦).

As explained at the end of last chapter, it follows from Theorem 4.213 that
there exists a commutative diagram of morphisms of affine group schemes

(5.3) 0 // UdR

��

// GdR

��

// Gm //// 0

0 // Π // Aut(DdR) // Gm // 0.

We shall denote the first vertical arrow by

(5.4) I : UdR −→ Π.

In particular, the group GdR acts on the pro-scheme ΠdR
1 0 . The action of the

subgroup UdR factors through the map I and the action of Π on ΠdR
1 0 discussed

above. Recall that the decomposition (5.2) is induced by a canonical section

τ : Gm → GdR.

For each z ∈ Gm(C) = C∗, the element τ(z) acts on the graded piece

ωn( Π1 0) = GrW2n ΠdR
1 0

as multiplication by zn.
The image I(UdR) of UdR is a closed subgroup of Π. We introduce the notation

(5.5) AMT = O(UdR) and A = O(I(UdR)).

Note that there is an injective morphism of Hopf algebras A ↪→ AMT .
In (4.183), we introduced the algebra

HMT = AMT ⊗Q Q[f2].

It is a Hopf module over AMT , with f2 in degree two, and by Lemma 4.184 its
Hilbert–Poincaré series is given by

HHMT (t) =
∑

k⩾0

dkt
k.

5.1.2. The algebra of motivic multiple zeta values. Recall that the affine ring
of ΠdR

1 0 is equal to the Hoffman algebra (Example 3.64)

O( ΠdR
1 0 ) = Q⟨x0, x1⟩ = H,

with the grading induced by deg(x0) = deg(x1) = 1 (see Proposition 3.411). The
dual of H is the completed Hopf algebra Q⟪e0, e1⟫ from Example 3.74, with the
grading determined by deg(e0) = deg(e1) = −1. For any Q-algebra R, the set
of R-points ΠdR

1 0 (R) is identified with the set of group-like elements of R⟪e0, e1⟫.
From now on, we will let dchdR denote the image by

compdR,B : ΠB
1 0 (C) −→ ΠdR

1 0 (C)
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of the straight path dch ∈ ΠB
1 0 (Q) from 0 to 1. This is nothing other than what

was previously denoted by

L(dch) =
∑

α

ζ�(xα)eα

in (3.393). Since all regularized multiple zeta values ζ�(xα) are real numbers, the

point dchdR actually belongs to ΠdR
1 0 (R) ⊂ ΠdR

1 0 (C).

Evaluating an element f ∈ O( ΠdR
1 0 ) at the point dchdR yields the map

(5.6)
dch: O( ΠdR

1 0 ) −→ R
f 7−→ f(dchdR).

Seen as a function on ΠdR
1 0 , a word w in the alphabet {x0, x1} takes the value

w(dchdR) = ζ�(w)

at the point dchdR ∈ ΠdR
1 0 (R). Thus, by Corollary 1.186, we obtain a surjective

map from O( ΠdR
1 0 ) to the algebra Z of multiple zeta values.

Remark 5.7. The map O( ΠdR
1 0 ) → Z is very far from being injective, as

all relations between multiple zeta values belong to its kernel. As a result, the
algebra Q⟨x0, x1⟩, which has the advantage of being elementary, is too big for the
purpose of proving Theorem A. The algebra O(GdR) looks more promising but it
is still too big. In fact, O(Gm) is equal to Q[x, x−1], with x sitting in degree 1.
Using the semi-direct product decomposition (5.2), we derive an isomorphism

O(GdR) ≃ AMT ⊗Q Q[x, x−1].

The presence of x−1, which has degree −1, implies that each graded piece ofO(GdR)
is infinite-dimensional, so this algebra is still not useful for our purposes. Thinking
of x as 2πi and of f2 as ζ(2) suggests identifying f2 with −x2/24, and this will yield
an injective map HMT → O(GdR). The strategy to prove Theorem A consists then
in showing that the evaluation map (5.6) factors through HMT . This can be done
either in an ad hoc way, or using a nice geometric interpretation due to Brown.

Following [Bro12, § 2.3], we define a closed subscheme Y ⊆ ΠdR
1 0 as the Zariski

closure of the orbit of dchdR under the action of GdR:

(5.8) Y = GdR · dchdR.

Lemma 5.9. The subscheme Y is defined over Q.

Proof. To see that Y is defined over Q we give another interpretation of it.
Recall that PdR,B is the GdR-torsor of isomorphisms between the fiber functors ωB

and ωdR. Thus, there is a morphism of affine Q-schemes

PdR,B × ΠB
1 0 −→ ΠdR

1 0 .

The point dch ∈ ΠB
1 0 (Q) induces a GdR-equivariant map

dch: PdR,B → ΠdR
1 0 ,

which sends compdR,B to dchdR. Hence, its image is the GdR-orbit of dchdR. It
follows that Y is the Zariski closure of the image of the map dch. The point dch
being rational, we deduce that Y is defined over Q. □
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Definition 5.10. We call algebra of motivic zeta values the Q-algebra

H = O(Y)

of regular functions on the scheme Y.

In Definition 5.33 below, we will write down a set of generators of H called
motivic multiple zeta values. For the time being, we note the properties of H that
are relevant for the proof of Theorem A.

• The action of UdR on ΠdR
1 0 induces an action of UdR on Y that factors

through I(UdR). Therefore, there is a coaction

(5.11) ∆: H −→ A⊗Q H
making H into a Hopf comodule over A.

• The action of Gm on Y induces a grading

H =
⊕

k⩾0

Hk.

• Since Y contains dchdR, the map (5.6) factors through H and gives rise
to a so-called period map

(5.12) per : H −→ R.

Since the map (5.6) surjects onto Z, the image of per is also Z.

• Moreover, since the action of Gm on Y is compatible with its action
on ΠdR

1 0 , and since the grading that this action induces on O( ΠdR
1 0 )

agrees with the natural grading of Q⟨x0, x1⟩, we deduce the equality

per(Hk) = Zk.

Remark 5.13. The map (5.12) is called the period map because it is compatible
with the period map from Definition 4.167. In fact, taking the equality

dch(compdR,B) = dchdR

into account, there is a commutative diagram

(5.14) O(Y)
dch∗

//

per

%%

O(PdR,B).

per

��
C

Remark 5.15. We can interpret H as follows. Let I ⊂ Q⟨x0, x1⟩ be the ideal of

functions vanishing on dchdR, i.e. the ideal of all rational relations among multiple
zeta values. The ideal JMT defining Y inside ΠdR

1 0 is the ideal of motivic relations
between multiple zeta values, that is, those explained by geometry. We will see
that JMT ⊆ I implies the upper bound for the dimension of the space of multiple
zeta values, while Zagier’s conjecture is equivalent to the equality JMT = I, that
is, that every rational relation among multiple zeta values comes from geometry. In
this vein, Zagier’s conjecture is equivalent to saying that Y is the smallest subvariety
of ΠdR

1 0 that is defined over Q and contains dchdR.
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The strategy to prove Theorem A is now to derive the inequality dimHk ⩽ dk
from the existence of an injection H ↪→ HMT . This injection will come from the
study of the geometry of Y. Theorem B, to be proved later, will actually imply the
equality dimHk = dk, and hence that the algebras H and HMT are isomorphic.

5.1.3. The structure of Y.
Lemma 5.16. There exists an element γ ∈ Π(Q) such that the equality

(5.17) dchdR = (I(u0) ◦ τ(2πi)−1(γ))( 1dR1 0 )

holds. Moreover, for any γ satisfying (5.17), the equality τ(−1)(γ) = γ holds. In
other words, γ only contains monomials of even degree.

Proof. Recall from Proposition 4.163 that there exists an element

(5.18) a = u0 · τ(2πi)−1 ∈ UdR(R)τ(2πi)−1 ⊂ GdR(C)

such that the equality compdR,B(ωB(M)) = a(ωdR(M)) of subspaces of ωdR(M)⊗C
holds for all mixed Tate motives M in MT(Z). In particular, there exists an
element γ′ ∈ ΠdR

1 0 (Q) satisfying

dchdR = compdR,B(dch) = a(γ′).

Let γ ∈ Π(Q) be such that γ′ = γ( 1dR1 0 ). Then,

dchdR = (u0 · τ(2πi)−1)(γ′)

= I(u0)(τ(2πi)−1(γ( 1dR1 0 )))

= (I(u0) ◦ τ(2πi)−1 ◦ γ)( 1dR1 0 )

= (I(u0) ◦ τ(2πi)−1(γ))( 1dR1 0 ).

To get the last equality, we use the identity

τ(2πi)−1 ◦ γ = τ(2πi)−1(γ) ◦ τ(2πi)−1,

where the action on the right-hand side is the one induced by the grading, along
with the fact that, being the unit of the graded Hopf algebra H, the element 1dR1 0

has degree zero. This finishes the proof of (5.17).
We now turn to the second statement. Since both dch and u0 are real, it follows

from (5.17) that τ(2πi)−1(γ) is real as well. Writing γ =
∑
cww in Q⟪e0, e1⟫, an

element z ∈ C× acts through

τ(z)−1(γ) =
∑

cwz
deg(w)w.

Since τ(2πi)−1(γ) is real, it follows that cw = 0 for every word w of odd degree. □

As in the proof of the lemma, we write γ =
∑
cww in Q⟪e0, e1⟫. Since γ only

contains monomials of even degree, the map

Gm −→ Π

t 7−→ τ(t)(γ)

only depends on t2. Indeed, if one defines a map ρ : Gm → Π as

(5.19) ρ(t) =
∑

t
deg(w)

2 cww,

then τ(t)−1(γ) = ρ(t2) holds. Observe that ρ extends to A1 with ρ(0) = 1.
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Theorem 5.20. The morphism of schemes

ψ : I(UdR)× A1 −→ Π

(u, t) 7−→ u ◦ ρ(t)

induces an isomorphism I(UdR)× A1 ≃ Y given by (u, t) 7→ ψ(u, t)( 11 0).

Proof. Recall that the graded Lie algebra ugrdR is negatively graded and is zero
in degree > −3 by Theorem 4.180. Thus, any element u ∈ I(UdR) can be written as

u = 1 +
∑

deg(w)⩽−3

uww.

Therefore, the coefficients of the monomial e0e1 in ρ(t) and u ◦ ρ(t) agree. Let us
compute the former. Recall that

dchdR = 1 + ζ(2)e0e1 + higher degree.

Taking the equality dchdR = (u◦τ(2πi)−1(γ))( 11 0) from Lemma 5.16 into account,
one has (2πi)2ce0e1 = ζ(2), which yields the value ce0e1 = −1/24 by Euler’s formula
for ζ(2). The coefficient of e0e1 in ρ(t) is thus equal to −t/24.

This leads naturally to consider the maps

c : Π −→ A1

x 7−→ −24 · coefficient of e0e1 in x,

φ : Π −→ Π

x 7−→ x ◦ ρ(c(x))−1.

By the previous discussion, we have c(ψ(u, t)) = t, whence

φ(ψ(u, t)) = ψ(u, t) ◦ ρ(c(ψ(u, t)))−1 = u ◦ ρ(t) ◦ ρ(t)−1 = u.

In particular, the morphism ψ is injective.
Observe that x ∈ Π is in the image of ψ if and only if φ(x) belongs to I(UdR).

Therefore, Imψ = φ−1(I(UdR)) holds. Since I(UdR) is closed in Π, this equality

implies that Imψ is closed in Π. By Lemma 5.16, (Imψ)( 11 0) contains GdR ·dchdR

as an open dense subset, so it has to be equal to its closure Y. Write Y ′ for the
preimage of Y in Π. To conclude, we note that the map

Y ′ −→ I(UdR)× A1

x 7−→ (φ(x), c(x))

is an inverse of ψ. This concludes the proof. □

Corollary 5.21. The isomorphism I(UdR) × A1 ≃ Y from Theorem 5.20
induces an isomorphism of graded algebras

H ≃ A⊗Q Q[t],

where t sits in degree two. This isomorphism induces an injection H ↪→ HMT
that sends t to −24f2. Moreover, if we provide Q[t] with the trivial A-comodule
structure, then this is an isomorphism of A-comodules.

Proof. That it is an isomorphism of algebras follows from the duality between
affine schemes and algebras of functions. To see that it is a graded isomorphism,
we need to show that the map ψ from Theorem 5.20 is Gm-equivariant provided
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that one makes λ ∈ Gm act on A1 by t 7→ λ2t. On the one hand, formula (5.19)
gives ρ(λ2t) = τ(λ)(ρ(t)). On the other hand, using Proposition 4.159, we get

τ(λ)(u ◦ ρ(t)) = τ(λ)(u) ◦ τ(λ)(ρ(t)),

from which the first statement of the theorem follows. If we endow A1 with the
trivial I(UdR) action, then the map ψ becomes I(UdR)-equivariant, from which the
second statement follows. □

5.1.4. Proof of Theorem A. Since the map (5.12) is surjective and respects
the weight, it suffices to prove the inequality dimHk ⩽ dk for each k ⩾ 2. But
Corollary 5.21 and Lemma 4.184 yield

dimHk ⩽ dim(HMT )k = dk,

which is what we wanted to show. □

5.2. Motivic multiple zeta values and the motivic coaction. In this
section, we define elements of the algebra H called motivic multiple zeta values.
Exploiting the coaction (5.11), we can find many relations among them. Upon
application of the period map, they give rise to relations among multiple zeta values.

5.2.1. The structure of AMT . Recall that the Lie algebra udR = Lie(UdR) is
isomorphic to the completion of the free Lie algebra with one generator sitting in
each odd degree ⩽ −3. Its dual is hence positively graded. From this, it follows
that AMT = O(UdR) is non-canonically isomorphic to the graded Hopf algebra

(5.22) U ′ = Q⟨f3, f5, f7, . . . ⟩
of non-commutative words in symbols f2i+1, one for each i ⩾ 1, in degree 2i+ 1,
with product given by the shuffle, and coproduct by the deconcatenation

(5.23) ∆(fi1fi2 . . . fir ) =

r∑

k=0

fi1 . . . fik ⊗ fik+1
. . . fir .

We introduce the commutative graded algebra

(5.24) U = U ′ ⊗Q Q[f2] = U ′[f2],

with f2 in degree 2. For each integer N ⩾ 0, let UN ⊂ U denote the subspace con-
sisting of elements of degree N of U (e.g. the subspace of homogeneous polynomials
of degree N in f2, f3, . . . ). The coproduct (5.23) on U ′ extends to a coaction

(5.25) ∆: U −→ U ′ ⊗Q U
by setting ∆f2 = 1⊗f2. This coaction turns U into an U ′-comodule. Clearly, HMT
is non-canonically isomorphic to U .

For later use, it is also convenient to introduce the elements f4, f6, . . . ∈ U
defined, for each integer n ⩾ 2, by the formula

(5.26) f2n = bnf
n
2 with bn = (−1)n−1

24n

2(2n)!
B2n.

By Euler’s Theorem 1.3, the equality ζ(2n) = bnζ(2)n holds.
The Hopf algebra U ′ and the comodule U are useful for explicit computations.

We will later fix a suitable isomorphism

(5.27) ϕ : HMT −→ U
satisfying certain normalization requirements.
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For compatibility with the theory of multiple zeta values, the grading of the
algebras U , U ′, H, and so on, will be called the weight.

We first present the computational tools we will use at the level of U ′. As in
Definition 3.88, the Lie coalgebra associated with U ′ is the quotient

L = U ′>0/(U ′>0)2.

From the canonical decomposition U ′ = Q ⊕ U ′>0, we get a projection q : U ′ → L.
The Lie coalgebra L inherits a grading from U ′. Let LN ⊂ L be the subspace of
weight N and pN : L→ LN the projection. For r ⩾ 1, we define the map

(5.28) D2r+1 : U −→ L2r+1 ⊗Q U
as the composition

U ∆−→ U ′ ⊗Q U q⊗Id−−−→ L⊗Q U
p2r+1⊗Id−−−−−−→ L2r+1 ⊗Q U ,

where ∆ is the coaction (5.25). We will see in Exercise 5.51 that the maps D2r+1

are derivations. We put

(5.29) D<N : U −→
⊕

3⩽2r+1<N

L2r+1 ⊗Q U , D<N =
⊕

3⩽2r+1<N

D2r+1

Lemma 5.30. For each integer N ⩾ 2, the following equality holds:

(KerD<N ) ∩ UN = QfN .

Proof. We first show that fN belongs to KerD<N . When N is even, we
already have ∆fN − 1⊗ fN = 0. If N is odd and 2r + 1 < N , then

D2r+1fN = p2r+1(q(fN ))⊗ 1 = 0.

Thus, fN ∈ KerD<N . Conversely, an element ξ ∈ UN can be uniquely written as

ξ = αfN +
∑

3⩽2r+1<N
0⩽2j⩽N−2r−1

f2r+1vr,j · f j2

with vr,j ∈ U ′N−2r−1−2j and α ∈ Q. Writing vr =
∑
j vr,j ·f

j
2 and using the explicit

expression of the coaction (5.25), we get

D2r+1ξ = f2r+1 ⊗ vr + other terms,

where none of the monomials of U ′2r+1 that appear in the extra terms is f2r+1.
Hence, D2r+1ξ = 0 implies vr = 0. All in all, if ξ ∈ KerD<N , then ξ = αfN . □

5.2.2. Motivic multiple zeta values. Let α be a binary sequence. Recall from
formula (3.427) at the end of Chapter 3 the function on Π denoted by

I(1;α; 0) = xα.

We now let Im(1;α; 0) denote the restriction of this function to Y, that is, the
projection to the quotient

Im(1;α; 0) ∈ H = O(Π)/JMT .

Following (3.427), we set for later use

Im(0;α; 1) = x∗α|Y ,
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where x∗α = S∨(xα) and

(5.31) Im(0;α; 0) = Im(1;α; 1) =

{
1, if α = ∅,
0, if α ̸= ∅.

The symbols Im are called motivic iterated integrals.
We now list some useful properties of motivic iterated integrals.

Lemma 5.32.

i) If N ⩾ 1 and ε1 = · · · = εN , then Im(ε0; ε1 · · · εN ; εN+1) = 0.

ii) (Reflection formula)

Im(1; ε1 · · · εN ; 0) = (−1)NIm(0; εN · · · ε1; 1)

= Im(1; 1− εN · · · 1− ε1; 0).

Proof. The reflection formula follows from Theorem 3.367 i) and the change
of variables z 7→ 1− z on P1 \ {0, 1,∞}, which reverses the path dch.

We prove property i). Since Im(0;α; 0) = Im(1;α; 1) = 0 holds for a non-empty
binary sequence α and Im(0; ε{N}; 1) = (−1)NIm(1; ε{N}; 0) holds by ii), it suffices
to show the vanishing Im(1; ε{N}; 0) = 0. For this, we use the identity

Im(1; ε{N}; 0) =
1

N !
Im(1; ε; 0)N

and the fact that Im(1; ε; 0) = 0 since H has no elements of degree one. □

Recall the binary sequence bs(s) = (0{s1−1}, 1, · · · , 0{sr−1}, 1) associated to a
positive multi-index s = (s1, . . . , sr) in Definition 1.132.

Definition 5.33. Let s = (s1, . . . , sr) be a positive multi-index. The motivic
multiple zeta value ζm(s) is the element of H defined as

ζm(s) = Im(1; 0{s1−1}1 · · · 0{sr−1}1; 0).

The period map per : H −→ R from (5.12) satisfies

per(ζm(s)) = ζ�(s).

In other words, the motivic multiple zeta value ζm(s) is a function on the variety Y,
and the regularized multiple zeta value ζ�(s) is the result of evaluating this function

at the point dchdR ∈ Y.

Remark 5.34 (Comparison with Brown’s notation). Due to the different con-
vention on the definition of multiple zeta values and iterated integrals, there is a
discrepancy between the symbols used here and the symbols used in [Bro12]. To
ease comparison, we summarize it in this remark. Letting

ζmB (s1, . . . , sr), ImB (ε0; ε1, . . . , εn; εn+1), and ζB(s1, . . . , sr)

denote the motivic multiple zeta values, motivic iterated integrals and multiple zeta
values used in [Bro12], the following relations hold:

ζmB (s1, . . . , sr) = ζm(sr, . . . , s1),

ImB (ε0; ε1, . . . , εn; εn+1) = Im(εn+1; εn, . . . , ε1; ε0),

ζB(s1, . . . , sr) = ζ(sr, . . . , s1).
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The map per is the same in [Bro12] and in this book because it is the evaluation
morphism at a point. The relation between motivic multiple zeta values and motivic
iterated integrals in [Bro12] is given by

ζmB (s1, . . . , sr) = ImB (0; 10{s1−1} . . . 10{sr−1}; 1),

while here is given by

ζm(s1, . . . , sr) = Im(1; 0{s1−1}1 . . . 0{sr−1}1; 0).

Both equations are compatible via the change of notation.

If s is admissible, then the function ζm(s) is non-zero since its value at dchdR

is the non-zero real number ζ(s). In particular, ζm(2) ̸= 0. In fact, ζm(2) is the
function on Y that sends an element g of Y(Q) ⊂ Q⟪e0, e1⟫ to the coefficient of e0e1
in g. It follows that ζm(2) is sent to −t/24 under the isomorphism H → A⊗ Q[t]
of Corollary 5.21, and hence to the element f2 under the injection H → HMT .

Remark 5.35. The fact that ζm(2) is not zero is an important difference be-
tween Brown’s and Goncharov’s approaches to motivic multiple zeta values. Recall
the inclusion UdR ⊂ GdR and the elements 1dR ∈ Π(Q) and dchdR ∈ Π(C). Gon-
charov works with the orbit of 1dR under UdR:

X = UdR · 1dR ⊂ Π.

As a variety, X is isomorphic to I(UdR). Hence, its ring of functions O(X ) is
isomorphic to A. However, Brown works with the variety Y defined as the closure
of the orbit of dchdR under GdR

Y = GdR · dchdR ≃ I(UdR)× A1.

Since the leading term of dchdR is 1dR, we deduce the equality

lim
t→0

τ(t)dchdR = 1dR.

This implies that 1dR belongs to Y, hence an inclusion X ⊂ Y. Since the action
of UdR on the factor A1 is trivial, we can identify X with the subscheme I(UdR)×{0}
of I(UdR)×A1. That is, the inclusion X ↪→ Y corresponds to the algebra morphism

(5.36) π : H −→ H/ζm(2)H = A.
5.2.3. The motivic coaction. We now give an explicit description of the motivic

coaction (5.11). Following Remark 5.35, there is an isomorphism I(UdR) ≃ X ⊂ Π
and the action of I(UdR) on Y fits into the commutative diagram

X × Y

��

// Y

��
Π×Π // Π,

where the vertical arrows are the inclusions and the lower horizontal arrow is the
group law on Π. Passing to functions, we get the commutative diagram

A⊗H H∆oo

O(Π)⊗O(Π)

OO

O(Π),
∆Γ

oo

OO
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where the lower horizontal arrow is the Goncharov coproduct (Proposition 3.429).
Therefore, the coaction (5.11) is given by the formula

(5.37) ∆Im(ε0; ε1 · · · εN ; εN+1) =

∑

0<i1<···<ik<N+1

π

(
k∏

p=0

Im(εip ; εip+1 · · · εip+1−1; εip+1
)

)
⊗Im(ε0; εi1 · · · εik ; εN+1),

where π : H → A denotes the projection (5.36) and we set i0 = 0 and ik+1 = N +1.

Lemma 5.38. For each integer N ⩾ 2, the following equality holds:

∆ζm(N) = 1⊗ ζm(N) + π(ζm(N))⊗ 1.

Proof. The equality ζm(N) = Im(1; 0{N−1}1; 0) holds by Definition 5.33. Us-
ing part i) of Lemma 5.32, we see that the only non-vanishing terms in the coaction
formula (5.37) correspond to the indices

k = 0, i0 = 0, i1 = N + 1 and k = N, ij = j, j = 0, . . . , N + 1.

The first choice yields the term π(ζm(N))⊗ 1, and the second one 1⊗ ζm(N), thus
proving the result. □

Formula (5.37) is rather complicated, so we will use an infinitesimal version of
it, which is the analogue of the derivations D2r+1 for the algebra of motivic multiple
zeta values H. For this, we consider the Lie coalgebra

L = A>0/(A>0)2,

which inherits a grading from A. For each integer n ⩾ 1, let Ln ⊂ L be the
subspace of degree n and let pn : L → LN be the projection. Since A is graded, the
projection from A>0 to L extends to a map q : A → L.

Definition 5.39. For each integer r ⩾ 1, we define the map

(5.40) D2r+1 : H −→ L2r+1 ⊗Q H
as the composition

H ∆−→ A⊗Q H q⊗Id−−−→ L⊗Q H
p2r+1⊗Id−−−−−−→ L2r+1 ⊗Q H.

As before, we also introduce the notation

(5.41) D<N =
⊕

3⩽2r+1<N

D2r+1.

For each n ⩾ 1, consider the map

ϖn = pn ◦ q ◦ π : H −→ Ln.
Observe that the map ϖ1 is identically zero. The projection ϖn kills ζm(2), all
products, and all motivic multiple zeta values of weight different from n. For
example, Lemma 5.38 implies the equality

(5.42) D2r+1ζ
m(N) = ϖ2r+1(ζm(N))⊗ 1,

where the right-hand side vanishes for N ̸= 2r + 1.
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Proposition 5.43. Let N ⩾ 2 be an integer. For each odd integer n < N , the
action of Dn is given by

(5.44) DnI
m(ε0; ε1 · · · εN ; εN+1) =

N−n∑

p=0

ϖn (Im(εp; εp+1 · · · εp+n; εp+n+1))

⊗ Im(ε0; ε1 · · · εp, εp+n+1, . . . , εN ; εN+1).

Proof. The projection q kills all decomposable elements of A>0, and the pro-
jection pn kills all elements of degree different from n. Taking into account that

Im(ε;α; ε′)

{
= 1, if α = ∅,
∈ A>0, if α ̸= ∅,

it follows that in the sum (5.37) that runs over partitions

0 = i0 < i1 < · · · < ik < ik+1 = N + 1

only the terms having exactly one gap of length n can be non-zero. This gives the
formula of the statement. □

5.2.4. The kernel of D<N . A crucial ingredient in the proof of Brown’s theorem
is the explicit knowledge of the kernel of the infinitesimal coaction D<N from (5.41)
that is provided by the following theorem:

Theorem 5.45. For each integer N ⩾ 2, the following equality holds:

(KerD<N ) ∩HN = Qζm(N).

This is the analogue of the result we obtained in Lemma 5.30 for the Hopf
algebra U ′ from (5.22) and its comodule U from (5.24), and the strategy of the
proof will be to reduce to this case by choosing an appropriate isomorphism.

Lemma 5.46. There exists an isomorphism of Hopf algebras

ϕ : AMT −→ U ′

that extends to an isomorphism of Hopf comodules ϕ : HMT → U sending ζm(N)
to fN for all N ⩾ 2.

Proof. Recall from Section 5.2.1 that the Hopf algebras AMT and U ′ are
non-canonically isomorphic. Starting from any isomorphism of Hopf algebras

ϕ0 : AMT → U ′,
we obtain an isomorphism of Hopf comodules ϕ0 : HMT → U by sending f2 to f2.
We will still denote by ϕ0 the restriction of this map to H ⊂ HMT , as well as the

map L → L induced by the composition A ↪→ AMT ϕ0−→ U ′. The diagram

(5.47)

H
D2r+1

��

ϕ0 // U
D2r+1

��
L2r+1 ⊗H

ϕ0⊗ϕ0 // L2r+1 ⊗ U
commutes by construction. Moreover, ϕ0 sends ζm(2) to f2 by the discussion before
Remark 5.35. It then follows from Lemma 5.38 that D<Nζ

m(N) vanishes. By the
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commutativity of the diagram (5.47), we derive D<Nϕ0(ζm(N)) = 0. By Lemma
5.30, there exists a non-zero rational number αN ∈ Q× satisfying

ϕ0(ζm(N)) = αNfN .

For N = 2r even, we get

ϕ0(ζm(2r)) = α2rf2r = α2rbrf
r
2 = ϕ0(α2rbrζ

m(2)r),

where br is the rational number from (5.26). From the injectivity of ϕ0, we deduce
the equality ζm(2r) = α2rbrζ

m(2)r and, applying the period map, α2r = 1.
Since U ′ is the Hopf algebra of non-commutative words in f3, f5, . . . , given any

family of non-zero rational numbers (α2r+1)r⩾1, the Q-linear automorphism ψ of U ′
determined by

fi1 · · · fin 7−→ (αii · · ·αin)−1fi1 · · · fin
is an automorphism of Hopf algebras that sends f2r+1 to α−12r+1f2r+1. Therefore,
the automorphism ϕ = ψ ◦ ϕ0 sends ζm(N) to fN for all N ⩾ 2, as wanted. □

Remark 5.48. As a byproduct of the proof, we see that the relation from
Euler’s theorem ζ(2r) = brζ(2)r lifts to a relation

(5.49) ζm(2r) = brζ
m(2)r

between motivic multiple zeta values.

Proof of Theorem 5.45. After choosing a normalized isomorphism ϕ as in
Lemma 5.46, the result follows from the combination of Lemma 5.30 and the com-
mutativity of diagram (5.47). □

The theorem has the following useful corollary:

Corollary 5.50. Let N ⩾ 2 be an integer and am an element of HN . Assume
that D<N (am) = 0 and per(am) = αζ(N) for some rational number α. Then

am = αζm(N).

Proof. Since am belongs to (KerD<N )∩HN , Theorem 5.45 gives the existence
of a rational number β satisfying am = βζm(N). Upon application of the period
map, one gets βζ(N) = per(am) = αζ(N), and hence β = α. □

The importance of this corollary is that it allows one to lift relations among
classical multiple zeta values to their motivic counterparts. This will be exploited
in the next sections (for a first application, see Exercise 5.53).

⋆ ⋆ ⋆

Exercise 5.51. Show that the maps D2r+1 : U → L2r+1 ⊗Q U from (5.28) are
derivations, that is, they satisfy

D2r+1(ξ1ξ2) = (1⊗ ξ1)D2r+1(ξ2) + (1⊗ ξ2)D2r+1(ξ1)

for all ξ1, ξ2 ∈ U . The same holds for the maps D2r+1 : H → L2r+1⊗QH introduced
in Definition 5.39.

Exercise 5.52 (Linear independence of ζm(2, 3) and ζm(3, 2)). In this exer-
cise, we prove the linear independence of the motivic multiple zeta values ζm(2, 3)
and ζm(3, 2) by exploiting the derivationD3. SinceH5 has dimension at most d5 = 2
by Theorem A, it will follow that they form a basis. This is the first non-trivial
case of Brown’s theorem.
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i) Prove the equalities Im(1; 010; 0) = −2ζm(3) and Im(0; 100; 1) = −ζm(3).

ii) Use the general formula (5.44) for the action of the derivation D3 and the
identities from part i) of the exercise to compute

D3ζ
m(2, 3) = −2ϖ3(ζm(3))⊗ ζm(2),

D3ζ
m(3, 2) = 3ϖ3(ζm(3))⊗ ζm(2).

iii) Now assume that the equality ζm(2, 3) = λζm(3, 2) holds for some rational
number λ. By the formulas from part ii), its value is necessarily λ = −2/3.
Get a contradiction using the period map.

Exercise 5.53 (Brown’s proof in weight 5). The trick from the previous exer-
cise cannot be generalized to higher weight. Here we present an alternative argu-
ment which can be seen as a toy case of Brown’s proof.

i) Prove the equality D3(ζm(3)ζm(2)) = ϖ3(ζm(3)) ⊗ ζm(2). Together with
the computations in Exercise 5.52 and Theorem 5.45, this formula implies
that there exist rational numbers α, β ∈ Q satisfying

ζm(2, 3) + 2ζm(3)ζm(2) = αζm(5),

ζm(3, 2)− 3ζm(3)ζm(2) = βζm(5).

ii) Combining Corollary 5.50, the stuffle product, and the first identity in the
list (1.67), derive the values α = 9/2 and β = −11/2. In particular, the
stuffle relation lifts to motivic zeta values:

(5.54) ζm(3)ζm(2) = ζm(2, 3) + ζm(3, 2) + ζm(5).

iii) Let grF1 H2,3
5 ⊂ H5 be the subspace spanned by ζm(2, 3) and ζm(3, 2) (the

reason for this notation will become apparent later). We define a linear

map (f, g) : grF1 H2,3
5 → Q2 by requiring

D3(a) = f(a)ϖ3(ζm(3))⊗ ζm(2),

D5(a) = g(a)ϖ5(ζm(5))⊗ 1

for all a ∈ grF1 H2,3
5 . Use parts i) and ii) to show that this map has rank

two, and hence ζm(2, 3) and ζm(3, 2) form a basis of H5.

5.3. A family of motivic multiple zeta values and Zagier’s theorem.
In this section, we study certain relations involving motivic multiple zeta values
with only 2s as entries, or with one entry equal to 3 and the remaining entries
equal to 2. The key result is Theorem 5.80. Although the existence of a linear
relation of the shape (5.66) is predicted by the motivic coaction, the computation
of its actual coefficients relies on a theorem of Zagier about multiple zeta values.
Finally, we study the 2-adic properties of the leading coefficient of (5.66).

5.3.1. Certain relations among motivic multiple zeta values. From now on, we
follow Notation 1.154 to identify the set of words in the alphabet {1, 2, . . . } with
the set of positive multi-indices. For instance, we make the identification

the word 2{a}32{b} ←→ the multi-index (2, . . . , 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

).

Lemma 5.55. For each n ⩾ 1, the following equality holds:

ζm(2{n}) =
6n

(2n+ 1)!
ζm(2)n.
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Proof. Recall that the left-hand side of the equality is defined as

ζm(2{n}) = Im(1; 01 n. . .01; 0).

We first observe the vanishing

(5.56) D2r+1ζ
m(2{n}) = 0

for all 3 ⩽ 2r+1 < 2n. Indeed, in (5.44) every sequence of the form εp, . . . , εp+2r+2

starts and ends with the same value, and hence the corresponding motivic iter-
ated integral is zero by (5.31). It follows that ζm(2{n}) belongs to KerD<2n. By
Theorem 5.45 and equation (5.49), we deduce that ζm(2{n}) is a rational multiple
of ζm(2)n. For the precise multiple, we use the period map and Example 1.27. □

In order to simplify notation, we write

ζm1 (s) = Im(1; 0{s1−1}1 · · · 0{sr−1}10; 0)

for a multi-index s = (s1, . . . , sr).

Lemma 5.57. For n ⩾ 1, the following equalities hold:

ζm1 (2{n}) = −2

n−1∑

i=0

ζm(2{i}32{n−i−1}),(5.58)

ζm1 (2{n}) = 2

n∑

i=1

(−1)iζm(2i+ 1)ζm(2{n−i}).(5.59)

Proof. Recall from (5.31) that Im(1; 0; 1) = 0. Since the multiplication in H
is given by the shuffle product, we have

0 = Im(1; 01 n. . .01; 1)Im(1; 0; 1) = ζm1 (2{n}) + 2

n−1∑

i=0

ζm(2{i}32{n−i−1}),

from which identity (5.58) follows.
To prove (5.59), we first show the equality of multiple zeta values

(5.60) −
n−1∑

i=0

ζ(2{i}32{n−i−1}) =

n∑

i=1

(−1)iζ(2i+ 1)ζ(2{n−i})

using the stuffle product. Indeed, the equalities

ζ(3)ζ(2{n−1}) =

n−1∑

i=0

ζ(2{i}32{n−1−i}) +

n−2∑

i=0

ζ(2{i}52{n−2−i})

ζ(5)ζ(2{n−2}) =

n−2∑

i=0

ζ(2{i}52{n−2−i}) +

n−3∑

i=0

ζ(2{i}72{n−3−i})

...

ζ(2n− 1)ζ(2) = ζ(2n− 1, 2) + ζ(2, 2n− 1) + ζ(2n+ 1)

ζ(2n+ 1) = ζ(2n+ 1)

hold by Exercise 1.45, and taking the alternating sum we then obtain (5.60).
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We now prove equation (5.59) by induction on n. The case n = 1 is given
by (5.58), and the case n = 2 follows from the identity (5.54) in Exercise 5.53.
Besides, the equality

(5.61) D2r+1ζ
m
1 (2{n}) = ϖ2r+1

(
ζm1 (2{r})

)
⊗ζm(2n−r)

holds for all 3 ⩽ 2r + 1 < 2n (Exercise 5.89). By the induction hypothesis and the
fact that ϖ2r+1 kills products, we then get

D2r+1ζ
m
1 (2{n}) = 2(−1)rϖ2r+1

(
ζm(2r + 1)

)
⊗ ζm(2n−r).

Moreover, combining the fact that D2r+1 is a derivation (Exercise 5.51) with equa-
tions (5.42) and (5.56), we get
(5.62)

D2r+1

(
ζm(2i+ 1)ζm(2{n−i})

)
=

{
ϖ2r+1

(
ζm(2r + 1)

)
⊗ ζm(2{n−r}), if r = i,

0, if r ̸= i.

Therefore, if Θ denotes the difference of the left-hand side and the right-hand side
terms of equation (5.59), then

D2r+1Θ = 0

for all 3 ⩽ 2r+ 1 < 2n. Hence, Θ is a multiple of ζm(2n+ 1) by Theorem 5.45, and
formula (5.59) follows from Corollary 5.50 and equations (5.60) and (5.58). □

Given integers r and s, we let I(r ⩾ s) denote the indicator function

I(r ⩾ s) =

{
1, if r ⩾ s,

0, otherwise.

Lemma 5.63. Let a, b ⩾ 0 be integers. For each 1 ⩽ r ⩽ a+ b, the equality

D2r+1ζ
m(2{b}32{a}) = ϖ2r+1(ξra,b)⊗ ζm(2{a+b+1−r})

holds, where ξra,b ∈ H is the element given by

(5.64) ξra,b =
∑

α⩽a
β⩽b

α+β=r−1

ζm(2{β}32{α})−
∑

α⩽a
β⩽b−1

α+β=r−1

ζm(2{α}32{β})

+
(
I(b ⩾ r)− I(a ⩾ r)

)
ζm1 (2{r}).

Proof. To prove the result, it is enough to check which non-zero terms ap-
pear in formula (5.44) for the coaction. These terms are given by consecutive
subsequences of 2r + 1 entries and can be of the following types:

i) Subsequences containing 001 and starting with 1; these contribute to the
first sum.

ii) Subsequences containing 001 and starting with 0; after applying the re-
flection formula of Lemma 5.32, these contribute to the second sum.

iii) For b ⩾ r, there is exactly one sequence ending with 00; this gives rise to
the term I(b ⩾ r)ζm1 (2{r}).

iv) For a ⩾ r, there is exactly one sequence starting with 00; after applying
the reflection formula, we obtain the term −I(a ⩾ r)ζm1 (2{r}).

Using equation (5.31), it is easy to check that all the other subsequences do not
contribute to the result. □
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Proposition 5.65. Given a, b ⩾ 0, write n = a+ b+ 1. There exists a unique
n-tuple of rational numbers (γra,b)r=1,...,n satisfying

(5.66) ζm(2{b}32{a}) =

n∑

r=1

γra,bζ
m(2r + 1)ζm(2{n−r}).

Proof. We argue by induction on n. The case n = 1 is obvious, with γ10,0 = 1.
Assume that the result holds for all integers smaller than n. In particular, all the
numbers γra,b are defined for a+ b+ 1 < n. Now let a and b satisfy a+ b+ 1 = n,

and recall the element ξra,b from (5.64). For each r < n, we define γra,b as the unique
rational number satisfying

ξra,b ≡ γra,bζm(2r + 1) mod products,

which exists by the induction hypothesis and equation (5.59). Therefore, the pro-
jection of ξra,b to L2r+1 is given by

(5.67) ϖ2r+1(ξra,b) = γra,bϖ2r+1

(
ζm(2r + 1)

)
,

and from Lemma 5.63 we find

(5.68) D2r+1ζ
m(2{b}32{a}) = γra,bϖ2r+1

(
ζm(2r + 1)

)
⊗ ζm(2{n−r}).

Using equation (5.62), we deduce that the element

(5.69) ζm(2{b}32{a})−
n−1∑

r=1

γra,bζ
m(2r + 1)ζm(2{n−r})

belongs to the kernel of the derivation D<2n+1. By Theorem 5.45, it is a rational
multiple of ζm(2n+ 1), and we define the remaining γna,b as this rational factor. □

This is a remarkable example of both the strength and the limits of the motivic
formalism. Applying the period map (5.12), the motivic identity (5.66) implies the
same kind of relations for usual multiple zeta values, something which would have
been difficult to predict working only with numbers, where the coaction is invisible.
However, the motivic formalism alone does not allow us to compute the precise
value of the constants γra,b. For this, one needs to prove the corresponding identity
of numbers first. In fact, for given a, b, and n with a+ b+ 1 = n, the numbers γra,b
for r < n are determined by induction, but the last term γna,b can only be computed

by means of the corresponding equality of numbers. Zagier [Zag12] has been able
to prove an equality with the desired shape between multiple zeta values. To
prove that Zagier’s identity is motivic, we will need to show that its coefficients are
compatible with the induction process in the proof of Proposition 5.65.

5.3.2. Zagier’s theorem. Define, for each a, b, r ⩾ 0, rational numbers

(5.70) Ara,b =

(
2r

2a+ 2

)
and Bra,b = (1− 2−2r)

(
2r

2b+ 1

)
.

As in the previous paragraph, we set n = a+ b+ 1.

Theorem 5.71 (Zagier, [Zag12]). The following equality holds:

(5.72) ζ(2{b}32{a}) = 2

n∑

r=1

(−1)r
(
Ara,b −Bra,b

)
ζ(2r + 1)ζ(2{n−r}).
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Sketch of proof. Let Ĥ(a, b) denote the right-hand side of (5.72). The
strategy of the proof consists in showing that the generating series

F (x, y) =
∑

a,b⩾0

(−1)a+b+1ζ(2{b}32{a})x2a+2y2b+1,

F̂ (x, y) =
∑

a,b⩾0

(−1)a+b+1Ĥ(a, b)x2a+2y2b+1

are equal. Using a similar technique to that of Example 1.27 (see Exercise 5.91),
the first series is seen to be equal to

(5.73) F (x, y) =
sinπy

π
· ∂
∂z

F3 2

(
x,−x, z

1 + y, 1− y
∣∣∣ 1
)∣∣∣∣∣

z=0

,

where the second factor involves the hypergeometric function

F3 2

(
a1, a2, a3

b1, b2

∣∣∣ t
)

=

∞∑

n=0

(a1)n(a2)n(a3)n
(b1)n(b2)n

tn

n!

(in this formula, (α)n = α(α+1) · · · (α+n−1) is the so-called Pocchammer symbol).
It follows from the bound

0 < ζ(2{b}32{a}) <
1

a+ 1
ζ(2{n}) =

1

a+ 1

πn

(2n+ 1)!
(n = a+ b+ 1)

that the series F (x, y) converges absolutely for all x, y ∈ C (and hence defines a
holomorphic function on C× C) and satisfies the bound

(5.74) max
|x|,|y|⩽M

|F (x, y)| = O(eπM logM) as M −→∞.

The expression for the second generating series is more involved: F̂ (x, y) is an
integral linear combination of fourteen terms of the form

ψ

(
1 +

u

2

)
sinπv

2π
, u ∈ {±x,±y,±2x,±2y}, v ∈ {x, y},

where ψ(s) = Γ′(s)/Γ(s) is the digamma function (see Exercise 5.92). Using this

explicit expression and standard properties of ψ(s), one sees that F̂ (x, y) is also a
holomorphic function on C× C satisfying

(5.75) max
|x|,|y|⩽M

|F̂ (x, y)| = O(eπM logM) as M −→∞.

At this point, Zagier observes that the expressions for the functions F (x, y)

and F̂ (x, y) allow him to prove that they are equal for certain values of x and y.
Namely, it is not hard to prove that

(5.76) F (x, x) = F̂ (x, x), for all x ∈ C.

Much trickier is the equality

(5.77) F (x, n) = F̂ (x, n), for all x ∈ C and n ∈ Z,

from [Zag12, Prop. 6]. One is then led to the question of whether the partial
information provided by (5.76) and (5.77) suffices to derive the equality of the
functions. It turns out that the growth conditions (5.74) and (5.75) do the trick.
Indeed, we can invoke the following result proved in [Boa54, Cor. 9.4.2].
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Theorem 5.78. Let f : C→ C be an entire function that vanishes at all integers
and satisfies the estimate f(z) = O(eπ|z| log |z|) for |z| → +∞. Then f is a constant
multiple of sin(πz).

Together with the estimates (5.74) and (5.75) and the equalities (5.77), this
theorem implies the existence of a function c : C→ C satisfying

F (x, y)− F̂ (x, y) = c(x) sinπy.

The equality (5.76) implies the vanishing c(x) = 0 for all x ∈ C \ Z, and hence the

equality F (x, y) = F̂ (x, y) for all x, y ∈ C since these are holomorphic functions. □

Remark 5.79. After the original proof of Zagier’s theorem, Z. H. Li in [Li13]

has shown directly the equality F (x, y) = F̂ (x, y) using the transformation relations
of hypergeometric functions F3 2 that involve the gamma function.

5.3.3. Lifting Zagier’s theorem to a motivic identity. The first non-trivial case
of Zagier’s theorem are the identities

ζ(2, 3) = −2ζ(3)ζ(2) + 9
2ζ(5),

ζ(3, 2) = 3ζ(3)ζ(2)− 11
2 ζ(5).

In Exercise 5.53, we proved that they lift to motivic equalities.

Theorem 5.80. For a, b ⩾ 0 and 1 ⩽ r ⩽ a+ b+ 1, the numbers γra,b from the
statement of Proposition 5.65 are equal to

(5.81) γra,b = (−1)r2
(
Ara,b −Bra,b

)
.

In other words, writing n = a+ b+ 1, the identity

(5.82) ζm(2{b}32{a}) = 2

n∑

r=1

(−1)r
(
Ara,b −Bra,b

)
ζm(2r + 1)ζm(2{n−r})

of motivic multiple zeta values holds.

Proof. We first note that, for any a, b ⩾ 0 and 1 ⩽ r ⩽ a+b+1, the following
identities are satisfied:

Ara,b =
∑

α⩽a
β⩽b

α+β=r−1

Arα,β −
∑

α⩽a
β⩽b−1

α+β=r−1

Arβ,α + I(b ⩾ r)− I(a ⩾ r),(5.83)

Bra,b =
∑

α⩽a
β⩽b

α+β=r−1

Brα,β −
∑

α⩽a
β⩽b−1

α+β=r−1

Brβ,α.(5.84)

This can be proved using that Ara,b does not depend on b, that Bra,b does not depend
on a, and the symmetries

Aα+β+1
α,β = Aα+β+1

β−1,α+1 and Bα+β+1
α,β = Bα+β+1

β,α .

For instance, the second equality is clear because by symmetry each term of the
second sum cancels one term of the first sum; the only remaining term in the first
sum is Brr−1−b,b, that agrees with Bra,b because it is independent of a. To prove the
first equality we may distinguish different cases according to whether a and b are
bigger than or equal to r or not. For instance, if a < r and b ⩾ r, then the term Ara,b
is different from zero. In these cases, both sums range from (α, β) = (a, r − 1− a)
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to (0, r − 1). By the symmetry of the A’s, all terms cancel except Ara,r−1−a from
the first sum, that agrees with Ara,b, and −Arr−1,0 = −1, that cancels with I(b ⩾ r).
The remaining cases are similar.

We now prove the theorem by induction on n = a + b + 1. For n = 1, the
right-hand side of (5.81) is equal to 1, which is also the value γ10,0, as we noted
in the proof of Proposition 5.65. We then assume that equation (5.81) is true for
all a′, b′ with a′ + b′ < n − 1 and all 1 ⩽ r′ ⩽ a′ + b′ + 1, and we fix a and b
with a+ b+ 1 = n. We compute D2r+1ζ

m(2{b}32{a}) in two ways and compare the
results. The first way is equation (5.68), while the second is to apply Lemma 5.63,
then use Lemma 5.57 to get rid of the terms ζm1 (2{r}), and finally apply (5.67) to
the terms ϖ2r+1

(
ζm(2{?}32{?})

)
. Comparing both results we obtain

γra,b =
∑

α⩽a
β⩽b

α+β=r−1

γrα,β −
∑

α⩽a
β⩽b−1

α+β=r−1

γrβ,α + 2(−1)r
(
I(b ⩾ r)− I(a ⩾ r)

)
.

Using the induction hypothesis and the identities (5.83) and (5.84), we deduce the
equality (5.81) for 1 ⩽ r ⩽ a+ b.

To treat the remaining case r = a+ b+ 1, set

Θ = ζm(2{b}32{a})− 2

n∑

r=1

(−1)r
(
Ara,b −Bra,b

)
ζm(2r + 1)ζm(2{n−r}),

which is a motivic zeta value of weight 2a + 2b + 3. The identities we already
proved and equation (5.66) yield D<2a+2b+3(Θ) = 0. By Zagier’s Theorem 5.71, we
obtain per(Θ) = 0. Finally, Corollary 5.50 implies Θ = 0, and hence the result. □

5.3.4. The coefficients cs. Among the coefficients γra,b, the leading one γa+b+1
a,b

will play a special role, so we single it out.

Definition 5.85. Let s = 2{b}32{a} be a word in the alphabet 2, 3 with only
one 3 and all the remaining entries equal to 2. We set

cs = γa+b+1
a,b .

We will also write

c12{n} = 2(−1)n.

With this notation, Lemma 5.57 and Proposition 5.65 imply the following:

Corollary 5.86. For all integers n, a, b ⩾ 0 with n = a+ b+ 1, the following
equalities hold:

i) ϖ2n+1

(
ζm1 (2{n})

)
= c12{n}ζm(2n+ 1),

ii) ϖ2n+1

(
ζm(2{b}32{a})

)
= c2{b}32{a}ζm(2n+ 1).

Moreover, the following equality holds:

(5.87) c12{n} = −2

n−1∑

i=0

c2{i}32{n−i−1} .

Recall that, given a prime number p, the p-adic valuation of a non-zero rational
number x is the only integer vp(x) such that x can be written as x = pvp(x)a/b,
where a and b are integers relatively prime to p. We also set vp(0) =∞. As a con-
sequence of Theorem 5.80, the coefficients cw have the following 2-adic properties.
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Lemma 5.88. Let s be a word of the form s = 2{b}32{a}. Denote by sr the
word written in reverse order (i.e. sr = 2{a}32{b}), and set n = a+ b+ 1. Then,

i) cs ∈ Z[ 12 ];

ii) cs − csr is an even integer;

iii) v2(c2{n−1}3) = v2(c32{n−1}) ⩽ v2(cs) ⩽ 0.

Proof. Recall the formula

cs = (−1)n2
(
Ana,b −Bna,b

)

from Theorem 5.80. Since Ana,b is an integer and Bna,b belongs to Z[ 12 ], the first

statement follows. Property ii) is obtained from the symmetry Bna,b = Bnb,a. Indeed,

cs − csr = (−1)n2(Ana,b −Anb,a) ∈ 2Z.
To prove iii), we first observe that the inequality v2((2n)!) < 2n implies

v2(2−2n
(

2n
2b+1

)
) < 0.

Using the triangle inequality, we get

v2(cs) = v2(2 · 2−2n
(

2n
2b+1

)
) = 1 + v2(2−2n

(
2n

2b+1

)
) ⩽ 0.

For the remaining inequality, we write
(

2n
2b+1

)
=

2n

2b+ 1

(
2n−1
2b

)
,

so that the 2-adic valuation is given by

v2(cs) = 2− 2n+ v2(n) + v2(
(
2n−1
2b

)
).

Since v2(
(
2n−1
2b

)
) ⩾ 0, the right-hand side of this equality attains its minimum

for b = n− 1 and b = 0, which correspond to s = 2{n−1}3 and s = 32{n−1}. □

⋆ ⋆ ⋆

Exercise 5.89. Prove equation (5.61).

Exercise 5.90. Show that one may replace the multiple zeta value ζ(2{n−r})
with either ζ(2n − 2r) or ζ(2)n−r in the right-hand side of Zagier’s theorem 5.71
without losing the rationality of the coefficients γra,b.

Exercise 5.91. The goal of this exercise is to prove equation (5.73) in the
sketch of proof of Zagier’s theorem.

i) Prove that the equalities

∏

0<k<m

(
1− x2

k2

)
=

m−1∑

j=0

∑

0<k1<···<kj<m

(−1)jx2j

k21 . . . k
2
j

∏

ℓ>m

(
1− y2

ℓ2

)
=
∑

j⩾0

∑

m<ℓ1<···<ℓj

(−1)jy2j

ℓ21 . . . ℓ
2
j

hold for each integer m ⩾ 1. Deduce that the first generating series in the
proof is given by

F (x, y) = −x2y
∑

m⩾1

∏

0<k<m

(
1− x2

k2

)
· 1

m3
·
∏

ℓ>m

(
1− y2

ℓ2

)
.
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ii) Prove the equality

−x2
∏

0<k<m

(
1− x2

k2

)
=

(−x)m(x)m
(m− 1)!2

,

where (x)m stands for the Pocchammer symbol. Similarly, prove

y

m2

∏

ℓ>m

(
1− y2

ℓ2

)
=

sinπy

π
· (m− 1)!2

(1− y)m(1 + y)m

using the product expansion of sin(πy)/π. Conclude that

F (x, y) =
sinπy

π

∑

m⩾1

1

m

(−x)m(xm)

(1− y)m(1 + y)m
.

iii) Prove equation (5.73).

Exercise 5.92. Consider the meromorphic functions

A(z) =

∞∑

n=1

z2

n(n2 − z2)
and B(z) =

∞∑

n=1

(−1)n−1z2

n(n2 − z2)

defined on the complex plane, with simple poles at all non-zero integers.

i) Prove the equality B(z) = A(z)−A(z/2).

ii) Prove the equalities of formal power series

A(z) =

∞∑

r=1

ζ(2r + 1)z2r and B(z) =

∞∑

r=1

(1− 2−2r)ζ(2r + 1)z2r.

(The right-hand sides of both equalities only converge for |z| < 1. This is
the reason to work with A(z) and B(z) instead.)

iii) Use the Taylor expansion of the logarithm of Γ(1 + z) and Γ(1 + z) from
Exercise 1.18 to get the equality

A(z) = ψ(1)− 1

2
(ψ(1 + z) + ψ(1− z)).

iv) Using Example 1.27, the binomial theorem, and the above results, derive
the expression

F̂ (x, y) =
sinπy

π
[A(x+ y) +A(x− y)− 2A(y)]

− sinπx

π
[B(x+ y)−B(x− y)]

for the second generating series in the proof of Zagier’s theorem.

5.4. The subspaces H2,3. In this section, we initiate the study of the sub-

spaces H̃2,3 ⊂ H and H2,3 ⊂ H spanned by admissible words containing only 2s
and 3s, and by motivic multiple zeta values with only 2s and 3s as entries re-

spectively. Clearly, there is a surjective map H̃2,3 → H2,3. A key step to prove
Theorem B in the next section is to show that this map is an isomorphism. To
set the stage, we define a level filtration on both spaces by counting the number
of 3s and, using the infinitesimal coaction, a level lowering operator that sends an
element of level ℓ and weight N to a linear combination of elements of level ℓ−1 and

smaller weight. The operators for H̃2,3 and H2,3 are compatible. Finally, we exhibit
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some explicit bases of the source and the target of the level lowering operator that
will help us to prove, in the next section, that it is an isomorphism.

5.4.1. The level filtration.

Definition 5.93. We denote by H̃2,3 ⊂ O(Π) = H the subspace generated by
the functions I(1;α; 0), where α is the binary sequence associated with an admissible

multi-index containing only 2 and 3 as entries, and by H2,3 ⊆ H the image of H̃2,3

under the restriction map

res : O(Π) −→ H.

Clearly, H2,3 is the Q-vector space spanned by the motivic multiple zeta values

ζm(s1, . . . , sr) with si ∈ {2, 3}.

We filter H̃2,3 by the number of entries equal to 3 in the admissible multi-index.
Precisely, for each integer ℓ ⩾ 0, consider

FℓH̃2,3 = ⟨I(1; bs(s); 0) | s contains ⩽ ℓ entries equal to 3⟩Q.

This defines an increasing level filtration

0 ⊆ F0H̃2,3 ⊆ F1H̃2,3 ⊆ · · ·

We deduce an increasing filtration on H2,3 with

FℓH2,3 = ⟨ζm(s1, . . . , sr) ∈ H2,3 | number of si = 3 ⩽ ℓ⟩Q.

The associated graded pieces grFℓ H2,3 = FℓH2,3/Fℓ−1H2,3 are spanned by the pro-
jections of motivic multiple zeta values with exactly ℓ entries equal to 3, which will
be denoted in the same way. In particular,

grF0 H2,3 = ⟨ζm(2{n}) | n ⩾ 1⟩Q,
grF1 H2,3 = ⟨ζm(2{b}32{a}) | a, b ⩾ 0⟩Q.

Note that these are precisely the two families of motivic multiple zeta values that
we studied in the previous section.

Remark 5.94. The Q-vector space grFℓ H̃2,3
N is non-zero if and only if the

weight N and the level ℓ have the same parity and N ⩾ 3ℓ. When this is the
case, writing N = 2m+ 3ℓ, the dimensions are given by

dimQ grFℓ H̃2,3
N =

(
m+ ℓ

ℓ

)
,

hence the inequality

(5.95) dimQ grFℓ H2,3
N ⩽

(
m+ ℓ

ℓ

)

because we do not know yet that the generators of grFℓ H2,3
N discused previously are

linearly independent. Indeed, in Theorem 5.111 we will see that this is the case, so
that inequality (5.95) turns out to be an equality.
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5.4.2. The level lowering operator. Recall from Section 3.10.6 that we intro-
duced the Goncharov coproduct as a morphism

(5.96) ∆Γ : O(Π) −→ O(Π)⊗Q O(Π).

From this, we obtained the motivic coaction (5.11)

∆: H −→ A⊗Q H
that we have been using in the last pages. In what follows, we will also use an
intermediate version

(5.97) ∆: O(Π) −→ A⊗O(Π)

which is simply obtained from (5.96) via the projection O(Π)→ A (recall that this
corresponds to restricting a function on Π to the subvariety X of Remark 5.35).
This is nothing else but the coaction associated with the action of I(UdR) on Π. As
in Definition 5.39, there are maps

D2r+1 : O(Π) −→ L2r+1 ⊗O(Π).

Following the proof of Proposition 5.43 we see that the analogue of (5.44), namely

(5.98) DnI(ε0; ε1 · · · εN ; εN+1) =

N−n∑

p=0

ϖn (Im(εp; εp+1 · · · εp+n; εp+n+1))

⊗ I(ε0; ε1 · · · εp, εp+n+1, . . . , εN ; εN+1),

also holds for all odd integers n < N .

We now study how the filtered subspace H̃2,3 ⊂ O(Π) behaves with respect to
the coaction and its infinitesimal version.

Lemma 5.99. The subspace H̃2,3 is stable under the coaction (5.97). That is,

the subspace ∆(H̃2,3) ⊂ A⊗O(Π) is contained in A⊗Q H̃2,3. It follows that (5.97)
restricts to a coaction

∆: H̃2,3 −→ A⊗Q H̃2,3.

Proof. Let I(1;α; 0) be an element of H̃2,3. Then α is a binary sequence
obtained by successive concatenation of the subsequences 01 and 001. From the
explicit formula for the coaction (5.37) and the vanishing of the iterated inte-
grals I(ε;α′; ε′) for ε = ε′ and α′ ̸= ∅, we deduce that each non-trivial term
appearing in ∆I(1;α; 0) has a factor of the form I(1;β; 0) in the right-hand side of
the coaction, where β is a concatenation of the subsequences 01 and 001. □

Remark 5.100. In [Del13, § 6.3], the above result is rephrased by saying that

the subspace H̃2,3 is “motivic”, and hence invariant under the action of UdR.

From this, we immediately deduce:

Corollary 5.101. For each r ⩾ 1, the derivation D2r+1 restricts to a map

D2r+1 : H̃2,3 −→ L2r+1 ⊗Q H̃2,3.

In fact, more is true:
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Lemma 5.102. For each r ⩾ 1, the derivation D2r+1 is compatible with the
level filtration, in the sense that it induces a map

D2r+1 : FℓH̃2,3 −→ L2r+1 ⊗Q Fℓ−1H̃2,3.

Proof. Let s be a word of level ℓ in the alphabet {2, 3}. The binary se-
quence bs(s) contains at most ℓ subsequences 00. Any subsequence of odd length
of (1; bs(s); 0) that begins and ends with the same symbol will be killed by Im and
will not contribute to D2r+1. Otherwise it must contain at least a subsequence 00.
Thus, the complementary quotient sequence will contain at most ℓ−1 subsequences
equal to 00, and hence will have level at most ℓ− 1. □

The above lemma yields a map

(5.103) grFℓ D2r+1 : grFℓ H̃2,3 −→ L2r+1 ⊗ grFℓ−1H̃2,3.

Lemma 5.104. For all r, ℓ ⩾ 1, there is an inclusion

grFℓ D2r+1(grFℓ H̃2,3) ⊆ Qϖ2r+1(ζm(2r + 1))⊗Q grFℓ−1H̃2,3.

Proof. Let s be a word of level ℓ in the alphabet {2, 3} and Im(1; bs(s); 0)
the corresponding motivic iterated integral. From the definition of D2r+1, we get

(5.105) grFℓ D2r+1(ζm(s)) =
∑

γ

ϖ2r+1(Im(γ))⊗ ζm(sγ),

where the sum runs over all subsequences γ of (1; bs(s); 0) of length 2r+ 1, and sγ
is obtained by removing the internal part of γ.

If γ contains more than one subsequence 00, then sγ has level < ℓ − 1, and
hence does not contribute. If γ begins and ends in the same symbol, then Im(γ) is
zero. One checks that Im(γ) can be of four remaining types:

i) Im(1; 01 . . . 01001 . . . 01; 0) = ζm(2{β}32{α});

ii) Im(0; 10 . . . 10010 . . . 10; 1) = −ζm(2{β}32{α});

iii) Im(1; 01 . . . 10; 0) = ζm1 (2{r});

iv) Im(0; 01 . . . 10; 1) = −ζm1 (2{r}).

By Corollary 5.86, the term ϖ2r+1(Im(γ)) belongs to Qζm(2r+ 1) in all cases. □

The above lemma justifies the following definition:

Definition 5.106. For all integers N, ℓ ⩾ 1, the level lowering operator ∂̃N,ℓ
is the Q-linear map

(5.107) ∂̃N,ℓ : grFℓ H̃2,3
N −→

⊕

3⩽2r+1⩽N

grFℓ−1H̃2,3
N−2r−1

obtained by first applying
⊕

3⩽2r+1⩽N

grFℓ D2r+1|grFℓ H̃2,3
N

and then sending ϖ2r+1(ζm(2r + 1)) to 1.

The same construction gives rise to operators

(5.108) ∂N,ℓ : grFℓ H2,3
N −→

⊕

3⩽2r+1⩽N

grFℓ−1H2,3
N−2r−1
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that fit in the commutative diagrams

(5.109) grFℓ H̃2,3
N

��

∂̃N,ℓ //⊕
3⩽2r+1⩽N grFℓ−1H̃2,3

N−2r−1

��
grFℓ H2,3

∂N,ℓ //⊕
3⩽2r+1⩽N grFℓ−1H2,3

N−2r−1.

5.4.3. A pair of bases. We next describe bases of the source and the target of
the map (5.107). For ℓ ⩾ 1 and N ⩾ 3, we define:

BN,ℓ = set of words in the alphabet {2, 3} of weight N and level ℓ;

B′N,ℓ = set of words in the alphabet {2, 3} of weight ⩽ N − 3 and level ℓ− 1

(this includes the empty word if ℓ = 1).

Clearly, BN,ℓ gives a basis BN,ℓ of grFℓ H̃2,3
N , while B′N,ℓ gives a basis B′N,ℓ of

⊕

3⩽2r+1⩽N

grFℓ−1H̃2,3
N−2r−1.

Write N = 3ℓ+ 2m, so that m is the number of 2s in an element of BN,ℓ. Then

|BN,ℓ| =
(
ℓ+m

ℓ

)
,

|B′N,ℓ| =
m∑

m′=0

(
ℓ− 1 +m′

ℓ− 1

)
.

From the identity of binomial coefficients
(
ℓ+m

ℓ

)
=

m∑

m′=0

(
ℓ− 1 +m′

ℓ− 1

)
,

we deduce the equality |BN,ℓ| = |B′N,ℓ|.
We provide BN,ℓ with the lexicographic order induced by 2 < 3 and B′N,ℓ with

the order in which s ⩽ s′ if and only if either wt(s) < wt(s′), or wt(s) = wt(s′)
and s is smaller than or equal to s′ in the lexicographic order.

Lemma 5.110. There is an order-preserving bijection B′N,ℓ → BN,ℓ that sends

an element s ∈ B′N,ℓ to 2{r−1}3s ∈ BN,ℓ, where 2r = N − 1− wt(s).

Proof. Let us denote by υ the map in the statement. Given s, s′ ∈ B′N,ℓ,

write 2r = N − 1− wt(s) and 2r′ = N − 1− wt(s′).
If wt(s) < wt(s′), then r > r′, and hence

υ(s) = 2{r−1}3s < 2{r
′−1}3s′ = υ(s′).

If wt(s) = wt(s′) but s is smaller than s′ in the lexicographic order, then

υ(s) = 2{r−1}3s < 2{r−1}3s′ = υ(s′).

Therefore, υ is injective and order-preserving. Since the sets B′N,ℓ and BN,ℓ have
the same cardinality, υ is a bijection. □

5.5. Brown’s theorem. In this final section, we prove Brown’s theorem and
deduce some consequences concerning mixed Tate motives over Z and their periods.
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5.5.1. Statement. Our goal is to prove the following result:

Theorem 5.111 (Brown). The set of elements

{ζm(s1, . . . , sr) | si ∈ {2, 3}}
forms a basis of the Q-vector space of motivic multiple zeta values.

Before going into the proof, let us mention the immediate corollary:

Corollary 5.112 (Theorem B). Every multiple zeta value is a Q-linear com-
bination of multiple zeta values with only 2 and 3 as entries.

Proof. Apply the period map (5.12). □

Remark 5.113.

i) The proof does not give an algorithm to compute the linear combination.

ii) The missing information to deduce that such multiple zeta values furnish
a basis, as it is conjectured, is to know that all relations among multiple
zeta values have motivic origin.

5.5.2. Strategy of the proof. The key point to prove Theorem 5.111 is:

Lemma 5.114. For all N, ℓ ⩾ 1, the level lowering operator ∂̃N,ℓ is an isomor-
phism of Q-vector spaces.

We will first show how to deduce Theorem 5.111 from Lemma 5.114. The first
step is the following:

Lemma 5.115. The map H̃2,3
N → H2,3

N is an isomorphism.

Proof. We first prove by induction on the level that, for every weight N and

level ℓ, the restriction map grFℓ H̃2,3
N → grFℓ H2,3

N is an isomorphism.

The initial step is ℓ = 0. If N = 2r is even, then grF0 H̃2,3
N is a one-dimensional

space generated by I(1; bs(2{r}); 0), while grF0 H2,3
N is generated by ζm(2{r}) ̸= 0.

Thus, the restriction map

(5.116) grF0 H̃2,3
N −→ grF0 H2,3

N,0

is an isomorphism. If N is odd, then both spaces are zero.
We now consider the commutative diagram (5.109). By definition, the left

vertical arrow is an epimorphism. By the induction hypothesis, the right vertical
map is an isomorphism, and by Lemma 5.114 the upper horizontal map is injective.
Hence, the left vertical arrow is an isomorphism.

Once we now that all the restriction maps grFℓ H̃2,3
N → grFℓ H2,3

N are isomor-

phisms, we deduce that H̃2,3
N → H2,3

N is an isomorphism by using the fact that the
filtration by the level is bounded and the five lemma (see Exercise A.215). □

By equation (1.72), the dimension of H̃2,3
N is dN . By Lemma 5.115, dN is

also the dimension of H2,3
N . Hence, the elements ζm(s1, . . . , sr) of weight N with

entries si ∈ {2, 3} form a basis of H2,3
N . There are injections

H2,3
N ⊂ HN ↪→ HMTN .

Since the dimensions of the left and right vector spaces are the same we deduce
that the three spaces are isomorphic, and hence Theorem 5.111 holds.
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5.5.3. Proof of Lemma 5.114. The proof is based on the study of the 2-adic val-

uation of the coefficients of the matrix of ∂̃N,ℓ with respect to the bases introduced
in Section 5.4.3. We shall use the following lemma:

Lemma 5.117. Let A = (aij)i,j be a square matrix of size n with rational
coefficients. Assume that there exists a prime number p such that the following
conditions hold:

i) vp(aij) ⩾ 1 for all i > j;

ii) vp(aii) = minj{vp(aij)} ⩽ 0 for all i.

Then A is invertible.

Proof. Consider the matrix A′ obtained by multiplying the i-th row of A
by p−vp(aii). By condition ii), the p-adic valuation of the coefficients of A′ is
non-negative, so it makes sense to reduce the matrix A′ modulo p. Since the in-
equality vp(a

′
ij) ⩾ 1 still holds for i > j but now vp(a

′
ii) = 0, the reduction is upper

triangular with non-zero elements in the diagonal. It follows that the determinant
of A′, and hence the determinant of A, is non-zero. □

We next see that, up to terms with even coefficients, the map ∂̃N,ℓ acts by
deconcatenation.

Proposition 5.118. Let s be a word of weight N and level ℓ in the alpha-
bet {2, 3}. Then the equality

∂̃N,ℓI(1; bs(s); 0)) =
∑

s=uv
deg3 u=1

cuI(1; bs(v); 0)

+ terms with 2Z coefficients

holds, where deg3 u is the number of entries equal to 3 in the word u, and cu is the
coefficient introduced in Definition 5.85.

Proof. Following the proof of Lemma 5.104, there are four types of terms

in ∂̃N,ℓI(1; bs(s); 0)). We start with types iii) and iv). Taking c12{n} = 2(−1)n into
account, these terms contribute with even coefficients. Besides, almost all terms of
types i) and ii) can be grouped in pairs. Indeed, choose four positions as follows

I(. . . 01
a b

0 . . . 01001 . . . 010
c d
. . . ),

that is, a and b (resp. c and d) are consecutive, a (resp. d) contains a 0 and b
(resp. c) contains a 1. Combining Lemma 5.32 ii) and Lemma 5.88 ii), the sum of
the contributions of the subsequences ac and bd has again coefficients in 2Z. The
only terms that cannot be paired this way are the leftmost subsequences appearing
in the sum of the statement. □

Corollary 5.119. With respect to the bases BN,ℓ and B′N,ℓ, ordered as in

Section 5.4.3, the matrix MN,ℓ of the operator ∂̃N,ℓ satisfies the assumptions of
Lemma 5.117 for the prime p = 2. In particular, MN,ℓ is invertible.

Proof. Let v be a word with only 2 and 3 as entries, of weight ⩽ N − 3
and level ℓ − 1. Set 2r = N − 1 − wt(v) and s = 2{r−1}3v. Then s is the
multi-index corresponding to v under the order-preserving bijection from Lemma
5.110. Consider any admissible multi-index with only 2 and 3 as entries, of weight
N and level ℓ, that can be written as uv with deg3 u = 1. If s ̸= uv, then the
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number of occurences of 2 before the first 3 in u is smaller than r − 1, hence the
inequality uv > s. By Proposition 5.118, this implies that any term in MN,ℓ that
is not an even integer is above the diagonal. Moreover, by the same proposition

and Lemma 5.88 iii), the coefficient of v in ∂̃N,ℓs sitting at the diagonal of MN,ℓ

has a non-positive 2-adic valuation, and it realizes the minimum of this valuation
within its row. Therefore, the assumptions of Lemma 5.117 are satisfied. □

Clearly, Lemma 5.114 is a consequence of Corollary 5.119 and Lemma 5.117,
thus finishing the proof of Theorem 5.111.

5.5.4. Some consequences of Brown’s theorem. We conclude this chapter with
some corollaries of Brown’s theorem. Recall (5.4).

Corollary 5.120. The map UdR → I(UdR) is a group isomorphism.

Proof. Recall the algebras AMT = O(UdR) and A = O(I(UdR)) from (5.5).
We want to show that the injective map A ↪→ AMT induced by UdR → I(UdR)
is also surjective. In Corollary 5.21, we proved that this map extends to an injec-
tion H ↪→ HMT compatible with the gradings on both sides. In the course of the
proof of Brown’s theorem, we saw that the graded pieces of H are isomorphic to
those of HMT , and hence the algebras are isomorphic. □

Let MT′(Z) be the full tannakian subcategory of MT(Z) generated by the
objects UMot,N

x y for N ⩾ 0 and x,y ∈ {0,1} and let ω′dR be the restriction of the

fiber functor ωdR to MT′(Z).

Corollary 5.121. The map

(5.122) Aut⊗MT(Z)(ωdR) −→ Aut⊗MT′(Z)(ω
′
dR)

induced by the inclusion of MT′(Z) in MT(Z) is an isomorphism of affine group
schemes. Therefore, this inclusion is an equivalence of tannakian categories: every
mixed Tate motive over Z is a subquotient of a tensor construction on one of the
finite-dimensional pieces of the motivic fundamental groupoid of P1 \ {0, 1,∞}.

Proof. The Tannaka group Aut⊗(ω′dR) is I(UdR) ⋊ Gm. Thus, the fact
that (5.122) is an isomorphism follows from Corollary 5.120. We deduce that
both MT(Z) and MT′(Z) are equivalent to the category of finite-dimensional rep-
resentations of the affine group scheme GdR. □

Corollary 5.123. The periods of every mixed Tate motive over Z are linear
combinations with Q[ 1

2πi ]-coefficients of multiple zeta values. In other words, the

ring of periods of mixed Tate motives over Z is Z[ 1
2πi ].

Proof. Recall the canonical section τ : Gm → GdR from Lemma 4.159, the
element a ∈ GdR(C) from Proposition 4.163, and the isomorphism of schemes
ψ : I(UdR)× A1 → Y from Theorem 5.20. Consider the diagram

UdR ×Gm
f1 //

g1

��

GdR
f2 // PdR,B,

g2

��
UdR × A1 f3 // Y
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in which the maps are defined as follows:

f1(u, s) = u · τ(s)−1, g1(u, s) = (u, s2),

f2(g) = g · a−1 · compdR,B,

g2(p) = p · dch, f3(u, t) = ψ(I(u), t)( 11 0).

This diagram is commutative by the definition of ψ and Lemma 5.16. The upper
horizontal arrows are clearly isomorphisms, and the lower horizontal arrow is an
isomorphism by Theorem 5.20 and Corollary 5.120.

Let us also recall from (5.18) that a can be written as a = u0 · τ(2πi)−1 for
some u0 ∈ UdR(R), so that f1(u0, 2πi) = a. Clearly, the equalities

f2(a) = compdR,B, g2(compdR,B) = dchdR, g1(u0, 2πi) = (u0, (2πi)
2)

hold. By the commutativity of the diagram, we get f3(u0, (2πi)
2) = dchdR. All

the morphisms on the diagram are defined over Q.
The algebra of periods of MT(Z) is

evcompdR,B
(O(PdR,B)) = ev(u0,2πi)(O(UdR ×Gm)).

The algebra of multiple zeta values is

evdchdR(O(Y)) = ev(u0,(2πi)2)(O(UdR × A1)).

Finally, the result follows from the fact that g1 induces an isomorphism

O(UdR ×Gm) ≃ O(UdR × A1)[s−1],

where s is the coordinate of Gm, so that s(u0, 2πi) = 2πi holds. □

Corollary 5.124. Zagier’s conjecture 1.71 implies that the numbers

π, ζ(3), ζ(5), . . .

are algebraically independent over Q.

Proof. The key ingredient is a structure theorem for Hopf algebras due to
Milnor and Moore [MM65] (see also [Car07, Thm. 8.1.3] and its proof).

Let V be a vector space over a field of characteristic zero. The symmetric
algebra Sym(V ) is the quotient of the tensor algebra T (V ) =

⊕
n⩾0 V

⊗n by the
bilateral ideal generated by the elements of the form x ⊗ y − y ⊗ x. This is a
commutative algebra. Moreover, if S is a basis of V , then Sym(V ) is the free
commutative algebra generated by S. Said differently, Sym(V ) is the polynomial
algebra in a basis of V . If V is graded with strictly positive degrees, then Sym(V )
has the structure of a connected graded algebra.

Theorem 5.125 (Milnor–Moore). Let k be a field of characteristic zero and
let A =

⊕
n⩾0An be a graded connected Hopf algebra over k with commutative

multiplication, such that An is finite-dimensional for all n. Then there is an iso-
morphism of graded algebras

A = Sym[A>0/(A>0)2].

We will use the theorem through the following straightforward consequence.

Corollary 5.126. If the classes of x1, x2, . . . ∈ A>0 in A>0/(A>0)2 are lin-
early independent, then x1, x2, . . . are algebraically independent.
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We apply this corollary to the Hopf algebra A = O(UdR) and the motivic zeta
values ζm(3), ζm(5), . . . These elements lie in different degrees and their images
in the quotient L = A>0/(A>0)2 are non-zero, so they are linearly independent.
Hence, ζm(3), ζm(5), . . . are algebraically independent in A. From H = A[ζm(2)],
we deduce that the motivic zeta values ζm(2), ζm(3), ζm(5), . . . are algebraically
independent in H. Now, if one assumes Zagier’s conjecture, the map per : H → Z
is an isomorphism. Since per(ζm(n)) = ζ(n) and ζ(2) = π2

6 , it follows that the
numbers π, ζ(3), ζ(5), . . . are algebraically independent over Q. □

Corollary 5.127. Zagier’s conjecture 1.71 is equivalent to Grothendieck’s pe-
riod conjecture for mixed Tate motives 4.170.

Proof. Zagier’s conjecture is equivalent to the injectivity of per : H → C.
Since O(PdR,B) = H[s−1] with s2 = −24ζm(2), this is equivalent to the injectivity of
the period map per : O(PdR,B)→ C, which is precisely the content of Grothendieck’s
period conjecture for mixed Tate motives (Conjecture 4.170). □
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Appendix A. Some results from homological algebra

In this appendix, we gather some notions and results from category theory,
homological algebra, and sheaf theory that are used through the main text. We
assume that the reader is familiar with the definitions of category, functor, and nat-
ural transformation between functors. Unless otherwise specified, by a functor we
mean a covariant functor. A category is called small if its objects and morphisms
form a set, and essentially small if it is equivalent to a small category. All the cate-
gories we will work with are essentially small; in order to avoid set-theoretic issues,
we will always replace such categories with small equivalent ones. Some standard
references for the material we cover without proof are the books by Kashiwara and
Schapira [KS06], Gelfand and Manin [GM03], and Weibel [Wei94].

A.1. Abelian categories, complexes, and cohomology.
A.1.1. The definition of an abelian category.

Definition A.1. An additive category is a category A in which morphisms

HomA(X,Y )

are endowed, for all objects X,Y ∈ Ob(A), with the structure of an abelian group
(in particular, with a group law + that we call addition and a zero morphism 0)
such that the following conditions hold:

i) Composition of morphisms is distributive with respect to addition:

f ◦ (g + h) = f ◦ g + f ◦ h,
(g + h) ◦ f = g ◦ f + h ◦ g.

ii) There exists a zero object, that is, an object 0 ∈ Ob(A) such that there
exist unique morphisms 0→ X and X → 0 for every object X ∈ Ob(A).
The zero morphism 0 ∈ HomA(X,Y ) is the composition X → 0→ Y .

iii) Given objects X,Y ∈ Ob(A), there exists a direct sum object (also known
as a coproduct ; see Exercise A.49), i.e. an object

X ⊕ Y ∈ Ob(A)

together with morphisms

X −→ X ⊕ Y ←− Y
satisfying the following universal property: for each object Z ∈ Ob(A)
with morphisms X → Z and Y → Z, there exists a unique morphism

X ⊕ Y −→ Z

such that the diagram below commutes:

X

##

// X ⊕ Y

��

Y.

{{

oo

Z

In the literature, the word preadditive sometimes refers to a category in which the
morphisms are abelian groups and condition i) above holds.
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Definition A.2. Let A and B be additive categories. A functor F : A → B
is called additive if it sends a zero object of A to a zero object of B and, for all
objects X,Y ∈ Ob(A), the morphism

F (X)⊕ F (Y ) −→ F (X ⊕ Y )

given by the universal property of the direct sum (Definition A.1 iii)) applied to the
objects F (X), F (Y ), F (X ⊕ Y ) ∈ Ob(B) is an isomorphism.

An equivalent definition of additive functors is presented in Exercise A.50.

Definition A.3. Let f : X → Y be a morphism in an additive category A.

i) A kernel of f is a pair consisting of an object Ker(f) ∈ Ob(A) and a
morphism ι : Ker(f)→ X that satisfies

f ◦ ι = 0

and is universal for this property. That is, for each morphism g : Z → X
with f ◦ g = 0, there is a unique morphism φ : Z → Ker(f) making the
following diagram commutative:

Z
g //

φ

��

X.

Ker(f)

ι

;;

ii) A cokernel of f is a pair consisting of an object Coker(f) ∈ Ob(A) and a
morphism p : Y → Coker(f) that satisfies

p ◦ f = 0

and is universal for this property. That is, for each morphism g : Y → Z
with g ◦ f = 0, there is a unique morphism φ : Coker(f)→ Z making the
following diagram commutative:

Y
g //

p

��

Z.

Coker(f)

φ

::

These notions are dual to each other (Exercise A.51). The kernel and the cok-
ernel of a morphism may or may not exist, as Exercise A.52 illustrates. Whenever
they do, Ker(f) and Coker(f) are not unique but unique up to a unique isomor-
phism, as is the case for all objects defined by means of a universal property. In
practice, we will identify all possible choices through the unique isomorphisms and
pretend that Ker(f) and Coker(f) are unique. For simplicity, Ker(f) and Coker(f)
will denote both the objects and the morphisms to X and from Y respectively.

Definition A.4. Let f : X → Y be a morphism in an additive category A.
Whenever they exist, the image and the coimage of f are defined as

Im(f) = Ker(Coker(f)), Coim(f) = Coker(Ker(f)).

Thanks to the universal property of the kernel and the cokernel (Definition A.3),
there is a canonical morphism (Exercise A.53)

Coim(f) −→ Im(f).



416 J. I. BURGOS GIL AND J. FRESÁN

Definition A.5. An abelian category is an additive category A satisfying the
following two conditions:

i) Every morphism f in A has a kernel and a cokernel. Therefore, every
morphism has an image and a coimage.

ii) For every morphism f in A, the map Coim(f)→ Im(f) is an isomorphism.

See Exercise A.214 for a typical example of an additive category that has all
kernels and cokernels but is not abelian since condition ii) fails.

A.1.2. Categories of modules. The category ModR of left modules over a ringR
is abelian. The kernel and the image of a morphism f : A→ B are given by

Ker(f) = {a ∈ A | f(a) = 0}, Im(f) = {b ∈ B | b = f(a) for some a ∈ A},
as submodules of A and B respectively, and the cokernel and the coimage by

Coker(f) = B/ Im(f), Coim(f) = A/ ker(f)

together with the quotient module structure. That the map Coim(f) → Im(f) is
an isomorphism is the content of the first isomorphism theorem of R-modules. In
particular, the category Ab = ModZ of abelian groups is abelian.

Conversely, the following result allows us to work in any small abelian category
as if it were the category of modules over a ring. It is particularly useful for
performing operations such as “diagram chasing” that require picking elements of
the objects of the category, and hence do not make sense if they are not sets.

Theorem A.6 (Freyd–Mitchell). Let A be a small abelian category. There
exists a ring R and an exact and fully faithful functor from A to the category of
left R-modules. In particular, A can be viewed as a full subcategory of ModR.

Let us explain the terms appearing in the statement. A functor F : A → B is
said to be faithful (resp. full, resp. fully faithful) if the map

HomA(X,Y ) −→ HomB
(
F (X), F (Y )

)

is injective (resp. surjective, resp. bijective) for all objects X,Y ∈ Ob(A). For
example, given a group G, the functor RepQ(G) → VecQ from the category of
finite-dimensional Q-linear representations of G to that of vector spaces that forgets
the action of G is faithful but not full in general, since there are linear maps between
the underlying vector spaces of two representations that are not G-equivariant.

A subcategory A of a category B is called full if the inclusion functor is full, and
hence fully faithful; that is, if all morphisms in B between objects of A are already
morphisms in A. The notion of exact functor will be introduced in Definition A.22
below. The Freyd–Mitchell theorem is proved, for example, in [Wei94, Thm. 1.6.1].

A.1.3. Subobjects and quotients. Let A be a category.

Definition A.7. A morphism f : X → Y in A is called:

i) a monomorphism if the equality f ◦ g = f ◦ h implies g = h for all
morphisms g, h : Z → X;

ii) an epimorphism if the equality g ◦ f = h ◦ f implies g = h for all mor-
phisms g, h : Y → Z.

In the category of sets, monomorphisms and epimorphisms are injective and sur-
jective maps respectively. This intuition fails for other categories. For example, the
inclusion Z→ Q in the category of rings or the inclusion of a dense open subset in
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the category of topological spaces are epimorphisms, and the projection Q→ Q/Z
in the category of divisible groups is a monomorphism (see Exercise A.55).

In an abelian category, kernels are monomorphisms and cokernels are epimor-
phisms; more generally, f is a monomorphism if and only if Ker(f) is a zero object,
and f is an epimorphism if and only if Coker(f) is a zero object (see Exercise A.54).

Definition A.8. Let X ∈ Ob(A) be an object of a category A.

i) A subobject of X is an object Y ∈ Ob(A) with a monomorphism Y → X.

ii) A quotient of X is an object Z ∈ Ob(A) with an epimorphism X → Z.

iii) A subquotient of X is a quotient of a subobject of X.

Usually, we will denote subobjects by Y ⊂ X. If the category A is abelian,
then to each subobject Y ⊂ X corresponds a quotient object X/Y defined as the
cokernel of the monomorphism Y → X. Moreover, a subquotient is also a subobject
of a quotient, and the property of being a subquotient is transitive (Exercise A.58).

Example A.9. In an additive category A, the objects X,Y ∈ Ob(A) are
both subobjects and quotients of the direct sum object X ⊕ Y . Indeed, applied
to Z = X, the identity map X → X and the zero map Y → X, the universal
property of the direct sum (Definition A.1 iii)) gives rise to morphisms X⊕Y → X
and X ⊕ Y → Y such that the composition with X → X ⊕ Y are the identity and
the zero map respectively; from this it follows that X → X⊕Y is a monomorphism.
The associated quotient object is Y .

A.1.4. Adjoint functors. Many universal constructions are more conveniently
phrased using the notion of an adjoint pair of functors.

Definition A.10. Let C and D be categories, and F : C → D and G : D → C
functors. We say that F is left adjoint to G (or that G is right adjoint to F ) if, for
all objects X ∈ Ob(C) and Y ∈ Ob(D), there is a natural bijection

ΦX,Y : HomC(X,G(Y ))
∼−→ HomD(F (X), Y ).

By “natural”, we mean that these bijections give an isomorphism of bifunctors

Φ·,· : HomC(·, G(·)) −→ HomD(F (·), ·).
That is, for all morphisms f : X ′ → X in C and g : Y → Y ′ the diagram

HomC(X,G(Y ))
ΦX,Y //

Hom(f,G(g))

��

HomD(F (X), Y )

Hom(F (f),g)

��
HomC(X

′, G(Y ′))
ΦX′,Y ′

// HomD(F (X ′), Y ′)

commutes. In this diagram, the map Hom(f,G(g)) sends φ : X → G(Y ) to the
morphism G(g) ◦ φ ◦ f : X ′ → G(Y ′), and similarly for Hom(F (f), g).

If F is left adjoint to G, then we say that (F,G) is an adjoint pair. Note that
the adjectives “left” and “right” refer to the position inside each Hom set in the
bijection Φ, which is the same as in the adjoint pair.

Given an adjoint par (F,G), there are natural transformations of functors

(A.11) ε : F ◦G −→ IdD, η : IdC −→ G ◦ F
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called adjunction morphisms. The natural transformation εY : F (G(Y )) → Y is
the image of the identity morphism IdG(Y ) under the bijection

ΦG(Y ),Y : HomC(G(Y ), G(Y )) −→ HomD(F (G(Y )), Y ),

and ηX : X → G(F (X)) is the preimage of IdF (X) under the bijection

ΦX,F (X) : HomC(X,G(F (X))) −→ HomD(F (X), F (X)).

The adjunction morphisms satisfy that the compositions

F
Fη−→ FGF

εF−→ F and G
ηG−→ GFG

Gε−→ G

are the identity transformations of F and G. In fact, the existence of adjunction
morphisms with this property amounts to saying that (F,G) is an adjoint pair.

Let (F,G) be an adjoint pair. For each Y ∈ Ob(D), the object G(Y ) satisfies
the following universal property. There exists a morphism εY : F (G(Y ))→ Y and,
for every object X ∈ Ob(C) along with a morphism f : F (X) → Y , there exists a
unique morphism g : X → G(Y ) such that the diagram

F (X)

F (g)

��

f

##
F (G(Y ))

εY
// Y

is commutative. Similarly, for each X ∈ Ob(C), the object F (X) satisfies the dual
universal property. That is, there exists a morphism ηX : X → G(F (X)) and for
every object Y ∈ Ob(D) along with a morphism g : X → G(Y ), there is a unique
morphism f : F (X)→ Y such that the following diagram commutes:

X

ηX

��

g

%%
G(F (X))

G(f)
// G(Y ).

Example A.12. We illustrate the relationship between adjoint pairs and uni-
versal properties with the example of vector spaces. Let k be a field and Vec∞k the
category of k-vector spaces. There are two functors

Vec∞k

For ++
Set .

Free
ll

The functor For sends a vector space to its underlying set, forgetting the vector
space structure. The functor Free sends a set S to the vector space with basis S,
that is, the space of finite formal sums

Free(S) = {
∑

s∈S
as[s] | as = 0 for almost all s}.

Clearly, there is a bijection

HomSet(S,For(V )) = HomVec∞
k

(Free(S), V ),

so that Free is left adjoint to For. Moreover, Free(S) satisfies the following universal
property. There exists a map ηS : S → For(Free(S)) that sends the element s to 1[s],
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and for every vector space V together with a map g : S → For(V ), there exists a
unique k-linear map f : Free(S)→ V extending g. That is, g = For(f) ◦ ηS .

A.1.5. Complexes and cohomology.

Definition A.13. Let A be an additive category.

i) A cochain complex (or simply a complex ) A = (A∗,d∗) is a sequence of
objects An ∈ Ob(A) and morphisms

· · · −→ An−1
dn−1

−−−→ An
dn

−→ An+1 −→ · · ·
called differentials such that the equality

(A.14) dn ◦ dn−1 = 0

holds for all n ∈ Z.

ii) A morphism of cochain complexes f : (A∗,d∗)→ (B∗,d∗) is a sequence of
morphisms fn : An → Bn commuting with the differentials, i.e. satisfying

fn ◦ dn−1 = dn−1 ◦ fn−1

for each n ∈ Z. We picture it as follows:

· · · // An−1

fn−1

��

dn−1
// An

fn

��

dn
// An+1

fn+1

��

// · · ·

· · · // Bn−1
dn−1

// Bn
dn
// Bn+1 // · · ·

iii) For a cochain complex A = (A∗,d∗) and an integer r, the shifted complex

A[r] = (A[r]∗,d[r]∗)

is the cochain complex with

A[r]n = An+r and d[r] = (−1)rd.

(One reason why changing the sign of the differential is convenient will be
explained when discussing the cone in Definition A.25 below.)

iv) A cochain complex is called bounded if there exists an integer M such
that An = 0 holds for all |n| ⩾ M. Similarly, one defines the notion of
bounded below and bounded above cochain complex.

v) The notion of chain complex in an additive category is dual to the notion
of cochain complex; that is, the differentials lower the degree instead of
increasing it. Therefore, a chain complex (A∗,d∗) is a sequence of ob-
jects An ∈ Ob(A) and morphisms

· · · −→ An+1
dn+1−−−→ An

dn−→ An−1 −→ · · ·
also called differentials such that the equality

dn ◦ dn+1 = 0

holds for all n ∈ Z. A morphism of chain complexes f : (A∗, d∗)→ (B∗, d∗)
is a sequence of morphisms fn : An → Bn satisfying

fn−1 ◦ dn = dn ◦ fn.
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vi) A chain complex (A∗,d∗) may be turned into a cochain complex (A∗,d∗)
by setting

(A.15) An = A−n and dn = d−n.

The position of the index will usually be enough to indicate that we have
performed this operation. If needed, “raising the index” will be denoted
by r, so that the first equality in (A.15) becomes r(A)n = A−n.

vii) For a chain complex A = (A∗,d∗) and an integer r, the shifted complex

A[r] = (A[r]∗,d[r]∗)

is the chain complex with

A[r]n = An−r and d[r] = (−1)rd.

Hence, the raising and the shift operators are related by the equality

r(A[r]) = r(A)[r].

Since we will mainly use cochain complexes, we will often simply call them
“complexes”. It is also convenient to think of a complex as a graded object

A∗ =
⊕

n∈Z
An

in the category A together with a morphism d: A∗ → A∗ that is homogeneous of
degree 1, i.e. maps the subobject An ⊂ A∗ to the subobject An+1 ⊂ A∗ for all
integers n ∈ Z. With this convention, the morphisms

dn : An → An+1

are the restrictions of d to the various An, and condition (A.14) simply reads

d ◦ d = 0.

For this to make sense, we need to assume either that the complex A∗ is bounded or
that the abelian category admits infinite sums. This is the obvious generalization
of the direct sum of two objects from Definition A.1: given a sequence (Xn)n∈Z of
objects of A, there exists

⊕
n∈ZXn ∈ Ob(A) and morphisms fi : Xi →

⊕
n∈ZXn

for all i ∈ Z such that, for each object Z along with morphisms gi : Xi → Z, there
is a unique morphism h :

⊕
n∈ZXn → Z satisfying h ◦ fi = gi.

Remark A.16. If A is an abelian category, then condition (A.14) can be
rephrased by saying that the morphism Im(dn−1) → An factors uniquely through
the morphism Ker(dn)→ An for each integer n. That is, there exists a unique
morphism φn making the diagram

Im(dn−1) //

φn

��

An

Ker(dn)

::

commutative. Moreover, φn is a monomorphism, so that Ker(φn) is a zero object
and Im(dn−1) is a subobject of Ker(dn) (use Exercise A.57).
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Definition A.17. Let A be an abelian category, and let A = (A∗,d) be a
cochain complex in A. For each n ∈ Z, the cohomology in degree n of A is the object

Hn(A) = Coker(φn) ∈ Ob(A).

If the category A admits infinite sums or the complex A is bounded, then the total
cohomology of A is defined as the graded object

H∗(A) =
⊕

n∈Z
Hn(A).

The homology of a chain complex is defined similarly.

By construction, the cohomology in degree n of the shifted complex A[r] is the
cohomology in degree n+ r of A. In symbols,

Hn(A[r]) = Hn+r(A).

Example A.18. Let A = ModR be the abelian category of left modules over
a ring R. Let A = (A∗,d) be a complex in A. In this case, the maps φn are the
inclusions of the submodule Im(dn−1) into Ker(dn), and the cohomology objects
are the quotient modules

Hn(A) = Ker(dn)/ Im(dn−1).

This setting (with R = Z or a field) will be mostly sufficient for our purposes.

Formation of cohomology is functorial: a morphism of complexes f : A∗ → B∗

induces a morphism of cohomology objects

H(f) : H∗(A∗) −→ H∗(B∗)

that is homogeneous of degree 0 and satisfies

H(Id) = Id and H(f ◦ g) = H(f) ◦H(g)

for composable morphisms f and g. In other words, A 7→ H∗(A) defines a functor
from the category of complexes of A to the category of graded objects of A.

Definition A.19. A morphism of complexes f is called a quasi-isomorphism
if the induced morphism on cohomology objects H(f) is an isomorphism.

A.1.6. Categories of complexes. Given an additive category A, we will denote
by C(A) the category whose objects are cochain complexes and whose morphisms
are morphisms of complexes. When we want to stress the fact that we are working
with cochain complexes, we will write C∗(A) instead. We also denote by

C+(A), C−(A), Cb(A), C⩾0(A)

the full subcategories of bounded below complexes, bounded above complexes,
bounded complexes, and complexes concentrated in non-negative degrees.

Similarly, we will denote by C∗(A), C−(A), C+(A) Cb(A), and C⩾0(A) the cor-
responding categories of chain complexes.

Proposition A.20. If A is abelian, then all these categories of complexes are
abelian as well.
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Proof. The categories C?(A) and C?(A) are clearly additive. We need to
show the existence of kernels and cokernels, and that the image and the coimage of
morphisms agree. To fix ideas, we do this for the category C∗(A). Let f : A∗ → B∗

be a morphism of complexes. Then one can check that the complexes

Ker(f)n = Ker(fn), Coker(f)n = Coker(fn)

with the induced differentials satisfy the universal property of a kernel and a cok-
ernel for f in the category C∗(A) (Exercise A.56). Hence, kernels and cokernels
exist. Since they can be computed component-wise, the same is true for the image
and the coimage. Since A is abelian, we deduce the identity Im(f)n = Coim(f)n

for all n ∈ Z. Since f is a morphism of complexes, and hence commutes with the
differential, the differentials induced on Im(f) and Coim(f) agree. □

A.1.7. Exact sequences and exact functors.

Definition A.21. Let A be an abelian category. An exact sequence is a com-
plex A = (A∗,d) in A with vanishing cohomology. In other words, A is an exact
sequence if the maps φn : Im(dn−1)→ Ker(dn) are isomorphisms for all n. A short
exact sequence is an exact sequence in which all but three consecutive terms are
zero. We will often call A a long exact sequence when we want to emphasize that
it is not a short exact sequence.

Definition A.22. Let A and B be abelian categories and let F : A → B be an
additive functor. We say that F is exact if the sequence

0 −→ F (A) −→ F (B) −→ F (C) −→ 0

in B is exact for every short exact sequence 0→ A→ B → C → 0 in A.

Many widely used functors are not exact because either F (A)→ F (B) fails to
be a monomorphism or F (B)→ F (C) fails to be an epimorphism. This motivates
the introduction of the following weaker definitions:

Definition A.23. The functor F : A → B is right exact if, for all short exact
sequences as above, the sequence

F (A) −→ F (B) −→ F (C) −→ 0

is exact. Similarly, F is left exact if, for all exact sequences as above, the sequence

0 −→ F (A) −→ F (B) −→ F (C)

is exact. There are analogous definitions for contravariant functors.

Remark A.24. If a functor F admits a right adjoint, then F is right exact,
and similarly for left adjoints and left exactness (see Exercise A.60).

A.1.8. The cone of a morphism of complexes. Another important tool of homo-
logical algebra is the cone of a morphism of complexes. For the sake of readability,
we define it by picking elements of the objects in the complexes (recall that this
is justified by the Freyd–Mitchell theorem A.6). The zealous reader will have no
trouble in replacing all morphisms below with their abstract definitions.

Definition A.25. Let A be an additive category, and let f : A∗ → B∗ be a
morphism of complexes in A. The cone of f is the complex defined as

cone(f)n = An+1 ⊕Bn,
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together with the differential

d(a, b) = (−da,db+ f(a)).

By construction, the cone is equipped with two morphisms of complexes

(A.26)
b: B∗ −→ cone(f), b(b) = (0, b)

a : cone(f) −→ A[1]∗, a(a, b) = a,

that induce a long exact sequence of cohomology objects

(A.27) · · · −→ Hn(A∗)
H(f)−−−→ Hn(B∗)

H(b)−−−→ Hn(cone(f))
H(a)−−−→ Hn+1(A∗) −→ · · ·

taking the equality Hn(A[1]∗) = Hn+1(A∗) into account.

Remark A.28. Dually, the cone of a morphism of chain complexes f : A∗ → B∗
is defined as follows. The raising operator from Definition A.13 vi) yields a mor-
phism of cochain complexes r(f) : r(A)→ r(B), and cone(f) is determined by

(A.29) r(cone(f)) = cone(r(f)).

Concretely, cone(f) is the chain complex given by

cone(f)n = An−1 ⊕Bn and d(a, b) = (−da,db+ f(a)).

It is also equipped with two morphisms of chain complexes

(A.30)
b: B∗ −→ cone(f), b(b) = (0, b),

a: cone(f) −→ A[−1]∗, a(a, b) = a,

that induce a long exact sequence of homology objects

(A.31) · · · −→ Hn(A∗)
H(f)−−−→ Hn(B∗)

H(b)−−−→ Hn(cone(f))
H(a)−−−→ Hn−1(A∗) −→ · · ·

taking the equality Hn(A[−1]∗) = Hn−1(A∗) into account.

Remark A.32. A choice of sign in the differential of the cone is needed for
the equality d ◦ d = 0 to hold. With the current choice, which appears to be the
most standard, a is only a morphism of complexes if the differential of A[1]∗ carries
a minus sign. With the choice d(a, b) = (da,−db + f(a)), the map b would not
be a morphism of complexes. Finally, the choice d(a, b) = (da,db + (−1)nf(a))
would make both a and b morphisms of complexes without changing the sign in
the shifted complex, but at the cost of changing the sign of f .

A.1.9. Double complexes.

Definition A.33. Let A be an additive category. A double complex

C = (C∗,∗,dhor,dver)

is a collection of objects Cp,q ∈ Ob(A), one for each (p, q) ∈ Z2, and morphisms

dhor : Cp,q −→ Cp+1,q, dver : Cp,q −→ Cp,q+1

called the horizontal and the vertical differentials satisfying

(dhor)2 = 0, (dver)2 = 0, dhor ◦ dver = dver ◦ dhor.
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In other words, (C∗,q,dhor) and (Cp,∗,dver) are cochain complexes for each fixed p
and q, and all the diagrams

Cp,q+1 dhor
// Cp+1,q+1

Cp,q

dver

OO

dhor
// Cp+1,q

dver

OO

commute. We say that a double complex C is bounded if there exists an integer M
such that Cp,q = 0 holds for all |p|, |q| ⩾M , with the obvious variants for bounded
below and above double complexes.

Associated with a bounded below double complex C as above is a usual cochain
complex (Tot(C),d) called the total complex and defined as

Totn(C) =
⊕

p+q=n

Cp,q

in degree n, with differential

dx = dhorx+ (−1)pdverx for x ∈ Cp,q.
The assumption that C is bounded below ensures that the direct sum in Totn(C)
only has a finite number of non-zero objects.

Remark A.34. For d ◦ d = 0 to hold and give rise to a complex, one needs
to change the sign of either the vertical or the horizontal differential in the double
complex; this choice is arbitrary and varies from one reference to another.

Example A.35. A morphism of complexes f : A∗ → B∗ can be viewed as a
double complex C with non-trivial terms

C0,q = Aq and C1,q = Bq,

and differentials dhor = f and dver = 0. Its total complex Tot(f) is then given by

Tot(f)n = An ⊕Bn−1, d(a, b) = (da,−db+ f(a)).

Comparing with Definition A.25 of the cone of a morphism, one finds

cone(f) = Tot(−f)[1].

Example A.36. The tensor product of complexes is another instance of a
total complex associated with a double complex. Inded, assume that the additive
category A is equipped with a tensor product ⊗ : A×A → A. This is the case, for
example, for the category ModR of left R-modules over some ring R. The tensor
product of bounded below complexes A = (A∗,dA) and B = (B∗,dB) in A is then
defined as the complex A⊗B with degree n terms

(A⊗B)n =
⊕

p+q=n

Ap ⊗Bq,

and differential given on the Ap ⊗Bq component by

dA⊗B = dA ⊗ IdB +(−1)p IdA⊗dB .

This is the total complex associated with the double complex

Cp,q = Ap ⊗Bq

with horizontal differential dhor = dA⊗IdB and vertical differential dver = IdA⊗dB .
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A.1.10. Cohomological functors. Let A be an abelian category. Recall that the
category C(A) of complexes in A is abelian, and that bounded below complexes and
bounded complexes form abelian subcategories C+(A) and Cb(A). In particular, the
notion of exact sequence of complexes makes sense. The cohomology functors

Hn : C(A) −→ A (n ∈ Z)

satisfy the property that, for every short exact sequence of complexes

(A.37) 0 −→ A −→ B −→ C −→ 0,

there are morphisms ∂n : Hn(C)→ Hn+1(A) such that the sequence

(A.38) · · · −→ Hn(A) −→ Hn(B) −→ Hn(C)
∂n

−−→ Hn+1(A) −→ Hn+1(B) −→ · · ·
is exact. Indeed, assuming that A is a full subcategory of ModR for some ring R,
we may define ∂n by a diagram chase in

An+2 // Bn+2

0 // An+1 //

OO

Bn+1 //

OO

Cn+1 // 0

0 // An

OO

// Bn

OO

// Cn

OO

// 0.

Bn−1

OO

// Cn−1

OO

Let c ∈ Cn be an element satisfying dnc = 0. Since the map Bn → Cn is surjective
and the right square in the middle commutes, c is the image of an element b ∈ Bn
such that dnb ∈ Bn+1 maps to 0 ∈ Cn+1. By exactness of the second row, dnb is the
image of a unique a ∈ An+1, which satisfies dn+1a = 0 since the left upper square
commutes and dn+1 ◦dn = 0. Moreover, different choices of b give rise to elements a
that differ by an element in the image of dn. Finally, if c is of the form dn−1c′ for
some c′ ∈ Cn−1, then writing c′ as the image of some b′ ∈ Bn−1 and using the
commutativity of the right lower square, one finds that dnb, and hence a, vanishes.
All in all, the assignment c 7→ a is a well defined map ∂n : Hn(C)→ Hn+1(A) that
by design makes the sequence (A.38) exact.

This property leads to the definition of a cohomological δ-functor and is also
the inspiration for the definition of a derived functor (see Section A.4).

Definition A.39. A cohomological δ-functor from an abelian category A to
an abelian category B is the data of

i) a sequence of additive functors Fn : A → B indexed by n ∈ Z;

ii) for each short exact sequence 0 → A → B → C → 0 in A, a sequence of
connection morphisms

∂n : Fn(C)→ Fn+1(A);

subject to the conditions:

i) the following sequence is exact:

· · · −→ Fn(A) −→ Fn(B) −→ Fn(C)
∂n

−−→ Fn+1(A) −→ Fn+1(B) −→ · · ·
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ii) for every morphism of short exact sequences

0 // A //

��

B //

��

C //

��

0

0 // A′ // B′ // C ′ // 0,

the following diagram commutes:

Fn(C)
∂n
//

��

Fn+1(A)

��
Fn(C ′)

∂n
// Fn+1(A′).

In Definition A.77 below, we will introduce the notions of triangulated and
cohomological functors in the setting of triangulated categories. The relation with
cohomological δ-functors is explained in Exercise A.96.

Remark A.40. Given any collection of signs εn ∈ {−1, 1}, if (Fn, ∂n)n∈Z is a
cohomological δ-functor, then (Fn, εn∂

n)n∈Z is also a cohomological δ-functor. This
ambiguity of signs of connection morphisms in the definition of a cohomological
δ-functor is already visible in the construction of ∂n by diagram chasing.

Similarly, associated with a short exact sequence 0 → A → B → C → 0 of
chain complexes there is a long exact sequence

(A.41) · · · −→ Hn(A) −→ Hn(B) −→ Hn(C)
∂n−→ Hn−1(A) −→ Hn−1(B) −→ · · ·

where the connecting morphisms now decrease the degree.
A.1.11. Homotopy equivalences. The algebraic counterpart of a homotopy be-

tween topological spaces is the notion of homotopy between morphisms of complexes
in an additive category A.

Definition A.42. Let f, g : A∗ → B∗ be morphisms of complexes in C(A). A
homotopy between f and g is a collection of maps sn : An → Bn−1 such that

fn − gn = dn−1 ◦ sn + sn+1 ◦ dn

holds for all n. We picture it as follows:

· · · // An−1 //

��

An //

��

sn

||

An+1 //

��
sn+1

||

· · ·

· · · // Bn−1 // Bn // Bn+1 // · · ·
When such a homotopy exists, we say that f and g are homotopically equivalent.

Given two complexes A and B, being homotopically equivalent defines an equiv-
alence relation on the set of morphisms of complexes between A and B.

A basic property of homotopically equivalent morphisms is that they induce
the same morphism on cohomology objects.

Proposition A.43. Let A be an abelian category. If f, g : A∗ → B∗ are homo-
topically equivalent morphisms of complexes in C(A), then H∗(f) = H∗(g).
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Proof. It suffices to prove that f − g induces the zero map from H∗(A∗)
to H∗(B∗). To see this, let [x] ∈ Hn(A∗) be a cohomology class. Then

[(fn − gn)(x)] = [dn−1(sn(x)) + sn+1(dn(x))] = [sn+1(dn(x))] = 0,

since dn−1(sn(x)) is a coboundary and dn(x) = 0. □

Definition A.44. A morphism of complexes f : A∗ → B∗ is called a homotopy
equivalence if there exists a morphism of complexes g : B∗ → A∗, called a homotopy
inverse, such that g ◦ f and f ◦ g are homotopically equivalent to IdA∗ and IdB∗

respectively. In this case, we say that A∗ and B∗ are homotopically equivalent.

A direct consequence of Proposition A.43 is the next result.

Corollary A.45. If the category A is abelian, then any homotopy equiva-
lence f is a quasi-isomorphism

Proof. Let f : A∗ → B∗ be a homotopy equivalence, and let g : B∗ → A∗ be
a homotopy inverse of f as in Definition A.44. From the equalities

H(g) ◦H(f) = H(g ◦ f) = H(IdA∗) = IdH(A∗),

and similarly for H(f) ◦ H(g), we deduce that H(f) and H(g) are inverse to each
other, and in particular that H(f) is an isomorphism. □

A.1.12. The acyclic models theorem. The method of acyclic models is an ab-
stract way to construct homotopies which can be seen as a precursor of the theory
of derived categories and of model category theory; see [Spa66, Chap. 4, § 2]. We
used it to prove the Eilenberg–Zilber Theorem 2.24 when constructing the external
product in singular homology. A category with models is a category C together with
a collection of objects M⊂ Ob(C).

Definition A.46. Let (C,M) be a category with models and R a ring.

i) A functor F : C → C⩾0(ModR) is called acyclic if

Hn(F (M)) = 0

holds for all n ⩾ 1 and M ∈M.

ii) A functor F : C → C⩾0(ModR) is called free if there exists a collec-
tion (Mα)α∈J of objects of M and elements mα ∈ F (Mα), for α ∈ J ,
such that the set

{F (f)(mα) | α ∈ J and f ∈ Hom(Mα, X)}
forms a basis of the R-module F (X) for every object X ∈ Ob(C).

These notions are tailored to study the basic example of a category with models,
namely that of topological spaces with models the standard simplexes {∆n

st}. An
example of acyclic and free functor is the singular chain functor from Section 2.1.

Theorem A.47 (Acyclic models theorem). Let C be a category with modelsM,
and let F,G : C → C⩾0(ModR) be functors with F free and G acyclic. Then:

i) any natural transformation H0(F )→ H0(G) is induced by a natural trans-
formation τ : F → G;

ii) two natural transformations τ, τ ′ : F → G inducing the same natural
transformation H0(F )→ H0(G) are naturally homotopic.
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⋆ ⋆ ⋆

Exercise A.48. Let A be an additive category. Show that HomA(X,X) is
endowed with a ring structure for each object X ∈ Ob(A).

Exercise A.49. Let A be a category. A product of objects X,Y ∈ Ob(A) is
an object X × Y ∈ Ob(A) endowed with morphisms

X ←− X × Y −→ Y

such that, for each object Z ∈ Ob(A) with morphisms Z → X and Z → Y , there
exist a unique morphism Z → X × Y making the diagram

X X × Yoo // Y

Z

OO ;;cc

commutative. Show that the product X × Y exists in every additive category A,
and it is equal to the direct sum X ⊕ Y . Conclude that, in an additive category,
finite products exist and they agree with finite direct sums. (Since the notion of
direct sum objects in Definition A.1 iii) is dual to the above, X ⊕ Y is also called a
coproduct in the categorial sense.)

Exercise A.50. Let F : A → B be a functor between additive categories. Prove
that F is additive if and only if, for all objects X,Y ∈ Ob(A), the map

F : HomA(X,Y ) −→ HomB
(
F (X), F (Y )

)

is a group homomorphism. [Hint: the sum f + g of morphisms f, g ∈ HomA(X,Y )
is given by the composition

X −→ X ⊕X
(
f 0
0 g

)
−−−−→ Y ⊕ Y −→ Y,

where the diagonal X → X ⊕ X and the codiagonal Y ⊕ Y → Y are the maps
obtained from the universal property of the product and the coproduct.]

Exercise A.51. Given an additive category A, let Aop denote the opposite
category, which has the same objects as A but reversed morphisms

HomAop(X,Y ) = HomA(Y,X)

for all objects X,Y ∈ Ob(A). Prove that Aop is an additive category and that a
cokernel for f : X → Y in A is a kernel for the corresponding morphism Y → X
in Aop, and vice versa.

Exercise A.52. Let A be the category whose objects are pairs (V,W ) consist-
ing of vector spaces of the same dimension over some field k, and whose morphisms
are pairs of linear maps. Show that A is an additive category in which some mor-
phisms do not have a kernel. This is a toy example of the category of vector bundles,
which is typically not abelian by contrast with that of coherent sheaves.

Exercise A.53. Let A be an additive category and let f be a morphism in A.
Assume that the image Im(f) and the coimage Coim(f) exist. Show that there is
a canonical morphism

Coim(f) −→ Im(f).
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Exercise A.54. Let A be an additive category and f : X → Y a morphism
in A that has a kernel and a cokernel.

i) Prove that Ker(f) → X is a monomorphism, and Y → Coker(f) is an
epimorphism.

ii) Show that f is a monomorphism if and only if Ker(f) is a zero object,
and an epimorphism if and only if Coker(f) is a zero object.

Exercise A.55. Prove that the projection map Q→ Q/Z is a monomorphism
in the category of abelian divisible groups, i.e. those groups G such that, for each
element x ∈ G and each integer n ⩾ 1, there exists y ∈ G satisfying ny = x. Thus,
the full subcategory of Ab consisting of abelian divisible groups is not abelian.

Exercise A.56. Let A be an abelian category and f : A∗ → B∗ a morphism
in C∗(A). Show that the complexes Ker(f) and Coker(f) defined in the proof of
Proposition A.20 are a kernel and a cokernel in the category C∗(A).

Exercise A.57. Let A be an additive category, and let f be a morphism in A.
Prove the following statements:

i) If Ker(f) exists, then Ker(Ker(f)) exists and is a zero object of A.

ii) If Coker(f) exists, then Coker(Coker(f)) exists and is a zero object of A.

In other words, Ker(f) is a monomorphism, and Coker(f) is an epimorphism.

Exercise A.58. Let A be an abelian category, and let X ∈ Ob(A) be an
object. Show that, if there is a sequence

X ←− S1 −→ Q1 ←− S2 −→ Q2,

where the morphisms to the left are monomorphisms and the morphisms to the
right are epimorphisms, then Q2 is a subquotient of X. Deduce that, in an abelian
category, the property of being a subquotient (Definition A.8) is transitive, and
that a subquotient is also a subobject of a quotient.

Exercise A.59. Let A be an abelian category and X an object of A. Show
that HomA(X,−) is a left exact functor from A to the category of abelian groups.

Exercise A.60. In this exercise, we show that a functor with a left (resp. right)
adjoint is left (resp. right) exact. We start with the converse of Exercise A.59.

i) Let A be an abelian category. Show that a sequence 0→ A→ B → C is
exact if the sequence

0 −→ HomA(X,A) −→ HomA(X,B) −→ HomA(X,C)

of abelian groups is exact for every object X ∈ Ob(A).

ii) Let A and B be abelian categories and (F,G) an adjoint pair of functors.
Let 0→ A→ B → C be an exact sequence in B. Show that the sequence

0 −→ G(A) −→ G(B) −→ G(C)

in A is exact. Conclude that the functor G is left exact.

iii) Dually, show that F is right exact.
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A.2. Yoneda extensions.
A.2.1. Definition.

Definition A.61. Let A be an abelian category, let A,B ∈ Ob(A) be objects,
and n ⩾ 1 an integer. An extension of degree n of A by B is an exact sequence

E : 0 −→ B −→ Cn−1 −→ · · · −→ C0 −→ A −→ 0.

Given extensions of the same degree E and E′, we say that E is equivalent to E′ if
there exists a commutative diagram

E : 0 // B // Cn−1

��

// · · · // C0

��

// A // 0

E′ : 0 // B // C ′n−1 // · · · // C ′0 // A // 0.

For n = 1, this notion agrees with that from Definition 2.247 in the particular
case of mixed Hodge structures. In contrast to that case, the binary relation defined
by the existence of the above diagram may not be symmetric for n ⩾ 2. We consider
instead the equivalence relation generated by such relations, which means that we
force symmetry and transitivity by adding the missing relations.

Definition A.62. For n ⩾ 1, we denote by ExtnA(A,B) the set of equivalence
classes of degree n extensions of A by B. To unify notation, we also set

Ext0A(A,B) = HomA(A,B)

and ExtnA(A,B) = 0 for all negative n.

A.2.2. Some properties of Yoneda extensions.

The Baer sum. The sets ExtnA(A,B) are endowed with a group structure, given
by the so-called Baer sum of extensions. We describe it by picking elements of the
objects of A, starting with the case n ⩾ 2. Let

E : 0 −→ B
ι−→ Cn−1 −→ · · · −→ C0

π−→ A −→ 0,

E′ : 0 −→ B
ι′−→ C ′n−1 −→ · · · −→ C ′0

π′

−→ A −→ 0

be degree n extensions of A by B. The pull-back of C0 and C ′0 over A is the object

C ′′0 = Ker
(
C0 ⊕ C ′0

ϕ−→ A
)
, ϕ(c, c′) = π′(c′)− π(c).

By construction, π and π′ agree on C ′′0 , hence a well defined morphism

π′′ : C ′′0 −→ A, π′′(c, c′) = π(c) = π′(c′).

Dually, the push-out of Cn−1 and C ′n−1 under B is the object

C
′′

n−1 = Coker
(
B

ψ−→ Cn−1 ⊕ C ′n−1
)
, ψ(b) = (ι(b),−ι′(b)).

By construction, the maps b 7→ (ι(b), 0) and b 7→ (0, ι′(b)) from B to Cn−1 ⊕ C ′n−1
induce the same morphism

ι′′ : B −→ C ′′n−1.

Definition A.63. For n ⩾ 2, the Baer sum of the degree n extensions E
and E′ is the degree n extension given by

0 −→ B
ι′′−→ C

′′

n−1 −→ Cn−2 ⊕ C ′n−2 −→ · · · −→ C1 ⊕ C ′1 −→ C
′′

0
π′′

−→ A −→ 0.
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For n = 1, a variant of this construction is needed to merge the pull-back C ′′0
and the push-out C ′′n−1. Let

0 −→ B
ι−→ E

π−→ A −→ 0,

0 −→ B
ι′−→ E′

π′

−→ A −→ 0

be extensions of degree 1 of A by B. Write

E′′ = Coker(B
ψ−→ Ker(E ⊕ E′ ϕ−→ A))

= Ker(Coker(B
ψ−→ E ⊕ E′) ϕ−→ A).

As before, there are induced morphisms B → E′′ and E′′ → A.

Definition A.64. The Baer sum of degree 1 extensions E and E′ is the de-
gree 1 extension given by

0 −→ B −→ E′′ −→ A −→ 0.

Endowed with the Baer sum, the set of equivalence classes ExtnA(A,B) forms
a group, in which the neutral element is the extension

0 −→ B −→ A⊕B −→ A −→ 0

for n = 1, and the extension

0 // B B // 0 // · · · // 0 // A A // 0

for n ⩾ 2 (see Exercise A.67). An extension is said to be split if it is equivalent to
the neutral element of the extension group.

Functoriality . Formation of extensions is functorial in the following sense: associ-
ated with objects A,B,B′ ∈ Ob(A), a morphism f : B → B′, and an extension

E : 0 −→ B
dn−−→ Cn−1

dn−1−−−→ · · · d1−→ C0
d0−→ A −→ 0,

there is an extension

ExtnA(A, f)(E) ∈ ExtnA(A,B′)

constructed as follows. First define C ′n−1 as the pushout of Cn−1 and B′ under B, so

that there are morphisms fn−1 : Cn−1 → C ′n−1 and d′n : B′ → C ′n−1. For notational
convenience, write Cn = B, C ′n = B′, and fn = f . Assume that we have defined the
groups C ′n, . . . , C

′
k, and the maps fi, for i = n, . . . , k, and d′i, for i = n, . . . , k + 1,

where 1 ⩽ k ⩽ n− 1. Then the group C ′k−1 is defined as

C ′k−1 = Coker(ψ : C ′k+1 ⊕ Ck −→ C ′k ⊕ Ck−1),

where the morphism ψ is given by

ψ(c′, c) = (d′k+1(c′) + fk(c),−dk(c)).

There are induced morphisms fk−1 : Ck−1 → C ′k−1 and d′k : C ′k → C ′k−1. From the

universal property of the cokernel, one derives a morphism d′0 : C ′0 → A such that
the resulting sequence

0 −→ B′
d′
n−−→ C ′n−1

d′
n−1−−−→ · · · d′

1−→ C ′0
d′
0−→ A′ −→ 0

is exact and defines the extension E′ = ExtnA(A, f)(E) ∈ ExtnA(A,B′).
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Connecting morphisms. Let 0 → B1 → B2 → B3 → 0 be a short exact sequence.
There is a map

∂0 : HomA(A,B3)→ Ext1A(A,B1)

sending a morphism f to the sequence 0 → B1 → E → A → 0, where E is the
pull-back of B2 and A over B3. There are also maps

(A.65) ∂n : ExtnA(A,B3) −→ Extn+1
A (A,B1)

that send the extension

0 −→ B3
dn−−→ Cn−1

dn−1−−−→ · · · d1−→ C0
d0−→ A −→ 0

to the extension

0 −→ B1 −→ B2 −→ Cn−1
dn−1−−−→ · · · d1−→ C0

d0−→ A −→ 0.

In Exercise A.68, you will prove that the extension groups together with the connec-
tion morphisms defined above form a cohomological δ- functor (Definition A.39).

A vanishing criterion:

Lemma A.66. Let A be an abelian category. Assume that there exists an inte-
ger n0 ⩾ 0 such that, for all objects A ∈ Ob(A), the functor Extn0

A (A,−) is right
exact (Definition A.23). Then

ExtnA(A,B) = 0

holds for all objects A,B ∈ Ob(A) and all integers n > n0.

Proof. It is enough to prove that, if the functor ExtnA(A,−) is right exact
for all objects A ∈ Ob(A), then Extn+1

A (A,B) = 0 for all objects A,B ∈ Ob(A).
Indeed, the zero functor is right exact, and we can then proceed by induction.

We start with the case n = 0. Assume that Ext0A(A,−) = HomA(A,−) is right
exact for all A ∈ Ob(A), and let

0 −→ B −→ E
π−→ A −→ 0

be an extension. Since HomA(A,−) is right exact, there is a morphism f : A→ E
such that π ◦ f = IdA. This means that the extension is split: Ext1A(A,B) = 0.

Let now n ⩾ 1, and assume that ExtnA(A,−) is right exact. Let

E : 0 −→ B
dn+1−−−→ Cn

dn−−→ · · · d1−→ C0
d0−→ A −→ 0

be an extension in Extn+1
A (A,B). Consider the exact sequence

0 −→ B −→ Cn −→ C −→ 0,

where we set C = Coker(dn+1), and the extension

E′ : 0 −→ C
dn−−→ Cn−1

dn−1−−−→ · · · d1−→ C0
d0−→ A −→ 0,

so that E′ ∈ ExtnA(A,C) and E = ∂n(E′). Since ExtnA(A,−) is right exact, one
necessarily has ∂n(E′) = 0, and hence E = 0. □

⋆ ⋆ ⋆

Exercise A.67. Prove that the Baer sum is well defined on equivalence classes,
and hence induces a group structure on ExtnA(A,B) for each n ⩾ 1.
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Exercise A.68. Let A be an abelian category, and let A ∈ Ob(A) be an object.
Prove that the functors ExtnA(A,−) together with the connection morphisms ∂n

from (A.65) form a cohomological δ-functor.

A.3. Triangulated and derived categories.
A.3.1. The definition of a triangulated category.

Definition A.69 (Verdier). A triangulated category T is an additive category,
together with the following extra data:

i) A self-equivalence of categories

[1] : T −→ T
X 7−→ X[1].

We denote by f [1] the image of a morphism f by this functor. Once the
self-equivalence [1] is given, we call triangles all sequences of the form

X
u−→ Y

v−→ Z
w−→ X[1].

A morphism of triangles is a commutative diagram

X
u //

��

Y
v //

��

Z
w //

��

X[1]

��
X ′

u′
// Y ′

v′ // Z ′
w′
// X ′[1].

We will use the convention that arrows decorated with [1] such as A
[1]−→ B

represent morphisms A→ B[1]. A triangle is then pictured as

X
u // Y.

v
~~

Z

w[1]

``

ii) A class of triangles called distinguished triangles.

These data are required to satisfy the following axioms:

(T1): i) For any X ∈ Ob(T ), the following triangle is distinguished:

X
Id−→ X −→ 0 −→ X[1].

ii) Any triangle isomorphic to a distinguished one is distinguished.

iii) Any morphism X
u−→ Y can be completed to a distinguished triangle

X
u−→ Y

v−→ Z
w−→ X[1].

(T2): The triangle X
u−→ Y

v−→ Z
w−→ X[1] is distinguished if and only if the

triangle Y
v−→ Z

w−→ X[1]
−u[1]−−−→ Y [1] is distinguished.

(T3): Given distinguished triangles

X
u−→ Y

v−→ Z
w−→ X[1], X ′

u′

−→ Y ′
v′−→ Z ′

w′

−→ X ′[1],
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and morphisms f : X → X ′ and g : Y → Y ′ satisfying g ◦u = u′ ◦ f , there
exists a (not necessarily unique) morphism h : Z → Z ′ such that

X
u //

f

��

Y

g

��

v // Z

h

��

w // X[1]

f [1]

��
X ′

u′
// Y ′

v′ // Z ′
w′
// X ′[1]

is a morphism of triangles.

(T4): (Octahedron axiom) Given a diagram of solid arrows

Y ′

g

  

n
[1]

��

Z ′

f

>>

[1] k

��

X ′

[1]
i

��

j[1]◦i

[1]
oo

X
v◦u //

u

  

Z,

ℓ

OO

m

WW

Y

v

>>

j

WW

if the three triangles

X
u−→ Y

j−→ Z ′
k−→ X[1]

Y
v−→ Z

ℓ−→ X ′
i−→ Y [1]

X
v◦u−−→ Z

m−→ Y ′
n−→ X[1]

are distinguished, then there exist morphisms f : Z ′ → Y ′ and g : Y ′ → X ′

(the dashed arrows above) such that the triangle

Z ′
f−→ Y ′

g−→ X ′
j[1]◦i−−−→ Z ′[1]

is distinguished and the following equalities hold:

k = n ◦ f, ℓ = g ◦m,
m ◦ v = f ◦ j, u[1] ◦ n = i ◦ g.

Definition A.70. Let T be a triangulated category. A triangulated subcategory
of T is a full additive subcategory S of T such that:

i) the functor [1] restricts to a self-equivalence on S;

ii) if two out of three objects of a distinguished triangle in T belong to S,
then so does the third.
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Remark A.71. The first basic property of distinguished triangles is that the
composition of two consecutive morphisms is zero. That is, if

X
u−→ Y

v−→ Z
w−→ X[1]

is a distinguished triangle in a triangulated category T , then

v ◦ u = 0, w ◦ v = 0, u[1] ◦ w = 0.

Indeed, by axiom (T2) it is enough to prove v ◦ u = 0. Consider now the diagram

X
Id
//

Id

��

X //

u

��

0 //

��

X[1]

Id

��
X

u // Y
v // Z

w // X[1].

Since a dotted arrow making the diagram commutative exists by axiom (T3), we
deduce the vanishing of v ◦ u = 0.

Remark A.72. The octahedron axiom can be “flattened” by repeating some
vertices. Namely, if in the commutative diagram (without the dotted arrows)

X

u

��

X

v◦u
��

Y
v //

j

��

Z
ℓ //

m

��

X ′
i // Y [1]

j[1]

��
Z ′

k

��

f // Y ′

n

��

g // X ′
j[1]◦i // Z ′[1]

X[1] X[1]

the two long columns and the long row are distinguished triangles, then there exist
morphisms f : Z ′ → Y ′ and g : Y ′ → X ′ making the whole diagram commutative,
the second long row a distinguished triangle, and such that the equality

i ◦ g = u[1] ◦ n
of morphisms from Y ′ to Y [1] holds.

Proposition A.73. Let T be a triangulated category, and let

Xi
ui−→ Yi

vi−→ Zi
wi−→ Xi[1] (i = 1, 2)

be distinguished triangles. Then the triangle

X1 ⊕X2
u1⊕u2−−−−→ Y1 ⊕ Y2 v1⊕v2−−−−→ Z1 ⊕ Z2

w1⊕w2−−−−→ X1[1]⊕X2[1]

is distinguished as well.

See [Nee01, Prop. 1.2.1] for a proof of this proposition, which is trickier than
one might think at first sight. It follows that the triangle

(A.74) X −→ X ⊕ Z −→ Z
0−→ X[1]

is distinguished for all objects X,Z ∈ Ob(T ).
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Definition A.75. A distinguished triangle is called split if it is isomorphic to
a triangle of the form (A.74).

Proposition A.76. Let T be a triangulated category and let

X
u−→ Y

v−→ Z
w−→ X[1]

be a distinguished triangle. The following statements are equivalent.

i) The triangle is split.

ii) The equality w = 0 holds.

iii) There exists a morphism s : Z → Y satisfying v ◦ s = IdZ .

iv) There exists a morphism r : Y → X satisfying r ◦ u = IdX .

Proof. Clearly, statement i) implies statement ii). By Exercise A.49, there
are morphisms

sX : X −→ X ⊕ Z, sZ : Z −→ X ⊕ Z
rX : X ⊕ Z −→ X rZ : X ⊕ Z −→ Z

satisfying rX ◦ sX = IdX and rZ ◦ sZ = IdZ . This shows that i) also implies iii)
and iv). Assume that there is a morphism s : Z → Y satisfying v ◦ s = IdZ . Then
the equalities w = w ◦ IdZ = w ◦ v ◦ s = 0 hold by Remark A.71, and hence iii)
implies ii). Similarly, iv) implies ii). Therefore, the main content of the proposition
is that ii) implies i), which is proved in [Nee01, Cor. 1.2.7]. □

Definition A.77. Let T and T ′ be triangulated categories and let A be an
abelian category.

i) A triangulated functor F : T → T ′ is an additive functor that sends dis-
tinguished triangles to distinguished triangles and is compatible with the
self-equivalence [1], in that the equalities

F (X[1]) = F (X)[1] and F (f [1]) = F (f)[1]

hold for each object X and each morphism f of T .

ii) A cohomological functor H: T → A is an additive functor such that each
distinguished triangle

X
u−→ Y

v−→ Z
w−→ X[1]

in T gives rise to an exact sequence

· · · −→ H(X[n])
H(u[n])−−−−−→ H(Y [n])

H(v[n])−−−−−→ H(Z[n])
H(w[n])−−−−−→

H(X[n+ 1])
H(u[n+1])−−−−−−→ H(Y [n+ 1])

H(v[n+1])−−−−−−→ H(Z[n+ 1]) −→ · · ·
in A. (Here, [n] denotes the n-th iteration of the self-equivalence [1]
if n ⩾ 0 and the (−n)-th iteration of its inverse [−1] if n ⩽ 0.)

A.3.2. Example: the homotopy and derived categories. The first example of a
triangulated category is that of complexes up to homotopy, whose construction we
now sketch. Let A be an additive category. Recall the notions of shift of a complex
and cone of a morphism of complexes from Section A.1.5, as well as the notion of
homotopy and of homotopic equivalence from Section A.1.11.
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Definition A.78. Let A be an additive category. The homotopy category
of A is the category K(A) whose objects are the same as those of C(A) but whose
morphisms are equivalence classes with respect to the homotopy equivalence of
morphisms in C(A). The shift functor

[1] : K(A)→ K(A)

sends a complex A to the shifted complex A[1]. A distinguished triangle is a triangle
isomorphic to one of the form

A∗
f−→ B∗

b−→ cone(f)
a−→ A[1]

for some morphism of complexes f : A∗ → B∗ and a and b defined as in (A.26).
Together with this data, K(A) forms a triangulated category.

Remark A.79. There are analogous notions of bounded and bounded below
homotopy categories, denoted by Kb(A) and K+(A) respectively, obtained by start-
ing with the categories Cb(A) and C+(A) respectively. Nevertheless, the analogous
category K⩾0(A) obtained starting with the category C⩾0(A) is not triangulated,
as the shift functor [1] fails to be an equivalence of categories and the negative shift
functor [−1] is not defined.

Example A.80. Let A be an abelian category. The exactness of the se-
quence (A.27) implies that the functor

H: K(A) −→ A, A∗ 7−→ H0(A∗)

is a cohomological functor in the sense of Definition A.77.

Example A.81. Let A and B be additive categories and let F : A → B be an
additive functor. The functor F : K(A) → K(B) that sends a complex (A∗,d) to
the complex F ((A∗,d)) with terms F ((A∗,d))n = F (A)n and differential F (d) is a
triangulated functor (see Exercise A.95). There are also induced functors from the
homotopy categories Kb(A) and K+(A) to Kb(B) and K+(B) respectively.

The second example of a triangulated category, and for our purposes the main
one, is the derived category of an abelian category A, which is obtained by inverting
the quasi-isomorphisms in the homotopy category K(A). The construction is done
in two steps. The first step is the construction of the homotopy category K(A) that
we have already sketched. In the second step, one constructs D(A) by inverting
all quasi-isomorphisms. The objects of D(A) are the same as the objects of K(A)
(which are the same as the ones of C(A)), while the morphisms between objects A∗

and B∗ of D(A) are equivalence classes of diagrams of the form

(A.82)

C∗

!!

≃

}}
A∗ B∗,

where the arrow to the left is a quasi-isomorphism. The diagrams

C∗1

!!

≃

}}
A∗ B∗

and

C∗2

!!

≃

}}
A∗ B∗
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are considered to be equivalent if there exists a diagram of the same type and
morphisms C∗3 → C∗1 and C∗3 → C∗2 such that the diagram

(A.83)

C∗1
≃

~~   
A∗ C∗3

≃oo //

OO

��

B∗

C∗2

≃

`` >>

commutes in K(A). This means that all the triangles in (A.83) are commutative up
to homotopy (that is, different ways of composing arrows give rise to homotopically
equivalent morphisms), although not necessarily commutative.

Remark A.84. One reason to construct the derived category by inverting
quasi-isomorphisms in K(A) rather than directly in C(A) is that this procedure
allows for a simpler description of the morphisms. Otherwise, morphisms would be
given by chains of the form

C∗1

  

≃

~~

· · ·
≃

~~ !!

C∗k

  

≃

}}
A∗ C∗2 C∗k−1 B∗,

where all the arrows in the left direction are quasi-isomorphisms.

Remark A.85. There are analogous notions of bounded and bounded below
derived categories, denoted by Db(A) and D+(A) respectively.

The categories D(A), Db(A), and D+(A) are triangulated categories, with the
self-equivalence [1] defined by the shift of complexes, and the class of distinguished
triangles given by those triangles that are isomorphic to one of the form

A∗
f−→ B∗

b−→ cone(f)
a−→ A[1]∗.

That is, a triangle X → Y → Z → X[1] is distinguished if there exists a diagram

X //

��

Y

��

// Z

��

// X[1]

��
A∗ // B∗ // cone(f) // A[1]∗

whose vertical maps are quasi-isomorphisms and that commutes up to homotopy.

Remark A.86. In contrast with the ambiguity of signs of connection mor-
phisms in the definition of cohomological δ-functors (see Definition A.39 and Re-
mark A.40), there is no ambiguity of signs in the definition of triangulated functors
in Definition A.77. This implies that the choice of the class of distinguished triangles
allows us to fix the sign of many cohomological δ-functors, at least all those coming
from a triangulated functor between derived categories. We illustrate the choice of
signs with the following example. Let A be an abelian category and let f : A∗ → B∗

be a morphism of complexes such that fn : An → Bn is a monomorphism for all n.
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As in Exercise A.93, let C∗ denote the complex assembling the cokernels of the
morphisms fn, so that there is a short exact sequence of complexes

0 −→ A∗ −→ B∗ −→ C∗ −→ 0.

By Exercise A.93, there is an isomorphism

φ : cone(f)
∼−→ C∗

in the derived category D(A), and hence the connection morphism

∂n : Hn(C∗)→ Hn+1(A∗)

in the associated long exact sequence is given by the composite

Hn(C∗)
Hn(φ)−1

−−−−−−→ Hn(cone(f)) −→ Hn(A[1]∗) = Hn+1(A∗).

This yields a long exact sequence

(A.87) · · · −→ Hn(A∗)
f−→ Hn(B∗)

b−→ Hn(C∗)
a−→ Hn+1(A∗) −→ · · · ,

where a and b denote the maps (A.26) composed with Hn(φ)−1. Besides, the sign in
Axiom (T2) of Definition A.69 implies that the short exact sequence of complexes

0 −→ B∗ −→ cone(f) −→ A[1]∗ −→ 0

gives rise to the long exact sequence

(A.88) · · · −→ Hn(B∗)
b−→ Hn(C∗)

a−→ Hn+1(A∗)
−f−→ Hn+1(B∗) −→ · · · .

This apparent contradiction in the signs is explained by the fact that the exact
sequence (A.88) is isomorphic to (A.87) shifted by 1. Note also that the connection
morphism obtained from Definition A.77 is minus the connection morphism of the
exact sequence (A.38) that we constructed by hand (see Exercise A.97).

Definition A.89. Let A be an abelian category. The derived category of A is
the category D(A) we just described. The localization functor is the functor

Q : K(A)→ D(A)

that is the identity on objects and sends a morphism to its equivalence class. There
are analogous localization functors from Kb(A) and K+(A) to Db(A) and D+(A).

A.3.3. Verdier localization. The construction of the derived category is an ex-
ample of a more general process called Verdier localization. For more details and a
proof of the main result below, the reader is referred to [Nee01, § 2.1].

Proposition A.90. Let T be a triangulated category and let E be a triangulated
subcategory of T (Definition A.70). There exists a triangulated category T /E that
is universal for the following two properties:

i) there is a triangulated functor T → T /E that is the identity on objects;

ii) every object X ∈ Ob(E) is isomorphic to the zero object 0 in T /E.
For example, the derived category D?(A) is obtained from the homotopy cat-

egory K?(A) by taking the Verdier localization with respect to the triangulated
subcategory of complexes that are quasi-isomorphic to zero.

The Verdier localization is closely related to the notion of thick subcategory.

Definition A.91. A thick subcategory of a triangulated category T is a tri-
angulated subcategory E that contains all the direct summands of its objects.
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Remark A.92. In the statement of Proposition A.90, it is not necessary to
assume that the triangulated subcategory E is thick. Nevertheless, we can always
reduce to this case. Indeed, the kernel E ′ of the functor T → T /E , defined as the
full subcategory of T consisting of objects that are sent to a zero object, is a thick
subcategory by [Nee01, Rmk. 2.1.7]. In fact, it is the smallest thick subcategory
containing E , and the categories T /E and T /E ′ are canonically equivalent.

⋆ ⋆ ⋆

Exercise A.93. Let A be an abelian category and let f : A∗ → B∗ be a
morphism of complexes in A.

i) Assume that fn : An → Bn is a monomorphism for each n ∈ Z. Let C∗ be
the complex with Cn = Coker(fn) and differential induced by that of B∗.
Let p : B∗ → C∗ be the projection map. Prove that the map

cone(f) −→ C∗, (a, b) 7−→ p(b)

is a morphism of complexes, which becomes an isomorphism in D(A).

ii) Assume that the map fn : An → Bn is an epimorphism for each n ∈ Z.
Let C∗ be the complex with Cn = Ker(fn) and differential induced by
that of A∗. Let ι : C∗ → A∗ denote the inclusion map. Prove that

C∗ −→ Tot(f), c 7−→ (ι(c), 0)

is a morphism of complexes, which becomes an isomorphism in D(A).

iii) Assume that A has the property that every short exact sequence is split
(for instance, the category of vector spaces over a field has this property).
Show that the previous quasi-isomorphisms are homotopy equivalences.
Give an example showing that the assumption on A is necessary.

Exercise A.94. Let f : A∗ → B∗ and g : A∗ → C∗ be morphisms of complexes
in an abelian category A. Show that, if g is a quasi-isomorphism, then the compo-
sition B → B ⊕ C → cone(f + g) is a quasi-isomorphism.

Exercise A.95. Let F : A → B be an additive functor of abelian categories.

i) If (A∗,d) is a complex in A, then (F (A∗), F (d)) is a complex in B. Prove
that, if f and g are homotopically equivalent morphisms in A, then F (f)
and F (g) are also homotopically equivalent in B, so F induces a functor

F : K(A) −→ K(B).

Prove also that this functor restricts to functors between the bounded and
bounded below homotopy categories.

ii) Prove that the induced functor F is compatible with the shift functor and
with formation of the cone. Conclude that F is a triangulated functor.

Exercise A.96. As we saw in Example A.80, taking cohomology in degree zero
gives rise to a cohomological functor. Let A and B be abelian categories.

i) Show that the cohomological functor H0 from K(B) to B descends to a
cohomological functor D(B)→ B.
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ii) Starting from a triangulated functor F : D(A) → D(B), define for n ∈ Z
the functors Fn : A → B as the composition

A −→ D(A)
F−→ D(B)

[n]−−→ D(B)
H0

−−→ B,
where the first map sends an object in A to this object seen as a com-
plex concentrated in degree zero. Show that the functors Fn with the
appropriate connection morphisms form a cohomological δ-functor.

iii) Starting from a triangulated functor F : K(A) → K(B), define for n ∈ Z
the functors Fn : A → B as the composition

A −→ K(A)
F−→ K(B)

[n]−−→ D(B)
H0

−−→ B.
Show by means of an example that the functors Fn do not form a coho-
mological δ-functor in general.

Exercise A.97. Prove that the connection morphisms appearing in the exact
sequence (A.38) and the connection morphism of Remark A.86 have opposite signs.

Exercise A.98. Let A be an abelian category. In this exercise, we show that
in general K(A) is not abelian, and C(A) is not triangulated with distinguished
triangles given again by A→ B → cone(f)→ A[1].

i) Use Proposition A.73 to prove that if

X
u−→ Y

v−→ Z
w−→ X[1]

is a distinguished triangle in a triangulated category and u is a monomor-
phism, then the triangle is split.

ii) Show that every distinguished triangle in a category that is both abelian
and triangulated is isomorphic to one of the form

(A.99) U [−1]⊕ V ( 0 Id
0 0 )−→ V ⊕W ( 0 Id

0 0 )−→ W ⊕ U ( 0 Id
0 0 )−→ U ⊕ V [1].

iii) Consider Z as a complex in C(Ab) concentrated in degree zero. Show
that, if the triangle

Z 2−→ Z −→ cone(2) −→ Z[1]

could be written in the form (A.99) in either C(Ab) or in K(Ab), then
the short exact sequence

0 −→ Z 2−→ Z −→ Z/2Z −→ 0

would be split in Ab, which is not true.

A.4. Derived functors. LetA and B be abelian categories and let F : A → B
be an additive functor. We know from Example A.81 that F induces a triangulated
functor, also denoted by F , between the homotopy categories K(A) and K(B).
If F is exact, then this functor sends quasi-isomorphisms to quasi-isomorphisms,
and hence gives rise to a functor between the derived categories D(A) and D(B).
By contrast, non-exact functors do not extend naively to the derived categories.
Whenever it exists, the derived functor RF is the triangulated functor between the
derived categories that best approximates F .

We will discuss derived functors in the context of bounded below derived cat-
egories. This technically easier case is the only one we will use. For instance, the
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proof of Theorem A.109 that we sketch below uses in a essential way that we are
working with bounded below complexes. For more details about derived functors
in the unbounded case, the reader may consult [KS06, Chap. 14].

A.4.1. Definition of derived functors. Recall the localization functor

Q : K+(A) −→ D+(A)

from the homotopy to the derived category introduced in Definition A.89.

Definition A.100. Let A and B be abelian categories and F : A → B an
additive functor. We also denote by F the induced triangulated functor

F : K+(A) −→ K+(B)

between the corresponding homotopy categories. A (total) right derived functor
of F is a triangulated functor

RF : D+(A) −→ D+(B)

together with a natural transformation

ξ : Q ◦ F −→ RF ◦Q
of functors from K+(A) to D+(B) that satisfies the following universal property:
for each triangulated functor G : D+(A)→ D+(B) and each natural transformation
ζ : Q ◦ F → G ◦Q, there exists a unique natural transformation η : RF → G with

ζ = (η ◦Q) ◦ ξ.
We give more details on what this definition means. Since the functor Q is the

identity on objects, we will denote Q(A) simply by A. The natural transformation ξ
provides, for every object A of K+(A), a morphism

ξ(A) : F (A) −→ RF (A)

such that, for every morphism f ∈ HomK+(A)(A,B), the diagram

F (A)
F (f) //

ξ(A)

��

F (B)

ξ(B)

��
RF (A)

RF (f)
// RF (B)

commutes in D+(B). If G is a functor as in the definition, provided with a natural
transformation ζ, then for every object A of K+(A) there is also a morphism

ζ(A) : F (A) −→ G(A)

such that, for every morphism f ∈ HomK+(A)(A,B), the diagram

F (A)
F (f) //

ζ(A)

��

F (B)

ζ(B)

��
G(A)

G(f)
// G(B)

commutes in D+(B). The universality of RF means that there exist morphisms

η(A) : RF (A) −→ G(A), for each A ∈ Ob(D+(A)) = Ob(K+(A)),
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such that the equality η(A)◦ξ(A) = ζ(A) holds. This η is a natural transformation:
for every morphism f as above, the equality G(f) ◦ η(A) = η(B) ◦RF (f) holds.

Remark A.101.

i) Similarly, there is a notion of bounded derived functor

RF : Db(A)→ Db(B).

ii) The definition of right derived functor of a contravariant functor is the
same as above, thinking of a contravariant functor as a covariant functor
on the opposite category.

iii) The definition of the left derived functor LF is similar, with the direction
of the natural transformations ξ and η reversed.

From the total right derived functor we define the cohomological derived func-
tors by taking cohomology in a given degree.

Definition A.102. Let F : A → B be an additive functor between abelian
categories, and let F : K+(A)→ K+(B) also denote the extension to the homotopy
category. If the total right derived functor RF exists, then the cohomological derived
functors RnF are defined, for each n ∈ Z, as the composition

A −→ D+(A)
RF−−→ D+(B)

[n]−−→ D+(B)
H0

−−→ B.
In other words, for each object A ∈ Ob(A), the object RnF (A) ∈ Ob(B) is the
cohomology in degree n of the complex RF (A).

Note that the cohomological derived functors RnF : A → B form a cohomolog-
ical δ-functor in the sense of Definition A.39.

A.4.2. Categories with enough injectives. The standard situation in which one
can show the existence of the right derived functor is when F : A → B is a left exact
additive functor and the category A has enough injectives.

Definition A.103. Let A be an abelian category. An object I of A is called
injective if, for each monomorphism f : A→ B and each morphism α : A→ I, there
exists a morphism β : B → I satisfying α = β ◦ f . In other words, the map

HomA(B, I) −→ HomA(A, I)

given by precomposition with f is surjective.

Injective objects satisfy the following properties:

Lemma A.104. Let A be an abelian category and I an injective object of A.
i) The functor HomA(−, I) is exact.

ii) Every short exact sequence 0→ I → E → A→ 0 is split.

iii) For every object A ∈ Ob(A) and every integer n ⩾ 1, the Yoneda extension
group ExtnA(A, I) vanishes.

Proof. The first statement is just a reformulation of the definition of an in-
jective object because the functor HomA(−, I) is left exact for all objects I. Let

0 −→ I −→ E −→ A −→ 0
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be a short exact sequence. By the definition of an injective object, there is a
morphism E → I making the diagram

0 // I // E

��
I

commutative. This precisely means that the sequence is split. The third statement
follows either from the first one and Lemma A.66, or from the second statement
using the connection morphism. □

Lemma A.105. Let A and B be abelian categories and let F : A → B be a func-
tor that admits an exact left adjoint functor (Definition A.10). Then F preserves
injective objects.

Proof. Let I be an injective object of A and let f : A → B be a monomor-
phism in B. Consider the commutative diagram

HomA(G(B), I) //

≃
��

HomA(G(A), I)

≃
��

HomB(B,F (I)) // HomB(A,F (I)),

where G is a left exact adjoint functor. Since G is exact, G(f) : G(A) → G(B)
is a monomorphism and, the object I being injective, the top horizontal arrow is
surjective. Hence, so is the bottom one, which means that F (I) is injective. □

Intuitively, on an abelian category that only contains injective objects any
additive functor would be exact, since any short exact sequence would be split and
additive functors preserve direct sums. The idea to correct the lack of exactness of
a functor is then to replace any object with an injective one.

Definition A.106. An abelian category A is said to have enough injectives if,
for each A ∈ Ob(A), there is an injective object I and a monomorphism A→ I.

Example A.107. The injective objects of the category Ab of abelian groups
are the divisible abelian groups (see Exercices A.55 and A.128). For example, the
group I = Q/Z is divisible, and hence injective. For an abelian group A, let I(A)
denote the product of copies of Q/Z indexed by the set HomAb(A,Q/Z). By
Exercise A.129, the abelian group I(A) is injective. By Excercise A.127, the map

eA : A −→ I(A)

a 7−→ (f(a))f∈HomAb(A,Q/Z)

is a monomorphism. From this, it follows that the Ab has enough injectives.

Example A.108. The category ModR of left modules over a general ring R has
enough injectives as well. For this, we first observe that, given a right (resp. left)
R-module M and an abelian group A, the set HomAb(M,A) has a structure of
left (resp. right) R-module, given by (rf)(a) = f(ar) (resp. (fr)(a) = f(ra)). In
particular, this gives us a functor HomAb(R,−) from Ab to ModR. This functor
is a right adjoint to the forgetful functor from ModR to Ab that is exact. It then
follows from Lemma A.105 that the functor HomAb(R,−) sends injective objects
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to injective objects. Let now M be a left R-module, and let I(M) be the product of
copies of Q/Z indexed by HomAb(M,Q/Z). The morphism M → I(M) of abelian
groups discussed in Example A.107 induces a morphism of R-modules

HomAb(R,M) −→ HomAb(R, I(M)).

Since the functor HomAb(R,−) left exact, this map is a monomorphism. Compos-
ing with the monomorphism M → HomAb(R,M) that sends an element m ∈ M
to the unique R-linear map that sends 1 to m, we obtain a monomorphism

M −→ HomAb(R, I(M)).

By Exercise A.129, the abelian group I(M) is injective and, by Lemma A.105,
the R-module HomAb(R, I(M)) is injective. Thus, ModR has enough injectives.

The previous examples suggest that it might not be possible to find a monomor-
phism into an injective object if one imposes some finiteness conditions on the
objects. Indeed, the subcategory of ModR consisting of finitely generated left
R-modules does not have enough injectives in general. For example, already in the
case R = Z, there are no finitely generated divisible abelian groups.

A.4.3. Existence of derived functors in the presence of enough injectives.

Theorem A.109. Let A be an abelian category with enough injectives and I
the full subcategory of A consisting of injective objects. The natural functor

(A.110) K+(I) −→ D+(A)

is an equivalence of categories.

This is proved, for instance, in [GM03, Thm. III.5.21], relying on the existence
and main properties of injective resolutions.

Definition A.111.

i) Let A∗ be a bounded below complex in C+(A). A resolution of A∗ is a
bounded below complex I∗ with a quasi-isomorphism A∗ → I∗.

ii) Let A ∈ Ob(A) be an object. An injective resolution of A is a complex
of injective objects I0 → I1 → · · · along with a morphism A → I0 such
that the sequence

0 −→ A −→ I0 −→ I1 −→ · · ·
is exact. Note that this is a particular case of a resolution of a complex
concentrated in degree zero.

To show that the functor (A.110) is essentially surjective, one proves that every
bounded below cochain complex admits an injective resolution. To show that the
functor is fully faithful, one combines the following results:

i) a morphism f : A∗ → B∗ in C+(A) can always be completed to a diagram

A∗ //

��

B∗

��
I∗A

// I∗B ,

where I∗A and I∗B are injective resolutions of A and B respectively;
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ii) if f : A∗ → I∗ and g : A∗ → J∗ are quasi-isomorphisms, then there exist a
third bounded below complex K∗ made up of injective objects and quasi-
isomorphisms ψ : I∗ → K∗ and φ : J∗ → K∗;

iii) if I∗1 → I∗2 is a quasi-isomorphism between objects of K+(I), then it is a
homotopy equivalence, and hence already an isomorphism in K+(I).

Proposition A.112. Let A and B be abelian categories, and let F : A → B be
a left exact functor. Assume that A has enough injectives. Then the composition

D+(A) −→ K+(I)
F−→ K+(B)

Q−→ D+(B),

where the first functor is a quasi-inverse of the equivalence of categories of Theo-
rem A.109, satisfies the universal property of Definition A.100, and hence is the
total derived functor of F . In concrete terms, RF can be computed as

RF (A∗) = F (I∗),

where I∗ is any injective resolution of A∗.

Proof. Let G : D+(A) → D+(B) be a functor along with a natural transfor-
mation Q ◦ F → G ◦ Q. Out of any injective resolution A∗ → I∗, we obtain a
morphism RF (A∗)→ G(A∗) as the composition

RF (A∗) = F (I∗) −→ G(I∗) −→ G(A∗),

where the last morphism is the result of applying the functor G to the inverse of
the isomorphism A∗ → I∗ in D+(A). Then one verifies that this composition is
independent of the choice of the resolution, and that it provides a natural trans-
formation RF → G satisfying the required properties. This is done in the proof
of [GM03, Thm. III.6.8]. In this reference, a slightly more general result is proved
in terms of an adapted class of objects, but as explained in [GM03, Thm. III.6.12],
under the assumption that there are enough injectives, the class of injective objects
is an adapted class in which quasi-isomorphism are homotopy equivalences. □

It follows from Proposition A.112 that the cohomological derived functors

RnF : A −→ B

of Definition A.102 are given by

RnF (A) = Hn(F (I∗)),

for any injective resolution I∗ of an object A ∈ Ob(A).

Lemma A.113. Let A and B be abelian categories, and let F : A → B be a left
exact functor. Assume that A has enough injectives.

i) For each object A ∈ Ob(A), the equality F (A) = R0F (A) holds.

ii) For each injective object I, the vanishing RnF (I) = 0 holds for all n ⩾ 1.

Proof. Exercise A.126. □
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A.4.4. Yoneda extensions and higher derived functors.

Example A.114. Let A be an abelian category with enough injectives. Then
the Yoneda extension groups can also be obtained by deriving the functor Hom.
More precisely, given an object A ∈ Ob(A), the functor HomA(A,−) is left exact
(Exercise A.59) and, for any object B ∈ Ob(A), there are functorial isomorphisms

(A.115) ExtnA(A,B)
∼−→ Rn HomA(A,−)(B).

For ease of notation, we write Rn HomA(A,−)(B) = Rn HomA(A,B). This is
unambiguous in view of the equality

Rn HomA(A,−)(B) = Rn HomA(−, B)(A).

To prove (A.115), we start with the equalities

Ext0A(A,B) = HomA(A,B) = R0 HomA(A,B)

that hold by definition and Lemma A.113 i). Assume by induction that there are
functorial isomorphisms

ExtmA (A,B)
∼−→ Rm HomA(A,B)

for all integers 0 ⩽ m < n. Let

0 −→ B −→ I −→ C −→ 0

be a short exact sequence with I injective. By induction, there is a commutative
diagram with exact rows

Extn−1A (A, I) //

≃
��

Extn−1A (A,C)
∂ //

≃
��

ExtnA(A,B) // 0

Rn−1 HomA(A, I) // Rn−1 HomA(A,C)
∂ // Rn HomA(A,B) // 0.

Since the two vertical arrows are isomorphisms, there is a unique isomorphism

ExtnA(A,B)
≃−→ Rn HomA(A,B)

making the diagram commutative. One then checks that this isomorphism is inde-
pendent of the chosen exact sequence and is functorial.

In the previous example, we have interpreted Yoneda extension groups as the
derived functors of the Hom functor. There is yet another interpretation as Hom
functors in the derived category.

Proposition A.116. Let A be an abelian category, and let A,B ∈ Ob(A) be
objects of A. We see A and B as objects in D+(A) concentrated in degree zero.
For each n ⩾ 0, there are functorial isomorphisms

ExtnA(A,B)
∼−→ HomD+(A)(A,B[n]).

Proof. We start by constructing the map. Let

E : 0 −→ B
ι−→ Cn−1 −→ · · · −→ C0

π−→ A −→ 0

be a degree n extension of A by B. Let C∗ be the complex obtained from E by
deleting A and putting the object Ci in degree −i, so that B sits in degree −n.
The map C0 → A induces a morphisms of complexes C∗ → A, which by the
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exactness of E is a quasi-isomorphism. The identity of B also defines a morphism
of complexes C∗ → B[n]. We then map the extension E to the morphism

(A.117)

C∗

""

≃

~~
A B[n]

in the derived category. Conversely, for an element of HomD+(A)(A,B[n]) repre-
sented by a diagram (A.117) with (C∗,d) a complex quasi-isomorphic to A, we set

C ′0 = Ker(d0 : C0 −→ C1),

C ′i = C−i, for i = 1, . . . , n− 1,

B′ = C−n/ Im(d−n−1).

We obtain an extension E′ ∈ ExtnA(A,B′) and a morphism B′ → B. By the
functoriality of Yoneda extensions, we deduce an extension E ∈ ExtnA(A,B).

The following facts are left as an exercise:

i) Equivalent extensions give rise to the same morphism in D+(A).

ii) Two representations of the same morphism in the derived category define
the same class of extensions.

iii) The two constructions are inverse of each other.

This concludes the proof. □

A.4.5. Projective objects. The dual notion of injective object is that of pro-
jective object. Most of the discussion in the previous sections explaining how to
compute right derived functors using injective objects carries through and allows us
to compute left derived functors using projective objects. This is left as an exercise
in [GM03, Ex. III.5.1] and is developed in detail in [Wei94, § 2.4].

Definition A.118. Let A be an abelian category. An object P of A is called
projective if, for each epimorphism f : B → A and each morphism α : P → A, there
exists a morphism β : P → B satisfying α = f ◦ β. In other words, the map

HomA(P,B) −→ HomA(P,A)

given by postcomposition with f is surjective.

The dual of Lemma A.104 is the next result, whose proof is left to the reader.

Lemma A.119. Let A be an abelian category and P a projective object of A.
i) The functor HomA(P,−) is exact.

ii) Every short exact sequence 0→ A→ E → P → 0 is split.

iii) For every object A ∈ Ob(A) and every integer n ⩾ 1, the Yoneda extension
group ExtnA(P,A) vanishes.

There is also the notion of having enough projectives.

Definition A.120. An abelian category A is said to have enough projectives
if, for each A ∈ Ob(A), there is a projective object P and an epimorphism P → A.

Example A.121. Let R be a ring. By Exercise A.132, the category ModR of
left R-modules has enough projectives.
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Dually to Theorem A.109, we have:

Theorem A.122. Let A be an abelian category with enough projectives and P
the full subcategory of A consisting of projective objects. The natural functor

K−(P) −→ D−(A)

is an equivalence of categories.

If A∗ is a bounded above complex on an abelian category A, a projective resolu-
tion of A∗ is a bounded above complex P ∗ consisting of projective objects, together
with a quasi-isomorphism P ∗ → A∗. As for a category with enough injectives, the
main ingredient of the proof of Theorem A.122 is that, if A has enough projec-
tives, then projective resolutions always exist. By the dual argument of the proof
of Proposition A.112, we then deduce the following.

Corollary A.123. Let A and B be abelian categories, and let F : A → B be
a right exact functor. Assume that A has enough projectives. Then the total left
derived functor LF of F can be computed as

LF (A∗) = F (P ∗),

where P ∗ is any projective resolution of A∗.

Example A.124. Let R be a ring and M an R-module. The functor

· ⊗M : ModR →ModR

is right exact. The Tor-modules are defined as the cohomological left derived func-
tors of the tensor product functor. That is,

TorRk (N,M) = Lk(· ⊗M)(N).

Remark A.125. Recall that the data of a contravariant functor F : A → B
is equivalent to the data of a covariant functor F op : Aop → B. A contravariant
functor is left (resp. right) exact if and only if F op is. An injective object of A
is the same as a projective object of Aop, and vice versa. Therefore, the right
derived functors of a left exact contravariant functor are computed using projective
resolutions, whereas the left derived functors of a right exact contravariant functor
are computed using injective resolutions. See Exercise A.133 for an example.

⋆ ⋆ ⋆

Exercise A.126. Prove Lemma A.113.

Exercise A.127. Let A be an abelian group and a ∈ A a non-neutral element.
Show that there is a morphism of groups f : A→ Q/Z satisfying f(a) ̸= 0.

Exercise A.128. Prove that an abelian group is an injective object in the
category Ab if and only if it is a divisible abelian group.

Exercise A.129. Let A be an abelian category and let (Iα)α be a family of
objects of A. Assume that there exist an object I of A and morphisms I → Iα for
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all α such that, for every object X of A along with morphisms X → Iα for all α,
there exists a unique morphism X → I making the diagrams

X //

  

I

��
Iα

commutative for all α. We then say that I is the product of the objects Iα and
write I =

∏
Iα (see A.163). Show that a product of injective objects is injective.

Exercise A.130. Fill the details in the proof of Proposition A.116.

Exercise A.131. Let A be an abelian category that has enough injectives.

i) (Horseshoe lemma) Let 0 → A → B → C → 0 be a short exact sequence
in A, and let I∗A and I∗C be injective resolutions of A and C respectively.
Prove that there is an injective resolution I∗B of B and morphisms of
complexes I∗A → I∗B and I∗B → I∗C such that the diagram

0 // I∗A // I∗B // I∗C // 0

0 // A //

OO

B //

OO

C //

OO

0

is commutative with exact rows.

ii) Let A∗ be a bounded below complex in A. Show that we can find a double
complex I∗,∗ of injective objects, fitting in a commutative diagram

...
...

...

· · · // In−1,1

OO

d // In,1

OO

d // In+1,1

OO

// · · ·

· · · // In−1,0

OO

d // In,0

OO

d // In+1,0

OO

// · · ·

· · · // An−1

OO

d // An

OO

d // An+1

OO

// · · ·

0

OO

0

OO

0

OO

with exact columns and such that, for each p, the following holds:
a) the complex Bp,∗ = Im(d : Ip−1,∗ → Ip,∗) is an injective resolution

of Im(d : Ap−1 → Ap);

b) the complex Zp,∗ = Ker(d : Ip,∗ → Ip+1,∗) is an injective resolution
of Ker(d : Ap → Ap+1);

c) the complex Zp,∗/Bp,∗ is an injective resolution of Hp(A∗).

iii) Let us now assume that A has enough projectives instead of injectives.
State and prove the corresponding statements for projective objects.
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Exercise A.132. Let ModR be the category of left modules over a ring R.
Show that an object P of ModR is projective if and only if it is a direct summand
of a free R-module. Conclude that the category ModR has enough projectives.

Exercise A.133. Let A be a category with enough injectives and projectives.
For any object A ∈ Ob(A), the functor HomA(A,−) is a left exact covariant functor,
while HomA(−, A) is a left exact contravariant functor. Therefore, the notation

Rn HomA(A,B)

might in principle be ambiguous. Your task in this exercise is to show that there is
no such ambiguity. Prove that there are canonical isomorphisms

Rn HomA(−, B)(A)
∼−→ Rn HomA(A,−)(B),

where the right-hand side is computed using an injective resolution of B, and the
left-hand side using a projective resolution of A.

Exercise A.134. By Exercise A.132, every free abelian group is projective.

i) Use that any subgroup of a free abelian group is free to prove that every
abelian group G admits a two steps projective resolution

0 −→ P1 −→ P0 −→ G −→ 0.

ii) Using such a resolution, prove the vanishing TorkAb(A,B) = 0 for all
abelian groups A,B and all k ⩾ 2.

iii) Use Exercise A.133 to show the vanishing ExtkAb(A,B) = 0 for all abelian
groups A,B and all k ⩾ 2.

A.5. t-structures. There are many natural situations in which we are able to
construct a triangulated category but we would like to obtain an abelian category
instead. In their work on perverse sheaves [BBD82], Beilinson, Bernstein, Deligne,
and Gabber introduced the notion of a t-structure as a way of extracting an abelian
category from a triangulated category. This is precisely how the abelian category
of mixed Tate motives over a number field is constructed in Section 4.3.

A.5.1. t-structures and their hearts.

Definition A.135 (Beilinson–Bernstein–Deligne–Gabber). Let T be a trian-
gulated category. A t-structure on T is a pair of strictly full (that is, full and closed
under isomorphism) subcategories

(T ⩽0, T ⩾0)

such that, defining for each integer n the subcategories

T ⩽n = T ⩽0[−n] and T ⩾n = T ⩾0[−n]

of T , the following three conditions hold:

i) T ⩽−1 ⊆ T ⩽0 and T ⩾1 ⊆ T ⩾0.

ii) (Orthogonality) If X ∈ Ob(T ⩽0) and Y ∈ Ob(T ⩾1), then

HomT (X,Y ) = 0.

iii) Each object X ∈ Ob(T ) sits into a distinguished triangle

(A.136) Y −→ X −→ Z −→ Y [1]

with Y ∈ Ob(T ⩽0) and Z ∈ Ob(T ⩾1).
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We say that a t-structure is non-degenerate if, in addition to the previous axioms,
the intersections ∩n∈ZT ⩽n and ∩n∈ZT ⩾n are reduced to zero.

Definition A.137. The heart of a t-structure is the full subcategory

T 0 = T ⩽0 ∩ T ⩾0.

A functor F : T1 → T2 of triangulated categories endowed with t-structures is said

to be t-exact whenever F (T ⩽0
1 ) ⊆ T ⩽0

2 and F (T ⩾0
1 ) ⊆ T ⩾0

2 , and hence F restricts
to a functor between the hearts.

Note that the objects Y and Z in the triangle (A.136) are not a priori required
to be unique. However, this follows from the other axioms:

Lemma A.138 ([BBD82, Prop. 1.3.3]). Let T be a triangulated category en-
dowed with a t-structure.

i) The inclusion of T ⩽n into T admits a right adjoint functor

t⩽n : T −→ T ⩽n

and the inclusion T ⩾n into T admits a left adjoint functor

t⩾n : T −→ T ⩾n.

ii) For each object X ∈ Ob(T ), there exists a unique morphism

w ∈ HomT (t⩾1X, t⩽0X[1])

such that the following is a distinguished triangle:

t⩽0X −→ X −→ t⩾1X
w−→ t⩽0X[1].

Up to unique isomorphism, this triangle is the only one satisfying condi-
tion iii) in Definition A.135.

Moreover, for a ⩽ b, there is a unique isomorphism

(A.139) t⩾at⩽bX
∼−→ t⩽bt⩾aX.

The standard example of a t-structure is the following:

Example A.140. Let A be an abelian category, and let Db(A) be its bounded
derived category as in Section A.3.2. This triangulated category is endowed with a
canonical t-structure that measures how far a complex is from having its cohomology
concentrated in degree zero. For each integer n, define the full subcategories

(A.141)
T ⩽n = {C∗ ∈ Db(A) | Hm(C∗) = 0 for all m > n},
T ⩾n = {C∗ ∈ Db(A) | Hm(C∗) = 0 for all m < n}.

We claim that the pair (T ⩽0, T ⩾0) forms a non-degenerate t-structure on Db(A).
Its heart T 0 is the subcategory of complexes whose cohomology is concentrated in
degree 0, and the functor A → T 0 obtained by viewing an object of A as a complex
concentrated in degree 0 is an equivalence of categories.

First of all, the relations

T ⩽n = T ⩽0[−n], T ⩾n = T ⩾0[−n], T ⩽−1 ⊆ T ⩽0, T ⩾1 ⊆ T ⩾0
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are clear from the formulas (A.141). In particular, axiom i) of Definition A.135
holds. To check the remaining axioms and make the functors from Lemma A.138
explicit, we consider the canonical truncations

(τ⩽nC)p =





Cp, if p < n,

Ker(d), if p = n,

0, if p > n.

(τ⩾nC)p =





0, if p < n,

Cp/ Im(d), if p = n,

Cp, if p > n.

For each integer n, the inclusions and projections induce morphisms of complexes

(A.142) τ⩽nC −→ C and C −→ τ⩾nC.

Moreover, the canonical truncations are functorial and satisfy

Hp(τ⩽nC) =

{
Hp(C), if p ⩽ n,

0, if p > n,

Hp(τ⩾nC) =

{
0, if p < n,

Hp(C), if p ⩾ n.

In particular, τ⩽nC belongs to the subcategory T ⩽n, and τ⩾nC belongs to T ⩾n. In
this case, the functors t⩽n and t⩾n are given by the canonical truncations, namely

t⩽nC = τ⩽nC and t⩾nC = τ⩾nC,

so that the following equality holds:

t⩽0t⩾0(C[n]) = Hn(C).

Let us check the orthogonality axiom ii). Let C∗ and D∗ be complexes satisfy-
ing Hm(C∗) = 0 for all m > n and Hm(D∗) = 0 for all m ⩽ n, and let f : C∗ → D∗

be a morphism of complexes. Then we can complete f to a sequence

(A.143) τ⩽nC
∼−→ C∗

f−→ D∗
∼−→ τ⩽n+1D,

where the leftmost and the rightmost morphisms are quasi-isomorphisms by the as-
sumptions on the cohomology of the complexes. Thus, τ⩽nC and τ⩽n+1D represent
the same objects as C∗ and D∗ in the derived category. The composition (A.143) is
zero since the source and the target are complexes concentrated in disjoint degrees,
and hence f is zero as well. The distinguished triangle (A.136) is given by

τ⩽0C −→ C −→ τ⩾1C −→ τ⩽0C[1],

where the first two arrows are the morphisms (A.142), and the last arrow is zero.
Finally, the t-structure is non-degenerate since ∩n∈ZT ⩽n and ∩n∈ZT ⩾n consist of
complexes quasi-isomorphic to zero.

We now copy two definitions from [BBD82, § 1.2].

Definition A.144. Let T be a triangulated category, and let A be a subcat-
egory of T . Given objects X,Y, Z ∈ Ob(T ), we say that Y is an extension of Z
by X if there exists a distinguished triangle

X −→ Y −→ Z −→ X[1].

We say that A is stable under extensions if, whenever X and Z are objects of A
and Y is an extension of Z by X, then Y belongs to A as well.
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Definition A.145. Let T be as above and let A be a full abelian subcategory
of T . We say that A is admissible if it satisfies the following conditions:

i) given objects X,Y ∈ Ob(A) and an integer i < 0,

HomT (X,Y [i]) = 0;

ii) given objects A,B,C ∈ Ob(A), a sequence

0 −→ B
u−→ C

v−→ A −→ 0

is a short exact sequence in A if and only if

(A.146) B
u−→ C

v−→ A
w−→ B[1]

is a distinguished triangle in T .

Remark A.147. The definition presented in [BBD82, 1.2.5] is apparently
weaker than the above Definition A.145, as it only demands that every short exact
sequence B → C → A can be extended to a distinguished triangle. Nevertheless, it
follows from Propositions 1.2.2 and 1.2.4 of loc. cit. that both definitions are in fact
equivalent. In [Lev93] the definition of admissible subcategory only includes state-
ment ii) and not condition i). In any case, if a subcategory satisfies the conditions
of Definition A.145 it is also admissible in the sense of [Lev93].

Remark A.148. The extension (A.146) to a distinguished triangle is unique.
Indeed, it follows from axiom (T3) in the definition of triangulated categories that,
given two extensions as in (A.146), the identity maps B → B and C → C can be
completed to a morphism of triangles

B
u // C

v // A

h

��

w // B[1]

B
u // C

v // A
w′
// B[1]

in T . In particular, w = w′ ◦ h holds, and uniqueness amounts to proving that h is
the identity. Since A is a full subcategory by definition, h : A → A is a morphism
in A satisfying h ◦ v = v. Since v is an epimorphism, we deduce that h = IdA.

The following theorem is proved in [BBD82, Thm. 1.3.6]:

Theorem A.149 (Beilinson–Bernstein–Deligne–Gabber). Let T be a triangu-
lated category and (T ⩾0, T ⩽0) a t-structure. The heart T 0 is a full admissible
abelian subcategory of T , which is stable under extensions.

Remark A.150. In general, however, T is not equivalent to the derived cate-
gory of the heart of the t-structure as a triangulated category (see Exercise A.155).

Definition A.151. Let T be a triangulated category endowed with a t-structure.
For each integer n, the n-th cohomology of an object X ∈ Ob(T ) with respect to
the t-structure is the following object of the heart:

(A.152) hn(X) = t⩽0t⩾0(X[n]) ∈ Ob(T 0).

By [BBD82, Thm. 1.3.6], the functor h0 is a cohomological functor. Recall from
Definition A.77 that this means that a distinguished triangle X → Y → Z → X[1]
induces a long exact sequence

· · · −→ hn(X) −→ hn(Y ) −→ hn(Z) −→ hn+1(X) −→ · · · .
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A.5.2. Extensions. Recall from Proposition A.116 that the extension groups in
an abelian category can be interpreted as morphism groups in the derived category.
To some extent, this generalizes to abelian subcategories of a triangulated category.
Consider a full admissible abelian subcategory A of a triangulated category T . The
definition of the map ExtnA(A,B) → HomD+(A)(A,B[n]) can be adapted to the
triangulated category T . Indeed, let 0 → B → C → A → 0 be an extension in A.
By Remark A.148, there exists a unique distinguished triangle B → C → A→ B[1],
yielding a map w : A→ B[1]. Moreover, the same argument shows that equivalent
extensions give rise to the same morphism w. We thus obtain a homomorphism

φ1 : Ext1A(A,B) −→ HomT (A,B[1]).

More generally, breaking a degree n extension

0 −→ B −→ Cn−1 −→ · · · −→ C0 −→ A −→ 0

into several short exact sequences yields a morphism A→ B[n] which only depends
on the equivalence class of the extension. For instance, if n = 2, one associates with

0 −→ B −→ C1
a−→ C0

b−→ A −→ 0

the short exact sequences

0 // B // C1
// Im(a) // 0

0 // Ker(b) // C0
// A // 0.

Setting D = Im(a) = Ker(b) and applying φ1 to the rows of the above diagram, we
get maps α : D → B[1] and β : A→ D[1]. Then we form

α[1] ◦ β : A −→ B[2].

Proposition A.153. Let T be a triangulated category and A a full admissible
abelian subcategory that is stable under extensions in T . Then the process we have
sketched gives well defined maps

φn : ExtnA(A,B) −→ HomT (A,B[n]) (n ⩾ 0).

Moreover, φ1 is an isomorphism and φ2 is an injection.

Proof. See [Lev93, Prop. 1.6]. □

⋆ ⋆ ⋆

Exercise A.154. Show that the distinguished triangle (A.136) in the definition
of t-structure is uniquely determined by X up to a unique isomorphism. Thus, it
makes sense to write Y = X⩽0 and Z = X⩾1. Moreover, the assignments X 7→ X⩽0

and X 7→ X⩾1 determine functors t⩽0 and t⩾0.

Exercise A.155 (A t-structure such that the derived category of the heart
is not equivalent to the original triangulated category). Let X be a non-empty
connected finite CW-complex and let ShQ(X) be the abelian category of sheaves
of Q-vector spaces on X. Consider the full subcategory

T ⊆ Db(ShQ(X))
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consisting of complexes of sheaves C whose cohomology sheaves Hi(C) are all con-
stant. Then T inherits the structure of a triangulated category. We define

T ⩽0 = {C | Hi(C) = 0 for i > 0},
T ⩾0 = {C | Hi(C) = 0 for i < 0}.

i) Show that the pair (T ⩽0, T ⩾0) forms a t-structure on T and that its heart
is equivalent to the category VecQ of finite-dimensional Q-vector spaces.

ii) Let Q
X

be the constant sheaf with stalk Q on X. Prove the equality

HomT (Q
X
,Q

X
[n]) = Hn(X,Q)

for every n ⩾ 0. Using the fact that the categories Db(T 0) and Db(VecQ)
are equivalent, show the vanishing

HomDb(T 0)(QX ,QX [n]) = 0 for n > 0.

Deduce that, as long as there exists some n ⩾ 1 such that Hn(X,Q)
is non-zero, there is no faithful triangulated functor from Db(T 0) to T
extending the inclusion T 0 ⊂ T .

Exercise A.156 (Weight structures). Let T be a triangulated category. After
Bondarko [Bon10], a weight structure on T is a pair of strictly full subcategories

(Tw⩽0, Tw⩾0)

such that, defining for each integer n the subcategories

Tw⩽n = Tw⩽0[n] and Tw⩾n = Tw⩾0[n]

of T , the following conditions hold:

• The categories Tw⩽0 and Tw⩾0 are stable under extraction of direct sum-
mands.

• Tw⩽0 ⊆ Tw⩽1 and Tw⩾1 ⊆ Tw⩾0.

• (Orthogonality) If X ∈ Ob(Tw⩽0) and Y ∈ Ob(Tw⩾1), then

HomT (X,Y ) = 0.

• Each object X ∈ Ob(T ) fits into a distinguished triangle

Y −→ X −→ Z −→ Y [1]

with Y ∈ Ob(Tw⩽0) and Z ∈ Ob(T⩾1).

By analogy with t-structures, the heart of a weight structure is the subcategory

Tw⩽0 ∩ Tw⩾0.

i) Spot the differences with the definition of a t-structure.

ii) Let T be the bounded derived category of the abelian category MHS
of mixed Hodge structures. Let Tw⩽0 (resp. Tw⩾0) be the subcategory
consisting of complexes A such that the mixed Hodge structure Hn(A)
has weights ⩽ n (resp. ⩾ n). Show that the pair (Tw⩽0, Tw⩾0) defines a
weight structure and compute its heart.
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A.6. Ind and pro-objects in a category. Inductive and projective limits
are important operations in category theory. Nevertheless, in many interesting
categories such limits may not exist. This is the case, for instance, for the category
of mixed Hodge structures. To remedy this situation, given a category C, one can
define categories Ind(C) and Pro(C) of inductive and projective systems in C, where
inductive or projective limits exist. We give a concise introduction to ind and
pro-categories and refer the reader to [KS06, Chap. 6] for more details.

A.6.1. Limits and colimits. A directed set is a non-empty set I endowed with
a partial order ⩽ with the property that, for all elements a, b ∈ I, there exists an
element c ∈ I satisfying a ⩽ c and b ⩽ c.

Example A.157. Here are examples of directed sets:

i) The set consisting of a single element.

ii) Any totally ordered set.

iii) The set P(X) of subsets of a given set X, with the order given by inclusion.

iv) The set N of natural numbers ordered by divisibility: a ⩽ b if a divides b.

The notion of filtered category generalizes that of directed set as follows:

Definition A.158. A filtered category D is a category such that:

i) there exists at least one object in D;

ii) given objects a, b ∈ Ob(D), there exists an object c and morphisms a→ c
and b→ c;

iii) given morphisms f1, f2 : a → b with the same source and target, there
exists a morphism g : b→ c satisfying g ◦ f1 = g ◦ f2.

Example A.159. A directed set I gives rise to a filtered category with set of
objects, I and morphisms Hom(x, y) reduced to a singleton for x ⩽ y and empty
otherwise. We write ∗ for the filtered category associated with the singleton.

Definition A.160. Let C be a category and let D be a small category.

i) A diagram in C with shape D is a functor X : D → C.
ii) A diagram is called constant if it factors through the category ∗.

iii) Let X and Y be diagrams with shape D. A morphism f from X to Y is
a natural transformation from X to Y .

iv) An inductive system X in C indexed by a filtered category D is a diagram
with shape D.

v) A direct system is an inductive system indexed by the filtered category
associated with a directed set as in Example A.159.

vi) A projective system X in C indexed by a filtered category D is a diagram
in Cop of shape D.

vii) An inverse system is a projective system indexed by the filtered category
associated to a directed set.

Definition A.161. Let C be a category, D a small category, and X = (Xd)d∈D
a diagram in C with shape D.

i) A colimit of X is a universal solution to the following problem: find an
object X0 in C together with a morphism of diagrams X → X0. Here, X0
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denotes at the same time the object X0 and the constant diagram X0 with
shape D. If X0 is such a universal solution, then we write

X0 = lim−→
d∈D

Xd.

If D is a filtered category, colimits are called inductive limits. An inductive
limit whose index category is a directed set is called a direct limit .

ii) A limit of X is a colimit of the diagram Xop : Dop → Cop. Alternatively,
a limit is a universal solution to the following problem: find an object X0

in C together with a morphism diagrams X0 → X. Again, X0 denotes
at the same time the object X0 and the constant diagram with shape D.
If X0 is such a universal solution, then we write

X0 = lim←−
d∈D

Xd.

If Dop is a filtered category, limits are called projective limits. A projective
limit whose index category is a directed set is called an inverse limit.

Remark A.162. The distinctions between colimit, inductive limit, and direct
limit, as well as between limit, projective limit, and inverse limit are not uniform in
the literature. The categorical notion of limit and colimit may look a little awkward
as now a direct limit is not a limit but a colimit. It is chosen in this way so that
products and kernels are examples of limits, while coproducts and cokernels are
examples of colimits (see Example A.163 and Exercise A.185).

Example A.163 (Products and coproducts as limits and colimits). The basic
examples of limits and colimits are products and coproducts. Let D be a small
category whose only morphisms are the identity morphisms for each object. This
is called a discrete category . A diagram with shape D in a category C is a collec-
tion X = {Xd}d∈Ob(D) of objects of C without fixing any morphism between them.
The product of this collection is defined as the limit of the discrete diagram, while
the coproduct is defined as the colimit of the same diagram:

∏

d∈D

Xd = lim←−
d∈D

Xd,
∐

d∈D

Xd = lim−→
d∈D

Xd.

In the category Set, the coproduct agrees with the disjoint union, while the product
agrees with the cartesian product. In an abelian category, the coproduct agrees with
the direct sum and the product is the usual one.

Remark A.164. In many cases, it is important to know if a functor respects
inductive limits. For this, it is enough to check if the functor respects direct limits.
Similarly, a functor that respects inverse limits also respects projective limits with
respect to any small filtered category.

A.6.2. Exactness properties of direct and inverse limits. We now discuss ex-
actness properties of direct and inverse limits. Direct limits are always exact, but
inverse limits may fail to be exact. Nevertheless, the so-called the Mittag–Lefler
condition is sufficient to guarantee that an inverse limit is exact.

Proposition A.165. Let A be an abelian category that admits colimits. Let I
be a directed set. Let K = {Ki}i∈I , L = {Li}i∈I , and M = {Mi}i∈I be directed
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systems indexed by I. Let f : K → L and g : L→M be morphisms of direct systems
such that the sequence

Ki
fi−→ Li

gi−→Mi

is exact for all i ∈ I. Then the following sequence is also exact:

lim−→
i∈I

Ki

lim−→ fi
−−−→ lim−→

i∈I
Li

lim−→ gi
−−−→ lim−→

i∈I
Mi.

Proof. Writing f̃ = lim−→ fi, g̃ = lim−→ gi, we need to prove the equality

Im f̃ = Ker g̃.

To ease the exposition, we will assume that A is the category ModR of left modules
over some ring R, and we will use the concrete description of the direct limit from
Exercise A.187. Given an element x ∈ Ki (resp. Li and Mi), we write [x, i] for its
image in lim−→Ki (resp. lim−→Li and lim−→Mi). Then

g̃(f̃([x, i])) = g̃([fi(xi), i]) = [gi(fi(xi)), i] = 0

by the exactness of the sequence at the i-th level, whence Im f̃ ⊂ Ker g̃. Let us now
assume g̃([x, i]) = 0. This implies that there is a j ⩾ i such that gj(ϕji(xi)) = 0,
where ϕji : Li → Lj denotes the corresponding map in the direct limit. By exactness
at the j-th level, there is an element y ∈ Kj such that fj(y) = ϕji(xi). Therefore,

f̃([y, j]) = [x, i],

and we deduce that Ker g̃ ⊂ Im f̃ , proving the equality and the exactness. □

We next introduce the Mittag–Leffler condition.

Definition A.166. Let I be a directed set and let K = {Kj , φij}j⩾i∈I be an
inverse system indexed by I in an abelian category A. We say that K satisfies the
Mittag–Leffler condition if, for all i ∈ I, the collection of subobjects

Kij = Im(φij : Kj → Ki)

of Ki stabilizes. That is, there exists an index j ⩾ i such that, for all k ⩾ j, the
natural map Kik → Kij is an isomorphism.

Example A.167. In the category ModR, if all the maps φij in an inverse
system K = {Kj , φij}j⩾i∈I are surjective, then the Mittag–Leffler condition holds.

The importance of the Mittag–Leffler condition stems from the next result,
which is a particular case of [Nee01, Lem. A.3.15].

Proposition A.168. Let A be an abelian category that admits arbitrary prod-
ucts and has enough projectives. Let I be a directed set. Let K = {Ki}i∈I ,
L = {Li}i∈I , and L = {Mi}i∈I be inverse systems indexed by I, and f : K → L
and g : L→M morphisms of inverse systems such that

0 −→ Ki
fi−→ Li

gi−→Mi −→ 0

is an exact sequence for all i ∈ I. Then the sequence

0 −→ lim←−
i∈I

Ki

lim←− fi
−−−→ lim←−

i∈I
Li

lim←− gi
−−−→ lim←−

i∈I
Mi
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is exact. If, furthermore, K satisfies the Mittag–Leffler condition, then the following
sequence is also exact:

0 −→ lim←−
i∈I

Ki

lim←− fi
−−−→ lim←−

i∈I
Li

lim←− gi
−−−→ lim←−

i∈I
Mi −→ 0.

Proof. Since the inverse limit functor is right adjoint to the functor that sends
an element X to the constant projective system X, it is left exact by Exercise A.60.
Exactness in the presence of the Mittag–Leffler condition and enough projectives
is proved in [Nee01, Lem. A.3.15]. □

Remark A.169. The Mittag–Leffler condition is not enough to guarantee the
exactness of inverse limits in the previous proposition. This fact was overlooked in
the literature until Neeman [Nee02] found a counterexample.

A.6.3. The ind and pro categories. We start with the basic definitions.

Definition A.170. Let C be any category. The ind-category of C is the univer-
sal category that “contains” C and is closed under inductive limits. More precisely,
it is a category Ind(C) closed under inductive limits, together with a functor

hI : C → Ind(C)
such that, for any category A closed under inductive limits, along with a func-
tor C → A, there exists a unique functor Ind(C) → A preserving inductive limits
and making the following triangle commute:

C hI //

""

Ind(C).

��
A

The pro-category of C is a category Pro(C) closed under projective limits to-
gether with a functor hP : C → Pro(C) such that, for any category A closed under
projective limits, with a functor C → A, there exists a unique functor Pro(C)→ A
preserving projective limits and making the following triangle commute:

C hP //

""

Pro(C).

��
A

We next give a description of the categories Ind(C) and Pro(C) unraveling the
construction of [KS06, § 6].

Proposition A.171. Let C be a category.

i) The ind-category Ind(C) is the category whose objects are inductive sys-
tems in C and whose morphisms are given by

HomInd(C)(X,Y ) = lim←−
d∈D

lim−→
e∈E

HomC(Xd, Ye)

for inductive systems X = (Xd)d∈D and Y = (Ye)e∈E.
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ii) The pro-category Pro(C) is the category whose objects are projective sys-
tems in C and whose morphisms are given by

HomPro(C)(X,Y ) = lim←−
e∈E

lim−→
d∈D

HomC(Xd, Ye)

for projective systems X = (Xd)d∈D and Y = (Ye)e∈E.

With this description of the ind-category Ind(C) and the pro-category Pro(C),
the functors hI : C → Ind(C) and hP : C → Pro(C) are given on an object X ∈ Ob(C)
by the constant inductive and projective system X.

Once we know that the categories Ind(C) and Pro(C) exist, the first useful
property is the following.

Proposition A.172. The functors hI and hP are fully faithful.

Proof. Denote by C∧ the category of functors from Cop to Set, and by C∨ the
category of functors from Cop to Setop. There are canonical functors hC : C → C∧
and kC : C → C∨ (see [KS06, Def. 1.4.2]) given by

hC(X)(Y ) = HomC(Y,X) and kC(X)(Y ) = HomC(X,Y ).

Since the category C∧ is closed under inductive limits and the category C∨ is closed
under projective limits (see [KS06, Cor. 2.4.3]), by the universal property of the
ind and pro-categories there are commutative diagrams

C hI //

hC ""

Ind(C)

��
C∧

, C hP //

kC ""

Pro(C)

��
C∨

.

Besides, the functors hC and kC are fully faithful (see [KS06, Cor. 1.4.4]), and
hence hI and hP are fully faithful as well. □

Remark A.173. In fact, the functors Ind(C) → C∧ and Pro(C) → C∨ are
also fully faithful, and we can alternatively define Ind(C) as a subcategory of C∧,
and Pro(C) as a subcategory of C∨.

One needs to be careful with the fact that the objects in Ind(C) are “formal”
limits and not “true” limits; that is, if C is already closed under inductive limits,
then in general the functor C → Ind(C) does not preserve inductive limits (see
Exercise A.186). In this case, to understand the difference between C and Ind(C),
it is convenient to introduce the notion of compact objects.

Definition A.174. Let C be a category that admits inductive limits. An
object X of C is called compact if the canonical map

lim−→
d∈D

Hom(X,Yd) −→ Hom(X, lim−→
d∈D

Yd)

is an isomorphism for every inductive system (Yd)d∈D.
Dually, if C is a category that admits projective limits, then an object X of C

is called cocompact if the canonical map

lim−→
d∈D

Hom(Yd, X) −→ Hom(lim←−
d∈D

Yd, X)

is an isomorphism for every projective system (Yd)d∈D.
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The interest of the notion of compact object is the following result, which is
proved in [KS06, Cor. 6.3.5].

Theorem A.175. Let C be a category that admits inductive limits, and let Ccpt
be the full subcategory of C consisting of compact objects. If every object of C is an
inductive limit of compact objects, then the composition

Ind(Ccpt) −→ Ind(C) −→ C
is an equivalence of categories. Dually, let C be a category that admits projective
limits, and let Cccpt be the full subcategory of C consisting of cocompact objects. If
every object of C is a projective limit of cocompact objects, then the composition

Pro(Cccpt) −→ Pro(C) −→ C
is an equivalence of categories.

Example A.176. In the category Vec∞k of vector spaces over a field k, the
compact objects and the cocompact objects are the finite-dimensional vector spaces
(see also Exercise A.188).

A.6.4. Derived functors via ind-objects. Working on the ind-category allows
us to construct derived functors even when the original category does not have
enough injectives (see, for instance, [Wil00]). In what follows, we explain how this
works for the bounded below derived category; a similar construction applies to
the bounded derived category. Throughout, A denotes a small abelian category.
Consider the functor

(−)+ : K+(A) −→ Ind(K+(A))

that with a complex C associates the ind-complex

C+ = lim−→
(i,D)

D,

where the inductive limit is taken with respect to the small category in which

• objects are pairs (i,D) of D ∈ K+(A) and a quasi-isomorphism i : C → D,

• morphisms from (i1, D1) to (i2, D2) are morphisms f : D1 → D2 such that
the equality i2 = f ◦i1 holds in K+(A), that is, the morphisms i2 and f ◦i1
from C to D2 are homotopically equivalent.

It follows from the definition of the functor (−)+ that, if f : E → C is a quasi-
isomorphism, then the induced morphism

f+ : E+ −→ C+

is an isomorphism. There is a tautological natural transformation

(A.177) τ : hI −→ (−)+

from the functor hI : K+(A) → Ind(K+(A)) introduced in Definition A.170. The
morphism τC from hI(C) (the constant system C) to C+ is the one induced by
the quasi-isomorphism i in the position (i,D). This natural transformation has the
property that Ind(Q) ◦ τ is an isomorphism. Here, Q stands for the localization
functor from K+(A) to D+(A), and Ind(Q) is the induced functor between the
ind-categories. In the sequel, we will denote Ind(Q) simply by Q.

An additive functor of abelian categories F : A → B extends to a functor

F : Ind(K+(A)) −→ Ind(K+(B)).
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Since the functor (−)+ inverts quasi-isomorphisms, the composition

K+(A)
(−)+ // Ind(K+(A))

F // Ind(K+(B))

Q

��
Ind(D+(B))

factors uniquely through D+(A), thus defining a functor

RF : D+(A) −→ Ind(D+(B)).

Definition A.178 (Deligne [Del73, Déf. 1.2.1. (iii)]). The functor F is said to
be right derivable (in the bounded below derived category) if RF factors through
the category D+(B). In this case, the functor

RF : D+(A) −→ D+(B)

is called the total right derived functor.

Remark A.179. By Proposition A.172, the functor D+(B) → Ind(D+(B)) is
fully faithful. If it exists, the functor RF : D+(A)→ D+(B) is hence unique up to
a unique isomorphism of functors. As it is customary, we will pretend that it is
well defined.

There is also a criterion for existence of the total right derived functor: in
order to check that RF factors through a functor to D+(B), it suffices to check this
property on objects of A considered as complexes concentrated in degree zero.

Proposition A.180 ([Del73, Prop. 1.2.2. (ii)]). The functor F is right deriv-
able (in the bounded below derived category) if and only if the object

RF (A) ∈ Ob(Ind(D+(B)))

belongs to hI(D+(B)) for any object A ∈ Ob(A).

The following result justifies calling RF the total right derived functor.

Theorem A.181. Let A and B be abelian categories. If F : A → B is a right
derivable functor as in Definition A.178, then the total right derived functor RF
satisfies the universal property of Definition A.100.

Proof. Assume that there is a factorization RF : D+(A)→ D+(B) as in Def-
inition A.178. Using the tautological transformation τ from (A.177), we will first
prove that there is a natural transformation from Q ◦ F to RF ◦ Q. Since hI is
fully faithful (Proposition A.172), it is enough to construct a natural transforma-
tion after composition with hI , that is, from hI ◦Q ◦F to hI ◦RF ◦Q. On the one
hand, hI commutes with any additive functor, and hence the equality

hI ◦Q ◦ F = Q ◦ F ◦ hI
holds. On the other hand, by definition of right derivability (Definition A.178),

hI ◦RF ◦Q = Q ◦ F ◦ (−)+.

Therefore, τ gives rises to a natural transformation

hI ◦Q ◦ F = Q ◦ F ◦ hI −→ Q ◦ F ◦ (−)+ = hI ◦RF ◦Q,
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and hence to a unique natural transformation ξ : Q ◦ F → RF ◦Q satisfying

hI ◦ ξ = (Q ◦ F ) ◦ τ.
Let us now assume that a functor G : D+(A) → D+(B) and a natural trans-

formation ζ : Q ◦ F → G ◦ Q are given. According to Definition A.100, to show
that RF is a total right derived functor, we need to construct a natural transfor-
mation η : RF → G satisfying

(A.182) ζ = (η ◦Q) ◦ ξ.
We first observe that the natural transformation

(G ◦Q) ◦ τ : G ◦Q ◦ hI −→ G ◦Q ◦ (−)+

is an isomorphism because the localization functor Q inverts quasi-isomorphisms.
Thanks to the identifications hI ◦G◦Q = G◦Q◦hI and hI ◦RF ◦Q = Q◦F ◦(−)+,
we obtain a natural transformation

η′ = ((G ◦Q) ◦ τ)−1 ◦ (ζ ◦ (−)+) : hI ◦RF ◦Q −→ hI ◦G ◦Q.
Using again that hI is fully faithful, we obtain a natural transformation

η′′ : RF ◦Q −→ G ◦Q.
Since Q is a localization functor, this yields a natural transformation η : RF → G.

Let us explain this last step in more detail. As Q is the identity on objects, for
each object A of D+(A), we define

ηA : RF (A) = RF (Q(A)) −→ G(Q(A)) = G(A)

as η′′A. We need to check that, given f ∈ HomD+(A)(A,B), the diagram

(A.183) RF (A)
RF (f) //

ηA

��

RF (B)

ηB

��
G(A)

G(f)
// G(B)

commutes. Since morphisms in the derived category are diagrams of the form (A.82),
it suffices to check the commutativity of the diagram for morphisms of the form

• f = Q(g), with g ∈ HomK+(A)(A,B);

• f = Q(g)−1, for a quasi-isomorphism g.

In the first case, the commutativity of the diagram (A.183) follows from the com-
mutativity of the corresponding diagram for g and η′′. In the second case, the fact
that η′′ is a natural transformation gives a commutative diagram

RF (A)

ηA

��

RF (B)

ηB

��

RF (Q(g))oo

G(A) G(B).
G(Q(g))

oo

Since the horizontal arrows are isomorphisms, we deduce the commutativity of
diagram (A.183) for f .
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Finally, it remains to show that η is the unique natural transformation satisfy-
ing the compatibility condition (A.182). Indeed, given such a natural transforma-
tion η0, consider the commutative diagram of natural transformations

RF ◦Q ◦ (−)+

η0◦(Q◦(−)+)

��

hI ◦RF ◦Q
(RF◦Q)◦τ

≃
hh

hI◦η0◦Q

��

hI ◦Q ◦ F

hI◦ξ
gg

hI◦ζww

(Q◦F )◦τ // Q ◦ F ◦ (−)+.

≃
ξ◦(−)+

mm

ζ◦(−)+

qq

hI ◦G ◦Q

≃
(G◦Q)◦τ

vv
G ◦Q ◦ (−)+

Since hI is fully faithful and Q is a localization functor, η0 is univocally determined
by hI ◦ η0 ◦ Q. Since (G ◦ Q) ◦ τ and ξ ◦ (−)+ are isomorphisms, the natural
tranformation hI ◦ η0 ◦Q is univocally determined by the diagram. That is,

hI ◦ η0 ◦Q = ((G ◦Q) ◦ τ)−1 ◦ (ζ ◦ (−)+) ◦ (ξ ◦ (−)+)−1 ◦ ((RF ◦Q) ◦ τ).

From this, we see that η0 is unique, which concludes the proof. □

Example A.184. Let k be a subfield of C. The abelian category MHS(k) of
mixed Hodge structures over k does not have enough injectives (see Exercise A.189).
We will see in Exercise A.190 that if we consider the functor HomMHS(k)(H,−) to
take values in finite-dimensional vector spaces, then it is not right derivable, but if
we consider it as taking values in arbitrary vector spaces, then it is right derivable.

⋆ ⋆ ⋆

Exercise A.185. Let A be an abelian category and f : A → B a morphism.
Show that Ker(f) is a limit of the diagram

0

��
A

f // B,

and Coker(f) is a colimit of the diagram

0

A
f //

OO

B.

Exercise A.186. In this exercise, we illustrate the fact that the categories C
and Ind(C) may be non-equivalent even if the category C admits inductive limits.



466 J. I. BURGOS GIL AND J. FRESÁN

Let Vec∞Q be the category of arbitrary Q-vector spaces, not necessarily of finite
dimension. Let V be a vector space with a countable basis and write it as

V = lim−→
n∈N

Wn

with Wn a vector space of dimension n. Write also Vn = V for all n ∈ N. Thus,

V = lim−→
n∈N

Vn.

Show that the natural map

(Wn)n∈N −→ (Vn)n∈N

in Ind(Vec∞Q ) is not an isomorphism. Conclude that the functor

Ind(Vec∞Q ) −→ Vec∞Q

is not an equivalence of categories.

Exercise A.187. In this exercise, we see that direct and inverse limits with
respect to directed sets admit a very concrete description. Let E be the small
filtered category associated with a directed set.

i) If X is an inductive system in Set indexed by E, then

lim−→
e∈E

Xe =
∐

e∈E
Xe

/
∼,

where x ∼ y is the equivalence relation defined for x ∈ Xe and y ∈ Xe′ by

there exist f : e −→ e′′ and g : e′ −→ e′′ with X(f)(x) = X(g)(y).

ii) If X is a projective system in Set indexed by E, then

lim←−
e∈E

Xe ⊂
∏

e∈E
Xe

is the subset consisting of elements (xe)e∈E satisfying the condition

for all f : e −→ e′, xe = X(f)(xe′).

iii) Prove that the same descriptions are valid if X is an inductive system
(resp. projective system) in the category ModR for a ring R.

Exercise A.188. Let Veck be the category of finite-dimensional vector spaces
over some field k.

i) Let V be an ind-vector space over k. Prove that its dual

V ∨ = Hom(V, k)

is a pro-vector space over k.

ii) Let f : V →W be a morphism of ind-vector spaces. Prove that f induces
a morphism f∨ : W∨ → V ∨ of pro-vector spaces.

iii) Show that Ind(Veck) is equivalent to the category of arbitrary vector
spaces Vec∞k .

iv) Prove that an infinite-dimensional pro-vector space over k does not admit
a countable basis. In particular, not every vector space has the structure
of a pro-vector space.
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Exercise A.189. Let k be a subfield of C and MHS(k) the category of mixed
Hodge structures over k. Assume that there is an injective object I ∈ MHS(k)
with a monomorphism Q(0)→ I.

i) Prove the non-vanishing GrW2n I ̸= 0 for all n ⩾ 1, by considering monomor-
phisms Q(0)→ E for a non-split extension E ∈ Ext1MHS(k)(Q(−n),Q(0)).

ii) Conclude that I is not an object of MHS(k), and hence that MHS(k)
does not have enough injectives.

Exercise A.190. Let k be a subfield of C and let H be a mixed Hodge
structure over k. Observe that, for every mixed Hodge structure H ′, the abelian
group HomMHS(k)(H,H

′) has a structure of Q-vector space. Moreover, since it is
a subspace of HomVecQ(HB, H

′
B) it is finite-dimensional. Show that the functor

HomMHS(k)(H,−) : MHS(k) −→ VecQ

is not right derivable, but the functor with the same values

HomMHS(k)(H,−) : MHS(k) −→ Vec∞Q

is right derivable. Moreover, there is an equality

Ri HomMHS(k)(H,−) = ExtiMHS(k)(H,−).

A.7. Filtrations and spectral sequences.
A.7.1. Basic definitions.

Definition A.191. Let A be an abelian category and let V ∈ Ob(A) be an
object. A decreasing filtration on V is a collection of subobjects

V ⊃ · · · ⊃ F p−1V ⊃ F pV ⊃ F p+1V ⊃ · · · ⊃ 0.

This can be seen as a projective system (F pV )p or an inductive system (F−pV )p
indexed by the directed set (Z,⩽). If the limits exist, then we will use the notation

F∞V = lim←−
p

F pV and F−∞V = lim−→
p

F−pV.

For instance, if A is the category ModR of left modules over a ring R, then

F∞V =
⋂

p

F pV and F−∞V =
⋃

p

F pV.

A filtration is called

i) separated if F∞V = 0,

ii) exhaustive if F−∞V = V ,

iii) finite if there are integers p1 and p2 such that F p1V = 0 and F p2V = V .

Thus, a finite filtration is separated and exhaustive.

Similarly, an increasing filtration on V is a collection of subobjects

0 ⊂ · · · ⊂ Fp−1V ⊂ FpV ⊂ Fp+1V ⊂ · · · ⊂ V.
A decreasing filtration F can be made into an increasing filtration by setting

FpV = F−pV.

Convention A.192. Unless explicitly indicated, all filtrations will be decreas-
ing from now on. We leave to the reader the task of translating our statements
from decreasing to increasing filtrations.
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An object V equipped with a filtration F is called a filtered object. Let (V, F )
be a filtered object of A. The associated graded object is

Gr∗F V =
⊕

p∈Z
GrpF V, where GrpF V = F pV/F p+1V.

For the object Gr∗F V to exist, one needs to assume either that the filtration F is
finite or that the abelian category A admits infinite sums.

If F is a filtration on an object V and n ∈ Z, then the shifted filtration F [n] is
the filtration on V defined as

F [n]pV = Fn+pV.

Definition A.193. Let (V, F ) and (V ′, F ) be filtered objects of an abelian
category A. A morphism f : V → V ′ is called filtered if f(F pV ) ⊂ F pV ′ holds for
all p ∈ Z and strict (with respect to the filtration F ) if, in addition,

f(F pV ) = F pV ′ ∩ Im(f).

A.7.2. Filtrations and algebraic operations. Assume that A is endowed with
a tensor product. Given filtered objects (V, F ) and (V ′, F ) with finite filtrations,
there are induced filtrations on V ⊗ V ′ and Hom(V, V ′) that we now describe:

• The subobject Fn(V ⊗ V ′) is the image of the map

⊕

p+q=n

F pV ⊗ F qV ′ −→ V ⊗ V ′.

• The subobject Fn Hom(V,W ) is given by

Fn Hom(V,W ) = {φ ∈ Hom(V,W ) | φ|FpV factors through F p+nW}.

The last definition means that, for every p, there is a unique morphism fp that
makes the following diagram commutative:

F pV
fp //

��

F p+nV ′

��
V

φ // V ′.

Example A.194. Let k be a field and A = Vec∞k the category of k-vector
spaces. Then, k viewed as an object of A has canonical increasing and decreasing
filtrations, given by

F 0k = k, F 1k = {0}, F−1k = {0}, F0k = k.

Therefore, the algebraic dual V ∨ = Hom(V, k) of a filtered vector space (V, F ) has
an induced filtration given, when F is decreasing, by

FnV ∨ = (F 1−nV )⊥,

and when F is increasing, by

FnV
∨ = (F−1−nV )⊥.
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A.7.3. Filtered complexes. Let A = (A∗,d) be a cochain complex in C+(A). A
filtration F on A is the data of filtrations F on each An that are compatible with
the differential in the sense that, for all integers n and p, one has

d(F pAn) ⊂ F pAn+1.

A filtered complex is called strict if the differential is strict with respect to the
filtration. A filtered complex is called biregular if, for every n ∈ Z, the filtration F
on the object An is finite.

Definition A.195. Let (A,F ) and (B,G) be filtered complexes. A filtered
morphism of complexes f : A∗ → B∗ is called a filtered quasi-isomorphism if, for
every p, the induced morphism on graded pieces

GrpF A
∗ −→ GrpGB

∗

is a quasi-isomorphism.

Example A.196. Given a cochain complex A, the following biregular filtrations
are widely used:

i) The decreasing bête filtration σ⩾p is given by

σ⩾pAn =

{
0, if n < p,

An, if n ⩾ p.

ii) The increasing canonical filtration τ⩽p is given by

(τ⩽pA)n =





An, if n < p,

Ker(d), if n = p,

0, if n > p.

Observe that the canonical truncation τ⩽pC of a complex from Example A.140 is
an example of an increasing canonical filtration. The truncation τ⩾pC does not
define a filtration since Cp/Im(d) is not a subobject but a quotient.

A.7.4. Spectral sequences. A filtration on a complex can be used to construct
successive approximations to its cohomology by means of a tool called spectral
sequence. This process generalizes the long exact sequence associated with a short
exact sequence of complexes, which corresponds to the case of a two-step filtration.

LetA be an abelian category. For the sake of simplicity, we assume thatA is the
category of modules over a ring, so that we can pick elements of objects of A in the
discussion. Let (A∗, F ) be a complex in A endowed with a decreasing filtration. For
each integer n, set ZAn = Ker(d: An → An+1), so that Hn(A) = ZAn/d(An−1).
The filtration F induces a filtration

F p Hn(A) = Im
(
F pAn ∩ ZAn −→ ZAn/d(An−1)

)

on cohomology objects. The spectral sequence will allow us to recover the graded
object Gr∗F H∗(A) rather than the total cohomology H∗(A); see Remark A.203. For
example, for a complex in the category of mixed Hodge structures, we will recover
the split mixed Hodge structure GrW but not the extension data.

The basic idea is to approximate Gr∗F H∗(A) by first computing the cohomology
of the graded complex Gr∗F A, and then improving this approximation step by
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step. Each succesive approximation is called a page. The first page of the spectral
sequence is the collection of objects

Ep,q1 = Hp+q(GrpF A) =
F pAp+q ∩ d−1(F p+1Ap+q+1)

d(F pAp+q−1) + F p+1Ap+q

for all (p, q) ∈ Z2, together with the morphisms

d1 : Ep,q1 −→ Ep+1,q
1

induced by sending the class of x ∈ F pAp+q to the class of dx ∈ F p+1Ap+q+1 (see
Exercise A.219). We picture it in Figure 24.

// • // • // • // • //

// • // Ep,q1
// Ep+1,q

1
// • //

// • // • // • // • //

Figure 24. First page of the spectral sequence

There are two possible sources of inaccuracy in approximating GrpF Hp+q(A)
by Ep,q1 . First, we are taking elements x ∈ F pAp+q such that dx lies in F p+1Ap+q+1,
while those of GrpF Hp+q(A) are represented by elements with dx = 0. Secondly,
we are taking the quotient modulo d(F pAp+q−1), while all coboundaries should
be taken into account. Thus, GrpF Hp+q(A) will in general only be a subquotient
of Ep,q1 . The second page of the spectral sequence will be a better approximation
to GrpF Hp+q(A) than the first page. It is defined as the collection of objects

Ep,q2 =
F pAp+q ∩ d−1(F p+2Ap+q+1)

F pAp+q ∩ d(F p−1Ap+q−1) + F p+1Ap+q ∩ d−1(F p+2Ap+q+1)

for all (p, q) ∈ Z2, together with the morphisms

d2 : Ep,q2 −→ Ep+2,q−1
2

induced by [x]→ [dx]. We picture it in Figure 25.
The errors in the approximation now come from the fact that dx is only required

to lie in F p+2Ap+q+1, rather than being zero, and that we are considering classes
modulo d(F p−1Ap+q−1) instead of all coboundaries. Since F p+2Ap+q+1 will in
general be smaller than F p+1Ap+q+1, and F p−1Ap+q−1 bigger than F pAp+q−1, this
is a finer approximation to GrpF Hp+q(A). Moreover, there are isomorphisms

Ep,q2 ≃ Ker(d1 : Ep,q1 −→ Ep+1,q
1 )

Im(d1 : Ep−1,q1 −→ Ep,q1 )
,

through which we can identify the second page of the spectral sequence with the
cohomology of the first page (see Exercice A.219).
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Ep+2,q−1
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Figure 25. Second page of the spectral sequence

This process can be iterated. Explicitly, for each r ⩾ 1, we define the r-th page
of the spectral sequence as the collection of objects

(A.197) Ep,qr =
F pAp+q ∩ d−1(F p+rAp+q+1)

F pAp+q ∩ d(F p−r+1Ap+q−1) + F p+1Ap+q ∩ d−1(F p+rAp+q+1)

for all (p, q) ∈ Z2, together with the differential

dr : Ep,qr −→ Ep+r,q−r+1
r

induced by [x] 7→ [dx]. Again, there is an isomorphism

(A.198) Ep,qr+1 ≃
Ker(dr : Ep,qr −→ Ep+r,q−r+1

r )

Im(dr : Ep−r,q+r−1r −→ Ep,qr )
.

This is the outcome of Exercise A.219.
The definition (A.197) makes sense for r =∞ as well, and gives

Ep,q∞ =
F pAp+q ∩ d−1(F∞Ap+q+1)

F pAp+q ∩ d(F−∞Ap+q−1) + F p+1Ap+q ∩ d−1(F∞Ap+q+1)
.

Assume that the filtration F on An is separated and exhaustive for every n ∈ Z.
Then F−∞An = An and F∞An = 0, and hence

(A.199) Ep,q∞ =
F pAp+q ∩ ZAp+q

F pAp+q ∩ d(Ap+q−1) + F p+1Ap+q ∩ ZAp+q = GrpF Hp+q(A).

Definition A.200. Let (A∗, F ) be a filtered complex. We denote by Ep,qr the
objects defined by equation (A.197). The collection of pages E∗,∗r and morphisms dr
is called the spectral sequence associated with the filtration F . If the conditions for
equation (A.199) are met, then we say that the spectral sequence converges and,
for any r ⩾ 1, we use the notation

Ep,qr =⇒ Hp+q(A)

to indicate that the spectral sequence converges to the cohomology of A. Recall,
however, that we only recover the associated graded object. If we want to stress
the filtration that gives rise to the spectral sequence, because the original complex
may have more than one filtration, then we denote the spectral sequence by Ep,qF r .

If the filtration F is biregular, then for every p, q ∈ Z there is an integer r0 ⩾ 1
(depending on p and q) such that Ep,qr = Ep,q∞ holds for all r ⩾ r0. Therefore,
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we can compute each GrpF Hp+q(A) with a finite number of pages of the spectral
sequence. If there is an r0 ⩾ 1 that works for all degrees, that is, such that the
equality Ep,qr0 = Ep,q∞ holds for all p and q, then we say that the spectral sequence
degenerates at the term Er0 or that it degenerates at the r0-th page. This is
equivalent to asking that all differentials dr are zero for r ⩾ r0.

A.7.5. Degeneracy criteria. In this section, we discuss several criteria for the
degeneration of a spectral sequence.

Proposition A.201. Let (A∗, F ) be a filtered complex such that the associated
spectral sequence converges.

i) If there exists an integer r ⩾ 2 such that the page E∗,∗r is reduced to one
row, that is

Ep,qr = 0 for all q ̸= q0,

then the spectral sequence degenerates at the r-th page and

Hp+q0(A) = Ep,q0r .

Note that in this case, we recover the full cohomology of the complex and
not just the associated graded object.

ii) Assume that there exists an integer r0 ⩾ 1 such that the page E∗,∗r0 is
reduced to two rows, that is,

Ep,qr0 = 0 for all q ̸= q0, q1

with q0 < q1. Write r = q1 − q0. Then the spectral sequence degenerates
at the page E∗,∗max(r0,r+2). If r0 < r+ 2, then Ep,qr+1 = Ep,qr0 holds, and there

is a long exact sequence

· · · −→ Hp+q1(A) −→ Ep−1,q1r0

dr+1−−−→ Ep+r,q0r0 −→ Hp+q1(A) −→ Ep,q1r0 −→ · · · .

If r0 ⩾ r + 2, then Ep,q∞ = Ep,qr0 and there are short exact sequences

(A.202) 0 −→ Ep+r,q0r0 −→ Hp+q1(A) −→ Ep,q1r0 −→ 0.

Proof. Exercise A.221. □

Remark A.203. This is a good point to understand why spectral sequences do
not allow us to recover the whole cohomology but only an associated graded ob-
ject. Imagine that we are in the situation of Proposition A.201 ii), with r0 ⩾ r + 2.
Then the spectral sequence only gives us the terms Ep,qr0 . From the exact se-

quences (A.202), we cannot recover Hp+q1(A) unless we know the vanishing

Ext1(Ep,q1r0 , Ep+r,q0r0 ) = 0.

We can interpret the exact sequences (A.202) by considering the decreasing filtra-
tion of Hp+q1(A) given by

F s Hp+q1(A) =





Hp+q1(A), if s ⩽ p,

Ep+r,q0r0 , if p < s ⩽ p+ r,

0, if p+ r < s.
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Its graded pieces are equal to

GrsF Hp+q1(A) =





Ep,q1r0 , if s = p,

Ep+r,q0r0 , if s = p+ r,

0, otherwise.

Thus, the graded object GrsF Hp+q1(A) is exactly the information we recover from
the spectral sequence.

We next explain the relation between degeneracy at the first page of a spec-
tral sequence and strictness of the differential with respect to the filtration. This
criterion applies notably to the Hodge filtration in algebraic geometry.

Proposition A.204. Let (A∗, F ) be a biregular filtered complex. The differen-
tial d is strict with respect to the filtration F if and only if the spectral sequence E∗,∗∗
degenerates at the page E1. In this case, the following holds:

F p Hn(A) = Hn(F pA), GrpF Hn(A) = Hn(GrpF A).

Proof. Recall the equality

Ep,n−p1 =
F pAn ∩ d−1(F p+1An+1)

d(F pAn−1) + F p+1An
.

Since F is biregular, we have in addition

Ep,n−p∞ =
F pAn ∩Ker d

F pAn ∩ Im d + F p+1An ∩Ker d
.

Therefore, we can consider the maps

FpAn∩Ker d
d(FpAn−1)+Fp+1An∩Ker d

f //

g

��

Ep,n−p1

Ep,n−p∞

,

where f is the monomorphism induced by the inclusion Ker d ⊆ d−1(F p+1An+1),
and g is the epimorphism induced by the inclusion d(F pAn−1) ⊆ F pAn ∩ Im d.
Assume that d is strict. We want to show that the spectral sequence degenerates at
the term E1. If x ∈ F pAn satisfies dx ∈ F p+1An+1, then by strictness of d, there
is an element y ∈ F p+1An such that dx = dy. This implies that the map f is an
isomorphism. If x ∈ F pAn satisfies x ∈ Im d, again by strictness of d, there is an
element z ∈ F pAn−1 such that x = dz. Hence, the map g is also an isomorphism.

Since the maps f and g are isomorphisms, we deduce that Ep,n−p1 and Ep,n−p∞
are equal as subquotients of An, and hence that the spectral sequence degenerates
at E1. In particular, the complex being biregular, this implies the equalities

Hn(GrpF A) = Ep,n−p1 = Ep,n−p∞ = GrpF Hn(A).

The equality Hn(F pA) = F p Hn(A) follows from

d(F pAn−1) = d(An−1) ∩ F pAn,
which is true by the strictness of d.

Conversely, assume that the spectral sequence degenerates at the term E1.
Given an element x ∈ F pAn∩Im(d), we need to show that x lies in d(F pAn−1). We
prove this by inverse induction on p. Since the filtration is biregular for big enough p,
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the condition x ∈ F pAn implies x = 0, and hence x ∈ d(F pAn−1). Assume that
the result is true for p + 1. The element x ∈ F pAn ∩ Im(d) satisfies dx = 0, so it

determines an element [x]1 in Ep,n−p1 with dr[x]1 = 0 for all r ⩾ 1, and hence an
element [x]∞ ∈ Ep,n−p∞ . Since x ∈ Im(d) and the filtration is biregular, we deduce
that [x]1 ∈ Im(dr) for some r ⩾ 1, so the element [x]∞ is zero. Since the spectral
sequence degenerates at the term E1, we get [x]1 = 0 so x ∈ F p+1An+ d(F pAn−1).
Therefore, there is a z ∈ F pAn−1 such that y = x−dz ∈ F p+1An∩Im(d). Applying
the induction hypothesis to y, we conclude that x belongs to d(F pAn−1). □

A.7.6. Examples of spectral sequences.

Example A.205. The total complex of a double complex (Definition A.33),
together with the horizontal bête filtration

σ⩾p Tot(A)n =
⊕

p′⩾p

Ap
′,n−p′

gives rise to a spectral sequence with first page

(A.206) Ep,q1 = Hq(Ap,∗) =⇒ Hp+q(A).

This construction is the source of many spectral sequences in geometry. For in-
stance, the Frölicher or Hodge–de Rham spectral sequence in Section 2.2.4 follows
from this construction.

As a first easy application of spectral sequences, we show that to compute a
right derived functor, there is no need to always use an injective resolution.

Definition A.207. Let A and B be abelian categories and F : A → B a left
exact functor. Assume that A has enough injectives. An object A ∈ Ob(A) is
called F -acyclic if, for all p > 0, the condition RpF (A) = 0 holds.

An F -acyclic resolution of an object B ∈ Ob(A) is a complex (
⊕

p⩾0A
p,d)

with a morphism B → A0 such that the sequence

0 −→ B −→ A0 −→ A1 −→ · · ·
is exact and Ap is F -acyclic for every p ⩾ 0.

Remark A.208. Although according to Lemma A.113 an injective resolution
is F -acyclic for any left exact functor F , in many circumstances it is easier to find
an explicit F -acyclic resolution than an injective resolution.

Proposition A.209. Let us keep the assumptions from Definition A.207. If
A∗ is an F -acyclic resolution of B, then

RpF (B) = Hp(F (A∗)).

Proof. Let (
⊕

p,q⩾0 I
p,q,dhor,dver) be a double complex of injective objects

such that, for every p ⩾ 0 the complex (Ip,∗,dver) is a resolution of Ap, and dhor

commutes with the differential of A∗. Then Tot(I∗,∗) is an injective resolution
of B, so RpF (B) = Hp(TotF (I∗,∗)) holds. We apply Example A.205 to the double
complex F (I∗,∗) to obtain a spectral sequence

Ep,q1 = Hq(F (Ip,∗)) = RqF (Ap) =⇒ Hp+q(TotF (I∗,∗)) = Rp+qF (B).
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Since the objects Ap are F -acyclic, we get RqF (Ap) = 0 for q > 0. Thus, this
spectral sequence is reduced to a single row, so Proposition A.201 i) tells us that
this spectral sequence degenerates at the term E2 and

RpF (B) = Ep,02 = Hp(F (A∗)),

as we wanted to show. □

The second example of a spectral sequence is a variant of Example A.205 that
is the second main source of concrete spectral sequences in many applications.

Proposition A.210. Let A and B be abelian categories and F : A → B a left
exact functor. Let C∗ be a bounded below complex in A. Assume that A has enough
injectives. Then there is a spectral sequence with second page

Ep,q2 = RpF (Hq(C∗)) =⇒ Hp+q(RF (C∗)).

Proof. Let C∗ → I∗,∗ be an injective resolution satisfying the three conditions
of Exercise A.131 ii). Then

RF (C∗) = F (Tot(I∗,∗)) = Tot(F (I∗,∗)).

By applying Example A.205 to the double complex F (I∗,∗), we obtain a spectral
sequence whose first page is

Ep,q1 = RqF (Cp) =⇒ Hp+q(Tot(F (I∗,∗))) = Hp+q(RF (C∗)).

This is not what we want. The trick is to first interchange the indexes of the double
complex F (I∗,∗) to obtain a spectral sequence whose first page is

Ep,q1 = Hq(F (I∗,p)) =⇒ Hp+q(Tot(F (I∗,∗))) = Hp+q(RF (C∗)).

Since the functor F is exact when restricted to the subcategory of injective objects,
the conditions of Exercise A.131 ii) imply that Hq(F (I∗,p)) = F (Hq(I∗,p)) and that

(A.211) Hq(C∗) −→ Hq(I∗,0) −→ Hq(I∗,1) −→ · · ·
is an injective resolution of Hq(C∗). Moreover, the differential

d1 : F (Hq(I∗,p))→ F (Hq(I∗,p+1))

is induced by the differential of the injective resolution (A.211), so the second page
of the spectral sequence is, as claimed,

Ep,q2 = RpF (Hq(C∗)). □

Remark A.212. There is an analogue of Proposition A.210 for right exact
functors using projective resolutions, as well as variants for contravariant functors.

As a particular case of Proposition A.210, we derive the Grothendieck spectral
sequence for the composition of functors.

Theorem A.213 (Grothendieck spectral sequence). Let A, B and C be abelian
categories. Assume that A and B have enough injectives and let G : A → B
and F : B → C be two left exact functors. Assume that G sends injective objects
in A to F -acyclic objects in B. Then

RF (RG(A∗)) = R(F ◦G)(A∗)

holds for each bounded below complex A∗ ∈ C+(A). Moreover, for all A ∈ Ob(A),
there is a spectral sequence

Ep,q2 = RpFRqG(A) =⇒ Rp+q(F ◦G)(A).
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Proof. For the first statement, let I∗ be a bounded below injective resolution
of A∗. Then G(I∗) is a complex in C+(B) made of F -acyclic objects, which is
isomorphic to RG(A∗) in D+(B). Therefore,

RF (RG(A∗)) = RF (G(I∗)) = F (G(I∗)) = R(F ◦G)(A∗).

For the second statement, let I∗ be an injective resolution of A. Since the con-
stituents of G(I∗) are F -acyclic, we have RF (G(I∗)) = F (G(I∗)). Applying Propo-
sition A.210 to the complex G(I∗), we then obtain a spectral sequence

Ep,q2 = RpF (Hq(G(I∗))) = RpF (RqG(A)) =⇒ Hp+q(F (G(I∗))) = Rp+qF ◦G(A),

as we wanted to show. □

⋆ ⋆ ⋆

Exercise A.214. Let k be a field and let FVeck denote the category of filtered
k-vector spaces together with filtered morphisms. This is an additive category.

i) Show that every morphism in FVeck has a kernel and a cokernel. More
precisely, the kernel of a linear map f agrees with the kernel computed
in Veck together with the induced filtration as a subobject. Similarly,
the cokernel agrees with the one computed in Veck, together with the
induced filtration as a quotient.

ii) Let f : (V, F ) → (W,F ) be a morphism of filtered vector spaces. Show
that the map f is strict with respect to the filtration F if and only if the
canonical map Coim(f)→ Im(f) is an isomorphism.

iii) Conclude that FVeck is not an abelian category.

Exercise A.215. Let (V, F ) and (W,F ) be objects of an abelian category
equipped with a finite increasing filtration. Let f : (V, F ) → (W,F ) be a filtered
morphism such that grFn f : grFnV → grFnW is an isomorphism for all n. Show that f
itself is an isomorphism.

Exercise A.216. Let f : (A∗, F )→ (B∗, G) be a filtered quasi-isomorphism of
complexes. Assuming that the filtrations F and G are biregular, prove that f is a
quasi-isomorphism. Give an example showing that the assumption is needed.

Exercise A.217. Let A be an abelian category, and let f : (A∗, F )→ (B∗, F )
and g : (A∗, F ) → (C∗, F ) be morphisms of filtered complexes in A. The given
filtrations induce a filtration on cone(f + g). Assuming that the map g is a filtered
quasi-isomorphism, show that the composition

B −→ B ⊕ C −→ cone(f + g)

is a filtered quasi-isomorphism.

Exercise A.218. Let f : A∗ → B∗ be a morphism of complexes. Show that
the following statements are equivalent:

i) f is a quasi-isomorphism.

ii) f is a filtered quasi-isomorphism with respect to the increasing canonical
filtration τ⩽.

Exercise A.219. Show that, for each r ⩾ 1, the map Ep,qr → Ep+r,q−r+1
r given

by [x] 7→ [dx] is well defined and construct the isomorphism (A.198).
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Exercise A.220. Let B be a complex in an abelian category, and A ⊂ B a
subcomplex. Then B carries the two-step filtration

F 0B = B ⊃ F 1B = A ⊃ F 2B = 0.

i) Show that the spectral sequence associated with this filtration is reduced
to two columns, and hence degenerates at the second page.

ii) Show that there exist exact sequences

0 −→ E1,q−1
2 −→Hq(B) −→ E0,q

2 −→ 0,

· · · −→ E0,q−1
1

d1−→ E1,q−1
1 −→Hq(B) −→ E0,q

1
d1−→ E1,q

1 −→ · · ·

iii) Prove the equalities E1,q
1 = Hq+1(A) and E0,q

1 = Hq(C), where C = B/A
and recover from the above the long exact sequence associated with the
short exact sequence of complexes 0→ A→ B → C → 0.

Exercise A.221. Prove Proposition A.201.

Exercise A.222. Let E and E′ be spectral sequences. A morphism of spectral
sequences is a collection of maps Ep,qr → E′p,qr that commute with the differen-
tials dr on both sides. Let f : (A∗, F ) → (B∗, G) be a filtered quasi-isomorphism.
Show that f induces an isomorphism between the spectral sequences associated
with the filtrations F and G.

Exercise A.223. In this exercise, we introduce the shifted filtration. Given a
filtered complex (A∗, F ), the shifted filtration Dec(F ) is defined as

Dec(F )pAn = {x ∈ F p+nAn | dx ∈ F p+n+1An+1}.
The notation comes from “filtration décalée” in French.

i) Prove that (A∗,Dec(F )) is a filtered complex.

ii) Prove that there are isomorphisms compatible with the differentials

Ep,n−pDec(F ) r

∼−→ Ep+n,−pF r+1 .

A.8. Simplicial techniques. In this section, we briefly introduce a few sim-
plicial tools that are very useful in homological algebra.

A.8.1. Simplicial and cosimplicial objects. We first review the definition of sim-
plicial and cosimplicial objects in a category. Let ∆ denote the small category whose
objects are the finite ordered sets

∆n = {0, . . . , n} (n ⩾ 0),

and whose morphisms are the non-decreasing maps between the various ∆n. Any
morphism in ∆ can be written as a composition of cofaces δi : ∆n → ∆n+1,
for i = 0, . . . , n+ 1, and codegeneracies σi : ∆n+1 → ∆n, for i = 0, . . . , n, given by

δi(j) =

{
j, if j < i,

j + 1, if j ⩾ i,
σi(j) =

{
j, if j ⩽ i,

j − 1, if j > i.

In other words, the coface δi is the map that skips i, while the codegeneracy σi is
the map that repeats i. As it is straightforward to check, cofaces and codegeneracies
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satisfy the commutativity relations

(A.224)

(a) δjδi = δiδj−1, for i < j,

(b) σjσi = σiσj+1, for i ⩽ j,

(c) σjδi = δiσj−1, for i < j,

(d) σjδi = Id, for i = j, j + 1,

(e) σjδi = δi−1σj , for i > j + 1.

Moreover, the category ∆ is generated by these morphisms and relations (see, for
instance, [Mac71, Chap. VII, §5, Prop. 2]). That is, ∆ is the universal category
with objects ∆n, for n ⩾ 0, and morphisms δi and σj such that every morphism is a
composition of these morphisms, the relations (A.224) hold, and any other relation
among the morphisms follows from these relations.

Definition A.225. Let C be a category.

i) A simplicial object in C is a functor ∆op → C.
ii) A cosimplicial object in C is a functor ∆→ C.

Using the above characterization of morphisms in ∆, simplicial and cosimplicial
objects admit a very concrete description. For instance, a cosimplicial object X• is
a collection (Xn)n⩾0 of objects of C, each Xn being the image of ∆n through the
functor ∆→ C, together with morphisms

δi : Xn −→ Xn+1, i = 0, . . . , n+ 1,

σi : Xn+1 −→ Xn, i = 0, . . . , n,

satisfying the commutativity relations (A.224). The maps δi and σi are again called
cofaces and codegeneracies, and one usually represents these data by a diagram

X0 oo X1
//
//
oo
oo

X2 · · · .//
//

//

The description of a simplicial object is the dual one. It is thus given by a
collection of objects (Xn)n⩾0, together with morphisms

δi : Xn+1 −→ Xn, i = 0, . . . , n+ 1,

σi : Xn −→ Xn+1, i = 0, . . . , n,

called faces and degeneracies, satisfying the commutativity relations dual to (A.224):

(A.226)

(a) δiδj = δj−1δi, for i < j,

(b) σiσj = σj+1σi, for i ⩽ j,

(c) δiσj = σj−1δi, for i < j,

(d) δiσj = Id, for i = j, j + 1,

(e) δiσj = σjδi−1, for i > j + 1.

The data of a simplicial object is usually represented by a diagram

X0
// X1

oo
oo

//
// X2 · · · .oo

oo

oo
Remark A.227. The category ∆ is equivalent to the category FOS of totally

ordered non-empty finite sets. We can also view a simplicial object X• = (Xn)n⩾0

in C as a functor FOSop → C, by sending a totally ordered non-empty finite set I
to the object XI = X|I|−1, where |I| denotes the cardinal of I.
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We will try to systematically use the convention that simplicial and cosimplicial
objects are denoted with a bullet, while complexes are denoted with an asterisk (see,
for example, Definition A.230 below).

Example A.228. Recall from Notation 1.114 that the symbol ∆n was already
used for the topological simplex

∆n = {(t1, . . . , tn) ∈ Rn | 1 ⩾ t1 ⩾ · · · ⩾ tn ⩾ n}.
As n varies, the simplices ∆n form a cosimplicial object ∆• in the category of
topological spaces. The cofaces are given by

δi(t1, . . . , tn) =





(1, t1, . . . , tn), if i = 0,

(t1, . . . , ti, ti, . . . , tn), if i = 1, . . . , n,

(t1, . . . , tn, 0), if i = n+ 1,

and the codegeneracies by

σi(t1, . . . , tn+1) = (t1, . . . , t̂i+1, . . . , tn+1) (i = 0 . . . , n),

where the symbol t̂i+1 means that the coordinate ti+1 is omitted.
What we called the standard simplex in Section 2.1, that is,

∆n
st = {(t0, . . . , tn) ∈ Rn+1 |

n∑

i=0

ti = 1 and ti ⩾ 0 for all i = 0, . . . , n}

gives a more symmetric representation of the same cosimplicial topological space
(see Exercise A.240). The coface maps δi : ∆n

st → ∆n+1
st are now defined as

δi(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn) (i = 0, . . . , n+ 1),

and the codegeneracy maps σi : ∆n+1
st → ∆n

st as

σi(t0, . . . , tn+1) = (t0, . . . , ti + ti+1, . . . , tn+1) (i = 0, . . . , n).

Example A.229. Recall that an n-simplex in a topological space M is a con-
tinuous map S : ∆n

st →M . The i-th face of S is the (n− 1)-simplex

δiS = S ◦ δi : ∆n−1
st →M,

and the i-th degeneracy is the (n+ 1)-simplex

σiS = S ◦ σi : ∆n+1
st →M.

Thus, the set of all simplices in M is an example of a simplicial set. The terminology
faces and degeneracies arise from this example.

A.8.2. Simplicial abelian groups and chain complexes. Simplicial and cosimpli-
cial objects in an abelian category are closely related to chain and cochain com-
plexes, as introduced in Section A.1. In this paragraph, we review some construc-
tions making this relation precise. To begin with, we associate a chain complex
with a simplicial object in an abelian category.

Definition A.230. Given a simplicial object X• in an abelian category, the
associated chain complex is the complex CX∗ with

CXn = Xn, ∂n =

n∑

i=0

(−1)iδi : CXn −→ CXn−1.
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When there is no need to emphasize the degree, we will denote the differential
of this complex simply by ∂. We can also consider a “smaller” complex that, as we
will see in the next theorem, has the same homology as CX∗ and plays a crucial
role in the Dold–Kan correspondance (see [GJ09, Chap. III, Sect. 2]).

Definition A.231. Given a simplicial object X• in an abelian category, the
associated normalized chain complex is the subcomplex NX∗ ⊂ CX∗ with

NXn =

n−1⋂

i=0

Ker δi.

The complex of degenerate elements is the subcomplex DX∗ ⊂ CX∗ with

DXn =

n−1∑

i=0

σi(Xn−1).

The reader is encouraged to check in Exercise A.241 that CX∗ is indeed a
complex and that NX∗ and DX∗ form subcomplexes of CX∗. Note that the dif-
ferential ∂n of CX∗ restricts to ∂n = (−1)nδn on the subcomplex NXn.

Theorem A.232. Let X• be a simplicial object in an abelian category. The
composition of the inclusion and the quotient maps

NX∗ −→ CX∗ −→ CX∗/DX∗

is an isomorphism. Moreover, NX∗ −→ CX∗ is a quasi-isomorphism.

Proof. For each integer k, consider the subobjects of Xn given by

NkXn =

min(k,n−1)⋂

j=0

Ker δj , DkXn =

min(k,n−1)∑

i=0

σi(Xn−1).

It follows from the simplicial identities (A.226) that (NkX∗, ∂) and (DkX∗, ∂) are
subcomplexes of (CX∗, ∂).

We are going to prove that, for all k and n ⩾ 0, the composition

(A.233) NkXn −→ CXn −→ CXn/DkXn

of the inclusions and the quotient maps are isomorphisms and that the inclusions

NkX∗ −→ Nk−1X∗
are quasi-isomorphisms. The theorem follows from this, on noting the equali-
ties NkXn = CXn for k ⩽ −1 and NkXn = NXn and DkXn = DXn for k ⩾ n−1.

We argue by induction on k. The above statements clearly hold for k ⩽ −1,
since NkXn = CXn and DkXn = 0 in that case. We assume that both statements
are true for j < k, and we prove them for k. We first prove that the composi-
tion (A.233) is an isomorphism. For n ⩽ k, this follows directly from the induc-
tion hypothesis because, in this case, NkXn = Nk−1Xn and DkXn = Dk−1Xn.
Let x ∈ Nk−1Xn with n ⩾ k + 1. Then, by the simplicial identities,

x− σkδkx ∈ NkXn.

Since σkδkx ∈ DkXn, using the induction hypothesis, we get the equality

CXn = Dk−1Xn +Nk−1Xn = Dk−1Xn +DkXn +NkXn = DkXn +NkXn.

Therefore, the composition (A.233) is surjective.
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Using again the simplicial identities, we derive

σk(Nk−1Xn) ⊂ Nk−1Xn, σk(Dk−1Xn) ⊂ Dk−1Xn.

In particular, σk induces a map σk : Xn/Dk−1Xn → Xn/Dk−1Xn and, by the
induction hypothesis, there is a commutative diagram

Nk−1Xn
≃ //

σk

��

Xn/Dk−1Xn

σk

��
Nk−1Xn ≃

// Xn/Dk−1Xn.

There is a canonical isomorphism

Xn

DkXn
=

Xn

Dk−1Xn + σk(Xn)

∼−→ Xn/Dk−1Xn

σk(Xn/Dk−1Xn)
.

From this isomorphism and the previous commutative diagram, we deduce that,
if x ∈ Nk−1Xn belongs to DkXn, then x = σky with y ∈ Nk−1Xn.

Let x ∈ NkXn∩DkXn. By the previous discussion, x = σky with y ∈ Nk−1Xn.
Since x ∈ Ker δk, the equality

0 = δkx = δkσky = y

holds, so y = 0, and hence x = 0. This shows that NkXn ∩DkXn = 0 and that the
composition (A.233) is injective. It is thus an isomorphism.

Now we prove that the inclusion NkX∗ → Nk−1X∗ is a quasi-isomorphism. In
fact, we will prove that it is a homotopy equivalence. Let ιk : NkX∗ → Nk−1X∗
denote the inclusion, and πk the composition

Nk−1X∗ ↠ X∗/Dk−1X∗ ≃ NkX∗.
One checks that, for x ∈ Nk−1Xn,

πk ◦ ιk(x) = x = Id(x),

ιk ◦ πk(x) =

{
x, if n ⩽ k,

x− σkδk(x), if n > k.

We need to show that ιk ◦ πk is homotopy equivalent to the identity. For this,
let s : Nk−1X∗ → Nk−1X∗ be the map that sends x ∈ Nk−1Xn to

s(x) =

{
0, if n < k,

(−1)kσk(n), if n ⩾ k.

Using the simplicial identities it follows that

x− ιk ◦ πk(x) = (∂s+ s∂)(x),

thus showing that NkX∗ and Nk−1X∗ are homotopy equivalent. We are done. □

Example A.234. Let M be a topological space. The cosimplicial structure
of ∆•st induces a simplicial group structure C•(M) on the free abelian groups

Cn(M) = Cn(M,Z)

generated by all continuous maps σ : ∆n
st → M . Let C∗(M) denote the associ-

ated chain complex, and C̃∗(M) the normalized chain complex. As explained in
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Section 2.1, the complex (C∗(M), ∂∗) computes the singular homology of M . By

Theorem A.232, the same is true for the complex (C̃∗(M), ∂∗).
Similarly, for a differentiable manifold M , we denote by S∗(M) the chain com-

plex of smooth singular chains, and by S̃∗(M) the normalized complex of S∗(M).

Dualizing the construction of the chain complex, we obtain the definition of the
associated cochain complex.

Definition A.235. Let X• be a cosimplicial object in an abelian category.
The associated cochain complex is the complex CX∗ with

CXn = Xn, d =

n+1∑

i=0

(−1)iδi : CXn −→ CXn+1,

and the normalized cochain complex is

NXn = Xn/

n−1∑

i=0

Im δi ≃
n−1⋂

i=0

Kerσi, d =

n+1∑

i=0

(−1)iδi.

The statements that Xn/
∑n−1
i=0 Im δi and

⋂n−1
i=0 Kerσi are isomorphic and that

the inclusion NX∗ → CX∗ is a quasi-isomorphism are dual to the statements in
Theorem A.232. They are proved in a similar way.

Example A.236. Let M be a topological space. For any ring R, the groups

Cn(M,R) = Hom(Cn(M), R)

form a cosimplicial abelian group. We will also denote by C∗(M,R) the associated

cochain complex and by C̃∗(M,R) the normalized cochain complex. Similarly,

whenM is a differentiable manifold, S∗(M,R) and S̃∗(M,R) will denote the cochain
complex of smooth singular cochains and the corresponding normalized complex.
All these complexes compute the singular cohomology of M with coefficients in R.

A.8.3. A truncated normalized chain complex. In the course of the proof of
Beilinson’s Theorem 3.316, one needs to associate with a cosimplicial manifold a
variant of the normalized cochain complex from Definition A.235. In fact, it is a
complex homotopically equivalent to a truncation of it. For each N ⩾ 0 and each
simplicial object X• in an abelian category, we introduce a new complex

C∗(∆N , X•).

For each non-empty subset I ⊂ ∆N , using the convention of Remark A.227, we have
the object XI = X|I|−1. Given K = {k0, . . . , kp} with the indices kl in increasing

order, and I = {k0, . . . , k̂i, . . . , kp}, we set the sign ε(I,K) = (−1)i, which is the
same sign appearing in Notation 3.286. We also use the notation

dI,K = δi : XK −→ XI .

For each n ⩾ 0, we define

(A.237) Cn(∆N , X•) =
⊕

I⊂∆N

|I|=n+1

XI ,

with differential d : Cn(∆N , X•)→ Cn−1(∆N , X•) given by

d =
⊕

I⊂K
ε(I,K)dI,K .
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For a chain complex C∗, let σ⩽N denote the bête filtration

σ⩽NCn =

{
Cn, if n ⩽ N,

0, if n > N.

This filtration is dual to that of a cochain complex from Example A.196.
For a conceptual proof of the following result, see [DG05, Prop. 3.10]. We

propose an elementary proof similar to that of Theorem A.232.

Proposition A.238. Given a simplicial object X• in an abelian category and
an integer N ⩾ 0, the complexes C∗(∆N , X•) and σ⩽NNX∗ are functorially homo-
topically equivalent.

Proof. Let ϕ : σ⩽NNX∗ → C∗(∆N , X•) be the map sending the object NXn

to the factor X∆n
⊂ Cn(∆N , X•) in the direct sum (A.237). This map is a mor-

phism of complexes because for each subset J ⊂ ∆n, with |J | = n, the restric-
tion to NXn of the map d∆n,J vanishes unless J = ∆n−1. Indeed, recall that

for J = ∆n \ {j} the map d∆n,J is equal to δj . Since NXn =
⋂n−1
j=0 Ker δj , the

restriction of d∆n,J to NXn is zero unless J = ∆n \ {n}. The map ϕ is injective,
and we identify σ⩽NNX∗ with its image inside C∗(∆N , X•).

We consider the decreasing filtration F on the complex C∗(∆N , X•) defined,
using (A.237) again, as follows. For each factor XI of Cn(∆N , X•), we write the
subset I = {i0, . . . , ik, . . . } in increasing order, and set

F pXI =

{⋂min(p,|I|−1)
j=0 Ker δj , if ij = j for j = 0, . . . ,min(p, |I| − 1),

0, otherwise.

It follows from the simplicial identities that this is a filtration by subcomplexes.
Moreover, the following equalities hold:

F−1C∗(∆N , X•) = C∗(∆N , X•),

FNC∗(∆N , X•) = σ⩽NNX∗.
Therefore, it is enough to show, for p ⩾ 0, that each inclusion

F pC∗(∆N , X•) ↪−→ F p−1C∗(∆N , X•),

is a homotopy equivalence.
For p ⩾ 0, let I ⊂ ∆N be a subset of the form

(A.239) I = {0, 1, . . . , p− 1, ip, . . . , in}, p < ip < ip+1 < · · · < in.

Write Ip = {0, 1, . . . , p − 1, p, ip, . . . , in}. There is an increasing map σp : Ip → I
that sends p to ip, and the other elements to themselves. Since X• is a simplicial
object, there is a map σp : XI → XIp .

For p ⩾ 0, we define the degree 1 map

sp : F p−1C∗(∆N , X•) −→ F p−1C∗(∆N , X•)

given, on the factor XI , by (−1)pσp : XI → XIp if I has the shape (A.239), and by
zero otherwise. We then look at the map

ψp : F p−1C∗(∆N , X•) −→ F p−1C∗(∆N , X•)

given by ψp = Id−(dsp + spd). The simplicial identities imply the following:

i) if x ∈ F pC∗(∆N , X•), then ψp(x) = x;

ii) if x ∈ F p−1C∗(∆N , X•), then ψp(x) ∈ F pC∗(∆N , X•).
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Thus, ψp induces a morphism of complexes

ψ′p : F p−1C∗(∆N , X•) −→ F pC∗(∆N , X•)

that, combined with the inclusion in the opposite direction, yields a homotopy
equivalence. Writing ψ = ψ′N−1 ◦ · · · ◦ ψ′0, we obtain a homotopy inverse of the
map ϕ. Since we have only used the simplicial maps, it is clear that the resulting
homotopy equivalence is functorial. □

⋆ ⋆ ⋆

Exercise A.240. Let n ⩾ 0 be an integer. We keep the notation from Exam-
ple A.228. Show that the map ∆n → ∆n

st given by

(t1, . . . , tn) 7−→ (1− t1, t1 − t2, . . . , tn−1 − tn, tn)

is a homeomophism that commutes with the face and degeneracy maps on the
topological and the standard simplex.

Exercise A.241. Let X• be a simplicial object in an abelian category. Use
the simplicial identities (A.226) to prove the following statements.

i) The composition ∂n ◦ ∂n+1 is zero. Therefore, (CX∗, ∂) is a complex.

ii) The map ∂n sends NXn to NXn−1 and agrees with (−1)nδn when re-
stricted to NXn.

iii) The map ∂n sends DXn to DXn−1.

Exercise A.242 (The nerve of a category). Let C be a small category. LetN(C)0
denote the set of objects and N(C)1 the set of morphisms. For each integer n ⩾ 2,
define N(C)n as the set of n-tuples of composable morphisms

(A.243) C0
f1−→ C1

f2−→ · · · fn−→ Cn.

On the one hand, there are maps

δi : N(C)n −→ N(C)n−1, i = 0, . . . , n,

given by composing at the i-th object or removing it whenever i = 0 or n. In other
words, δi sends an n-tuple as in (A.243) to the (n− 1)-tuple

C1
f2−→ C2

f3−→ · · · fn−→ Cn, if i = 0,

C0
f1−→ · · · fi−1−→ Ci−1

fi+1◦fi−−−−−→ Ci+1
fi+2−→ · · · fn−→ Cn, if 0 < i < n,

C0
f1−→ C1

f2−→ · · · fn−1−→ Cn−1, if i = 0.

On the other hand, there are maps

σi : N(C)n −→ N(C)n+1, i = 0, . . . , n,

obtained by inserting an identity morphism at the i-th object, that is, σi sends an
n-tuple as in (A.243) to the (n+ 1)-tuple

C0
f1−→ · · · fi−→ Ci

Id−→ Ci
fi+1−→ · · · fn−→ Cn.

Prove that N(C)•, together with the maps δi as faces and the maps σi as degen-
eracies, has the structure of a simplicial set. In particular, identify the simplicial
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identity which corresponds to the associativity of the composition of morphisms.
This construction is called the nerve of the category C.

A.9. Sheaf cohomology. This section contains a brief summary of the main
properties of sheaf cohomology. For more detailed accounts, we refer the reader to
the books by Bredon [Bre97] and Iversen [Ive86].

A.9.1. The definition of a sheaf.

Definition A.244. Let M be a topological space. A presheaf of abelian
groups F on M is the data of

• an abelian group F (U) for each open subset U ⊂M ;

• a group homomorphism

ρU,V : F (V ) −→ F (U)

for each inclusion U ⊂ V of open subsets;

satisfying the following properties:

i) ρU,U = IdF (U) for all open subsets U ;

ii) ρU,W = ρU,V ◦ ρV,W for all open subsets U ⊂ V ⊂W .

The elements of F (U) are called the sections of F on U , and the maps ρU,V are
called restriction maps. The notation

t |U= ρU,V (t)

is most often used for the restriction of a section t ∈ F (V ). Sometimes, F (U) is
also denoted by Γ(U,F ), especially for U = M .

Definition A.245. Let F and G be presheaves of abelian groups on a topo-
logical space M . A morphism of presheaves φ : F → G is the data of a group
homomorphism φU : F (U)→ G(U) for each open subset U ⊂M that is compatible
with the restriction maps in that the diagram

F (V )

ρU,V

��

φV // G(V )

ρU,V

��
F (U)

φU // G(U)

commutes for all open subsets U ⊂ V .

Definition A.246. A presheaf of abelian groups F on M is called a sheaf if
it satisfies the following two extra conditions:

iii) for each open subset U ⊂M and each open cover U =
⋃
i∈I Ui, if a section

t ∈ F (U) satisfies t |Ui
= 0 for all i ∈ I, then t = 0;

iv) for each open subset U ⊂ M , each open cover U =
⋃
i∈I Ui, and each

collection of sections ti ∈ F (Ui) satisfying

ti |Ui∩Uj
= tj |Ui∩Uj

for all i, j ∈ I, there exists a section t ∈ F (U) satisfying t |Ui
= t.

A morphism of sheaves φ : F → G is the same as a morphism of presheaves.

Unless otherwise indicated, the word “sheaf” means “sheaf of abelian groups”,
and we denote by Sh(M) the category of sheaves.
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Remark A.247. Properties i) and ii) in the definition of presheaf can be
rephrased as follows: let Op(M) be the category whose objects are the open subsets
of M , and whose sets of morphisms Hom(U, V ) consist of a singleton if U is a sub-
set of V and are empty otherwise; then F is a contravariant functor from Op(M)
to the category Ab of abelian groups. Property iii) means that the conditions
defining F (U) are of local nature, i.e. can be tested on an open neighbourhood of
each point. For example, being a closed differential form is a local property, but
being exact is not. Property iv) allows one to glue local sections. Moreover, thanks
to the locality property, the section t in iv) is unique. In particular, a sheaf F is
determined by its sections on a basis of the topology of M and the restriction maps
between them. For example, if M is a differentiable manifold, it suffices to work
with contractible open subsets (Exercice A.322).

Definition A.248. Let F be a presheaf on a topological space M and x ∈M
a point. The stalk of F at x is the direct limit

Fx = lim−→
x∈U

F (U)

over the directed set (Section A.6.1) of open neighbourhoods of x in M , with the
partial order U ⩽ V if and only if V ⊂ U and transition maps ρU,V .

An element of the stalk Fx is thus an equivalence class of pairs (U, t), where U
is an open neighbourhood of x and t ∈ F (U) is a section, with respect to the
equivalence relation (U, t) ∼ (V, s) if there exists an open neighbourhood W ⊂ U∩V
of x such that t|W = s|W . The class of (U, t) in Fx will be denoted by tx. Each
stalk is an abelian group, and t 7→ tx is a group homomorphism F (U)→ Fx.

In practice, it is often easier to write down a presheaf than a sheaf, as the
locality and the gluing property may fail in natural situations. For this reason, it
is very useful to have a canonical way to produce a sheaf starting from a presheaf.

Proposition A.249 (Sheaf associated with a presehaf). Given a presheaf F
on a topological space M , there exists a sheaf F+ on M and a morphism of
presheaves θ : F → F+ that is universal for this property. That is, for every
morphism of presheaves f : F → G with target a sheaf G, there exists a unique
morphism of sheaves ϕ : F+ → G satisfying f = ϕ ◦ θ.

This is proved, for instance, in [Har77, Prop.–Def. II 1.2]. The idea is to define
the sections F+(U) as the group of functions s : U → ∐

x∈M Fx such that s(x)
belongs to Fx and is locally given by a section of F , i.e. there exists an open
neighbourhood V ⊂ U of x and t ∈ F (V ) such that ty = s(y) for all y ∈ V .

Definition A.250. We call F+ the sheaf associated with the presheaf F or the
sheafification of the presheaf F .

By construction, F+ and F have the same stalks at all points.

Examples A.251. Let M be a topological space and let A be an abelian group.

i) The constant presheaf A◦ is the presheaf with Ao(U) = A for each open
subset U ⊂ M , and all restriction maps equal to the identity. This is
rarely a sheaf, because sections on two disjoint open subsets do not glue
to a section on the union unless they are equal. The constant sheaf A is
defined as the sheaf associated with A◦; its sections are equal to

A(U) = {locally constant functions U → A}.
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We will also write AM when we want to emphasise the topological space.
A sheaf is called constant if it is of the form A for some abelian group A.

ii) Given a sheaf F on M and an open subset U ⊂ M , the restriction of F
to U is the sheaf F |U on U with sections F |U (W ) = F (W ) for each open
subset W ⊂ U , and the same restriction maps as those of F . A sheaf F is
said to be locally constant if each point of M has an open neighbourhood U
such that F |U is a constant sheaf. For example, by Cauchy’s theorem, the
holomorphic solutions of a differential equation

( d

dz

)n
f + an−1(z)

( d

dz

)n−1
f + · · ·+ a0(z)f = 0,

where ai(z) are holomorphic functions on a punctured complex plane C\S,
form a locally constant sheaf on C \ S.

iii) Let A be an abelian group, and let x ∈ M be a point. The skyscraper
sheaf Ax is the sheaf with sections

Ax(U) =

{
A, if x ∈ U,
0, if x /∈ U,

and restriction maps ρU,V equal to the identity if both U and V contain x,
and the zero map otherwise.

A.9.2. Sheaf cohomology. The category Sh(M) is abelian, so it makes sense to
talk about kernels, cokernels, and images of morphisms of sheaves; of complexes of
sheaves and their cohomology; of exact sequences; of injective sheaves, and so on.

Let F be a sheaf on a topological space M . The elements of the group

F (M) = Γ(M,F )

are called the global sections of F . The assignment F 7→ Γ(M,F ) gives rise to the
global sections functor

Γ: Sh(M) −→ Ab .

The functor Γ is left exact (Definition A.23): for each short exact sequence of
sheaves 0→ F1 → F2 → F3 → 0, the sequence of abelian groups

0 −→ Γ(M,F1) −→ Γ(M,F2) −→ Γ(M,F3)

is exact. However, the rightmost map does not need to be surjective, and hence the
functor is not exact. For example, let M be a connected Hausdorff topological space
and let x, y ∈M be two distinct points. The morphism of sheaves ZM → Zx ⊕ Zy
that sends a locally constant function to its values at x and y is surjective (check
stalk by stalk), but the induced map on global sections Γ(M,ZM )→ Γ(M,Zx⊕Zy)
is the diagonal map Z→ Z⊕Z, which is not. This observation is the starting point
of the definition of sheaf cohomology. Recall the notion of derived functor from
Definition A.102, and the criterion for existence given in Proposition A.112. The
functor Γ is left exact, so in order to apply it it remains to prove the following:

Lemma A.252. The category Sh(M) has enough injectives.

Proof. Let F be a sheaf. For each point x ∈ M and each abelian group A,
there is a natural isomorphism

HomAb(Fx, A) ≃ HomSh(M)(F,Ax),
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which shows that the skyscraper sheaf Ax is an injective object of Sh(M) if A
is an injective abelian group. Using that the category Ab has enough injectives
(Example A.107), there exists an injective homomorphism Fx → Ix into an in-
jective abelian group for each x. Thinking of the group Ix as a skyscraper sheaf
supported at x, the product

∏
x∈M Ix is an injective sheaf by Exercise A.129, and

the morphism F →∏
x∈M Ix obtained from F → Fx is a monomorphism. □

Definition A.253. Let M be a topological space and let F be a sheaf on M .
The cohomology groups of F are the derived functors

Hn(M,F ) = RnΓ(M,F )

of the global sections functor.

Sheaf cohomology can be computed by choosing an injective resolution

0 −→ F −→ I0 −→ I1 −→ I2 −→ · · ·
of F (i.e. a long exact sequence where all the Ii are injective sheaves) and consid-
ering the cohomology of the complex

0 −→ Γ(M, I0) −→ Γ(M, I1) −→ Γ(M, I2) −→ · · ·
obtained by taking global sections. That is, the equality

Hn(M,F ) = Hn(Γ(M, I∗))

holds. The resulting groups are independent of the choice of the injective resolution.
Although injective resolutions are useful for theoretical purposes, they may not

be the best way to compute cohomology explicitly. For this reason, it is useful to
have more concrete techniques at disposal.

Definition A.254. Let F be a sheaf on a topological space M .

i) We say that F is flasque (or flabby) if the restriction maps

ρU,V : F (V ) −→ F (U)

are surjective for all open subsets U ⊂ V ⊂M .

ii) We say that F is acyclic if the vanishing Hn(X,F ) = 0 holds for all n ⩾ 1.

An acyclic resolution of a sheaf F is an exact sequence

0 −→ F −→ A0 −→ A1 −→ A2 −→ · · ·
in which all Ai are acyclic sheaves.

Remark A.255. It is clear from this definition that the notion of an acyclic
sheaf coincides with the notion of a Γ-acyclic sheaf from Definition A.207.

In view of this remark, a particular case of Proposition A.209 is the following
lemma. For comparison, we give a direct proof that does not use spectral sequences.

Lemma A.256. Let F be a sheaf and let A∗ be an acyclic resolution of F . Then
there is a canonical isomorphism

Hn(M,F )
∼−→ Hn(H0(M,A∗)).
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Proof. Consider the short exact sequence

0 −→ F −→ A0 −→ A0/F −→ 0.

Using the acyclicity of A0, we deduce an exact sequence

0 −→ H0(F ) −→ H0(A0) −→ H0(A0/F ) −→ H1(F ) −→ 0

and isomorphisms

(A.257) Hn(A0/F ) ≃ Hn+1(F ) for all n ⩾ 1.

Besides, the complex

(A.258) 0 −→ A0/F −→ A1 −→ A2 −→ · · ·

is an acyclic resolution of A0/F . From this, one deduces the equalities

H0(F ) = Ker(H0(A0) −→ H0(A0/F )) = Ker(H0(A0) −→ H0(A1)),

H1(F ) =
H0(A0/F )

Im(H0(A0) −→ H(A0/F ))
=

Ker(H0(A1) −→ H0(A2))

Im(H0(A0) −→ H0(A1))
.

We have thus proved the cases n = 0 and n = 1 of the lemma. The remaining cases
follow inductively from the resolution (A.258) and the isomorphisms (A.257). □

Lemma A.259. Every flasque sheaf is acyclic.

A proof can be found in [Har77, Prop. III 2.5].
There is another class of acyclic sheaves called fine sheaves that is very useful

in differential geometry. For instance, we used them in the proof of de Rham’s
Theorem 2.79 to show that the sheaf of smooth differential forms is acyclic.

Definition A.260. A topological space M is said to be paracompact if it is
Hausdorff and every open cover of M can be refined to a locally finite cover. That is,
given an open cover U = (Ui)i∈I there exists an open cover V = (Vj)j∈J such that
each Vj is contained in some Ui and every point x ∈M has an open neighborhood
which only intersects finitely many Vj .

Definition A.261. Let M be a paracompact space. A sheaf F on M is said to
be fine if, for every locally finite open cover {Ui} of M , there exists a family {hi}i∈I
of sheaf endomorphisms hi : F → F such that

i) the support of hi is contained in Ui, that is, hi(s)x = 0 holds for all local
sections s of F and all x in some open neighborhood of X \ Ui;

ii) the sum
∑
i∈I hi, that is well defined because of i) and the fact that the

covering is locally finite, is the identity endomorphism.

Such a family is called a partition of unity .

Example A.262. Let M be a differentiable manifold, and let E0M be the sheaf
of differentiable functions on M . For every locally finite open cover {Ui}i∈I of M ,
one can find a family {fi}i∈I of differentiable functions fi : M → R⩾0 such that

i) supp(fi) ⊂ Ui,
ii)
∑
i∈I fi(x) = 1 for all x ∈M .
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Any such family {fi}i∈I is called a differentiable partition of unity subordinated
to the given open cover. If a sheaf F is an E0M -module, then multiplication by
the function fi provides the endomorphism hi in Definition A.261. It follows that
every E0M -module is a fine sheaf. This applies in particular to the sheaves of smooth
differential forms EpM .

Lemma A.263. Every fine sheaf is acyclic.

Proof. Exercise A.333. □

A.9.3. Godement’s canonical resolution. A sheaf F on a topological space M
admits a canonical resolution by flasque sheaves called Godement’s resolution. The
construction starts as follows: for each open subset U of M , consider the product

Gd0(F )(U) =
∏

x∈U
Fx

of the stalks of F at all points x ∈ U . Together with the obvious restriction maps,
one obtains a presheaf Gd0(F ) on M , which is readily seen to be a sheaf.

Lemma A.264. For every sheaf F , the sheaf Gd0(F ) is flasque.

Proof. It follows immediately from the definition. □

The natural morphism of sheaves F → Gd0(F ) is injective, and one defines

Gd1(F ) = Gd0(Gd0(F )/F ).

There is an obvious morphism of sheaves ∂ : Gd0(F )→ Gd1(F ). Assume now that

we have constructed sheaves Gdi(F ) with morphisms ∂ : Gdi−1(F )→ Gdi(F ), for
all i < k, satisfying ∂ ◦ ∂ = 0. Then one defines

Gdk(F ) = Gd0(Gdk−1(F )/∂Gdk−2(F )).

Clearly, there is a map ∂ : Gdk−1(F )→ Gdk(F ) satisfying ∂(∂Gdk−2(F )) = 0.
The following result can be checked directly from the definition.

Lemma A.265. For every sheaf F ,

0 −→ F −→ Gd0(F ) −→ Gd1(F ) −→ Gd2(F ) −→ · · ·
is an exact sequence of sheaves.

Definition A.266. The Godement resolution of F is the complex

Gd∗(F ) : Gd0(F ) −→ Gd1(F ) −→ Gd2(F ) −→ · · ·

Moreover, Godement’s resolution is functorial.

Lemma A.267. If f : F → G is a morphism of sheaves, then there is an induced
morphism of complexes of sheaves

Gd(f) : Gd(F ) −→ Gd(G)

satisfying Gd(f ◦ g) = Gd(f) ◦Gd(g) and Gd(Id) = Id.

Another important property of Godement’s resolution is its exactness.
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Lemma A.268. The formation of Godement’s resolution is an exact functor.
That is, for each exact sequence

0 −→ F −→ G −→ H −→ 0

of sheaves on M , the sequence of sheaves

0 −→ Gdn(F ) −→ Gdn(G) −→ Gdn(H) −→ 0

is exact for all n ⩾ 0.

Proof. We argue by induction on n, setting Gd−1(F ) = F and Gd−2(F ) = 0
for notational convenience. For n = 0, it follows from the definition of Gd0(F ) as
the product of stalks that the sequence

0 −→ Gd0(F )(U) −→ Gd0(G)(U) −→ Gd0(H)(U) −→ 0

is exact for all open subsets U ⊂M , and hence that the sequence of sheaves

0 −→ Gd0(F ) −→ Gd0(G) −→ Gd0(H) −→ 0

is exact. Assume that the functors Gdn−1 and Gdn−2 /∂Gdn−3 are exact, and
consider the commutative diagram

0

��

0

��

0

��
(Gdn−2 /∂Gdn−3)(F ) //

��

(Gdn−2 /∂Gdn−3)(G) //

��

(Gdn−2 /∂Gdn−3)(H)

��
Gdn−1(F ) //

��

Gdn−1(G) //

��

Gdn−1(H)

��
(Gdn−1 /∂Gdn−2)(F ) //

��

(Gdn−1 /∂Gdn−2)(G) //

��

(Gdn−1 /∂Gdn−2)(H).

��
0 0 0

In this diagram, all three columns are exact by design. For lack of space, we have
omitted the zeros from the beginning and the end of each row. The first two rows
are exact by the induction hypothesis. It then follows from the 3 × 3 lemma, also
called the nine lemma (see [Wei94, Ex. 1.3.2]), that the third row is exact as well.
Once that we know that the functors Gd0 and Gdn−1 /∂Gdn−2 are exact, exactness
of Gdn follows from the formula

Gdn(F ) = Gd0(Gdn−1(F )/∂Gdn−2(F )).

This concludes the proof. □

Thanks to this exactness property, Godement’s resolution of a filtered sheaf is
canonically endowed with a filtration.

Definition A.269. Let F be a sheaf, and let W be an increasing filtration
on F . We define the filtration Gd(W ) on Gd∗(F ) as

Gd(W )n Gdp(F ) = Gdp(WnF ).



492 J. I. BURGOS GIL AND J. FRESÁN

Note that the exactness of Gdp implies that Gdp(WnF ) is a subsheaf of Gdp(F ).
The definition for decreasing filtrations is similar.

A.9.4. Hypercohomology. We now turn to complexes of sheaves. Let F ∗ be
a bounded below complex of sheaves on a topological space M . There are two
possible meanings for the cohomology of F ∗: either the cohomology of the complex
viewed as a cochain complex in the abelian category Sh(M) of sheaves on M , in
which case the cohomology objects will also be sheaves, or the result of applying
the derived functor of global sections to F ∗, in which case the resulting objects will
be abelian groups. To distinguish between these two, the latter is classically called
the hypercohomology of the complex. This terminology is now a bit outdated.

Definition A.270. The hypercohomology groups of F ∗ are the cohomological
right derived functors of the global sections functor applied to F ∗ as an object
of D+(Sh(M)). In other words,

Hn(M,F ∗) = RnΓ(F ∗).

Therefore, we may compute them by means of any bounded below acyclic resolu-
tion D∗ of the complex F ∗. In symbols,

Hn(M,F ∗) = Hn(Γ(M,D∗)).

From the functoriality and exactness of Godement’s canonical resolution, we
can construct an acyclic resolution of any bounded below complex of sheaves (F ∗,d).
Indeed, let Gd∗(Fn) be Godement’s canonical resolution of the sheaf Fn. By functo-
riality (Lemma A.267), the differentials of the complex induce morphisms of sheaves

dhor : Gdm(Fn) −→ Gdm(Fn+1),

that commute with the morphisms

dver : Gdm(Fn) −→ Gdm+1(Fn)

in Godement’s resolution. We thus obtain a double complex Gd∗(F ∗) in the sense
of Definition A.33.

Definition A.271. Let F ∗ be a bounded below complex of sheaves. The
Godement resolution of F ∗ is the total complex of the double complex Gd∗(F ∗):

Gd(F ∗) = Tot∗(Gd∗(F ∗)).

Recall that this means that Gd(F ∗) is the complex with terms

Totn(Gd∗(F ∗)) =
⊕

p+q=n

Gdq(F p)

and differential d given, for each x ∈ Gdq(F p), by

dx = dhorx+ (−1)pdverx.
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The functoriality of the Godement resolution gives us a commutative diagram

...
...

...

· · · // Gd1(Fn−1)

OO

// Gd1(Fn)

OO

// Gd1(Fn+1)

OO

// · · ·

· · · // Gd0(Fn−1)

OO

// Gd0(Fn)

OO

// Gd0(Fn+1)

OO

// · · ·

· · · // Fn−1

OO

// Fn

OO

// Fn+1

OO

// · · ·

0

OO

0

OO

0

OO

The commutativity of this diagram implies that there is a morphism of complexes
of sheaves F ∗ → Gd(F ∗). The exactness of the Godement resolution for sheaves
(Lemma A.265) means that, in the above diagram, all columns are exact. Hence,
this map is a quasi-isomorphism making Gd(F ∗) into an acyclic resolution of F ∗.
The hypercohomology of F • is then given by

Hn(M,F ∗) = Hn(Γ(M,Gd(F ∗))).

Thanks to Godement’s resolution, the hypercohomology of a sheaf can be com-
puted as the cohomology of a double complex. In particular, it comes equipped
with the spectral sequence (A.206). The first page of this spectral sequence is

(A.272) Ep,q1 = Hq(M,F p) =⇒ Hp+q(M,F ∗).

As a particular case of Proposition A.210, there is another useful spectral se-
quence that relates the hypercohomology groups of a complex of sheaves with the
cohomology groups of the cohomology sheaves of the complex. Instead of using
an injective resolution, one can use Godement’s resolution. Roughly speaking, this
second spectral sequence is constructed by flipping the indices of Godement’s reso-
lution. Indeed, by the exactness of Godement’s resolution (Lemma A.268), we have

dhor(Gdp(F q−1)) = Gdp(dF q−1),

Ker(dhor : Gdp(F q)→ Gdp(F q+1)) = Gdp(Ker(d: F q → F q+1)),

Hq

dhor(Gdp(F ∗)) = Gdp(Hq(F ∗)).

Compare these properties with Exercise A.131 ii). Since the sheaves Gdp(F ) are
flasque for any F (Lemma A.264), this implies the equality

Hq

dhor(Γ(M,Gdp(F ∗))) = Γ(M,Gdp(Hq(F ∗))).

Therefore, if we endow the complex Γ(M,Gd∗(F ∗)) with the filtration

F′′ pΓ(M,Gd(F ∗)) =
⊕

p′⩾p

Γ(M,Gdp
′
(F ∗)),

then we obtain a spectral sequence whose second page is

(A.273) Ep,q2 = Hp(M,Hq(F ∗)) =⇒ Hp+q(M,F ∗).
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A.9.5. Higher direct images. Higher direct images are a way to encode how
sheaf cohomology varies in continuous families of topological spaces.

Definition A.274. Let f : M → N be a continuous map of topological spaces
and let F be a sheaf on M . The direct image sheaf f∗F is the sheaf on N whose
sections on an open subset U ⊂ N are given by

(A.275) (f∗F )(U) = F (f−1(U)),

and whose restriction maps for open subsets U ⊂ V ⊂ N are those of F for the
open subsets f−1(U) ⊂ f−1(V ) ⊂M .

In fact, the direct image construction (A.275) defines a left exact functor

f∗ : Sh(M) −→ Sh(N).

Since the category Sh(M) has enough injectives (Lemma A.252), the general con-
structions of Section A.4 apply to this setting, thus giving rise to a total right
derived functor Rf∗ and to cohomological δ-functors Rif∗ for each integer i ⩾ 0.
These cohomological δ-functors are called higher direct images.

Example A.276. The cohomology groups of a sheaf are a particular case
of higher direct images. Indeed, let M be a topological space and let F be a
sheaf on M . Let ∗ denote the topological space consisting of a single point and
let π : M → ∗ be the unique map with target ∗. Since a sheaf on ∗ is simply an
abelian group, the categories Sh(∗) and Ab are canonically equivalent. Under this
identification, the following equalities hold:

f∗F = Γ(M,F ), Rif∗F = Hi(M,F ).

The stalks of the higher direct image sheaves are related with the cohomology
of a small neighborhood of the fiber. For a proof of the next proposition, see for
instance [Har77, Prop. III.8.1], together with the fact that the stalks of a presheaf
agree with the stalks of the associated sheaf.

Proposition A.277. Let f : M → N be a continuous map of topological spaces,
let F be a sheaf on M , and let y ∈ N be a point. The stalk of the higher direct
image sheaf Rif∗F at y is given by

(Rif∗F )y = lim−→
y∈U

Hi(f−1(U), F ),

where the limit runs over all open sets U of N containing y ordered by inclusion.

The Leray spectral sequence associated with a continuous map f : M → N
allows us to compute the cohomology of a sheaf F on M in terms of the cohomology
of its higher direct images sheaves on N . It is a particular case of the Grothendieck
spectral sequence from Theorem A.213.

Proposition A.278. Let f : M → N be a continuous map, F ∗ a bounded below
complex of sheaves on M , and F a sheaf on M . Then

H∗(M,F ∗) = H∗(N,Rf∗F ).

Moreover, there is a spectral sequence with second page

Ep,q2 = Hp(N,Rqf∗F ) =⇒ Hp+q(M,F ).

It is called the Leray spectral sequence.
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Proof. Consider the functors G : Sh(M) → Sh(N) and F : Sh(N) → Ab
given by G(F ) = f∗F and F(G) = Γ(N,G), so that their composition is

F ◦ G(F ) = Γ(N, f∗F ) = Γ(M,F ).

We then get RpF(F ) = Rpf∗(F ) and

H∗(RG(RF(F ∗))) = H∗(N,RF(F ∗)), H∗(R(F ◦ G)(F ∗)) = H∗(M,F ∗),

RqG(RpF(F )) = Hq(N,RpF(F )), Rp+q(F ◦ G)(F ) = Hp+q(M,F ).

By Exercise A.327, every injective sheaf in M is flasque, and it is clear from the
definition of a flasque sheaf that, if I is a flasque sheaf then f∗I is again flasque,
and hence acyclic. It follows that the functor G sends injective objects to F-acyclic
objects, so we can apply Theorem A.213 to obtain the result. □

We will also use a compatibility between Godement’s resolution and direct
images that we now explain. Let f : M → N be a continuous map of topological
spaces and F a sheaf on M . Let x ∈M be a point and y = f(x). Then

(f∗F )y = lim−→
y∈U

F (f−1(U)),

Fx = lim−→
x∈V

F (V ).

Since y ∈ U implies x ∈ f−1(U), we deduce a map (f∗F )y → Fx. Putting together
all these maps, we deduce a morphism of sheaves

Gd0(f∗F ) −→ f∗Gd0(F )

given, on an open set U ⊂ N , by
(

Gd0(f∗F )
)
(U) =

∏

y∈U
(f∗F )y −→

∏

x∈f−1(U)

Fx =
(
f∗Gd0(F )

)
(U).

The following result is left as an exercise. It follows easily from the previous
construction and the definition of Godement’s resolution.

Lemma A.279. The above construction induces a morphism of complexes

(A.280) Gd∗(f∗F ) −→ f∗Gd∗(F )

that represents the morphism f∗F → Rf∗F in the derived category.

Example A.281 (The trace map). Let f : X → Y be a finite morphism of
algebraic varieties over the field of complex numbers. Assume that Y is smooth, X
is irreducible, and f is dominant over an irreducible component of Y . Let f also
denote the induced map of complex analytic spaces f : X(C) → Y (C). In this
example, we construct a trace map

TrX/Y : f∗QX(C) −→ Q
Y (C).

Let U ⊂ Y (C) be an open subset and s ∈ Γ(U, f∗QX(C)) a section. Then s is a

locally constant function s : f−1(U)→ Q, and we need to produce a locally constant
function TrX/Y s : U → Q. Let U0 be a connected component of U , and choose a
point y ∈ U0 with the property that there is a connected neighborhood W ⊂ U0

of y such that the map f |f−1(W ) is étale. For all z ∈ U0, we define

(A.282) TrX/Y s(z) =
∑

f(x)=y

s(x).
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Since the set of points y ∈ U0 satisfying the above condition is a connected subset U ′0
of U0, and the set of points y′ ∈ U ′0 such that

∑

f(x)=y′

s(x) =
∑

f(x)=y

s(x)

is open and closed, we deduce that (A.282) does not depend on the choice of y.
The morphism (A.282) is hence well defined.

A.9.6. Inverse images. Given a continuous map f : M → N and a sheaf F
on N , there is also a construction of the inverse image of F as a sheaf on M .

Definition A.283. Let f : M → N be a continuous map and F a sheaf on N .
The inverse image sheaf f−1F is the sheaf on M associated with the presheaf

U 7−→ lim−→
V⊃f(U)

F (V ),

where the limit runs over all open subsets V ⊂ N containing f(U) ordered by
inclusion.

Remark A.284. If ι : Z → M is the inclusion of either an open or a closed
subset Z of M , and F is a sheaf on M , then we will denote the inverse image ι−1F
by F |Z and call it the restriction of F to Z.

Although the definition of f−1F looks more difficult than the definition of the
direct image f∗F , this construction behaves better in some respects. For example,
the stalks are easier to compute, as we have

(f−1F )x = Ff(x)

for all x ∈M . From this it follows that f−1 : Sh(N)→ Sh(M) is an exact functor.
Moreover, the direct image and the inverse image functors are adjoint to each

other (see Section A.1.4). This means that, given a continuous map f : M → N , a
sheaf F on M , and a sheaf G on N , there is a functorial isomorphism

(A.285) HomSh(M)(f
−1G,F )

∼−→ HomSh(N)(G, f∗F ).

The adjunction morphisms (A.11) read

(A.286) G −→ f∗f
−1G, f−1f∗F −→ F

for each sheaf G on N and each sheaf F on M . We picture the situation as follows:

M
f−−→ N ⇝ Sh(M)

f∗
**
Sh(N).

f−1

jj

A.9.7. Direct image with proper support. Given a continuous map f : M → N ,
there is a second way to obtain a sheaf on N starting from a sheaf F on M which
is called the direct image with proper support and denoted by f!F . These symbols
are often read as “f lower shriek of F”, as “shriek” is a word for “exclamation”.
Before giving the definition of f!, we recall the notion of support of a section.

Definition A.287. Let M be a topological space, F a sheaf on M , and U ⊂M
an open subset. The support of a section s ∈ F (U) is the set

supp(s) = {x ∈ U | sx ̸= 0},
where sx is the class of s in the stalk Fx (Definition A.248).
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By definition, the complement U \ supp(s) of the support of a section s con-
sists of the points y ∈ U such that there is an open neighborhood V ⊂ U of y
satisfying s|V = 0. It follows that supp(s) is a closed subset of U .

We also recall the notion of a proper map between topological spaces.

Definition A.288. A continuous map of topological spaces f : M → N is
called proper if the preimage f−1(K) of every compact subset K ⊂ N is compact.

Remark A.289. In algebraic geometry, there is also the notion of a proper
morphism, as explained for instance in [Har77, § II 4]. One has to be careful that
for a morphism of algebraic varieties, being proper is not equivalent to the map
of the underlying topological spaces being proper. Nevertheless, if k is a subfield
of C and f : X → Y is a morphism of k-varieties, then f is proper in the algebro-
geometric sense if and only if fan : X(C) → Y (C) is a proper map of topological
spaces (see [Har77, App. B]).

Since the definition of proper we are using is pathological when the spaces are
not Hausdorff and locally compact, in the remainder of this section we will restrict
ourselves to this case.

Definition A.290. Let f : M → N be a continuous map of locally compact
Hausdorff topological spaces and let F be a sheaf on M . The direct image with
proper support f!F is the sheaf

U 7−→ {s ∈ F (f−1(U)) | the restriction supp(s)→ U is proper}.
Remark A.291. The fact that f!F is a sheaf is proved in [Ive86, VII Prop. 1.2].

Moreover, the formation of the direct image with proper support is functorial in
the sense that (f ◦ g)! = f! ◦ g! holds. It is also clear form the definition that f!F
is a subsheaf of f∗F and f!F = f∗F if f is proper. The functor f! is left exact.

When f is the inclusion of an open subset into a locally compact Hausdorff
space, f! coincides with the extension by zero.

Lemma A.292. Let N be a locally compact Hausdorff space, let j : M → N be
the inclusion of an open subset M of N , and let F be a sheaf on M . Then j!F is
the sheaf on N associated with the presheaf

(A.293) U 7−→
{
F (U), if U ⊂M,

0, otherwise.

Proof. The proof consists in constructing a map from the presheaf (A.293)
to the sheaf j!F and showing that this map is an isomorphism on stacks. To this
end, we first compute the stalks of j!F .

If x ∈ M , then (j!F )x = Fx. Indeed, to compute (j!F )x we can use open sets
contained in M . If V ⊂M is an open subset and s ∈ F (V ) is a section, then supp(s)
is closed in V . Since any closed subset of a compact set is compact, the restriction
supp(s)→ V is proper.

If y ̸∈M , then (j!F )y = 0. Let U be an open set containing y. Put V = U ∩M ,
and let s ∈ F (V ) be a section such that supp(s) → U is proper. Again by the
hypothesis on N , this implies that supp(s) is closed in U . Hence, W = U \ supp(s)
is open, contains y, and is such that s|W = 0. We conclude that the class of any
section with proper support vanishes in (j!F )y.
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Let F0 be the presheaf (A.293). In general, F0 is not a sheaf (Exercise A.325).
One readily checks that the stalks of this presheaf are equal to (F0)x = Fx if x ∈M ,
and to zero otherwise. Moreover, using that a closed immersion is a proper map,
for every open subset U ⊂ N , there is an inclusion F0(U)→ j!F (U), and all these
inclusions glue together to give a morphism of presheaves F0 → j!F .

Summing up, we deduce the existence of a morphism from the sheaf associated
with the presheaf F0 to j!F that is an isomorphism on stalks. Therefore, both
sheaves are isomorphic. □

Remark A.294. The analogue of Lemma A.292 is also valid in the context of
algebraic geometry.

The functor f! allows us to define cohomology with compact support.

Definition A.295. Let M be a locally compact Hausdorff topological space
and ∗ the topological space consisting of a single point. Let π : M → ∗ be the
unique map from M to ∗. The functor of global sections with compact support is

Γc(M,F ) = Γ(∗, π!F ) = {s ∈ F (M) | supp(s) is compact},
and the cohomology with compact support is the derived functor of Γc:

Hp
c(M,F ) = RpΓc(M,F ).

Remark A.296. We can give a second interpretation of the cohomology with
compact support using again that Γ: Sh(∗)→ Ab is an equivalence of categories.
Through this identification, we have

(A.297) Hp
c(M,F ) = Rpπ!F.

In the special case where f : M → N is the inclusion of an open subset, the
direct image with compact support and the inverse image functors are also adjoint
to each other: there is a functorial isomorphism

(A.298) HomSh(M)(F, f
−1G)

∼−→ HomSh(N)(f!F,G)

for each sheaf F on M and each sheaf G on N . Observe that the position of f−1 in
this isomorphism and in (A.285) are different. Thus, f∗ is a right adjoint of f−1,
while f! is a left adjoint of f−1. Exercise A.60 implies that f−1 is exact. As in the
case of f∗, the adjunction morphisms (A.11) read

(A.299) f!f
−1G −→ G, F −→ f−1f!F.

Remark A.300. The adjunction morphisms (A.286) and (A.299) allow us to
interpret cohomology with compact support as relative cohomology. This was used
in Section 2.8.7 to construct a mixed Hodge structure on cohomology with compact
support. The steps for this identification are spelled out in Exercise A.326.

Formation of cohomology with compact support is contravariant for proper
morphisms. Namely, let f : N →M be a proper map of locally compact Hausdorff
topological spaces. For a sheaf F in M , there are inverse image maps

(A.301) Hp
c (M,F ) −→ Hp

c (N, f−1F ).

Indeed, using the equality πN = πM ◦ f , the functoriality of the direct image with
compact support implies the equality

(πN )!f
−1F = (πM )!f!f

−1F,
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where πN and πM are the maps to the point ∗. Since f is proper, f! = f∗ holds,
and the adjunction morphism

F −→ f∗f
−1F = f!f

−1F

gives a map (πM )!F → (πN )!f
−1F , and hence a map R(πM )!F → R(πN )!f

−1F
that, by means of the identification (A.297), yields the map (A.301).

A.9.8. Singular cohomology as cohomology of the constant sheaf. Let M be a
topological space. For each open subset U of M , let

C∗(U) = (C∗(U), d∗)

denote the singular chain complex of U , as introduced in (2.3).

Definition A.302. Given an open cover U = (Ui)i∈I of U , we say that a
singular chain

∑
njσj ∈ Cn(U) is subordinated to U if each simplex σj : ∆n

st → U
lands in one of the open subsets from the cover.

Singular chains subordinated to a fixed open cover U form a subcomplex CU
∗ (U),

and the inclusion
CU
∗ (U) ↪−→ C∗(U)

induces an isomorphism in homology by barycentric subdivision (this is proved, for
instance, [Ram05, Chap. 4, Prop. 4.12]). Let now

C∗(U) = Hom(C∗(U),Z) and C∗U(U) = Hom(CU
∗ (U),Z)

denote the complexes of singular cochains and singular cochains subordinated to U.
The assignments U 7→ C∗(U) and U 7→ C∗U(U) define complexes C∗ and C∗U of
presheaves of abelian groups on M such that the natural map

C∗ −→ C∗U

is a quasi-isomorphism. The presheaves Cn are flasque, which means that the
restriction maps Cn(U) → Cn(V ) are surjective: a preimage of φ : Cn(V ) → Z is
the cochain Cn(U)→ Z that sends a simplex σ : ∆n

st → U to φ(σ) if σ lands in V and
to zero otherwise. The presheaves Cn are not sheaves but they satisfy the gluing
condition iv) from Definition A.246. Let C̃n denote the associated sheaves. If one
further assumes that all open subsets U of M are paracompact, then the natural
maps Cn(U)→ C̃n(U) are surjective [Ram05, Chap. 1, Prop. 1.4]. It follows that

the sheaves C̃n are also flasque. Indeed, given open subsets U ⊂ V ⊂ M , in the
commutative diagram

Cn(U) //

��

Cn(V )

��
C̃n(U) // C̃n(V )

we already know that the upper horizontal map and the vertical maps are surjective,
and hence so is the lower horizontal map.

Let now U be an open subset and U an open cover of M . The kernel of the
map C∗(U)→ C∗U(U) consists of the sections that vanish when restricted to V ∩U
for all V ∈ U. Therefore, any such section is mapped to zero in C̃∗(U) by the sheaf

condition. Thus, the map C∗(U)→ C̃∗(U) factors through a map C∗U(U)→ C̃∗(U).
Varying the cover U, we obtain a map

(A.303) lim−→
U

C∗U(U) −→ C̃∗(U).



500 J. I. BURGOS GIL AND J. FRESÁN

The surjectivity of (A.303) follows from that of the map C∗(U) → C̃∗(U). More-

over, if a section s ∈ C∗(U) is mapped to zero in C̃∗(U), then it is mapped to zero
in all the stalks at points of U . Hence, there is an open cover U of U such that s is
mapped to zero in C∗U(U). We conclude that (A.303) is also injective.

From the exactness of direct limits (Proposition A.165), we deduce

Hi(C̃∗(U)) = Hi

(
lim−→
U

C∗U(U)

)
= lim−→

U

Hi(C∗U(U)) = Hi(C∗(U)).

In other words, the complexes C̃∗(U) and C∗(U) are quasi-isomorphic.
Let Z◦ → C0 be the morphism of presheaves that sends 1 ∈ Z◦(U) = Z to the

singular cochain (
∑
nx[x] 7→∑

nx) and let

Z −→ C̃0

be the associated morphism of sheaves.

Theorem A.304. Let M be a locally contractible topological space in which all
open subsets are paracompact (e.g. the underlying topological space of a complex

manifold). The map Z→ C̃0 induces an isomorphism

H∗(M,Z)
∼−→ H∗(M,Z)

between sheaf and singular cohomology of M .

Proof. The sheaves C̃n are flasque, and hence acyclic by Lemma A.259. Be-
sides, the sequence of sheaves

(A.305) Z −→ C̃0 −→ C̃1 −→ · · ·
is exact. Indeed, each point x ∈ M has a contractible open neighborhood Ux,
and it suffices to check exactness after taking sections on such a Ux. Since the
complex C̃∗(Ux) is quasi-isomorphic to C∗(Ux), exactness follows from the com-
putation H0(Ux,Z) = Z and Hi(Ux,Z) = 0 for all i > 0, which is an instance of
homotopy invariance of singular cohomology. Hence, (A.305) is an acyclic resolu-

tion, and H∗(M,Z) is isomorphic to the cohomology of the complex C̃∗(M). We

then conclude using again that C̃∗(M) is quasi-isomorphic to C∗(M). □

Remark A.306. The preprint [Sel16] contains a proof of this comparison result
without the paracompactness assumption. A different argument taking advantage
of the formalism of ∞-categories appears in [Pet22].

Remark A.307. Let M be a differentiable manifold. As was mentioned in
Remark 2.12 ii), singular homology and cohomology can also be computed using
smooth chains and cochains. A simplex σ : ∆n

st →M is called smooth if there exists
an open neighbourhood V of ∆n

st ⊂ Rn+1 and a C∞ map σ̄ : V →M with σ = σ̄|∆n
st

.
A chain

∑
j njσj is called smooth if all the simplices σj are smooth. If U ⊂M is an

open subset, we denote by Csm
n (U) ⊂ Cn(U) the subspace of smooth chains and by

Sn(U) = Hom(Csm
n (U),Z)

the space of smooth singular cochains. The boundary maps ∂ send smooth singular
chains to smooth singular chains, making Csm

∗ (U) into a chain complex and defining
a differential in S∗(U). The maps

Csm
∗ (U) −→ C∗(U) and C∗(U) −→ S∗(U)
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are quasi-isomorphisms, as proved for instance in [War83, 5.32] or [Lee13, Thm. 18.7].
Therefore, everything we have done in this section can be repeated for smooth sin-
gular cochains. In particular, we obtain a complex of flasque sheaves S̃∗ and, by
Theorem A.304, a quasi-isomorphism

Z −→ S̃∗,

that gives an isomorphism between the cohomology of the constant sheaf and
smooth singular cohomology. In fact, for any any ring Λ, writing

S∗(M,Λ) = Hom(Csm
n (M),Λ),

there are isomorphisms

H∗(M,Λ)
∼−→ H∗(S∗(M,Λ)).

We will apply this result mainly when Λ is Q or R.

A.9.9. Coherent sheaves. In this section, we briefly summarize the notion of
coherent sheaf in algebraic and analytic geometry and some vanishing theorems
for higher cohomology groups of coherent sheaves due to Cartan and Serre. Recall
that an algebraic variety X comes equipped with a sheaf of rings OX , the sheaf of
regular functions. Similarly, a complex manifold X is endowed with a sheaf of rings,
the sheaf of holomorphic functions that is denoted in the same way OX . In both
cases, OX is called the structure sheaf. This abuse of notation is intentional because
we can state similar results in algebraic geometry and in complex geometry with
the same words, so from now on X will be either an algebraic variety or a complex
manifold. Once we have the structural sheaf OX , we can talk about OX -modules.

Definition A.308. Let X be either an algebraic variety or a complex manifold.
A sheaf of OX-modules is a sheaf of abelian groups F on the underlying topological
space such that, for every open set U of X, the abelian group F (U) carries the
structure of an OX(U)-module. Moreover, the restriction maps are compatible
with the OX -module structures: for each inclusion V ⊂ U , and sections f ∈ OX(U)
and s ∈ F (U), the relation

(f · s)|V = f |V · s|V
holds. The basic examples of OX -modules are the sheaf OX itself and the direct
sums O⊕IX , for I a set. A sheaf of OX -modules F is called quasi-coherent if every
point has a neighborhood U such that the restriction F |U sits in an exact sequence

O⊕JU −→ O⊕IU −→ F |U −→ 0,

with I and J arbitrary sets. The sheaf F is called coherent if the sets I and J can
be chosen to be finite.

Remark A.309. The definition of coherent sheaves in algebraic and complex
geometry and of quasi-coherent sheaves in algebraic geometry is the standard one. It
is subtle question to find a good notion of quasi-coherent sheaf in complex geometry.

Example A.310. A sheaf F is locally free if each point has a neighbourhood U
such that F |U is isomorphic to O⊕IU for some set I. It follows directly from the
definitions that every locally free sheaf is quasi-coherent. A locally free sheaf has
finite rank if the sets I are finite. The rank of a locally free sheaf of finite rank is the
locally constant function that sends a point x as before to the number |I|. Again,
it follows from the definition that a locally free sheaf of finite rank is coherent.
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In algebraic geometry, a scheme is called affine if it is of the form Spec(A) for
some ring A. If X is an algebraic variety over a field k, being affine is equivalent
to being a closed subvariety of an affine space ANk over k. Similarly, in complex
geometry there is the analogous notion of Stein manifold (or more generally Stein
space). See [GR65] for more details about Stein spaces. The embedding theorem
for Stein manifolds implies that a complex manifold is Stein if and only if it is
a closed holomorphic submanifold of an affine space Cn. The next result is due
to Cartan in the case of coherent sheaves over a Stein manifold, and to Serre for
quasi-coherent sheaves on a noetherian scheme. For a proof in the algebraic case,
see [Har77, Thm. III 3.7]. For a counterexample to the validity of this theorem for
quasi-coherent sheaves in complex manifolds, see [Rei].

Theorem A.311. Let X be a noetherian affine scheme (resp. a Stein complex
manifold) and let F be a quasi-coherent (resp. coherent) sheaf of OX-modules. Then

Hi(X,F ) = 0 in all degrees i ⩾ 1.

The previous theorem has also a relative version, that we now explain. A
morphism of schemes f : X → Y is called affine if there is a covering Y =

⋃
i Ui

of Y by affine open subsets such that f−1(Ui) is affine for each i. Equivalently, f
is affine if the inverse image of any affine open subset of Y is affine.

Example A.312. Let X be a scheme, and let D be an effective Cartier divisor
on X, e.g. any effective divisor on a smooth variety. Let |D| denote the support
of D. Then the inclusion j : X \ |D| → X is affine. Indeed, since D is an effective
Cartier divisor, there exists a covering of X by open affine subsets Ui = Spec(Ai)
and elements fi ∈ Ai such that D|Ui

is defined by the equation fi = 0. Then

j−1(Ui) = Spec(Ai[f
−1
i ])

is affine. Note that for this property to hold it is crucial that D is a divisor. For
instance, the inclusion A2 \ {(0, 0)} → A2 is not affine. Note also that X \ |D| need
not be affine, as the example where X is the blow-up of A2 at the origin and D the
exceptional divisor shows.

Similarly, a morphism of complex manifolds is called Stein if the inverse image
of every open Stein subset of the target is Stein.

Theorem A.313. Let f : X → Y be an affine morphism of noetherian schemes
(resp. a Stein morphism of complex manifolds) and let F be a quasi-coherent (resp.
coherent) sheaf of OX-modules. Then

Rif∗F = 0 for all i ⩾ 1.

In other words, quasi-coherent (resp. coherent) sheaves are acyclic for the direct
image functor f∗.

Proof. By Proposition A.277, the stalk of the higher direct image sheaf Rif∗F
at a closed point y of Y is given by

(Rif∗F )y = lim−→
y∈U

Hi(f−1(U), F ).

As one can restrict to affine (resp. Stein) neighborhoods of y to compute the limit,
the right-hand vanishes for all i ⩾ 1 by Theorem A.311. □
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A.9.10. Local systems as representations of the fundamental group. In this sec-
tion, we discuss a class of sheaves on a topological space called local systems and
we prove that, under mild assumptions, the category they form is equivalent to the
category of representations of the fundamental group of the topological space.

Definition A.314. A sheaf F of vector spaces on a topological space M is said
to be locally constant if there exists an open cover {Ui}i∈I of M such that all the
restrictions F |Ui

are constant sheaves as in Examples A.251 i). A locally constant
sheaf is also called a local system.

Theorem A.315. Let M be a Hausdorff, second countable, connected, locally
compact and locally contractible topological space. Let x0 ∈ M be a point and V a
vector space. There is an equivalence of categories

{
local systems F on M
with fiber Fx0

= V

}
∼−→
{

representations of
π1(X,x0) on V

}
.

Proof. We first show how to construct a local system out of a representation
of the fundamental group. For every point x ∈ M , we choose once and for all a
path αx ∈ P(M)x x0

. Thus, αx : [0, 1] → M is a piecewise smooth map with end-
points αx(0) = x0 and αx(1) = x. Let ρ : π1(M,x0)→ GL(V ) be a representation.
We define a sheaf F by describing its sections. For every open set U ⊂M , let F (U)
be the vector space of all functions f : U → V satisfying the following property: for
all points x, y ∈ U and all paths γ ∈ P(U)y x, the relation

ρ([α−1y · γ · αx]) · f(x) = f(y)

holds. The fact that F is a sheaf is left as Exercise A.332. We now show that F is
locally constant. Since M is assumed to be locally contractible, we can cover M by
contractible open subsets. Let U be one of these subsets. We show that F (U) ≃ V .
Choose a point x ∈ U , and let φx : F (U) → V be the map f 7→ f(x), which is
injective. Indeed, since U is contractible, it is in particular connected, and hence
for each y there is a path γ ∈ P(U)y x. If φx(f) = f(x) = 0, then

f(y) = ρ([α−1y · γ · αx]) · f(x) = 0,

and hence f = 0. We now show that φx is surjective. Given v ∈ V , choose for
every point y a path γy ∈ P(U)y x, and define fv by the rule

fv(y) = ρ([α−1y · γy · αx]) · v.
The resulting function is independent of the choice of paths γy. Indeed, since U is
contractible, it is in particular simply connected. Therefore, if γ′y is another choice
of path, then [γy] = [γ′y] ∈ π(M ; y, x). Therefore,

ρ([α−1y · γ′y · αx]) = ρ([α−1y · γy · αx]).

Then fv is easily seen to be a section of F (U). Moreover, fv(x) = v holds, show-
ing that φx is surjective, and hence an isomorphism. The same argument shows
that for each connected open subset U ′ ⊂ U the restriction F (U) → F (U ′) is an
isomorphism, showing that F |U is isomorphic to the constant sheaf.

The next step is to produce a representation of π1(M,x0) starting with a locally
constant sheaf F with fiber Fx0 = V . During this proof, an open subset U ⊂ M
will be called good (for this sheaf) if U is connected and F |U is isomorphic to the
constant sheaf V on U . Since F is locally constant, M can be covered by good
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open subsets. Let x, y ∈ M , and let γ ∈ P(X)y x be a path between two points.
Using that [0, 1] is compact, we can choose a finite set of points

0 = t0 < t1 < · · · < tk < tk+1 = 1

and good open sets Uj , for j = 0, . . . , k, such that γ([tj , tj+1]) is contained in Uj .
For each j = 0, . . . , k, there is an isomorphism

ρj : Fγ(tj) −→ Fγ(tj+1)

given as the composition of the maps to the stalks

Fγ(tj)
∼←− F (Uj)

∼−→ Fγ(tj+1).

We denote by ργ : Fx → Fy the composition

ργ = ρk ◦ · · · ◦ ρ0.

The fact that ργ is independent of the choices follows from two properties:

i) the isomorphism ρj does not depend on the choice of the good open set U ′

containing γ([tj , tj+1]);

ii) the composition ργ does not change if we add t′j satisfying tj < t′j < tj+1.

The next step is to show that the isomorphism ργ only depends on the homotopy
class [γ] ∈ π1(M ; y, x). Let γ and γ′ be two paths and H a homotopy between them.
We can find points

0 = t0 < t1 < · · · < tk < tk+1 = 1, 0 = s0 < s1 < · · · < sℓ < sℓ+1 = 1

and good open sets Ui,j such that H([ti, ti+1]× [sj , sj+1]) ⊂ Ui,j . Then one checks
that the square

FH(ti,sj)
≃ //

≃
��

FH(ti,sj+1)

≃
��

FH(ti+1,sj) ≃
// FH(ti+1,sj+1)

is commutative. From this, the equality ργ′ = ργ follows.
As a consequence of this construction, there is a representation

ρ : π1(X,x0) −→ GL(V )

given by [γ] 7→ ργ . The map ργ is called the parallel transport along γ, and the
map γ is called the monodromy representation.

We leave it to the reader to check that the constructions we have described are
inverses of each other and functorial. □

Remark A.316. It is clear from the proof of Theorem A.315 that the hypothe-
ses on M are much more restrictive than needed, but they are satisfied in the
examples we are interested in. For instance, instead of asking the topological space
to be locally contractible it is enough to assume that it is locally path-connected
and semilocally simply-connected. The second condition means that every point
has a neighborhood such that every loop in the neighborhood is null-homotopic in
the whole space.
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The sheaf cohomology of a local system is related to the group cohomology of
the fundamental group with coefficients in the fiber. More precisely, let M , x0,
and V be as in Theorem A.315. Write Γ = π1(M,x0) for the fundamental group
of M based at x0, and let F be a local system on M with fiber Fx0

= V . This
turns V into a Γ-module. We refer the reader to [Hat02, Ch. 4] for the definition
and properties of the higher homotopy groups appearing in the next result.

Theorem A.317. Assume that there exists r ⩾ 1 such that the higher homotopy
groups πi(X,x0) vanish for i = 2, . . . , r. Then there are canonical isomorphisms

(A.318) Hi(M,F ) ∼= Hi(Γ, V ) for i = 0, . . . , r,

where the left-hand side is sheaf cohomology, and the right-hand side is group co-
homology. There is also an injective map

Hr+1(Γ, V ) −→ Hr+1(M,F ).

Proof. We sketch of two proofs, based on the theory of Postnikov towers and
on the universal covering. The key point of both is to construct a spectral sequence.

First proof. By the theory of Postnikov towers [Hat02, §4.3], one can con-
struct a diagram of topological spaces

M∞

π

��
M

φ∞

==

φ1 // M1

satisfying the following properties:

i) The map φ∞ is a weak homotopy equivalence, so that M and M∞ have
the same homotopy groups.

ii) The map π is a fibration, i.e. there exists an open covering {Uα} of M1

and isomorphisms π−1(Uα) ≃ Uα × N for a certain space N . Moreover
the space N is connected and πi(N, y0) = 0 holds for all points y0 ∈ N
and all i = 1, . . . , r.

iii) The space M1 is a K(Γ, 1) space, i.e. M1 is connected, π1(M1, y0) = Γ,
and all the higher homotopy groups of M1 vanish.

These properties imply that the universal covering space M̃1 of M1 is weakly con-
tractible (i.e. all homotopy groups vanish) and that the map φ1 induces an isomor-
phism of fundamental groups.

Let F∞ and F1 be the local systems on M∞ and M1 induced by the same
representation of Γ as F , that is F∞ = π∗F1 and F = φ∗1F1 = φ∗∞F∞. Then:

i) Hi(M,F ) = Hi(M∞, F∞), for all i ⩾ 0 because M and M∞ are homotopy
equivalent.

ii) Hi(Γ, V ) = Hi(M1, F1), for all i ⩾ 0 because M1 is a K(Γ, 1) space.

iii) The Leray spectral sequence gives us a convergent spectral sequence

(A.319) Ep,q2 = Hp(M1, R
qπ∗F∞) =⇒ Hp+q(M∞, F∞) = Hp+q(M,F ).

iv) Since N is connected and satisfies πi(N, y0) = 0 for i = 1, . . . , r, the
Hurewicz theorem (see [Hat02, Thm. 4.32]) implies the vanishing

Hi(N,Z) = 0 for i = 1, . . . , r.



506 J. I. BURGOS GIL AND J. FRESÁN

Since F∞ is constant along the fibers, Proposition A.277 along with the
universal coefficients theorem, in the form of exact sequence (2.17), imply

R0π∗F∞ = F1, Riπ∗F∞ = 0, i = 1, . . . , r.

Combining these facts, we see that the zeroth row of the spectral sequence (A.319)
is given by Hi(Γ, V ), while the rows from 1 to r are zero, hence isomorphisms

Hp(Γ, V ) = Ep,02 = Ep,0∞ = Hp(M,F ) for p = 0, . . . , r

and an exact sequence

0→ Hr+1(Γ, V ) −→ Hr+1(M,F ) −→ E0,r+1
2

dr+2−−−→ Er+2,0
2 .

Second proof. Let M̃ be the universal covering space of M and π : M̃ → M

the covering map. Since the space M̃ is connected and satisfies πi(M̃, y0) = 0 for

all i = 1, . . . , r, from the Hurewicz theorem we get Hi(M̃,Z) = 0 for all i = 1, . . . , r.

The group Γ acts freely on M̃ , and M is homeomorphic to M/Γ as a topological

space. An equivariant sheaf on M̃ is a sheaf F on M̃ together with isomorphisms

ργ : γ∗F −→ F

for all γ ∈ Γ satisfying the cocycle condition

ργ′γ = ργ ◦ γ∗(ργ′)

for all γ, γ′ ∈ Γ. Let ShΓ(M̃) denote the category of Γ-equivariant sheaves on M̃ .

The inverse image functor gives us an equivalence of categories Sh(M)→ ShΓ(M̃).
Let Γ-Mod denote the category of Γ-modules, and V Γ the abelian group of

invariant elements of a Γ-module V . There are functors

ShΓ(M̃)
G−→ Γ-Mod

F−→ Ab

given by G(F ) = H0(M̃, F ) and F(V ) = V Γ. They satisfy:

RqG(F ) = Hq(M̃, F ), RpF(V ) = Hp(Γ, V ), Rn(F ◦ G)(π∗F ) = Hn(M,F ).

It is proved in [Gro57, p, 198] that the functor G sends injective equivariant sheaves
to injective Γ-modules, which are in particular F-acyclic. We can then apply The-
orem A.213 to get a spectral sequence of composition of functors

Ep,q2 = Hp(Γ,Hq(M̃, π∗F )) =⇒ Hp+q(M,F ).

Since M̃ is simply connected, the sheaf π∗F is the locally constant sheaf V . Using

the vanishing of the homology of M̃ and the universal coefficients theorem, we get

Hq(M̃, π∗F ) =





V, if q = 0,

0, if q = 1, . . . , r,

?, for q ⩾ r + 1.

The spectral sequence has Ep,02 = Hp(Γ, V ) and zero on the rows 1 to r, so as before
we get isomorphisms

Hp(Γ, V ) = Ep,02 = Ep,0∞ = Hp(M,F ) for p = 0, . . . , r

and an exact sequence

0→ Hr+1(Γ, V ) −→ Hr+1(M,F ) −→ Hr+1(M̃, π∗F )Γ
dr+2−−−→ Hr+2(Γ, V ).
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This concludes the proof. □

Since the condition of Theorem A.317 always holds for r = 1, we get:

Corollary A.320. Let M be a Hausdorff, second countable, connected, locally
compact and locally contractible topological space. For each local system F on M ,
there are canonical isomorphisms

Hi(M,F ) ∼= Hi(Γ, V ) for i = 0 and i = 1,

as well as an injection H2(Γ, V ) ↪→ H2(M,F ).

⋆ ⋆ ⋆

Exercise A.321. Prove that a sheaf F satisfies F (∅) = 0, while this does not
necessarily hold for presheaves.

Exercise A.322. Let M be a topological space and let B be a basis of its
topology, that is, a collection of open subsets that cover M and such that, for any
two basis elements U1, U2 ∈ B and any point x ∈ U1 ∩ U2, there exists a basis
element U3 ∈ B satisfying x ∈ U3 ⊂ U1 ∩ U2. Show that a sheaf F on M is
uniquely determined by an assignment U 7→ F (U), for each U ∈ B, such that the
four conditions in Definition A.246 hold.

Exercise A.323. Let M be a topological space and let ι : N ↪→ M be the
inclusion of a closed subspace. Show that, given a sheaf F on N , the direct image
sheaf ι∗F from Definition A.274 is the extension by zero of F , that is, the sheaf
on N with stalks Fx if x ∈ N and 0 otherwise. Then prove that ι∗ is an exact
functor, so that the higher direct image sheaves vanish.

Exercise A.324. Let M be a locally compact Hausdorff space and j : U →M
the inclusion of an open subset. Prove that the functor j! is exact.

Exercise A.325. Let N be the topological space consisting of two points with
the discrete topology and j : M → N the inclusion of the open subset M consisting
of a single point. Let Z be the constant sheaf on M . Show that Γ(N, j!Z) = Z.
Conclude that the presheaf (A.293) is not a sheaf.

Exercise A.326. Let M be a compact Hausdorff topological space, j : U →M
the inclusion of an open subset, and i : Z →M the inclusion of the complementary
closed subset. Let F be a sheaf on X.

i) Prove that there is an exact sequence

0 −→ j!j
−1F −→ F −→ i∗i

−1F −→ 0.

ii) Prove that, since M is compact, there is a canonical isomorphism

H∗(M, j!j
−1F ) ∼= H∗c(U, j

−1F ).

iii) Let ∗ be the topological space reduced to a single point, and let πM , πU ,
and πZ be the unique maps from M , U , and Z to ∗. Using Exercises A.323
and A.324, prove that there is a canonical isomorphism

R(πU )!j
−1F ≃ Tot

(
R(πM )∗F → R(πZ)∗i

−1F
)
.
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iv) Assume that M and Z satisfy the hypothesis of Theorem A.304. Specialize
the previous result to F = Z to obtain a canonical isomorphism

H∗c(U,Z) ≃ H∗(M,Z;Z).

Conclude that there is a long exact sequence

· · · −→ Hn
c (U,Z) −→ Hn(M,Z) −→ Hn(Z,Z) −→ · · ·

v) Generalize the previous result to non-compact M . Namely, if M is a
topological Hausdorff space, then there is a long exact sequence

· · · −→ Hn
c (U,Z) −→ Hn

c (M,Z) −→ Hn
c (Z,Z) −→ · · ·

Exercise A.327. In this exercise, we show that every injective sheaf is flasque.
Let M be a topological space, F a sheaf on M , and I an injective sheaf. Consider
open subsets U ⊂ V ⊂M , and let i : U →M and j : V →M denote the inclusions.

i) Show that F (U) = HomSh(M)(i∗Z, F ).

ii) Prove that there is a canonical monomorphism i∗Z→ j∗Z.

iii) Use the previous results and the definition of injective sheaf to prove that
the restriction map I(V )→ I(U) is surjective.

Exercise A.328. Let M be a topological space and let A∗ be a bounded below
complex of sheaves of abelian groups. Consider the Godement resolution Gd from
Section A.9.3. Show that there is a natural isomorphism of complexes

Gd(A[k]∗) −→ Gd(A∗)[k].

Exercise A.329. Let F ∗ be a complex of sheaves. Considering the increas-
ing canonical filtration of F ∗ and applying Godement’s resolution to it, we obtain
the filtered complex (Gd(F ∗),Gd(τ⩽)). Alternatively, we can consider directly the
canonical filtration of the total complex (Tot∗(Gd∗(F ∗)), τ⩽). In general, both fil-
trations are different. Prove that the identity map gives a filtered quasi-isomorphism

(Tot∗(Gd∗(F ∗)), τ⩽) −→ (Gd(F ∗),Gd(τ⩽)).

Exercise A.330. Let M = C2 be the complex affine plane, and let j : U ↪→M
be the inclusion of the complement of a point. Compute the higher direct image
sheaves Rij∗Z.

Exercise A.331. Prove Lemma A.279.

Exercise A.332. Let M be a connected locally contractible topological space
and let ρ be a representation of its fundamental group. Show that the presheaf F
constructed in the proof of Theorem A.315 is a sheaf.

Exercise A.333. Let F be a fine sheaf on a paracompact topological space M .
Let Gd∗(F ) be Godement’s canonical resolution of F . Prove the following:

i) Let {Ui} be a locally finite covering of M and hi a partition of unity
subordinated to this covering. Prove that the endomorphisms hi induce
endomorphisms, also denoted by hi, of the complex Gd∗(F ), and the
support of these endomorphisms is still contained in Ui.

ii) Use i) to prove the vanishing Hp(M,F ) = 0 for all p > 0. [Hint: given a
global section s ∈ Γ(M,Gdp(M)) with ds = 0, use a partition of unity to
glue together local primitives into a global primitive of s.]
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Exercise A.334. LetX = C× viewed as a Stein complex manifold and consider
the constant sheaf CX . Use Theorem A.311 to show that this sheaf does not admit
any structure of coherent OX -module.

A.10. Lie algebra homology and cohomology. In this final section, we
gather some properties of Lie algebra homology and cohomology following Weibel’s
book [Wei94, Chap. VII]. Throughout, k denotes a field of characteristic zero.

A.10.1. Lie algebras and Lie modules.

Definition A.335. A Lie algebra over k is a k-vector space L together with a
bilinear map, called the Lie bracket,

[·, ·] : L× L→ L

such that the following equalities hold for all x, y, z ∈ L:

[x, y] + [y, x] = 0 (antisymmetry),(A.336)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).(A.337)

Definition A.338. Let L be a Lie algebra over k. A left L-module is the data
of a k-vector space M and a bilinear map

L×M −→M

(z,m) 7−→ zm

such that the equality
[x, y]m = x(ym)− y(xm)

holds for all x, y ∈ L and all m ∈ M . A morphism of left L-modules is a k-linear
map f : M → N that satisfies f(xm) = xf(m) for all x ∈ L and all m ∈M .

The notion of right L-module is defined with the obvious modifications.

Note that a left L-module gives rise to a Lie algebra representation

ρ : L −→ End(M)

in the sense of Definition 3.126, and conversely every Lie algebra representation
defines a left L-module structure on the space of the representation. The notions
of Lie algebra representation and left L-module are thus equivalent.

Example A.339. Let L be a Lie algebra and M a k-vector space. The trivial
Lie module structure on M is defined by the rule

xm = 0 for all x ∈ L and m ∈M.

This gives rise to a functor from the category of k-vector spaces to the category of
left L-modules, which will be called the trivial L-module functor.

Recall from Section 3.2.11 that every Lie algebra can be embedded into an
associative algebra in such a way that the Lie bracket is given by the commutator.

Definition A.340. Let L be a Lie algebra over k. The universal enveloping
algebra is an associative k-algebra U(L) along with a morphism of Lie algebras

ιL : L −→ U(L),

that is, a k-linear map satisfying

ι([x, y]) = ι(x)ι(y)− ι(y)ι(x)

for all x, y ∈ L, and that is universal for associative algebras with this property.
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It is proved in loc. cit. that

• the universal enveloping algebra always exists (see formula (3.96));

• the map ιL is injective (Corollary 3.100);

• the category of left L-modules is equivalent to that of left U(L)-modules
(Proposition 3.128).

A.10.2. Homology and cohomology. Given a Lie algebra L, there are two func-
tors from the category of left L-modules to the category of k-vector spaces that
play a role in the definition of Lie algebra homology and cohomology.

Definition A.341. Let L be a Lie algebra and M a left L-module.

i) The subspace of invariant elements is defined as

ML = {m ∈M | xm = 0 for all x ∈ L}.
The assignment M 7→ ML defines a functor from the category of left
L-modules to the category of k-vector spaces. Moreover, if k is given the
trivial left L-module structure, then the invariants are equal to

(A.342) ML = HomU(L)(k,M).

ii) The quotient of coinvariants is defined as

(A.343) ML = M/LM = k ⊗U(L) M,

where k is again given the trivial left L-module structure, and we use the
identification k = U(L)/LU(L) to derive the second equality.

Remark A.344. The functor M 7→ ML is right adjoint to the functor that
sends a k-vector space to the trivial left L-module functor from Example A.339.
That is, there is a canonical bijection

HomU(L)(M,N) = Homk(M,NL)

for all k-vector spaces M and all left L-modules N (see Exercise A.356). Since the
functor of invariants is a right adjoint, it is left exact by Exercise A.60.

Similarly, the functor M 7→ ML is left adjoint to the trivial left L-module
functor. That is, there is a canonical bijection

Homk(ML, N) = HomU(L)(M,N)

for all left L-modules M and all k-vector spaces N . In particular, since the functor
of coinvariants is a left adjoint, it is right exact by Exercise A.60.

Being equivalent to the category of left modules over the ring U(L), the cat-
egory of left L-modules has enough injectives (Example A.107) and projectives
(Exercise A.132). The universal enveloping algebra U(L) with the left L-module
structure induced by the product in U(L) is a projective left L-module.

Definition A.345. Let L be a Lie algebra over k, let M be a left L-module,
and i ⩾ 0 an integer.

i) The i-th cohomology group Hi(L,M) is the i-th cohomological right de-
rived functor of the invariants functor (·)L.

ii) The i-th homology group Hi(L,M) is the i-th cohomological left derived
functor of the coinvariants functor (·)L.
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Taking the equality (A.342) into account, Lie cohomology can be computed as

Hi(L,M) = ExtiL(k,M) = ExtiU(L)(k,M).

Similarly, using the equality (A.343), Lie homology is given by

Hi(L,M) = Tor
U(L)
i (k,M).

Remark A.346. Be aware that Tor groups were defined only for modules over
a commutative ring in Example A.124. Nevertheless, almost the same definition
works for non-commutative rings. Namely, let M be a left U(L)-module. Then the
tensor product −⊗M is a functor from the category of right U(L)-modules to the
category Ab, and the Tor groups are defined as the left derived functor

Tor
U(L)
i = Li(· ⊗M)(N).

A similar remark applies to Ext groups as well.

A.10.3. The Chevalley–Eilenberg complex. The main tool to compute homology
and cohomology of Lie algebras is the Chevalley–Eilenberg complex.

Definition A.347. Let L be a Lie algebra over k. The Chevalley–Eilenberg
complex of L is the chain complex of left U(L)-modules (V∗(L), ∂) with

Vp(L) = U(L)⊗k ΛpL

in degree p and differential ∂p : Vp(L)→ Vp−1(L) given by

∂p(u⊗ x1 ∧ · · · ∧ xp) =

p∑

i=1

(−1)i+1uxi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xp

+
∑

1⩽i<j⩽p

(−1)i+ju⊗ [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xp

for all u ∈ U(L) and xi ∈ L.

Observe that all terms appearing in the Chevalley–Eilenberg complex are free
(and hence projective) U(L)-modules. Indeed, they are the tensor product of the
free U(L)-module U(L) with the k-vector space ΛpL.

Theorem A.348. Let ϵ : V0(L) = U(L) → k be the counit of U(L) that sends
the bilateral ideal generated by L to zero and 1 to 1. Then

V∗(L)
ϵ−→ k

is a projective resolution of the trivial module k in the category of left U(L)-modules.

The proof, for which the reader is referred to [Wei94, Cor. 7.7.3], relies on
the Poincaré–Birkhoff–Witt theorem (Theorem 3.99). Applying the coinvariants
functor to the Chevalley–Eilenberg complex, one gets a chain complex of k-vector
spaces called the Koszul complex.

Definition A.349. Let L be a Lie algebra over k. The Koszul complex is the
chain complex of k-vector spaces (K∗(L), ∂) with

Kp(L) = ΛpL

in degree p and differential

∂p(x1 ∧ · · · ∧ xp) =
∑

1⩽i<j⩽p

(−1)i+j [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xp.
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In particular, the Koszul complex starts as

· · · −→ L ∧ L [·,·]−−→ L
0−→ k.

Thanks to Theorem A.348, Lie algebra homology and cohomology with trivial
coefficients can be computed using the Koszul complex.

Proposition A.350. Let L be a Lie algebra over k. The Lie algebra ho-
mology groups H∗(L, k) are the homology of the chain complex K∗(L), and the
Lie algebra cohomology groups H∗(L, k) are the cohomology of the cochain com-
plex Homk(K∗(L), k). That is, there canonical isomorphisms

Hn(L, k) = Hn(K∗(L)), Hn(L, k) = Hn(Homk(K∗(L), k)).

Proof. By definition, Hi(L, k) = Tor
U(L)
i (k, k) and Hi(L, k) = ExtiU(L)(k, k).

Therefore, to compute Lie algebra homology and cohomology, we start with a pro-
jective resolution P∗ of k, and then set

Hi(L, k) = Hi(k ⊗U(L) P∗),

Hi(L, k) = Hi(HomU(L)(P∗, k)).

By Theorem A.348, the complex V∗(L) is a projective resolution of k, and hence
the result follows from the equalities

K∗(L) = k ⊗U(L) V∗(L),

Homk(K∗(L), k) = HomU(L)(V∗(L), k). □

A.10.4. Homology and cohomology of graded Lie algebras. Recall that a graded
algebra A is an algebra A together with a decomposition

A =
⊕

n∈Z
An

satisfying An ·Am ⊂ An+m. This notion applies both to Lie algebras (as in Defini-
tion 3.82) and to associative algebras (as in Definition 1.75).

Definition A.351. Let A be an algebra (either an associative algebra or a Lie
algebra). A graded A-module M is an A-module together with a decomposition

M =
⊕

n∈Z
Mn

such that there are inclusions An ·Mm ⊂Mn+m. We will denote by GrModA the
category of graded left A-modules.

Example A.352. Let n be an integer. The graded left L-module k(n) is the
trivial L-module k concentrated in degree −n. Given a graded left L-module M ,
define M(n) = M ⊗k k(n). That is, M(n) is the same module M with the decom-
position given by M(n)m = Mn+m.

Let L be a graded Lie algebra. By the Poincaré–Birkhoff–Witt theorem, the
associative algebra U(L) inherits the structure of an associative graded algebra.
The categories GrModL and GrModU(L) are equivalent.



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 513

The grading of L induces a grading on the Chevalley–Eilenberg complex turning
it into a complex of graded left U(L)-modules. It follows that the Koszul complex
inherits a structure of complex of graded k-vector spaces. More concretely,

K∗(L) =
⊕

n

K∗(L)n

with the n-th graded piece of the i-th term given by

Ki(L)n = (ΛiL)n,

where (ΛiL)n is the subspace of ΛiL generated by elements of the form x1∧· · ·∧xi
with each xi homogeneous and

∑
i deg(xi) = n. The differential of the Koszul

complex is homogeneous of degree zero, i.e. satisfies

∂Ki(L)n ⊂ Ki−1(L)n.

Therefore, the homology of the Koszul complex is again a graded vector space with

Hi(K∗(L))n = Hi(K∗(L)n).

From this, we obtain a grading in Lie algebra homology

Hi(L, k) =
⊕

Hi(L, k)n, Hi(L, k)n = Hi(K∗(L)n).

We define the graded dual of the Koszul complex as

K∗(L)n = Homk(K∗(L)−n, k),

which induces the grading in Lie algebra cohomology

H∗(L, k) =
⊕

n

H∗(L, k)n, H∗(L, k)n = H∗(K∗(L)n).

The duality and the grading are compatible with each other.

Proposition A.353. Let L be a graded Lie algebra. Then the equalities

Hi(L, k)n = Hi(K∗(L)n) = (Hi(K∗(L))−n)∨ = (Hi(L, k)−n))∨

holds for all integers i, n.

Proof. Since every k-vector space is projective, the universal coefficients the-
orem of [Wei13, Thm. 3.6.5] implies the result. □

Theorem A.354. Let L be a graded Lie algebra. Then

ExtiGrModU(L)
(k(n), k) = Hi(K∗(L)−n).

Proof. The proof relies on the fact that the category GrModU(L) has enough
projectives. In fact, the Chevalley–Eilenberg complex is still a projective resolution

V∗(L)
ϵ→ k

of the trivial module k in the category GrModU(L). Changing the degree, we
deduce that V∗(L)(n) is a projective resolution of k(n). Then, the result follows
from the chain of equalities

ExtiGrModU(L)
(k(n), k) = Hi(HomGrModU(L)

(V∗(L)(n), k))

= Hi(HomGrModk
(K∗(L)(n), k))

= Hi(Homk(K∗(L)n, k))

= Hi(K∗(L)−n),
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where the second equality results from the adjunction of Exercise A.357. □

A.10.5. The structure of a Lie algebra from its homology. In this section, we
show one example where the structure of a Lie algebra is determined by its homol-
ogy. Recall from Definition 3.165 that a Lie algebra is called quasi-nilpotent if its
lower central series L(i) satisfies

⋂
L(i) = {0}.

Proposition A.355. Let L =
⊕

n Ln be a quasi-nilpotent graded Lie algebra
over k such that H1(L, k) is either concentrated in strictly negative degrees or in
strictly positive degrees, and H2(L, k) vanishes. Then L is isomorphic to the free
Lie algebra generated by H1(L, k).

Proof. We will only treat the negatively graded case. The Koszul complex
of L (see Definition A.349 and Proposition A.350) in lower degrees reads

· · · −→ L ∧ L ∧ L −→ L ∧ L [ , ]−−→ L
0−→ k,

where the last map in the complex is the zero map, and the previous map is given
by the Lie bracket. From this complex, we derive the well-known identity

H1(L, k) = L/[L,L].

The map L → H1(L, k) is homogeneous and surjective, so that we can choose a
homogeneous section s : H1(L, k) → L. In general, this section is non-canonical.
Let F be the free Lie algebra generated by H1(L, k). It is also a quasi-nilpotent
graded Lie algebra. By the universal property of free Lie algebras (Definition 3.195),
the chosen section defines a graded map F(s) : F→ L. The rest of the proof consists
in showing that this map is an isomorphism.

Let F denote the increasing filtration of the Lie algebras L and F given by the
(opposite of the) degree, that is,

FnL =
⊕

n′⩽−n

Ln′ , FnF =
⊕

n′⩽−n

Fn′ .

We prove by induction on n ⩾ 0 that the map

FnF −→ FnL

is surjective. Since H1(L, k) has only negative degrees, F0F = 0 holds by construc-
tion. Since L is graded, we deduce that F0L is a Lie subalgebra. Since H1(L, k) is
concentrated in negative degrees, there is an inclusion F0L ⊂ [L,L]. Since L is a
graded Lie algebra, this implies F0L ⊂ [L,F0L]. Using that L is quasi-nilpotent,
we deduce the vanishing of F0L, which proves the case n = 0.

We now assume that Fn′F→ Fn′L is surjective for all n′ < n. Writing

FnL/Fn−1L = s (H1(L, k)n) + [L,L]n,

where H1(L, k)n and [L,L]n denote the homogeneous components of degree n
of H1(L, k) and [L,L] respectively. Clearly, s (H1(L, k)n) lies in the image of F(s).
Since F0L = 0, every element of [L,L]n is a linear combination of products of terms
of lower degree. Therefore, the induction hypothesis implies that [L,L]n also lies
in the image of F(s). Hence, the map FnF→ FnL is surjective. Since L is graded,

L =
⊕

n∈Z
Ln =

⋃

n⩾0

FnL

holds, and we derive the surjectivity of F→ L.
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Let k ⊂ F be the kernel of the map F→ L. There is a commutative diagram

F ∧ k //
� _

��

k � _

��
F ∧ F ∧ F //

����

F ∧ F //

����

F // //

����

H1(L, k)

L ∧ L ∧ L // L ∧ L // L // // H1(L, k),

where F ∧ k is the image of F ⊗ k in F ∧ F. The long vertical sequences are exact
by definition, and the upper long horizontal sequence is exact because F is the free
Lie algebra generated by H1(L, k). The lower long sequence is exact because of
the assumption H2(L, k) = 0. Then a diagram chase argument shows that the top
horizontal arrow is surjective, and from this we deduce the inclusion

k ⊂ [k,F].

Since F is quasi-nilpotent, we conclude that k = 0. This proves the injectivity of
the map F→ L and concludes the argument. □

⋆ ⋆ ⋆

Exercise A.356. Let L be a Lie algebra and M a left L-module. Recall the
invariants ML and the coinvariants ML from Definition A.341.

i) Prove that ML is the largest sub-L-module of M on which L acts trivially.
Deduce that ML is right adjoint to the trivial left L-module functor.

ii) Prove that ML is the largest L-module quotient of M on which L acts
trivially. Deduce that ML is left adjoint to the trivial L-module functor.

Exercise A.357. This exercise is a variant of Exercise A.356 written in the
language of universal enveloping algebras. Let L be a graded Lie algebra over a
field k and U(L) the universal enveloping algebra. Consider the functors

GrModU(L)

k⊗U(L)−--
GrModk,

Triv
nn

where Triv is the functor that sends a k-vector space to the corresponding triv-
ial U(L)-module. Show that these functors form an adjoint pair.

Exercise A.358. Let L be a Lie algebra and M a left L-module. Show that
the action mx = −xm defines a structure of right L-module on M .

Exercise A.359. Let A be a graded associative algebra with unit. Let C be
the abelian category of graded left A-modules.

i) For each integer n ∈ Z, let A(n) = A ⊗k k(n) be the graded A-module
with A(n)m = An+m. Prove that A(n) is a projective object of C.

ii) Conclude that C has enough projectives.

Exercise A.360. Find examples showing that all the hypothesis of Proposi-
tion A.355 are necessary.
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