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Abstract. We formulate a general conjecture relating Chern classes of
subbundles of Hodge bundles in Arakelov geometry to logarithmic deriva-
tives of Artin L-functions of number fields. This conjecture may be
viewed as a far-reaching generalisation of the (Lerch–)Chowla–Selberg
formula computing logarithms of periods of elliptic curves in terms
of special values of the Γ-function. We prove several special cases of
this conjecture in the situation where the involved Artin characters are
Dirichlet characters. This article contains the computations promised
in [42], where our conjecture was announced. We also give a quick intro-
duction to the Grothendieck–Riemann–Roch theorem and to the geo-
metric fixed point formula, which form the geometric backbone of our
conjecture.
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1. Introduction

The main aim of this text is to provide the computations missing (and
promised. . . ) in the text [42]. In that article, we formulated a conjecture,
which relates the logarithmic derivatives of Artin L-functions at negative
integers to certain Chern classes in Arakelov theory. This conjecture (see
Conjectures 6.20 and Conjecture 6.32 below) can be viewed as a far-reaching
generalisation of the Lerch–Chowla–Selberg formula, which computes the pe-
riods of CM elliptic curves in terms of special values of the Γ-function.1 A
secondary aim of this article is to provide a quick introduction to the main
geometric ideas that lie behind our approach to Conjecture 6.32. These geo-
metric ideas, although classical in some ways, are unfortunately not very
well-known and we felt that to include a discussion of them here would make
the computational part of the article (Section 6) more palatable.

This text is an expanded version of some notes prepared by the second
author for lectures given during two instructional conferences: the conference
‘Advanced Courses on Arakelov Geometry and Shimura Varieties’ which took
place at the Centre de Recerca Matemàtica in Barcelona in February 2006
and the summer school ‘Motives and complex multiplication’, which took
place in Ascona (Switzerland) in August 2016.

Very loosely speaking, the conjecture made in [42] says the following.
Suppose that you are provided with a homogenous polarised “semistable
relative motive M” over an arithmetic base B (which may have large di-
mension). For example, one could consider a generically smooth family of
projective arithmetic varieties with semistable degeneration and consider the
direct summand of the corresponding semistable relative motive cut out by
the relative correspondence (conjecturally) giving the projection on one of
the relative cohomology sheaves with logarithmic singularities. Note that as
usual, we cannot define the term “semistable relative motive” precisely since
no theory of relative mixed motivic sheaves is available but it can be given a
precise definition in certain situations, for instance when looking at abelian
schemes. Suppose now also that M carries the action of a number field K,
with some compatibility with the polarisation. Then the Hodge realisation
of this motive is a vector bundle H on B, which is endowed with a (possibly
mildly singular) hermitian metric coming from the polarisation. Furthermore,
the vector bundle H comes with an orthogonal decomposition

H '
⊕

σ∈Gal(K|Q)

Hσ.

Call H̄σ the vector bundle Hσ together with its hermitian metric. Arakelov

theory associates with each H̄σ its arithmetic Chern character ĉh(H̄σ), which

lives in the arithmetic Chow group ĈH
•
Q̄(B) of B.

Let now χ : Gal(K|Q)→ C be an irreducible Artin character and l ≥ 1.

1This formula was initially discovered by Lerch (see [41]) but his discovery was largely

forgotten. Chowla and Selberg rediscovered it more than fifty years later (see [54]).



Conjectures on the logarithmic derivatives of Artin L-functions II 3

Conjecture: the quantity∑
σ∈Gal(K|Q)

ĉh
[l]

(H̄σ)χ̄(σ)

is equal to the quantity

2
L′(χ, 1− l)
L(χ, 1− l)

+ (1 +
1

2
+ · · ·+ 1

l − 1
)

multiplied by an explicit Q̄-linear combination of ordinary Chern classes of
subbundles of H.

Here ĉh
[l]

(·) is the degree l part of the arithmetic Chern character. See
Conjecture 6.32 below for a slightly more technical (but still vague) formu-
lation. For abelian schemes, we can make a completely precise conjecture:
this is Conjecture 6.20. It should be possible to make a precise conjecture
for semiabelian but generically abelian schemes but this seems difficult to
do at the present time for lack of a sufficiently general theory of arithmetic
Chern classes for singular hermitian metrics. Part of this theory has been
built in the articles [15] and [14]. The issue is that for some automorphic
Hodge bundles (those that are not ‘totally decomposable’) the singularities
are not known to be logarithmic and their nature is not well understood
(private communication by J.-I. Burgos).

For abelian varieties with complex multiplication by a CM field, the

quantities ĉh
[1]

(H̄σ) can be computed in terms of periods. Thus in this case
the equality above computes some linear combination of logarithms of peri-
ods in terms of the logarithmic derivatives L′(χ, 0)/L(χ, 0) of the irreducible
Artin characters χ of the CM field. When the abelian variety is an elliptic
curve, one recovers (a slight variant of) the formula of Lerch–Chowla–Selberg
(see [54]). If l = 1 and K is an abelian extension of Q one recovers a variant of
the period conjecture of Gross–Deligne [33, p. 205] (not to be confused with
the conjecture of Deligne [19] relatings periods and values of L-functions).

For l > 1, the invariant ĉh
[l]

(H̄σ) cannot be interpreted in terms of classical
invariants anymore. Section 7 collects examples of computations in the liter-
ature, which fall in the framework of our conjecture (up to some finite factors
which depend on the choices of models).

Remark 1.1. It is important to see that our conjecture falls outside the grid
of the conjectures of Beilinson, Deligne, Stark, Gross and others (see e.g. [50])
on the values of L-functions of motives. This can be seen from the fact that
we are concerned here with the quotient between the second and the first
coefficient of the Taylor series of an L-function at a non negative integer.
This quotient in particular concerns the second coefficient of the Taylor se-
ries of the L-function at a non negative integer, about which the conjectures
of Beilinson and Deligne do not make any prediction. The case of CM abelian
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varieties is somewhat confusing in this context, because in this case (as ex-
plained above), the conjecture computes some linear combinations of loga-
rithms of periods. On the other hand, periods appear in Deligne’s conjecture
(see [19]) relating the values of the L-function of a motive to its periods. For
CM abelian varieties, this conjecture was proven by Blasius (see [10] and the
bibliography therein): the L-function of a CM abelian variety is an L-function
associated with an algebraic Hecke character of a CM field and the values of
this L-function can be related to the periods of the abelian variety. The L-
functions associated with algebraic Hecke characters are very different from
Artin L-functions though, as is witnessed by the fact that in this case our
conjecture relates the logarithmic derivatives of Artin L-functions to the log-
arithms of the periods of the abelian variety, whereas the result of Blasius
relates values of certain Hecke L-functions to the the periods themselves (not
their logarithms). For a concrete example, see [34, formulae (1) and (2) on
p. 18 and middle of p. 20].

Our main contribution in this paper is a proof of a stabilised form
of our conjecture in the situation where the number field K is an abelian
extension of Q (so that the Artin characters become Dirichlet characters)
and where the motive is smooth and arises from a finite group action on a
Hodge bundle of geometric origin. See Theorem 6.12 below. We also prove
a stronger form of the conjecture in the situation where the number field
K is an abelian extension of Q and the motive is the motive of an abelian
scheme. See Theorem 6.27 below. In both cases, we derive our results from
the equivariant Grothendieck–Riemann–Roch theorem in Arakelov geometry,
applied to the relative de Rham complex. This theorem was first proven in
degree one in [37] and in full generality in [58] and [27] (put together). More
details on the history of this theorem (whose main contributors are Bismut,
Gillet, Soulé and Faltings) are given in subsection 5.2.

The structure of the text is as follows. Sections 2 to 5 do not contain any
original material and have been included for pedagogical reasons. In Section 2,
we give a very quick introduction to the Grothendieck–Riemann–Roch for-
mula. This theorem, although quite famous, is not as well-known as it should
be and is rarely part of a standard course on algebraic geometry. In Section
3, we explain the content of Thomason’s geometric fixed point formula for
the action of a diagonalisable group. This formula (and its forerunners) is
also a central result of algebraic geometry, which is not widely known. These
two theorems can be formally combined to obtain an equivariant extension
of the Grothendieck–Riemann–Roch formula, which we formulate in Section
4. We also examine there what statement one obtains when this theorem is
applied to the relative de Rham complex. The resulting statement is a rel-
ative equivariant form of the Gauss–Bonnet formula. This statement is the
geometric heart of our approach to Conjecture 6.32. In Section 5, we give



Conjectures on the logarithmic derivatives of Artin L-functions II 5

a precise formulation of the equivariant Grothendieck–Riemann–Roch for-
mula in Arakelov geometry (also called equivariant arithmetic Grothendieck–
Riemann–Roch formula), starting with a historical snapshot of Arakelov the-
ory. The equivariant Grothendieck–Riemann–Roch formula in Arakelov ge-
ometry will be our central tool. In Section 6, we apply this formula to the
relative de Rham complex and we obtain a lifting to Arakelov theory of the
relative equivariant form of the Gauss–Bonnet formula (see equation (6.2));
applying finite Fourier theory and some elementary results of analytic number
theory, we transform this formula in an equality between a linear combination
of logarithmic derivatives of Dirichlet L-functions evaluated at negative inte-
gers on the one hand and a linear combination of Chern classes of subbundles
of Hodge bundles on the other hand. The final formula naturally suggests the
general Conjecture 6.20, which is also included in Section 6. In Section 7, we
examine various results on logarithmic derivatives of L-functions that have
appeared in the literature and we show that they are all compatible with our
general conjecture. We also explain there what part of these results are an
actual consequence of (6.2).

2. The Grothendieck–Riemann–Roch formula

In this section, ‘scheme’ will be short for ‘noetherian and separated scheme’.

Let C be a smooth projective curve over C. Let D :=
∑
i niDi be

a divisor on C. The simplest instance of the Grothendieck–Riemann–Roch
formula is probably the well-known equality

χ(O(D)) : = dimCH
0(C,O(D))− dimCH

1(C,O(D))

= deg(D) + 1− g (2.1)

where
deg(D) :=

∑
i

ni

is the degree of D and
g := dimCH

0(C,ΩC)

is the genus of C. One can show that

deg(D) =

∫
C(C)

c1(O(D))

where c1(O(D)) is the first Chern class of D (see e.g. [35, Appendix A.3]).
Thus (2.1) can be construed as a formula for the Euler characteristic χ(O(D))
in terms of integrals of cohomology classes.

The Grothendieck–Riemann–Roch formula provides a similar formula
for the Euler characteristic of any vector bundle, on any scheme satisfying
certain conditions and in a relative setting. Furthermore, the Grothendieck–
Riemann–Roch formula is universal in the sense that it is independent of
the cohomology theory. The remainder of this section is dedicated to the
formulation of this theorem (in a slightly restricted setting).
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First a definition.

Definition 2.1. Let X be a scheme. The group K0(X) (resp. K ′0(X)) is the
free abelian group generated by the isomorphism classes of coherent locally
free sheaves (resp. coherent sheaves) on X, with relations E = E′ + E′′ if
there is a short exact sequence

0→ E′ → E → E′′ → 0.

We shall also call a coherent locally free sheaf a vector bundle.

The group K0(X) (resp. K ′0(X)) is called the Grothendieck group of
coherent locally free sheaves (resp. coherent sheaves) on X. If f : X → Y is
a proper morphism of schemes, we define the map of abelian groups Rf∗ :
K ′0(X)→ K ′0(Y ) by the formula

Rf∗(E) :=
∑
k≥0

(−1)kRkf∗(E).

This is well-defined, because the existence of the long exact sequence in coho-
mology implies that we have Rf∗E = Rf∗E′+Rf∗E′′ in K ′0(Y ), for E,E′ and
E′′ as in Definition 2.1. The group K0(X) is a commutative ring under the
tensor product ⊗ and K ′0(X) has a natural K0(X)-module structure. The
obvious map K0(X) → K ′0(X) is an isomorphism if X is regular (see [47,
Th. I.9] if X carries an ample line bundle and [60, Lemme 3.3] for the general
case). Via this isomorphism, we obtain a map Rf∗ : K0(X)→ K0(Y ), if both
X and Y are regular. For any morphism f : X → Y of schemes, there is a
pull-back map f∗ : K0(Y ) → K0(X), defined in the obvious way, which is a
map of rings.

A theory kindred to K0-theory is Chow theory. We first need a defini-
tion.

Definition 2.2. Let R be a one-dimensional domain. Let K := Frac(R) and
let f ∈ K∗. Define the order of f by the formula

ordR(f) := lengthR(R/aR)− lengthR(R/bR)

where a ∈ R, b ∈ R\{0} are such that f = a/b.

One can show that the definition of ordR(f) does not depend on the
choice of a, b. Here the symbol lengthR(·) refers to the length of an R-module.
See [26, Appendix A.1 & A.3] for more details.

Suppose for the time of the present paragraph that X is an integral
scheme. If f ∈ κ(X)∗ is a non-zero rational function on X, we may define a
formal Z-linear combination of codimension one closed integral subschemes
of X by the formula

div(f) :=
∑

x∈X, cod(x̄)=1

ordOx(f)x̄.

Here x̄ is the Zariski closure of x. For p ≥ 0, we let Zp(X) be the free abelian
group on all integral closed subschemes of codimension p of X. An element
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of Zp(X) is called a p-cycle. We let totp(X) ⊆ Zp(X) be the subgroup of
elements of the form div(f), where f ∈ k(Z)∗ is a rational function on a
closed integral subscheme Z of codimension p− 1 of X.

Definition 2.3. CHp(X) := Zp(X)/totp(X).

The group CHp(X) is called the p-th Chow group of X and we shall
write

CH•(X) :=
⊕
p≥0

CHp(X).

If V is a closed subscheme of X, we write [V ] for the cycle∑
v∈V, v̄ irred. comp. of V

lengthOV,v (OV,v)v̄

in X. Here v runs through the generic points of the irreducible components
of V.

By work of Gillet and Soulé, if X is also regular, the group

CH•(X)Q := CH•(X)⊗Q

can be made into a commutative N-graded ring. If we denote by · the mul-
tiplication in this ring, then we have [W ] · [Z] = [W ∩ Z], if W and Z are
closed integral subschemes of X intersecting transversally (see [55, I.2] for
more details and references).

If f : X → Y is a proper morphism of schemes, there is a unique
push-forward map f∗ : CH•(X)→ CH•(Y ) such that

f∗([Z]) = [κ(Z) : κ(f(Z))] · [f(Z)]

if Z is a closed integral subscheme Z of X such that dim(f(Z)) = dim(Z)
and such that

f∗([Z]) = 0

otherwise. Here the set f(Z) (which is closed since f is proper) is endowed
with its induced reduced closed subscheme structure. See [26, Ex. 20.1.3,
p. 396] for details. If f is a flat morphism, there is a pull-back map

f∗ : CH•(Y )→ CH•(X)

such that f∗([Z]) = [f∗(Z)]. Again see [26, p. 394] for details.

Suppose now that X is regular. There is a unique ring homomorphism

ch : K0(X)→ CH•(X)Q

called the Chern character, with the following properties:

– ch(·) is compatible with pull-back by flat morphisms;
– if Z is an integral closed subscheme of codimension one of X, then

ch(O(Z)) = exp([Z]) := 1 + [Z] +
1

2!
[Z] · [Z] + · · · .
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There is also a unique map

Td : K0(X)→ CH•(X)∗Q

called the Todd class, with the following properties:

– Td(·) is compatible with pull-back by flat morphisms;
– Td(x+ x′) = Td(x) · Td(x′);
– if Z is an integral closed subscheme of codimension one of X, then

Td(O(Z)) =
[Z]

1− exp(−[Z])
.

Finally there is a unique map c : K0(X)→ CH•(X)∗Q, called the total Chern
class, such that

– c(·) is compatible with pull-back by flat morphisms;
– c(x+ x′) = c(x) · c(x′);
– if Z is an integral closed subscheme of codimension one of X, then
c(O(Z)) = 1 + [Z].

The element cp(x) := c(x)[p](x) (where (·)[p] takes the p-th graded part)
is called the p-th Chern class of x ∈ K0(X). For a vector bundle E on X, we
have

ch(E) = 1 + c1(E) +
1

2
(c1(E)2 − 2c2(E))

+
1

6
(c1(E)3 − 3c1(E) · c2(E) + 3c3(E)) + · · ·

and

Td(E) = 1 +
1

2
c1(E) +

1

12
(c1(E)2 + c2(E)) +

1

24
c1(E) · c2(E) + · · ·

We can now formulate the Grothendieck–Riemann–Roch theorem for smooth
morphisms:

Theorem 2.4. Let X, Y be regular schemes. Let f : X → Y be a smooth and
strongly projective S-morphism. Then

ch(Rf∗(x)) = f∗(Td(Tf ) · ch(x))

for any x ∈ K0(X).

Here the vector bundle Tf := Ω∨f is the dual of the sheaf of differentials

of f . The vector bundle Tf := Ω∨f is also called the relative tangent bundle
of f .

Example 2.5. Let X := C be a smooth and projective curve of genus g
over C, as at the beginning of this section. Let Y := SpecC. Notice that
CH•(Y ) = CH0(Y ) ' Z and that the Chern character of a vector bundle
over S is simply its rank under this identification. If we apply Theorem 2.4
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to E := O(D), we obtain,

ch(Rf∗(O(D))) = χ(O(D)) = f∗((1 +
1

2
c1(TC))(1 + c1(O(D))))

= f∗(c1(O(D))− 1

2
c1(ΩC)) = deg(D)− 1

2
(2g − 2)

= deg(D) + 1− g

and thus we have recovered formula (2.1).

The smoothness assumption on f in Theorem 2.4 can be relaxed. Sup-
pose that f is a strongly projective (but not necessarily smooth) S-morphism.
Then by definition f : X → Y has a factorisation

f : X
j→ Pr × Y π→ Y,

where j is a closed immersion and π is the natural projection. Since X and

Pr × Y π→ Y are regular, the immersion j is regular and thus its conormal
sheaf is locally free. Theorem 2.4 still holds as stated if one replaces Td(Tf ) by
j∗(Td(Tπ))·Td(N)−1, where N is the normal bundle of the closed immersion
j (which is locally free, being the dual of the conormal sheaf). The expression
(j∗Td(Tπ))Td(N)−1 can be shown to be independent of the factorisation of
f into j and π. See [2, VIII, 2] for this. The fact that Theorem 2.4 holds in
this generality is a fundamental insight of Grothendieck; it shows that the
theorem can be proved by reduction to the case of immersions and to the
case of the structural morphism of ordinary projective space.

The Riemann–Roch theorem for curves was discovered by B. Riemann
and his student G. Roch in the middle of the nineteenth century. In the 1950s,
F. Hirzebruch generalised the theorem to higher-dimensional manifolds (but
not to a relative situation). See his book [36] for this, where more historical
references are given and the genesis of the Todd class is also described. The
general relative case was first treated in the seminar [2] (see also [11]). The
presentation of the Grothendieck–Riemann–Roch theorem given here follows
W. Fulton’s book [26, chap. 15].

3. Thomason’s fixed point formula

In this section, ‘scheme’ will be short for ‘noetherian and separated scheme’.
We fix a (noetherian) base scheme S. ‘S-scheme’ will be short for ‘S-scheme
of finite type over S’.

We shall review a special case of Thomason’s fixed point formula [60,
Th. 3.5].

In the next paragraph, we give a list of definitions and basic results.
These can found at the beginning of [60].

Let µn := SpecZ[T ]/(1− Tn) be the diagonalisable group scheme over
SpecZ which corresponds to the finite group Z/(n). It is the unique affine
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group scheme such that for any affine scheme SpecR we have

µn(SpecR) = {r ∈ R | rn = 1},

functorially in R.

In the following, since we shall always be working over the base scheme S,
we shall use the short-hand µn for µn,S := µn ×SpecZ S.

Let X be an S-scheme. Suppose that X carries an action by µn(= µn,S)
over S. We shall write Kµn

0 (X) = Kµn
0 (X) for the Grothendieck group of co-

herent locally free sheaves on X which carry a µn-equivariant structure. The
definition of this group is completely similar to the definition of the ordinary
Grothendieck group of locally free sheaves (see Definition 2.1). Replacing lo-
cally free sheaves by coherent sheaves in the definition of Kµn

0 (X) leads to

the group K
′µn
0 (X) and there is an obvious Kµn

0 (X)-module structure on the

group K
′µn
0 (X). If X is regular, the natural morphism Kµn

0 (X)→ K
′µn
0 (X)

is an isomorphism (see [60, Lemme 3.3]). If the µn-equivariant structure of
X is trivial, then the datum of a µn-equivariant structure on a locally free
sheaf E on X is equivalent to the datum of a Z/(n)-grading of E. For any
µn-equivariant locally free sheaf E on X, we write

Λ−1(E) :=

rk(E)∑
k=0

(−1)kΛk(E) ∈ Kµn
0 (X),

where Λk(E) is the k-th exterior power of E, endowed with its natural
µn-equivariant structure.

The functor of fixed points associated with X is by definition the functor

Schemes/S → Sets

described by the rule

T 7→ X(T )µn(T ).

Here X(T )µn(T ) is the set of elements of X(T ) which are fixed under each
element of µn(T ). The functor of fixed points is representable by an S-scheme
Xµn and the canonical morphism Xµn → X is a closed immersion (see [1,
VIII, 6.5 e]). Furthermore, if X is regular then the scheme Xµn is regular (see
[60, Prop. 3.1]). We shall denote by i the immersionXµn ↪→ X. IfX is regular,
we shall write N∨ for the dual of the normal sheaf of the closed immersion i
(this is also called the conormal sheaf of i). It is a locally free sheaf on Xµn

and carries a natural µn-equivariant structure. This structure corresponds to
a µn-grading, since Xµn carries the trivial µn-equivariant structure and it
can be shown that the weight 0 term of this grading vanishes (see [60, Prop.
3.1]).

Let f : X → Y be an S-morphism between µn-equivariant schemes
which respects the µn-actions. If f is proper then the morphism f induces a
direct image map

Rf∗ : K ′0
µn(X)→ K ′0

µn(Y ),
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which is a homomorphism of groups and is uniquely determined by the fact
that

Rf∗(E) :=
∑
k≥0

(−1)kRkf∗(E)

for any µn-equivariant coherent sheaf E on X. Here, as before, Rkf∗(E) refers
to the k-th higher direct image sheaf of E under f ; the sheaves Rkf∗(E) are
coherent and carry a natural µn-equivariant structure. If X and Y are regular,
the direct image map Rf∗ induces a map Kµn

0 (X) → Kµn
0 (Y ) that we shall

also denote by the symbol Rf∗.
The morphism f also induces a pull-back map

f∗ : Kµn
0 (Y )→ Kµn

0 (X);

this is a ring morphism which sends a µn-equivariant locally free sheaf E on
Y to the class of the locally free sheaf f∗(E) on X, endowed with its natural

µn-equivariant structure. For any elements z ∈ K
′µn
0 (X) and w ∈ Kµn

0 (Y ),
the projection formula

Rf∗(z · f∗(w)) = w · Rf∗(z)

holds (provided f is proper).

Fix ζn ∈ C a primitive n-root of unity. Let R := Z[T ]/(1− Tn). In the
following theorem, we shall view Q(µn) as an R-algebra via the homomor-
phism sending T to ζn.

Theorem 3.1. Let X,Y be schemes with µn-actions and let f : X → Y be
an S-morphism compatible with the µn-actions. Suppose that X and Y are
regular and that f is proper. Suppose that the µn-action on Y is trivial. Let
fµn : Xµn → Y be the natural morphism. Then

(1) The element λ−1(N∨) is a unit in the ring Kµn
0 (Xµn)⊗R Q(µn).

(2) For any element x ∈ Kµn
0 (X), the equality

Rf∗(x) = Rfµn∗ (Λ−1(N∨)−1 · i∗(x))

holds in Kµn
0 (Y )⊗R Q(µn).

Here Kµn
0 (Xµn) is viewed as an R-algebra via the morphism of rings

R → Kµn
0 (Xµn) sending T to the structure sheaf OXµn of Xµn , endowed with

the Z/(n)-grading of weight 1. Similarly, Kµn
0 (Y ) is viewed as an R-algebra

via the morphism of rings R → Kµn
0 (Y ) sending T to the structure sheaf OY

of Y , endowed with the Z/(n)-grading of weight 1.

Notice the formal analogy between Theorem 3.1 and Theorem 2.4: i∗

takes the place of the Chern character and Λ−1(N∨)−1 takes the place of the
Todd class.

Example 3.2. Let X and Y be as in Theorem 3.1, S = Y = SpecC and
suppose that Xµn is finite over Y . Let g : X → X be the automorphism
corresponding to ζn ∈ µn(C). Note that, in this case, we have Kµn

0 (Y ) ' R
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via the algebra structure described right after Theorem 3.1 so that there is
an isomorphism

I : Kµn
0 (Y )⊗R Q(µn) ' Q(µn).

We leave it to the reader to verify that if V is a µn-equivariant vector space
over C, then I(V ⊗ 1) = Trace(g∗ : V → V ). If x = E is a µn-equivariant
vector bundle on X, Theorem 3.1 gives the equality∑
k≥0

(−1)k Trace(g∗ : Hk(X,E)→ Hk(X,E))

=
∑

P∈Xµn (C)

Trace(EP )∑rk(ΩX,P )
t=0 (−1)t Trace(g∗ : Λt(ΩX,P )→ Λt(ΩX,P ))

.

It is an exercise of linear algebra to show that

rk(ΩX,P )∑
t=0

(−1)t Trace(g∗ : Λt(ΩX,P )→ Λt(ΩX,P ))

= det(Id− g∗ : ΩX,P → ΩX,P )

so that ∑
k≥0

(−1)k Trace(g∗ : Hk(X,E)→ Hk(X,E))

=
∑

P∈Xµn (C)

Trace(EP )

det(Id− g∗ : ΩX,P → ΩX,P )

This formula is a special case of the so-called ‘Woods Hole’ fixed point formula
(see [18, Letter 2-3 August 1964]).

4. An equivariant extension of the
Grothendieck–Riemann–Roch theorem

The assumptions made at the beginning of the last section are still in force.

If we formally combine the Grothendieck–Riemann–Roch theorem and
the fixed point theorem of Thomason, we obtain the following theorem. Fix
a primitive root of unity ζn ∈ C.

Theorem 4.1. Let X and Y be regular S-schemes. Suppose that X and Y are
equipped with a µn-action. Suppose also that the µn-structure of Y is trivial.
Let f : X → Y be a µn-equivariant proper morphism and suppose that fµn is
smooth and strongly projective. Then for any x ∈ Kµn

0 (X), the formula

chµn(Rf∗(x)) = f∗(chµn(Λ−1(N∨))−1Td(Tfµn )chµn(x))

holds in CH•(Y )Q(µn).

See after Example 2.5 for the definition of “strongly projective” (this
is what Hartshorne calls “projective” in his book [35]). Here again, N refers
to the normal bundle of the immersion Xµn → X. If E is a µn-equivariant
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vector bundle on X, writing Ek for the k-th graded piece of the restriction
of E to Xµn , we define

chµn(E) :=
∑
k∈Z/n

ζkn · ch(Ek) ∈ CH•(Xµn)Q(µn).

The element chµn(E) is called the equivariant Chern character of E.

Example 4.2 (The generalised Gauss–Bonnet formula). Suppose that the as-
sumptions of Theorem 4.1 hold and that, in addition, f is smooth. We shall
apply Theorem 4.1 to the image in Kµn

0 (X) of the relative de Rham complex
of f , i.e. to the element

Λ−1(Ωf ) = 1− Ωf + Λ2(Ωf )− Λ3(Ωf ) + · · ·+ (−1)rk(Ωf )Λrk(Ωf )(Ωf ).

Recall that we have the exact sequence

0→ N∨ → Ωf |Xµn → Ωfµn → 0

on Xµn . One can show that the symbol Λ−1(·) is multiplicative on short
exact sequences of vector bundles (exercise! Use the splitting principle). In
particular, we have

Λ−1(N∨) · Λ−1(Ωfµn ) = Λ−1(Ωf |Xµn )

in Kµn
0 (Xµn). A last point is that for any vector bundle E, there is an identity

of characteristic classes

ch(Λ−1(E))Td(E∨) = ctop(E∨).

This identity is called the Borel–Serre identity, see [26, Example 3.2.4, 3.2.5]
for a proof. With a view to simplifying the right hand side of the equality in
Theorem 4.1, we now compute

chµn(Λ−1(N∨))−1Td(Tfµn )chµn(Λ−1(Ωf |Xµn )) = ch(Λ−1(Ωfµn ))Td(Ω∨fµn ))

= ctop(Tfµn ).

Thus, by Theorem 4.1 we have∑
p,q≥0

(−1)p+qchµn(Rpf(Λq(Ωf ))) = fµn∗ (ctop(Tfµn )). (4.1)

Formula (4.1) is an equivariant extension of the Gauss–Bonnet formula
(see e.g. [62, chap. III, ex. 3.8] for the non-equivariant formula in a cohomo-
logical setting) and we shall see further below that the lifting of formula (4.1)
to Arakelov theory carries deep arithmetic information.

Suppose that S = Y = SpecC. Let g : X → X be the automorphism
corresponding to a primitive n-th root of unity ζn ∈ µn(C), as in the example
given in the previous section. Formula (4.1) together with the existence of
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the Hodge decomposition gives the identities∑
i,j≥0

(−1)i+j Tr(g∗ : Hi(X,ΩjX)→ Hi(X,ΩjX))

=
∑
k≥0

(−1)k Tr(g∗ : Hk(X(C),C)→ Hk(X(C),C)) =

∫
Xµn

ctop(Tfµn )

where Hk(X(C),C) is the k-th singular cohomology group of X(C) with
coefficients in C. In particular, if Xµn consists of a finite set of points, we
have ∑

k≥0

(−1)k Tr(g∗ : Hk(X(C),C)→ Hk(X(C),C)) = #Xµn(C). (4.2)

Formula (4.2) is just the classical topological Lefschetz fixed point formula
applied to X(C) and the endomorphism g.

5. An equivariant Riemann–Roch theorem in Arakelov
geometry

5.1. Arakelov geometry

Arakelov geometry is an extension of scheme-theoretic algebraic geometry,
where one tries to treat the places at infinity of a number field (corresponding
to the archimedean valuations) on the same footing as the finite ones. To be
more precise, consider a scheme S which is proper over SpecZ and generically
smooth. For each prime p ∈ SpecZ, we then obtain by base-change a scheme
SZp on the spectrum of the ring of p-adic integers Zp. The set S(Qp) is then
endowed with the following natural notion of distance. Let P,R ∈ S(Qp);
by the valuative criterion of properness, we can uniquely extend P and R to

elements P̃ , R̃ of S(Zp). We can then define a distance d(P,R) by the formula

d(P,R) := p− sup{k∈Z | P̃ (mod pk)=R̃(mod pk)}.

This distance arises naturally from the scheme structure of S. No such dis-
tance is available for the set S(C) and the strategy of Arakelov geometry is
to equip S(C), as well as the vector bundles thereon with a hermitian metric
in order to make up for that lack. The scheme S together with a metric on
S(C) is then understood as a ‘compactification’ of S, in the sense that it
is supposed to live on the ‘compactification’ of SpecZ obtained by formally
adding the archimedean valuation. The introduction of hermitian metrics,
which are purely analytic data, implies that Arakelov geometry will rely on
a lot of analysis to define direct images, intersection numbers, Chern classes
etc. Here is the beginning of a list of extensions of classical scheme-theoretic
objects that have been worked out in the literature:
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S S with a Kähler metric on S(C)

E a vector bundle on S
E a vector bundle on S with a

hermitian metric on E(C)

cycle Z on S a cycle Z on S with a Green current for Z(C)

the degree of a variety the height of a variety over a number field

the determinant of the determinant of cohomology equipped
cohomology with its Quillen metric

the Todd class of f
the arithmetic Todd class of f

multiplied by (1-R(Tf ))
...

...

Here f is the morphism S → SpecZ.

Many theorems of classical algebraic geometry have been extended to
Arakelov theory. In particular, there are analogs of the Hilbert–Samuel the-
orem (see [30] and [3]), of the Nakai–Moishezon criterion for ampleness (see
[64]), of the Grothendieck–Riemann–Roch theorem (see [30]) and finally there
is an analog of the equivariant Grothendieck–Riemann–Roch theorem, whose
description is one of the main aims of this text.

Arakelov geometry started officially in S. Arakelov’s paper [4], who de-
velopped an intersection theory for surfaces in the compactified setting. G.
Faltings (see [21]) then proved a Riemann–Roch theorem in the framework of
Arakelov’s theory. After that L. Szpiro and his students proved many other
results in the Arakelov theory of surfaces. See [57] and also Lang’s book [40]
for this. The theory was then vastly generalised by H. Gillet and C. Soulé,
who defined compactified Chow rings, Grothendieck groups and characteristic
classes in all dimensions (see [28] and [29]). For an introduction to Arakelov
geometry, see the book [55].

5.2. The equivariant Riemann–Roch theorem

The aim of this section is to formulate the analog in Arakelov geometry of
Theorem 4.1. With the exception of the relative equivariant analytic torsion
form, we shall define precisely all the objects that we need but the presen-
tation will be very compact and this section should not be used as a partial
introduction to higher-dimensional Arakelov theory. For this, we recommend
reading the first few chapters of the book [55].

Let D be a regular arithmetic ring. By this we mean a regular, excel-
lent, noetherian domain, together with a finite set S of injective ring homo-
morphisms D → C, which is invariant under complex conjugation. We fix a
primitive root of unity ζn ∈ C. In this subsection, we shall use the short-hand
µn for µn,D.

Ley n ≥ 1. We shall call equivariant arithmetic variety a scheme X of
finite type over SpecD, endowed with a µn-equivariant structure over D and
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such that there is an ample µn-equivariant line bundle on X. We also require
the fibre of X over the generic point of D to be smooth.

We shall denote by X(C) the set of complex points of the variety∐
σ∈S X ×D,σ C, which naturally carries the structure of a complex mani-

fold. The group µn(C) acts on X(C) by holomorphic automorphisms and we
shall write g for the automorphism corresponding to ζn. As we have seen
in Section 3, the fixed point scheme Xµn is regular and there are natural
isomorphisms of complex manifolds Xµn(C) ' (X(C))g, where (X(C))g is
the set of fixed points of X(C) under the action of µn(C). Complex conjuga-
tion induces an antiholomorphic automorphism of X(C) and Xµn(C), both
of which we denote by F∞.

If M is a complex manifold, we shall write Ap,q(M) for the C-vector
space of smooth complex differential forms ω of type (p, q) on M and Ak(M)
for the set of smooth complex differential forms ω of degree k. Recall that we
have a natural direct sum decomposition

Ak(M) =
⊕
p+q=k

Ap,q(M).

The differential operators ∂ and ∂̄ induce endomorphisms of the vector space
A•,•(M), making it into a double complex

(A•,•(M); ∂, ∂̄). (5.1)

Here are some cohomology spaces associated with this double complex. Each
of them inherits a grading or a bigrading from the bigrading of the com-
plex (5.1). We write d := ∂ + ∂̄ as usual.

– de Rham cohomology

H•dR(M) :=
ker d

im d
;

– ∂-cohomology and Dolbeault cohomology (also called Hodge cohomol-
ogy)

H•,•∂ (M) :=
ker ∂

im ∂
, H•,•

∂̄
(X) :=

ker ∂̄

im ∂̄
;

– Bott–Chern cohomology and Aeppli cohomology

H•,•BC(X) :=
ker ∂ ∩ ker ∂̄

im ∂∂̄
, H•,•Aep(X) :=

ker ∂∂̄

im ∂ + im ∂̄
.

It can be checked that the wedge product of differential forms induces a
bigraded C-algebra structure on each of these cohomology spaces. Further-
more, from the definition we see that there are natural maps of C-vector
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spaces between them, as follows:

H•,•BC(M)

��yy &&
H•,•∂ (M)

%%

H•dR(M)

��

H•,•
∂̄

(M)

yy
H•,•Aep(M)

(5.2)

See e.g. [63, par. 2] for more details about all this.

Now we define

Ãp(M) := Ap,p(M)/(Im ∂ + Im ∂)

so that there is a natural inclusion

Hp,p
Aep(M) ⊆ Ãp(M).

In this text, as in the foundational articles on higher-dimensional Arakelov
theory, we shall use the short-hand Hp,p(M) for Hp,p

Aep(M).

Going back to arithmetic varieties, we now write Ap,p(Xµn) for the
subspace of Ap,p(Xµn(C)) consisting of smooth complex differential forms ω
of type (p, p), such that F ∗∞ω = (−1)pω and

Ãp(Xµn) := Ap,p(Xµn)/(Im ∂ + Im ∂).

Finally we shall write Hp,p(Xµn) for the kernel of ∂̄∂ acting on Ãp(Xµn).

Note that Hp,p(Xµn) (resp. Ãp(Xµn)) is a subspace of Hp,p(Xµn(C)) (resp.

Ãp(Xµn(C))).

A hermitian equivariant sheaf (resp. vector bundle) on X is a coherent
sheaf (resp. a vector bundle) E on X, assumed locally free on X(C), equipped
with a µn-action which lifts the action of µn on X and a hermitian metric
h on the vector bundle E(C), which is invariant under F∞ and µn. We shall
write (E, h) or E for an hermitian equivariant sheaf (resp. vector bundle).
There is a natural Z/(n)-grading E|Xµn ' ⊕k∈Z/(n)Ek on the restriction of
E to Xµn , whose terms are orthogonal, because of the assumed g-invariance

of the metric. For k ∈ Z/(n), we write Ek for Ek endowed with the induced
metric. We also often write Eµn for E0.

If V = (V, hV ) is a hermitian vector bundle on Xµn we write ch(V )
for the differential form Tr(exp(− 1

2iπΩhV )). Here ΩhV is the curvature form
associated with the unique connection on V (C) whose matrix is given locally
by ∂H ·H−1, where H is the matrix of functions representing hV in a local
holomorphic frame. The differential form ch(V ) is both ∂- and ∂̄-closed and
its class in Bott–Chern cohomology represents the Chern character of V (C)
in the Bott–Chern cohomology of Xµn(C). Recall also that there is a natural
map from Bott–Chern cohomology to Aeppli cohomology (see (5.2)) so that
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ch(V ) may also be viewed as a differential form representative for the Chern
character of V (C) in the Aeppli cohomology of Xµn(C). From the differential

form ch(V ), using the fundamental theorem on symmetric functions, we may
define differential form representatives in Bott–Chern cohomology of other
linear combinations of Chern classes, like the Todd class Td(V ) or the total
Chern class c(V ).

If (E, h) is a hermitian equivariant sheaf, we write chg(E) for the equi-
variant Chern character form

chg(E) := chg((E(C), h)) :=
∑

k∈Z/(n)

ζknch(Ek).

The symbol Tdg(E) refers to the differential form

Td(Eµn)
(∑
i≥0

(−1)ichg(Λ
i(E))

)−1

.

If

E : 0→ E′ → E → E′′ → 0

is an exact sequence of equivariant sheaves (resp. vector bundles), we shall
write E for the sequence E together with a datum of µn(C)- and F∞- invariant
hermitian metrics on E′(C), E(C) and E′′(C). With E and chg is associated

an equivariant Bott–Chern secondary class c̃hg(E) ∈ Ã•(Xµn), which satisfies
the equation

i

2π
∂̄∂(c̃hg(E)) = chg(E

′
) + chg(E

′′
)− chg(E).

This class is functorial for any morphism of arithmetic varieties and vanishes
if the sequence E splits isometrically. See [37, par. 3.3] for all this.

Definition 5.1. The arithmetic equivariant Grothendieck group K̂
′µn
0 (X)(resp.

K̂µn
0 (X)) of X is the free abelian group generated by the elements of Ã•(Xµn)

and by the equivariant isometry classes of hermitian equivariant sheaves
(resp. vector bundles), together with the relations

(a) for every exact sequence E as above, we have c̃hg(E) = E
′ − E + E

′′
;

(b) if η ∈ Ã•(Xµn) is the sum in Ã•(Xµn) of two elements η′ and η′′, then

η = η′ + η′′ in K̂
′µn
0 (X) (resp. K̂µn

0 (X)).

We shall now define a ring structure on K̂µn
0 (X). Let V , V

′
be hermitian

equivariant vector bundles. Let η, η′ be elements of Ã•(Xµn). We define a

product · on K̂µn
0 (X) by the rules

V · V ′ := V ⊗ V ′,

V · η = η · V := chg(V ) ∧ η
and

η · η′ :=
i

2π
∂̄∂η ∧ η′
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and we extend it by linearity. We omit the proof that it is well-defined (see

[37, par. 4] for this). Notice that the definition of K̂
′µn
0 (X) (resp. K̂µn

0 (X))
implies that there is an exact sequence of abelian groups

Ã•(Xµn)→ K̂
′µn
0 (X)→ K

′µn
0 (X)→ 0 (5.3)

(resp.

Ã•(Xµn)→ K̂µn
0 (X)→ Kµn

0 (X)→ 0 ),

where K
′µn
0 (X) (resp. Kµn

0 (X)) is the Grothendieck group of µn-equivariant
coherent sheaves (resp. locally free sheaves) considered in Section 3. Notice

finally that there is a map from K̂
µ′n
0 (X) to the space of complex closed

differential forms, which is defined by the formula

chg(E + κ) := chg(E) +
i

2π
∂̄∂κ

(where E is an hermitian equivariant sheaf and κ ∈ Ã•(Xµn)). This map is
well-defined and we shall denote it by chg(·) as well. We have as before: if X is

regular then the natural morphism K̂µn
0 (X)→ K̂

′µn
0 (X) is an isomorphism.

See [37, Prop. 4.2] for this.

Now let f : X → Y be an equivariant projective morphism of relative
dimension d over D of equivariant regular arithmetic varieties. We suppose
that f is smooth over the generic point of D. We suppose that X(C) is en-
dowed with a Kähler fibration structure with respect to f(C). This structure
is encoded in a real closed (1, 1)-form ωf on X(C), with the property that the
restriction of ωf to each fibre of f(C) is a Kähler form on that fibre (see [8,
par. 1] for details). In particular, the datum of ωf induces a hermitian met-
ric on the relative tangent bundle Tf (C). We shall see an example of such
a structure in the applications. We suppose that ωf is g-invariant. Suppose
also that the action of µn on Y is trivial and finally suppose that there is a
µn-equivariant line bundle over X, which is very ample relatively to f .

Let now E := (E, h) be an equivariant hermitian sheaf on X and sup-

pose that Rkf∗(E)C is locally free for all k ≥ 0. Let η ∈ Ã•(Xµn).

We let R•f∗E :=
∑
k≥0(−1)kRkf∗E be the alternating sum of the

higher direct image sheaves, endowed with their natural equivariant struc-
tures and L2-metrics. For each y ∈ Y (C), the L2-metric on

Rif∗E(C)y ' Hi
∂
(X(C)y, E(C)|X(C)y )

is defined by the formula

1

(2π)d

∫
X(C)y

h(s, t)ωdf (5.4)

where s and t are harmonic sections (i.e. in the kernel of the Kodaira Lapla-

cian ∂∂
∗

+ ∂
∗
∂) of Λi(T ∗(0,1)X(C)y) ⊗ E(C)|X(C)y . This definition is mean-

ingful because, by Hodge theory, there is exactly one harmonic representative
in each cohomology class.
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Consider the rule, which associates the element Rf•∗E − Tg(X,E) of

K̂
′µn
0 (Y ) to E and the element

∫
X(C)g

Tdg(Tf (C))η of K̂
′µn
0 (Y ) to η. Here

Tg(E) ∈ Ã(Y ) is the equivariant analytic torsion form defined at the begin-
ning of [9]. Its definition is too involved to be given in its entirety here but
we shall define below its component of degree 0.

Proposition 5.2. The above rule extends to a well-defined group homomor-
phism

f∗ : K̂
′µn
0 (X)→ K̂

′µn
0 (Y ).

Proof. See [58, Th. 6.2]. �

Now for the definition of the component of degree 0 of Tg(X,E). Let

�Eq := ∂∂
∗

+ ∂
∗
∂

be the Kodaira Laplacian, which acts on the C∞-sections of the C∞-vector
bundle ΛqT ∗(0,1)X(C)y ⊗ E(C)|X(C)y on X(C)y. This space of sections is

equipped with the L2-metric as above and the operator �
E(C)|X(C)y
q is sym-

metric for that metric; we let Sp(�
E(C)|X(C)y
q ) ⊆ R be the set of eigenvalues of

�
E(C)|X(C)y
q . The set Sp(�

E(C)|X(C)y
q ) is a discrete subset of R≥0 and it grows

according to the Weyl law, see [6, chap. 2, Prop. 2.36]. We let Eig
E(C)|X(C)y
q (λ)

be the eigenspace associated with an eigenvalue λ (which is finite-dimensional,
see [6, chap. 2, Prop. 2.36]). For s ∈ C with <(s) sufficiently large, we define

Z(E|X(C)y , g, s) :=
∑
q≥1

(−1)q+1q
∑

λ∈Sp(�
E(C)|X(C)y
q )\{0}

Tr(g∗|
Eig

E(C)|X(C)y
q (λ)

)λ−s.

As a function of s, the function Z(E|X(C)y , g, s) has a meromorphic continu-
ation to the whole complex plane, which is holomorphic around 0. This is a
byproduct of the theory of heat kernels. The degree 0-part of the equivariant
analytic torsion form Tg(E) is then the complex number Z ′(E|X(C)y , g, 0). If

Rkf∗(E)C is locally free for all k ≥ 0 (which is our assumption) then it can
be shown that Z ′(E|X(C)y , g, 0) is a C∞-function of y.

We shall need the definition (due to Gillet and Soulé) of compactified’
Chow theory. Let X be a regular arithmetic variety over D. Let p ≥ 0. We
shall write Dp,p(X) for the space of complex currents of type (p, p) on X(C)
on which F ∗∞ acts by multiplication by (−1)p. Now let A be a subring of C
and suppose that Q ⊆ A. If Z is a cycle of codimension p with coefficients
in A on X (in other words, a formal linear combination of integral closed
subschemes of codimension p with coefficients in A), a Green current gZ for
Z is an element of Dp,p(X), which satisfies the equation

i

2π
∂∂gZ + δZ(C) = ωZ
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where ωZ is a differential form and δZ(C) is the Dirac current associated with
Z(C). See the beginning of [28] for this.

Definition 5.3. Let p ≥ 0. The arithmetic Chow group ĈH
p

A(X) is the A-
module generated by the ordered pairs (Z, gZ), where Z is a cycle of codi-
mension p with coefficients in A on X and gZ is a Green current for Z, with
the relations

(a) λ · (Z, gZ) + (Z ′, gZ′) = (λ · Z + Z ′, λ · gZ + gZ′) for any λ ∈ A;
(b) (div(f),− log |f |2 + ∂u+ ∂v) = 0;

where f is a non-zero rational function defined on a closed integral subscheme
of codimension p − 1 of X and u (resp. v) is a complex current of type
(p−2, p−1) (resp. (p−1, p−2)) such that F ∗∞(∂u+∂v) = (−1)p−1(∂u+∂v).

We shall write ĈH
•
A(X) := ⊕p≥0ĈH

p

A(X).

Remark 5.4. The arithmetic Chow group with coefficients in A defined in
Definition 5.3 is a formal variant of the arithmetic Chow group introduced
by Gillet and Soulé in [28]. In [31] they also consider a group, which is similar
to ours in the case A = R (but not identical). The properties of the arithmetic
Chow group with coefficients in A listed below are similar to the properties
of the arithmetic Chow group introduced in [28] (with the same proofs going
through verbatim) and we shall always refer to [28] for properties of our
group, although strictly speaking a different group is treated there.

The group ĈH
•
A(X) is equipped with a natural A-algebra structure,

such that
(Z, gZ) · (Z ′, gZ′) = (Z ∩ Z ′, gZ ∗ gZ′)

if Z,Z ′ are integral and intersect transversally. Here the symbol ∗ refers to
the star product, whose definition is too involved to be given here. See [28,
par. 2.1] for this. A special case of the star product is described in the next
example. If Z(C) and Z ′(C) intersect transversally then one has the formula

gZ ∗ gZ′ = gZ ∧ δZ′ + [
i

2π
∂̄∂(gZ) + δZ(C)] ∧ gZ′ .

Here the wedge product can be defined because the wave-front sets of the
involved currents are disjoint. If f : X → Y is a projective and generically
smooth morphism over D between regular arithmetic varieties, there is a
push-forward map

f∗ : ĈH
•
A(X)→ ĈH

•
A(Y ),

such that
f∗(Z, gZ) = (deg(Z/f(Z)) · f(Z), f(C)∗(gZ))

for every integral closed subscheme Z of X and Green current gZ of Z.
Here we set deg(Z/f(Z)) = [κ(Z) : κ(f(Z))] if dim(f(Z)) = dim(Z) and
deg(Z/f(Z)) = 0 otherwise. The expression f(C)∗(gZ) refers to the push-
forward of currents. See [28, par. 3.6] for more details. For any morphism
f : X → Y over D between regular arithmetic varieties, there is a pull-back
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map f∗ : ĈH
•
A(Y )→ ĈH

•
A(X), whose definition presents the same difficulties

as the definition of the ring structure on ĈH
•
A(·). See [28, par. 4.4] for details.

It is an easy exercise to show that the map of complex vector spaces

C→ ĈH
1

C(Z), defined by the recipe z 7→ (0, z) is an isomorphism.

If X is a regular arithmetic variety, there is a unique ring morphism

ĉh : K̂0(X)→ ĈH
•
Q(X)

called the arithmetic Chern character, such that

– ĉh is compatible with pull-backs by D-morphisms;

– ĉh(η) = (0, η) if η ∈ Ã•(X);
– if L = (L, h) is a hermitian line bundle on X and s a rational section of
L then

ĉh(L) = exp((div s,− log h(s, s))).

See the beginning of [29] for this.

Example 5.5. Suppose in this example that X is regular and projective and
flat of relative dimension 1 over D = Z. Suppose also that Z and Z ′ are two
closed subschemes of codimension 1 of X, which are flat with geometrically
integral fibres over SpecZ, which intersect transversally and do not intersect
on the generic fiber. As Z(C) (resp. Z ′(C)) consists of one point P (resp. P ′),
the last condition just says that P 6= P ′ in X(C). Now equip O(Z) (resp.
O(Z ′)) with a conjugation invariant hermitian metric h (resp. h′) and let s
be a section of O(Z) (resp. s′ be a section of O(Z ′)) vanishing exactly on Z
(resp. Z ′). In this case, we have

(Z,− log h(s, s)) · (Z ′,− log h′(s′, s′))

= (Z ∩ Z ′,− log h(s, s)δZ′(C) − c1(O(Z)) log h′(s′, s′))

in ĈH
•
Q(X) and hence, if f is the morphism X → SpecZ,

f∗(ĉ
1(O(Z)) · ĉ1(O(Z ′)))

=
(

0,
∑

p∈f∗(Z∩Z′)

# length(ZFp ∩ Z ′Fp) log p

− log h(s(P ′), s(P ′))−
∫
X(C)

c1(O(Z)) log h′(s′, s′)
)
.

From the arithmetic Chern character, using the fundamental theorem
on symmetric functions, we may also define an arithmetic Todd class

T̂d : K̂0(X)→ ĈH
•
Q(X)∗

and an arithmetic total Chern class

ĉ : K̂0(X)→ ĈH
•
Q(X)∗.
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If E is an equivariant hermitian vector bundle on a regular equivariant
arithmetic variety X, we define the equivariant arithmetic Chern character
by the formula

ĉhµn(E) = ĉhµn,ζ(E) :=
∑
k∈Z/n

ζkn ĉh(Ek) ∈ ĈH
•
Q(µn)(Xµn).

We write as before Λ−1(E) :=
∑rk(E)
k=0 (−1)kΛk(E) ∈ K̂µn

0 (X), where Λk(E)

is the k-th exterior power of E, endowed with its natural hermitian and
equivariant structure.

Finally, to formulate the equivariant Grothendieck–Riemann–Roch the-
orem in Arakelov geometry, we shall need the following exotic characteristic
class. Let X be a regular arithmetic variety.

Recall that for any z ∈ C with |z| = 1, the Lerch zeta function ζL(z, s)
is defined by the formula

ζL(z, s) :=
∑
k≥1

zk

ks

which is naturally defined for <(s) > 1 and can be meromorphically continued
to the whole plane. For n any positive integer, define the n-th harmonic
number Hn by the formula

H0 := 0

and

Hn := (1 +
1

2
+ · · ·+ 1

n
)

when n > 0. For any z ∈ C we now define the formal complex power series

R̃(z, x) :=
∑
k≥0

(
2ζ ′L(z,−k) +Hk · ζL(z,−k)

)xk
k!
.

(for those z ∈ C where it makes sense) and

R(z, x) :=
1

2
(R̃(z, x)− R̃(z,−x)).

For any fixed z ∈ C, we identify R(z, x) (resp. R̃(z, x)) with the unique addi-
tive cohomology class it defines in Aeppli cohomology. For a µn(C)-equivariant
vector bundle E onX(C), whereX(C) is endowed with the trivial µn(C)-equi-

variant structure, we now define the cohomology class Rg(E) (resp. R̃g(E))
on X(C)g by the formula

Rg(E) :=
∑
u∈Z/n

R(ζun , Eu)

(resp.

R̃g(E) :=
∑
u∈Z/n

R̃(ζun , Eu) ).
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The class Rg(E) is often called the Rg-genus of E. Note that by construction
we have

R̃g(E) =
∑
k≥0

∑
u∈Z/n

(
2ζ ′L(ζun ,−k) +Hk · ζL(ζun ,−k)

)
ch[k](Eu)

(resp.

Rg(E) =
∑
k≥0

∑
u∈Z/n

(
(ζ ′L(ζun ,−k)− (−1)kζ ′L(ζ̄un ,−k))

+
1

2
Hk · (ζL(ζun ,−k)− (−1)kζL(ζ̄un ,−k))

)
ch[k](Eu) ).

Let now again f : X → Y be an equivariant projective morphism over D
between regular equivariant arithmetic varieties. Suppose that there is an
equivariant relatively ample line bundle on X and that the equivariant struc-
ture of Y is trivial. Suppose also that fµn : Xµn → Y is smooth.

Let N = NX/Xµn be the normal bundle of Xµn in X, which has a
natural µn-equivariant structure. The bundle N(C) is by construction a quo-
tient of the restriction to X(C)g of the relative tangent bundle Tf (C) and
we thus endow it with the corresponding quotient metric structure (which
is F∞-invariant). We refer to the resulting µn-equivariant hermitian vector
bundle as N = NX/Xµn

.

Theorem 5.6 (equivariant arithmetic Riemann–Roch theorem). Suppose that
fµn is smooth. Then the equality

ĉhµn(f∗(x)) = fµn∗ (ĉhµn(Λ−1(N
∨

))−1Td(Tf
µn

)(1−Rg(Tf ))ĉhµn(x))

holds in ĈH
•
Q(µn)(Y ), for any x ∈ K̂µn

0 (X).

Remark 5.7. If f is smooth then fµn is smooth. We leave the proof of this
statement as an exercise for the reader.

Theorem 5.6 results from a formal combination of the main results of
[58] and [27]. It is important to underline that the most difficult part of the
proof is analytic in nature and is contained in J.-M. Bismut’s article [9]. A
proof of the degree one part of Theorem 5.6 is given in [37].

6. Logarithmic derivatives of Dirichlet L-functions and
arithmetic Chern classes of Hodge bundles

In this section, we shall apply Theorem 5.6 to the relative de Rham complex
of a smooth and projective morphism between regular equivariant arithmetic
varieties (satisfying certain conditions) and interpret the resulting equality
in terms of logarithmic derivatives of Dirichlet L-functions.

As usual, fix a primitive n-th root of unity ζn ∈ C. For convenience, we
shall write ζ = ζn in this section. If σ ∈ (Z/n)∗, we shall often write σ(ζ) for
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ζσ. If χ is a primitive Dirichlet character modulo n (see e.g. [61, chap. 4] for
an introduction to Dirichlet characters) we shall write

τ(χ) = τζ(χ) :=
∑

σ∈(Z/n)∗

σ(ζ)χ(σ)

for the corresponding Gauss sum. We shall also write

L(χ, s) =

∞∑
n=0

χ(n)

ns

for the L-function associated with χ. This function is defined for <(s) > 1 but
can be meromorphically continued to the whole complex plane. The resulting
function is holomorphic everywhere if χ is not the trivial character.

The following combinatorial lemma will be needed in the proof.

Lemma 6.1. Let M be a complex projective manifold and let E be a vector
bundle on M together with an automorphism g : E → E of finite order (acting
fiberwise). Let κ be the class

κ := Td(E0)

∑
p≥0(−1)pp · chg(Λp(E∨))∑
p≥0(−1)pchg(Λp(E∨6=0))

in the Aeppli cohomology of M . Then the equality

κ[l+rk(E0)] = −ctop(E0)
∑
z∈C

ζL(z,−l) ch[l]((E∨)z)

holds for all l ≥ 0.

Here Ez is the largest subbundle of E on which g acts by multiplication
by z.

Proof. See [43, Lemma 3.1]. �

Let M be a complex projective manifold and let (L, hL) be an ample
line bundle on M , endowed with a positive metric hL. It is interesting (and it
will be necessary later) to have an explicit formula for the L2-metric carried
by the vector spaces Hp(M,ΩqM ) (p, q ≥ 0), where the L2-metric is computed
using the Kähler metric coming from c1((L, hL)) and the metric on ΩqM is
induced by c1((L, hL)).

Let us denote by ω ∈ H2(M,C) the first Chern class of L and, for
each k 6 dim(M), let us write P k(M,C) ⊆ Hk(M,C) for the primitive
cohomology associated with ω; this is a Hodge substructure of Hk(M,C).
Recall that for any k ≥ 0, the primitive decomposition theorem of Lefschetz
establishes an isomorphism

Hk(M,C) '
⊕

r≥max(k−d,0)

ωr ∧ P k−2r(M,C).

Define the cohomological star operator

∗ : Hk(M,C)→ H2d−k(M,C)
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by the rule

∗ωr ∧ φ := ip−q(−1)(p+q)(p+q+1)/2 r!

(d− p− q − r)!
ωd−p−q−r ∧ φ

if φ is a primitive element of pure Hodge type (p, q) and extend it by addi-
tivity. We can now define a pairing on Hk(M,C) by the formula

(ν, η)L :=
1

(2π)d

∫
M

ν ∧ ∗ η

for any ν, η ∈ Hk(M,C). This pairing turns out to be a hermitian metric,
which is sometimes called the Hodge metric. See [32] for all this.

Lemma 6.2. The Hodge-de Rham isomorphism

Hk(M,C) '
⊕
p+q=k

Hq(M,ΩpM )

is an isometry if the right-hand side is endowed with the Hodge metric and
the left-hand side with the L2-metric.

Proof. See [43, Lemma 2.7]. �

Corollary 6.3. Let h : M → N be a projective and smooth morphism between
quasi-projective complex manifolds. Let g be a finite automorphism of M over
N (i.e. g acts fiberwise). Let h0 : Mg → N be the induced morphism (which
is smooth). The equality of characteristic classes∑

p,q

p · (−1)p+q·chg(Rqh∗(Ωph))

= −
∫
Mg/N

ctop(Th0)
[∑
l≥0

∑
z∈C

ζL(z,−l)ch[l]((Ωh|Mg )z)
]

in Aeppli cohomology holds.

Proof. This is an immediate consequence of Lemma 6.1, the main result of
[5, Th. 2.12] and the fact that there is a natural map from Hodge cohomology
(also called ∂̄-cohomology) to Aeppli cohomology (see (5.2)). �

Lemma 6.4. For any primitive Dirichlet character modulo n and any u ∈ Z,
the equality ∑

σ∈(Z/n)∗

σ(ζu)χ(σ) = χ̄(u)τ(χ)

holds.

Proof. See [61, chap. 4, lemma 4.7]. �

Lemma 6.4 implies the following two lemmata:
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Lemma 6.5. Let V be a µn-equivariant hermitian vector bundle on a regu-
lar arithmetic variety Z. Suppose that µn acts trivially on Z. Then for any
primitive character modulo n we have∑

σ∈(Z/n)∗

ĉhµn,σ(ζ)(V )χ(σ) = τ(χ)
∑
u∈Z/n

ĉh(V u)χ̄(u).

Lemma 6.6. For any primitive character modulo n we have∑
σ∈(Z/n)∗

ζL(σ(ζu), s)χ(σ) = τ(χ)χ̄(u)L(χ̄, s).

Remark 6.7. (Important). Let us call the number χ(−1) ∈ {1,−1} the parity
of the Dirichlet character χ and for any (positive) integer l ∈ Z let us define
the parity of l to be (−1)l ∈ {1,−1}. By classical results of analytic number
theory, we have L(χPrim, 1− l) 6= 0 if χ and l have the same parity (see [61,
before Th. 4.2]). More generally, if χ is now an Artin character attached to
any finite-dimensional complex irreducible representation Rχ of the Galois
group of a finite Galois extension of Q, we will say that χ is even (resp. odd)
if Rχ(F∞) = Id (resp. Rχ(F∞) = −Id), where F∞ is acting as the complex
conjugation. Let’s then denote by L(χ, s) the Artin L-function associated
with χ (cf. [59] or [49, § 7.10-12] for an introduction). The function L(χ, s) is
non-vanishing for <(s) > 1 and by Brauer admits a functional equation and
a meromorphic continuation to the whole complex plane. One easily deduces
from this the zeroes of L(χ, s) lying on the real negative line (cf. for instance
[49, p.541]). We get again L(χ, 1− l) 6= 0 when χ and l have the same parity.

We shall also need the following deep vanishing statement, due to J.-M.
Bismut. This statement is what makes the calculations below possible and
it would be very interesting to have a better conceptual understanding of it.
Its proof relies on the comparison between two completely different types of
analytic torsion (holomorphic torsion and flat torsion).

Theorem 6.8. Let h : M → N be a proper and smooth morphism of complex
manifolds. Let g be a finite automorphism of M over N (i.e. g acts fiberwise).
Suppose that h is endowed with a g-invariant Kähler fibration structure ωh.
Then the element ∑

k≥0

(−1)kTg(Ω
k

h) ∈ Ã•(N)

vanishes.

Proof. See [7]. �

Remark 6.9. In the paper [13] it is shown that in the non-equivariant setting
the vanishing property stated in Theorem 6.8 can be used to characterise the
holomorphic torsion form axiomatically.
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Let f : X → Y be a µn-equivariant smooth and projective morphism
of regular arithmetic varieties over an arithmetic ring D. Let g be the auto-
morphism of X corresponding to ζ ∈ µn(C). Suppose that X(C) is endowed
with a g-invariant Kähler fibration structure ωf with respect to f(C) and
suppose that the µn-structure of Y is trivial. Suppose also that there is an
equivariant line bundle on X, which is ample relatively to f .

We shall apply Theorem 5.6 to the elements of the relative de Rham

complex of f . To ease notation, let us write H
k

Dlb(X/Y ) for the hermitian
equivariant vector bundle

H
k

Dlb(X/Y ) :=
⊕
p+q=k

Rqf∗(Ω
p

f )

and Hp,q(X/Y ) for the vector bundle

Hp,q(X/Y ) := Rqf∗(Ωpf ).

Theorem 5.6 together with the Borel–Serre identity (see the end of Sec-
tion 4) now gives the identity∑
k

(−1)k ĉhµn(H
k

Dlb(X/Y )) = fµn∗ (ctop(Tf ))−
∫
X(C)g/Y (C)

ctop(Tf )Rg(Tf )

(6.1)

in ĈH
•
Q(µn)(Y ). In particular, for any l ≥ 1,

∑
k

(−1)k ĉh
[l]

µn(H
k

Dlb(X/Y )) = −
∫
X(C)g/Y (C)

ctop(Tf )R[l−1]
g (Tf ) (6.2)

We shall see below that equation (6.2) carries astonishingly deep arith-
metic information. It should be viewed as a lifting to Arakelov theory of the
relative equivariant form of the Gauss–Bonnet formula.

We shall now translate equation (6.2) into a statement about logarithmic
derivatives of Dirichlet L-functions at negative integers. That this kind of
translation should be possible is suggested by Lemma 6.6 and the definition
of the Rg-genus.

We compute:

Lemma 6.10. For any l ≥ 1 and for any primitive Dirichlet character χ
modulo n we have∑
σ∈(Z/n)∗

R̃
[l−1]
gσ (Tf )χ(σ)

= τ(χ)
[
2L′(χ̄, 1− l) +Hl−1 · L(χ̄, 1− l)

] ∑
u∈Z/n

ch[l−1](Tfu)χ̄(u).

Proof. This is an immediate consequence of Lemma 6.6 and the definition of

the class R̃g. �
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Lemma 6.11. Let h : M → N be a projective and smooth morphism between
quasi-projective complex manifolds. Let g be a finite automorphism of M over
N (i.e. g acts fiberwise). Let h0 : Mg → N be the induced morphism (which
is smooth). For any primitive Dirichlet character χ modulo n the equality of
characteristic classes in Aeppli cohomology∑
u∈Z/n

∑
p,q

(−1)p+qp · ch[l](Hp,q(M/N)u)χ̄(u)

= −L(χ̄,−l)
∫
Mg/N

∑
u∈Z/n

ctop(Th0
)ch[l]((Ωh|Mg

)u)χ̄(u)

holds.

Here Hp,q(M/N)u (resp. (Ωh|Mg
)u) denotes the largest subbundle of

Hp,q(M/N) (resp. Ωh|Mg
) where g acts by multiplication by ζu.

Proof. This is an immediate consequence of Lemma 6.6 and Corollary 6.3. �

If K ⊆ C is a subfield and χ is a Dirichlet character, we shall write
K(χ) for the subfield of C obtained by adjoining all the values of χ to K.

Combining Lemma 6.10 with equality (6.2), we get the following. For
any primitive Dirichlet character modulo n, the equality

∑
k

(−1)k
∑
u∈Z/n

ĉh
[l]

(H
k

Dlb(X/Y )u)χ̄(u)

= −1

2

[
2L′(χ̄, 1− l)− 2L′(χ̄, 1− l)(−1)χ(−1)+l−1

+Hl−1 ·
(
L(χ̄, 1− l)− L(χ̄, 1− l)(−1)χ(−1)+l−1

)]
·

·
∫
X(C)g/Y (C)

ctop(Tf )
∑
u∈Z/n

ch[l−1](Tfu)χ̄(u) (6.3)

holds in ĈH
l

Q(µn)(χ)(Y ).

Notice that if χ and l have the same parity, we have

L(χ̄, s)− L(χ̄, s)(−1)χ(−1)+l−1 = 2L(χ̄, s)

whereas if χ and l do not have the same parity then

L(χ̄, s)− L(χ̄, s)(−1)χ(−1)+l−1 = 0.
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So we obtain from the equation (6.3): if χ and l have the same parity, then∑
k

(−1)k
∑
u∈Z/n

ĉh
[l]

(H
k

Dlb(X/Y )u)χ̄(u)

= −
[
2L′(χ̄, 1− l) +Hl−1 · L(χ̄, 1− l)

]
·

·
∫
Xg(C)/Y (C)

ctop(Tf )
∑
u∈Z/n

ch[l−1](Tfu)χ̄(u)

= −
[
2L′(χ̄, 1− l) +Hl−1 · L(χ̄, 1− l)

]
·

·
∫
Xg(C)/Y (C)

ctop(Tf )
∑
u∈Z/n

ch[l−1](Tf−u)χ̄(−u)

= −
[
2L′(χ̄, 1− l) +Hl−1 · L(χ̄, 1− l)

]
·

·
∫
Xg(C)/Y (C)

ctop(Tf )
∑
u∈Z/n

ch[l−1]((Ωf,u)∨)χ̄(−u)

= −(−1)l−1χ̄(−1)
[
2L′(χ̄, 1− l) +Hl−1 · L(χ̄, 1− l)

]
·

·
∫
Xg(C)/Y (C)

ctop(Tf )
∑
u∈Z/n

ch[l−1](Ωf,u)χ̄(u)

=
[
2L′(χ̄, 1− l) +Hl−1 · L(χ̄, 1− l)

]
·

·
∫
Xg(C)/Y (C)

ctop(Tf )
∑
u∈Z/n

ch[l−1](Ωf,u)χ̄(u)

and if χ and l do not have the same parity, then∑
k

(−1)k
∑
u∈Z/n

ĉh
[l]

(H
k

Dlb(X/Y )u)χ̄(u) = 0. (6.4)

Finally, if χ and l have the same parity (hence L(χ̄, 1− l) 6= 0 by Remark 6.7)
then we obtain using Lemma 6.11 that∑

k

(−1)k
∑
u∈Z/n

ĉh
[l]

(H
k

Dlb(X/Y )u)χ̄(u)

=−
∑
k

(−1)k
[
2
L′(χ̄, 1− l)
L(χ̄, 1− l)

+Hl−1

]
·

·
∑
u∈Z/n

∑
p+q=k

p · ch[l−1](Hp,q(X/Y )u)χ̄(u). (6.5)

Note that this equality does not depend on the initial choice of root of
unity ζn anymore.

Now suppose that χ is not primitive. Then we apply (6.5) again, but
replace the action of µn by the action of its subgroup scheme µfχ , where
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fχ is the conductor of χ. We shall write χPrim for the primitive character
modulo fχ associated with χ. Replacing χ by χ̄ for convenience, we finally
get the following basic formula. We shall encase it in a theorem to underline
its importance.

Theorem 6.12. Let f : X → Y be a µn-equivariant smooth and projec-
tive morphism of equivariant regular arithmetic varieties. Suppose that the
µn-action on Y is trivial. Fix a µn(C)-invariant Kähler fibration structure
ωf for f on X and suppose that there is a µn-equivariant line bundle on X,
which is ample relatively to f . Let χ be a Dirichlet character modulo n. Then
the equation∑

k

(−1)k
∑
u∈Z/n

ĉh
[l]

(H
k

Dlb(X/Y )u)χPrim(u)

= −
∑
k

(−1)k
[
2
L′(χPrim, 1− l)
L(χPrim, 1− l)

+Hl−1

]
·

·
∑
u∈Z/n

∑
p+q=k

p · ch[l−1](Hp,q(X/Y )u)χPrim(u) (6.6)

holds in ĈHQ(µfχ )(χPrim)(Y ), if χ and l have the same parity (and hence

L(χPrim, 1 − l) 6= 0 by Remark 6.7). If χ and l do not have the same parity
then ∑

k

(−1)k
∑
u∈Z/n

ĉh
[l]

(H
k

Dlb(X/Y )u)χPrim(u) = 0.

This is the promised translation of formula (6.2).

Now notice that in Theorem 6.12, it is very natural to wonder whether
the equality holds before the alternating sum

∑
k(−1)k is taken on both

sides. It is difficult to make a meaningful conjecture about this ‘separation of
weights’ (in particular because the Kähler fibration structure ωf is defined
on X and not only on the Hodge bundles). It nevertheless makes sense to
conjecture the following purely geometric statement.

Conjecture 6.13. Let f : X → Y be a µn-equivariant smooth and projec-
tive morphism of equivariant regular arithmetic varieties. Suppose that the
µn-action on Y is trivial. Let χ be a Dirichlet character modulo n. Then for
any k ≥ 1 the equation∑

u∈Z/n

ch[l](Hk
Dlb(X/Y )u)χPrim(u) = 0

holds in CHl(Y )Q(µfχ )(χPrim) if χ and l have the same parity.

When D = C and χ = 1, this conjecture was studied and refined in [45,
Conj. 1.1]. See also [20] for this conjecture.

In the direction of ‘separation of weights’ in the context of Arakelov
geometry, we can nevertheless prove the following result.
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Proposition 6.14. Let f : A = X → Y be a µn-equivariant smooth and pro-
jective morphism of equivariant regular arithmetic varieties and suppose that
A is an abelian scheme. Suppose that µn(C) acts on A(C) by automorphisms
respecting the group scheme structure. Suppose that there is a µn-equivariant
line bundle on A, which is ample relatively to f . Suppose that the µn-action
on Y is trivial. Suppose also that for any subgroup scheme µt ⊆ µn such that
t 6= 1 the closed subscheme Aµt is finite over Y.

Fix a µn(C)-invariant Kähler fibration structure ωf and suppose also
that ωf is translation invariant on the fibres of f(C) and that

1

dim(A/Y )!

∫
A(C)/Y (C)

ω
dim(A/Y )
f = 1.

Let χ be a Dirichlet character modulo n. If χ is the trivial character, suppose
as well that 2 is invertible in D and that [−1]∗A(C)(ωf ) = ωf .

Then the equation∑
u∈Z/n

ĉh
[l]

(H
k

Dlb(A/Y )u)χPrim(u)

= −
[
2
L′(χPrim, 1− l)
L(χPrim, 1− l)

+Hl−1

]
·

·
∑
u∈Z/n

∑
p+q=k

p · ch[l−1](Hp,q(A/Y )u)χPrim(u) (6.7)

holds in ĈH
l

Q(µfχ )(χPrim)(Y ) if χ and l have the same parity (and hence

L(χPrim, 1− l) 6= 0 by Remark 6.7).

Consider the following formal power series:

exp(x) :=

∞∑
j=0

xj

j!

and

log(1 + x) :=

∞∑
j=1

(−1)j+1x
j

j
.

Lemma 6.15. Let λ ∈ µn(C), λ 6= 1. Then the equality

log

(
1− λ · exp(x)

1− λ

)
= −

∑
j≥1

ζL(λ, 1− j)x
j

j!

holds in C[[x]].

Proof. See [44, Lemma 4]. �

Lemma 6.16. Let V be a µn-equivariant hermitian bundle on an arithmetic
variety Z. Suppose that the µn-action on Z is trivial. Then we have the
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equality

log
[( n−1∏

u=0

(1− ζu)rk(Vu)
)−1∑

r≥0

(−1)r ĉhµn(Λr(V ))
]

= −
∑
l≥1

n−1∑
u=0

ζL(ζu, 1− l)ĉh
[l]

(V u) (6.8)

in ĈHQ(µn)(Z).

Proof. Notice first that if V and W are µn-equivariant vector bundles, then
we have∑
r≥0

(−1)r ĉhµn(Λr(V ⊕W )) =
∑
r≥0

(−1)r ĉhµn(Λr(V )) ·
∑
r≥0

(−1)r ĉhµn(Λr(W )).

Thus

log
[( n−1∏

u=0

(1− ζu)rk((V⊕W )u)
)−1∑

r≥0

(−1)r ĉhµn(Λr(V ⊕W ))
]

= log
[( n−1∏

u=0

(1− ζu)rk(Vu)
)−1∑

r≥0

(−1)r ĉhµn(Λr(V ))
]

+ log
[( n−1∏

u=0

(1− ζu)rk(Wu)
)−1∑

r≥0

(−1)r ĉhµn(Λr(W ))
]

and in particular both sides of the equality (6.8) are additive in V . On the
other hand if V is a line bundle then equality 6.8 holds by Lemma 6.15. Thus
we have proven equality 6.8 in the situation where V is an orthogonal direct
sum of hermitian line bundles. The general case is now a consequence of a
version of the splitting principle. For details about this last step, see the proof
of Lemma 6.11 in [51], which proceeds along entirely similar lines. �

Proof of Proposition 6.14. Suppose first that n 6= 1. Notice that from the
definition of the L2-metric and the assumption that

1

dim(A/Y )!

∫
A(C)/Y (C)

ω
dim(A/Y )
f = 1,

there exists an isometric isomorphism

Λr(H
1

Dlb(A/Y )) ' Hr

Dlb(A/Y )

for all r ≥ 0. We now apply equality (6.1) to X = A over Y . We obtain∑
r≥0

(−1)r ĉhµn(Λr(H
1

Dlb(A/Y )))

=
( n−1∏
u=0

(1− ζu)rk(H1(A/Y )u)
)

(1−Rg(f∗(Tf ))).
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Applying Lemma 6.16, this shows that

∑
l≥1

n−1∑
u=0

ζL(ζu, 1− l)ĉh
[l]

(H
1

Dlb(A/Y )u) = Rg(f∗(Tf )). (6.9)

Let χ be any primitive Dirichlet character modulo n. There is an equi-
variant isomorphism f∗(Tf (C)) ' H1,0(A/Y )(C)∨ (given by the polarisa-
tion induced by a µn-equivariant relatively ample line bundle) and applying
Lemma 6.6, we finally obtain that

∑
l≥1

n−1∑
u=0

L(χ̄, 1− l)ĉh
[l]

(H
1

Dlb(A/Y )u)χ̄(u)

= (−1)l−1χ̄(−1)
∑
l≥1

1

2

[
2L′(χ̄, 1− l)− 2L′(χ̄, 1− l)(−1)sign(χ)+l−1

+Hl−1 ·
(
L(χ̄, 1− l)− L(χ̄, 1− l)(−1)sign(χ)+l−1

)]
·

· ch[l−1](H1,0(A/Y ))χ̄(u)

so that if χ and l have the same parity we get

∑
l≥1

n−1∑
u=0

ĉh
[l]

(H
1

Dlb(A/Y )u)χ̄(u)

= −
∑
l≥1

[
2 · L

′(χ̄, 1− l)
L(χ̄, 1− l)

+Hl−1

]
· ch[l−1](H1,0(A/Y ))χ̄(u).

In particular, the theorem is proven if χ is primitive and n 6= 1.

Now suppose that n = 1, that 2 is invertible in D and that [−1]∗A(C)(ωf )

is equal to ωf . In this case χ is necessarily the trivial character. Furthermore,
we then have a natural isomorphism between µ2 and the constant group
scheme Z/(2)D. Notice that there is a natural action of Z/(2)D on A given by
the automorphism [−1]A. We shall apply equality (6.1) to the corresponding
group scheme action of µ2. Equation (6.9) holds for this action and it gives∑

l≥1

ζL(−1, 1− l)ĉh
[l]

(H
1

Dlb(A/Y )) = R[−1]A(C)(f∗(Tf )).

By definition, we have

R[−1]A(C)(f∗(Tf ))

=
∑
l≥1

(
(ζ ′L(−1, 1− l)− (−1)1−lζ ′L(−1, 1− l))

+
1

2
Hk · (ζL(−1, 1− l)− (−1)1−lζL(−1, 1− l))

)
ch[l−1](f∗(Tf ))
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so if l is even we have

ζL(−1, 1− l)ĉh
[l]

(H
1

Dlb(A/Y ))

=
(

2ζ ′L(−1, 1− l) +Hk · ζL(−1, 1− l)
)

ch[l−1](f∗(Tf ))

i.e.

ĉh
[l]

(H
1

Dlb(A/Y )) =
(

2
ζ ′L(−1, 1− l)
ζL(−1, 1− l)

+Hk
)

ch[l−1](f∗(Tf )).

Now recall that we have the elementary identity

ζL(−1, s) = (1− 21−s)ζQ(s). (6.10)

Using (6.10) we see that

ζ ′L(−1, 1− l)
ζL(−1, 1− l)

=
ζ ′Q(1− l)
ζQ(1− l)

+ log(2)
2l

1− 2l
.

Note further that log(2) = 0 in ĈH
1

Q(Y ) since 2 is invertible in Y so we finally
get

ĉh
[l]

(H
1

Dlb(A/Y )) = −
(

2
ζ ′Q(−1, 1− l)
ζQ(−1, 1− l)

+Hk
)

ch[l−1](H1,0(A/Y ))

if l is even. In particular, the theorem is proven if n = 1. We can now conclude
the proof following the same line of argument as at the end of the proof of
Theorem 6.12 (see before the statement of Theorem 6.12). �

Corollary 6.17. Conjecture 6.13 holds if X is an abelian scheme over Y, k = 1
and XG is finite over Y for any non-trivial closed subgroup scheme G of µn
over D.

We now wish to translate Proposition 6.14 into the language of complex
multiplication of abelian schemes. For this and later applications, we shall
need the following

Lemma 6.18. Suppose that L,K are number fields and that all the embed-
dings of K into C factor through an embedding of L into C. Let dK be the
discriminant of K. Then there is a canonical isomorphism of OL-algebras

(OL ⊗OK)

[
1

dK

]
'

⊕
σ:K↪→L

OL
[

1

dK

]
such that l ⊗ k 7→ ⊕σ l · σ(k).

Proof. Notice to begin with that we have an isomorphism of L-algebras

L⊗Q K '
⊕

σ:K↪→L
L (6.11)

such that l ⊗ k 7→ ⊕σ l · σ(k). This can be seen by writing K ' Q[t]/(P (t))
for some monic irreducible polynomial P (t) and noticing that by assumption,
P (t) splits in L.
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Notice now that SpecOK [ 1
dK

] → SpecZ[ 1
dK

] is by construction a finite
and étale morphism. Hence the morphism

SpecOL ⊗OK
[

1

dK

]
→ SpecOL

[
1

dK

]
is also finite and étale. Thus SpecOL ⊗ OK [ 1

dK
] is the disjoint union of its

irreducible components and any of these components, say C, is integral, finite
and étale over SpecOL[ 1

dK
]. On the other hand, notice that the morphism

CL → SpecL is an isomorphism because of the existence of the decomposi-
tion (6.11). Thus there is a section SpecL→ CL, which extends uniquely to
a section

SpecOL
[

1

dK

]
→ C

by the valuative criterion of properness and this section is an open immersion
because C → SpecOL[ 1

dK
] is étale. Hence this section is an isomorphism, since

C is integral. To summarise, the irreducible components of SpecOL⊗OK [ 1
dK

]

are all images of sections of the morphism SpecOL⊗OK [ 1
dK

]→ SpecOL[ 1
dK

].
Furthermore, every section of the morphism SpecL⊗Q K → SpecL extends
uniquely to a section over SpecOL[ 1

dK
], which is an open immersion and

whose image is an irreducible component. Translating these two statements
back into the language of rings gives the lemma. �

Suppose now that X = A is an abelian scheme over Y and that there
is an injection Z[µn] = OQ(µn) ↪→ EndY (A) for some even integer n > 1.
Suppose also that n is invertible in the arithmetic base ring D, that there
is a primitive n-th root of unity in D and that D is a localisation of the
rings of integers of a number field. Then µn = µn,D (see our conventions at
the beginning of subsection 5.2) is isomorphic to the constant group scheme
over D associated with Z/(n). We fix such an isomorphism; this is equivalent
to choosing a primitive root of unity in D, or in other words to choosing
an embedding ι : Z[µn] ↪→ D. We are now given a µn-action on A over Y .
Note that n = 2 is allowed; in that case the µ2-action given by the injec-
tion OQ(µ2) = Z ↪→ EndY (A) is given by the action of the automorphism

[−1]A. By Lemma 6.18, we have H
1

Dlb(A/Y )u = 0 if u is not prime to n.
In particular, for any subgroup scheme µt ⊆ µn such that t 6= 1 the closed
subscheme Aµt is finite over Y. Hence, for any Dirichlet character modulo n,
Proposition 6.14 gives us the equality∑
u∈(Z/n)∗

ĉh
[l]

(H
1

Dlb(A/Y )u)χ(u)

=−
[
2
L′(χPrim, 1− l)
L(χPrim, 1− l)

+Hl−1

] ∑
u∈(Z/n)∗

ch[l−1](H1,0(A/Y )u)χ(u)



Conjectures on the logarithmic derivatives of Artin L-functions II 37

in ĈH
l

Q(µfχ )(χPrim)(Y ), if χ and l have the same parity (so L(χPrim, 1− l) 6= 0,

see Remark 6.7.) This can be rewritten as:∑
τ∈Gal(Q(µn)|Q)

ĉh
[l]

(H
1

Dlb(A/Y )ι◦τ )χ(τ)

=−
[
2
L′(χPrim, 1− l)
L(χPrim, 1− l)

+Hl−1

] ∑
τ∈Gal(Q(µn)|Q)

ch[l−1](H1,0(A/Y )ι◦τ )χ(τ)

(6.12)

where H
1

Dlb(A/Y )ι◦τ is the subsheaf on which Z[µn] acts via ι ◦ τ . Notice
that since n is invertible in D, Lemma 6.18 implies that there is an inner
direct sum ⊕

τ∈Gal(Q(µn)|Q)

H1
Dlb(A/Y )ι◦τ ' H1

Dlb(A/Y ).

Remark 6.19. Notice the interesting fact that the truth of equation (6.12) is
independent of the embedding ι : Z[µn] ↪→ D. Indeed if ι1 : Z[µn] ↪→ D is
another embedding then there exist τ1 ∈ Gal(Q(µn)|Q) such that ι1 = ι ◦ τ1
(because Q(µn) is a Galois extension of Q). Thus∑

τ∈Gal(Q(µn)|Q)

ĉh
[l]

(H
1

Dlb(A/Y )ι1◦τ )χ(τ)

=
∑

τ∈Gal(Q(µn)|Q)

ĉh
[l]

(H
1

Dlb(A/Y )ι◦τ )χ(τ−1
1 ◦ τ)

= χ(τ−1
1 )

 ∑
τ∈Gal(Q(µn)|Q)

ĉh
[l]

(H
1

Dlb(A/Y )ι◦τ )χ(τ)


and similarly

−
[
2
L′(χPrim, 1− l)
L(χPrim, 1− l)

+Hl−1

] ∑
τ∈Gal(Q(µn)|Q)

ch[l−1](H1,0(A/Y )ι1◦τ )χ(τ)

=−
[
2
L′(χPrim, 1− l)
L(χPrim, 1− l)

+Hl−1

] ∑
τ∈Gal(Q(µn)|Q)

ch[l−1](H1,0(A/Y )ι◦τ )χ(τ−1
1 ◦ τ)

=− χ(τ−1
1 )
([

2
L′(χPrim, 1− l)
L(χPrim, 1− l)

+Hl−1

]
·

·
∑

τ∈Gal(Q(µn)|Q)

ch[l−1](H1,0(A/Y )ι◦τ )χ(τ)
)

and we can thus conclude that if equality (6.12) is true for a certain em-
bedding ι then it is true for any such embedding. This might seem a moot
point since we know anyway that equality (6.12) is true but it seemed worth
underlining in view of Remark 6.24 below.

Equality (6.12) suggests the following conjecture:
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Conjecture 6.20. Suppose that K is a finite Galois extension of Q. Suppose
that there is an element c ∈ Gal(K|Q) in the center of Gal(K|Q) such that

for all embeddings ι : K → C and all k ∈ K, we have ι(c(k)) = ι(k) (where (·)
refers to complex conjugation). Suppose that all the embeddings of K into C
factor through an embedding of Frac(D) into C. Suppose finally that 2·disc(K)
is invertible in D and that D is a localisation of the ring of integers of a
number field.

Let f : A → Y be an abelian scheme and suppose that we are given an
embedding of rings ρ : OK ↪→ EndY (A).

Let χ : Gal(K|Q)→ C be an irreducible Artin character and let l ≥ 1.

Suppose given a Kähler fibration structure νf such that

• νf represents the first Chern class of a relatively ample line bundle;

• for any x ∈ OK , the endomorphism ρ(x)∗ of H1
Dlb(A/Y )(C) is adjoint

to the endomorphism ρ(c(x))∗ of H1
Dlb(A/Y )(C), with respect to the metric

coming from νf .

Suppose that χ and l have the same parity (hence L(χ, 1 − l) 6= 0 by
Remark 6.7).

Then for any embedding ι : OK ↪→ D we have:∑
τ∈Gal(K|Q)

ĉh
[l]

(H
1

Dlb(A/Y )ι◦τ )χ(τ)

=−
[
2
L′(χ, 1− l)
L(χ, 1− l)

+Hl−1

] ∑
τ∈Gal(K|Q)

ch[l−1](H1,0(A/Y )ι◦τ )χ(τ)

in ĈH
l

Q̄(Y ).

Here disc(K) is the discriminant of the number field K. The endomor-
phism ρ(x)∗ is the endomorphism of H1

Dlb(A/Y )(C) obtained by pull-back.

The sheaves H
1

Dlb(A/Y ) are understood to carry the L2-metric induced by
the Kähler fibration structure νf . The notation L(χ, s) refers to the Artin
L-function associated with χ (see [59] or [49, § 7.10-12] for an introduction).
Note that if K = Q(µn) then χ can be identified with a Dirichlet character
χ0 via the canonical isomorphism Gal(Q(µn)|Q) ' (Z/(n))∗ and then one
has L(χ, s) = L(χ0,Prim, s).

In the following remarks, we keep the notation of Conjecture 6.20.

Remark 6.21. If Y = SpecD, K is a CM field and the generic fibre f : A → Y
is an abelian variety of dimension [K : Q]/2 (in particular the generic fibre
of A has CM by OK), then there always exists a Kähler fibration structure
of the type described in Conjecture 6.20. See [52, after Th. A].

Remark 6.22. If K = Q(µn) then a polarisation with the properties re-
quired in Conjecture 6.20 can be constructed as follows. Choose first a µn(C)-
equivariant relatively ample line bundle L on A(C). Such a line bundle can
be obtained in the following way. Let M be a relatively ample line bundle
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on A(C) (without equivariant structure). The line bundle ⊗a∈µn(C)a
∗M then

carries a µn(C)-equivariant structure and is also relatively ample. Suppose
without loss of generality that the restriction of L to the 0-section of A(C) is
an equivariantly trivial line bundle and choose a trivialisation. There is then a
unique hermitian metric on L, whose first Chern character form is translation
invariant on the fibres of A(C) → Y (C) and such that the trivialising map
has norm 1 (see e.g. [48, II, 2.1] for all this). Let L be the resulting hermitian
line bundle. The first Chern character form c1(L) is then a µn(C)-invariant
Kähler fibration structure for A(C) → Y (C) and it satisfies the properties
required in Conjecture 6.20 because for any ζ ∈ µn(C) the adjoint of ρ(ζ)∗ is
then ρ(ζ)∗,−1 = ρ(ζ−1)∗ = ρ(ζ̄) and µn(C) generates Z[µn] as a Z-module.

Remark 6.23. Notice that the assumptions of Conjecture 6.20 imply that

the subbundles H
1

Dlb(A/Y )ι◦τ of H
1

Dlb(A/Y ) are orthogonal to each other.
This follows from the fact that by construction the pull-back endomorphisms
ρ(x)∗ commute with their adjoints for any x ∈ OK .

Remark 6.24. Note that if K is not an abelian extension of Q, it is not clear
that Conjecture 6.20 is independent of the embedding ι. To state this more
precisely: we do not know how to show that if Conjecture 6.20 is true for one
embedding ι then it is true for any such embedding.

One might wonder how much Conjecture 6.20 depends on the polarisa-
tion. We shall show:

Proposition 6.25. Suppose that K is a finite Galois extension of Q. Sup-
pose that there is an element c ∈ Gal(K|Q) such that for all embeddings

ι : K → C and all k ∈ K, we have ι(c(k)) = ι(k) (where (·) refers to complex
conjugation). Suppose that all the embeddings of K into C factor through an
embedding of Frac(D) into C. Suppose finally that disc(K) is invertible in D
and that D is a localisation of the ring of integers of a number field.

Let f : A → Y be an abelian scheme and suppose that we are given an
embedding of rings ρ : OK ↪→ EndY (A).

Suppose given a Kähler fibration structure νf (resp. κf ) such that

• νf (resp. κf ) represents the first Chern class of a relatively ample line
bundle;

• for any x ∈ OK , the pull-back endomorphism ρ(x)∗ of H1
Dlb(A/Y )C is

adjoint to the pull-back endomorphism ρ(c(x))∗ of H1
Dlb(A/Y )C, with respect

to the metric coming from νf (resp. κf ).

Suppose that l and χ have the same parity. Then for any embedding
ι : OK ↪→ D, we have∑

τ∈Gal(K|Q)

ĉh
[l]

(H
1

Dlb(A/Y )νf ,ι◦τ )χ(τ)

=
∑

τ∈Gal(K|Q)

ĉh
[l]

(H
1

Dlb(A/Y )κf ,ι◦τ )χ(τ)
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in ĈH
l

Q̄(Y ).

Here we write H
1

Dlb(A/Y )νf ,ι◦τ (resp. H
1

Dlb(A/Y )κf ,ι◦τ ) for the bundle

H1
Dlb(A/Y )ι◦τ endowed with the L2-metric induced by νf (resp. κf ).

Proposition 6.25 in particular says that the truth of Conjecture 6.20
does not depend on the choice of the polarisation. To prove Proposition 6.25,
we shall need the following lemma.

Lemma 6.26. Let M be a complex manifold and let (V, h0) be a holomorphic
vector bundle V on M , endowed with a hermitian metric h1. Let φ : V → V
be an automorphism of vector bundles and suppose that φ is positive definite
with respect to h0 (on each fibre of V ). Let h2 be the hermitian metric on
V defined by the formula h2(v, w) := h1(φ(v), w) for any elements v, w ∈ V
which lie in the same fibre.

Let c̃h(V, h1, h2) ∈ Ã(M) be the Bott–Chern secondary class of the exact
sequence

Ē : 0→ V
Id−→ V → 0

where the first non-zero term from the right carries the metric h1 and the
second non-zero term from the right carries the metric h2.

Then the eigenvalues of φ are locally constant on M and we have

c̃h(V, h1, h2) =
∑
t∈R>0

log(t)ch((Vt, h1|Vt))

where Vt is the kernel of φ− t · Id.

Proof. Since φ is self adjoint on the fibres of V with respect to h1, the coeffi-
cients of the polynomial det(Id−x·φ) ∈ O(M)[x] are real valued holomorphic
functions and they are thus locally constant. Furthermore, the automorphism
φ is diagonalisable on each fibre of V and thus we have a decomposition

V '
⊕
t∈R>0

Vt

as an orthogonal direct sum of vector bundles. Furthermore, we have by
construction

h2(v, w) = h1(t · v, w)

for any elements of Vt that lie in the same fibre. Hence we have

c̃h(V, h1, h2) =
∑
t∈R>0

c̃h(Vt, h1|Vt , t · h1|Vt).

Now we have

c̃h(Vt, h1|Vt , t · h1|Vt) = log(t) · ch((Vt, h1|Vt)).

See e.g. [22, ex. on p. 22] for this. �
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Proof of Proposition 6.25. We start with some preliminary considerations.
Let N be a projective complex manifold and let L be an ample line bundle
on N . Let ω ∈ H2(N,C) be the first Chern class of L in complex Betti
cohomology. Let v, w ∈ H1(N,C). We shall write v̄ for the complex conjugate
of v and v0,1 (resp. v1,0) for the Hodge components of v (and similarly for w).
By the discussion preceding Lemma 6.2, we have the formula

〈v, w〉Hodge,L =

∫
N

v ∧ ∗w̄ =
i

(dim(N)− 1)!

∫
N

v ∧ ωdim(N)−1 ∧ (w̄0,1 − w̄1,0)

for the Hodge metric on H1(N,C). Now choose another ample line bundle J ,
with first Chern class η ∈ H2(N,C) say. The maps

• ∧ ωdim(N)−1 : H1(N,C)→ H2 dim(N)−1(N,C)

and
• ∧ ηdim(N)−1 : H1(N,C)→ H2 dim(N)−1(N,C)

are both isomorphisms by the Hard Lefschetz theorem for singular coho-
mology. These isomorphisms also respect the underlying Q-rational Hodge
structures. Hence there is a unique isomorphism of Q-rational Hodge struc-
tures

M = M(L, J) : H1(N,Q)→ H1(N,Q)

such that
〈M(v), w〉Hodge,L = 〈v, w〉Hodge,J .

for all v, w ∈ H1(N,C). Since both 〈•, •〉Hodge,L and 〈•, •〉Hodge,J are hermit-
ian metrics, the isomorphism M is necessarily positive definite for the metric
〈•, •〉Hodge,L. Now suppose furthermore that we are given endomorphisms
e, d : H1(N,C) → H1(N,C) of C-vector spaces and suppose that e and d
commute and that d is the adjoint of e with respect to 〈•, •〉Hodge,L and with
respect to 〈•, •〉Hodge,J . Then we contend that e commutes with M . Indeed
from the assumptions on d and e we may compute

〈e(M(v)), w〉Hodge,L = 〈M(v), d(w)〉Hodge,L

〈M(e(v)), w〉Hodge,L = 〈M(v), d(w)〉Hodge,L

and since v, w are arbitrary we conclude that e ◦M = M ◦ e.
Now let us return to the matter at hand. A straightforward generalisa-

tion of the preceding calculation to a relative setting shows that there is an
automorphism of vector bundles

M = M(νf , κf ) : H1
Dlb(A/Y )(C)→ H1

Dlb(A/Y )(C)

which is self adjoint with respect to the L2-metric induced by νf and such
that

〈M(•), •〉L2,νf = 〈•, •〉L2,κf .

Furthermore, for any x ∈ OK , in view of the assumptions on ρ(x)∗, we see
that ρ(x)∗ commutes with M . Thus M respects the decomposition

H1
Dlb(A/Y )(C) '

⊕
τ∈Gal(K|Q)

H1
Dlb(A/Y )(C)ι◦τ .
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Thus, using Lemma 6.26 we may compute

ĉh
[l]

(H
1

Dlb(A/Y )νf ,ι◦τ )−ĉh
[l]

(H
1

Dlb(A/Y )κf ,ι◦τ )

=
∑
t∈R>0

log(t)ch[l−1](H
1

Dlb(A/Y )(C)ι◦τ,t)

where H1
Dlb(A/Y )(C)ι◦τ,t is the subbundle of H1

Dlb(A/Y )(C)ι◦τ correspond-
ing to the eigenvalue t of M . Now notice that H1

Dlb(A/Y )(C)ι◦τ,t is iso-
morphic as a C∞-vector bundle to a flat bundle via the comparison iso-
morphism with the corresponding relative Betti cohomology sheaves. Hence

ch(H
1

Dlb(A/Y )(C)ι◦τ,t) is d-exact in positive degrees and in particular the
positive degree part of the expression∑

t∈R>0

log(t)ch[l−1](H
1

Dlb(A/Y )(C)ι◦τ,t)

vanishes in Aeppli cohomology. We conclude that the difference∑
τ∈Gal(K|Q)

ĉh
[l]

(H
1

Dlb(A/Y )νf ,ι◦τ )χ(τ)−
∑

τ∈Gal(K|Q)

ĉh
[l]

(H
1

Dlb(A/Y )κf ,ι◦τ )χ(τ)

vanishes if l > 1. This settles the proposition for l > 1. If l = 1, the differ-
ence is∑
τ∈Gal(K|Q)

ĉh
1
(H

1

Dlb(A/Y )νf ,ι◦τ )χ(τ)−
∑

τ∈Gal(K|Q)

ĉh
1
(H

1

Dlb(A/Y )κf ,ι◦τ )χ(τ)

=
∑

τ∈Gal(K|Q)

∑
t∈R>0

log(t)rk(H1
Dlb(A/Y )(C)ι◦τ,t))χ(τ)

=
∑
t∈R>0

log(t)
∑

τ∈Gal(K|Q)

rk(H1
Dlb(A/Y )(C)ι◦τ,t))χ(τ).

We shall now show that
∑
τ∈Gal(K|Q) rk(H1

Dlb(A/Y )(C)ι◦τ,t))χ(τ) = 0 if χ is

an odd character. This will conclude the proof of the proposition. To show
this, we may suppose that Y (C) is a finite set of points, so suppose for
simplicity that Y = SpecZ. In that case, H1

Dlb(A/Y )(C)ι◦τ reduces to a
complex vector space. Via the comparison isomorphism, this vector space has
a Q-rational structure and the automorphism M respects this structure. Thus

rk(H1
Dlb(A/Y )(C)ι◦τ,t)) = rk(H1

Dlb(A/Y )(C)ι◦c◦τ,t))

so that the function rk(H1
Dlb(A/Y )(C)ι◦τ,t)) is an even function on Gal(K|Q).

We conclude that ∑
τ∈Gal(K|Q)

rk(H1
Dlb(A/Y )(C)ι◦τ,t))χ(τ) = 0.

�

We shall now prove:

Theorem 6.27. Conjecture 6.20 holds if K is an abelian extension of Q.
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Proof. We first record the following elementary construction. Let R and T be
two commutative rings and suppose that we are given a ring homomorphism
φ : R → T . Suppose furthermore that T is free as an R-module and let
t1, . . . , tr be a basis of T as an R-module. Then there is by definition an
isomorphism of R-modules

T ' ⊕rk=1R

and the T -module structure of T is described by a morphism of R-algebras ψ :
T → Matr×r(R) on the right-hand side of this isomorphism. Here Matr×r(R)
is the ring of r × r matrices with coefficients in R. In particular, if M is an
R-module, then there is an isomorphism of R-modules

M ⊗R T ' ⊕rk=1M

and the T -module structure of M⊗RT is again described by ψ via the natural
action of Matr×r(R) on ⊕rk=1M .

Recall that we now suppose that all assumptions of Conjecture 6.20 are
satisfied and that K is an abelian extension of Q. Let f = 2 ·(conductor of K)
(where we mean the conductor in the sense of class field theory). We may
replace D by a finite extension and so we may also suppose that D contains
some primitive f -th root of unity. By class field theory, there now exists
an embedding ρ : OK ↪→ Z[µf ] and by assumption there is an embedding
λ : Z[µf ] ↪→ D. We also see that every embedding of K (resp. Q(µf )) into C
factors through an embedding of Frac(D) into C and similarly every embed-
ding of K into C factors through an embedding of Q(µf ) into C.

Now notice that the ring Z[µf ] is a free module over OK via ρ. Indeed,
Z[µf ] is generated by a primitive root of unity z as an OK-algebra. The
minimal polynomial P (X) of z over K divides Xn − 1 and hence by Gauss’s
lemma, we have P (X) ∈ OK [X] and P (X) is a prime element in OK [X].
Hence there is a surjection OK [X]/(P (X)) → Z[µf ], which is also injective
since OK [X]/(P (X)) is a domain and OK [X]/(P (X)) ⊗ Q ' Q(µn). Thus
the elements 1, X, . . .Xdeg(P )−1 form a basis for Z[µf ] over OK via that
isomorphism.

So choose a basis b1, . . . br of Z[µf ] over OK . The Z[µn]-module struc-
ture of Z[µn] viewed as an OK-module is then described by a morphism of
OK-algebras ψ : Z[µn] → Matr×r(OK) (see the above elementary construc-
tion). We let B := ×rj=1,YA be the fibre product of A, r-times with itself

over Y . The abelian scheme B carries an action of Z[µf ] via ψ and we have
an isomorphism of Z[µf ]-modules

H1
Dlb(B/Y ) ' H1

Dlb(A/Y )⊗OK Z[µf ].

Recall that the conductor of a finite abelian extension of Q has the same
support as its discriminant. Thus by Lemma 6.18, there are decompositions
into direct sums of OY -modules

H1
Dlb(B/Y ) '

⊕
σ:Z[µf ]↪→D

H1
Dlb(B/Y )σ (6.13)
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and

H1
Dlb(A/Y ) '

⊕
τ :OK ↪→D

H1
Dlb(A/Y )τ .

There is a natural compatibility⊕
σ:Z[µf ]↪→D, σ|OK=τ

H1
Dlb(B/Y )σ '

[Q(µf ):K]⊕
j=1

H1
Dlb(A/Y )τ (6.14)

where Z[µf ] (resp. OK) acts on H1
Dlb(B/Y )σ (resp. H1

Dlb(A/Y )τ ) via σ
(resp. τ).

Now choose a µf (C)-invariant Kähler fibration κ on B(C) associated
with a relatively ample line bundle on A(C). See Remark 6.22 for this.

The character χ of Gal(K|Q) induces by composition a character of
Gal(Q(µf )|Q), which we shall also refer to as χ. Choose an extension of the
embedding ι : K ↪→ D to Q(µf ) and also refer to it as ι.

Applying (6.12) to B and κ and using (6.14), we obtain∑
σ∈Gal(Q(µn)|Q)

ĉh
[l]

(H
1

Dlb(B/Y )ι◦σ)χ(σ)

= −
[
2
L′(χPrim, 1− l)
L(χPrim, 1− l)

+Hl−1

] ∑
σ∈Gal(Q(µn)|Q)

ch[l−1](H1,0(B/Y )ι◦σ)χ(σ)

= −[Q(µf ) : K]
[
2
L′(χPrim, 1− l)
L(χPrim, 1− l)

+Hl−1

]
·

·
∑

τ∈Gal(K|Q)

ch[l−1](H1,0(A/Y )ι◦τ )χ(τ) (6.15)

Here H
1

Dlb(A/Y )ι◦σ is by assumption equipped with the L2-metric induced
by the Kähler fibration structure κ. By Proposition 6.25 and (6.14), the
element∑
σ∈Gal(Q(µn)|Q)

ĉh
[l]

(H
1

Dlb(B/Y )ι◦σ)χ(σ) =
∑

τ∈Gal(K|Q)

ĉh
[l]

(H
1

Dlb(B/Y )ι◦τ )χ(τ)

does not change if we replace κ by the Kähler fibration structure ×rj=1νf .
Hence we have∑

σ∈Gal(Q(µn)|Q)

ĉh
[l]

(H
1

Dlb(B/Y )ι◦σ)χ(σ)

= [Q(µf ) : K]
∑

τ∈Gal(K|Q)

ĉh
[l]

(H
1

Dlb(A/Y )ι◦τ )χ(τ)

which concludes the proof. �

Remark 6.28. For l = 1, Theorem 6.27 proves a weak form of the conjecture
of Gross–Deligne for certain linear combinations of Hodge structures cut out
in the cohomology of A(C). See [43] and also [56] for details. A different
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approach to this special case is described in the paper [25] which relies on a
deep result of Saito and Terasoma (see [53]). It would be very interesting if
Fresán’s approach [25] could be generalised to include the case l > 1.

Complement 6.29. We work under the assumptions of Conjecture 6.20 and we
suppose that K is an abelian extension of Q. Then the proof of Theorem 6.27
shows that the equality∑
τ∈Gal(K|Q)

ĉh
[l]

(H
1

Dlb(A/Y )ι◦τ )χ(τ)

=−
[
2
L′(χ, 1− l)
L(χ, 1− l)

+Hl−1

] ∑
τ∈Gal(K|Q)

ch[l−1](H1,0(A/Y )ι◦τ )χ(τ)

actually holds in ĈH
l

Q(µf )(χ)(Y ) (and not just in ĈH
l

Q̄(Y )).

Corollary 6.30. Suppose that the assumptions of Conjecture 6.20 hold and
suppose that K is an abelian extension of Q. Then we have∑

τ∈Gal(K|Q)

ch[l](H1
Dlb(A/Y )ι◦τ )χ(τ) = 0

in CHl(Y )Q̄ for any character χ of Gal(K|Q) of the same parity as l and any
embedding ι : OK ↪→ D.

Again, it makes sense to ask whether Corollary 6.30 might hold in a
more general situation. This leads to the purely geometric

Conjecture 6.31. Suppose that the assumptions of Conjecture 6.20 hold. Then∑
τ∈Gal(K|Q)

ch[l](H1
Dlb(A/Y )ι◦τ )χ(τ) = 0

in CHl(Y )Q̄ for any character χ of Gal(K|Q) of the same parity as l and any
embedding ι : OK ↪→ D.

See [44, Prop. 3] for more about this conjecture in a slightly more re-
strictive setting.

We now indulge in some wilder speculation. The fact that the formula in
Conjecture 6.20 looks very ‘motivic’ suggests the following vague conjecture,
which seems to be a good computational thumb rule in many examples.

Vague conjecture 6.32. Suppose that K is a finite Galois extension of Q.
Suppose that all the embedding of K into C factor through an embedding of
Frac(D) into C. Suppose also that 2 · disc(K) is invertible in D and that D
is a localisation of the ring of integers of a number field.

Let f : M → Y be a ‘log smooth relative motive’ over Y and suppose
that we are given an embedding of rings OK ↪→ EndY (M).

Let χ : Gal(K|Q)→ C be an irreducible Artin character. Let l ≥ 1. Sup-
pose that χ and l have the same parity (hence L(χ, 1− l) 6= 0 by Remark 6.7).
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Then there exists a ‘polarisation’ onM/Y , which is compatible with the
action of OK in some sense and such that for any embedding ι : OK ↪→ D
we have:∑
τ∈Gal(K|Q)

ĉh
[l]

(H
k

Dlb(M/Y )ι◦τ (log))χ(τ)

=−
[
2
L′(χ, 1− l)
L(χ, 1− l)

+Hl−1

]
·

·
∑
p+q=k

∑
τ∈Gal(K|Q)

p · ch[l−1](Hp,q(M/Y )ι◦τ (log))χ(τ)

in ĈH
l

K(χ)(Y )(log).

Here Hk
Dlb(X/Y )(log) and Hp,q(X/Y )(log) refer to logarithmic coho-

mology and the metric on Hk
Dlb(X/Y )(log) is induced by the polarisation,

which is general mildly singular. The ring ĈH
l

K(χ)(Y )(log) is a generalised

arithmetic intersection ring, as in [15]. Note that in this vague conjecture,
if M is smooth over Y , then one may remove the ‘(log)’ symbols from the
formula.

In particular, this ‘conjecture’ should apply to generically abelian semi-
abelian schemes, where it should be possible to make a precise conjecture,
extending Conjecture 6.20. We refrain from trying to do this here because
the generalised arithmetic intersection theory that would be necessary for
this has apparently not yet been fully defined (see also the discussion in the
introduction). In some of the examples drawn from the literature that we
shall consider in section 7 below, the corresponding articles produce gener-
alised arithmetic intersection theories tailor-made for the geometric situation
under consideration.

7. Examples

We shall now show that various formulae proven in the literature are formally
compatible with Conjecture 6.20 and in some cases are partially consequences
of Theorem 6.27.

We use the notation of Conjecture 6.20. We repeat them for the conve-
nience of the reader.

Let K be a finite Galois extension of Q. Suppose that there is an ele-
ment c ∈ Gal(K|Q) in the center of Gal(K|Q) such that for all embeddings

ι : K → C and all k ∈ K, we have ι(c(k)) = ι(k) (where (·) refers to complex
conjugation). Suppose that all the embeddings of K into C factor through an
embedding of Frac(D) into C. Suppose finally that 2 ·disc(K) is invertible in
D and that D is a localisation of the ring of integers of a number field. Let
f : A → Y be an abelian scheme and suppose that we are given an embedding
of rings ρ : OK ↪→ EndY (A). Let χ : Gal(K|Q)→ C be an irreducible Artin
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character and let l ≥ 1. Finally suppose given a Kähler fibration structure νf
such that

• νf represents the first Chern class of a relatively ample line bundle;

• for any x ∈ OK , the endomorphism ρ(x)∗ of H1
Dlb(A/Y )(C) is adjoint

to the endomorphism ρ(c(x))∗ of H1
Dlb(A/Y )(C), with respect to the metric

coming from νf .

We shall also make the assumption that the polarisation has been chosen
in such a way that for each τ ∈ Gal(K|Q) we have an isometric isomorphism

f∗(ΩA/Y )ι◦τ ' R1f∗(OA)∨ι◦c◦τ .

This is a compatibility with duality that is often verified in practice.

Example 7.1 (the formula of Colmez). See [16] and [17]. Suppose that Y =
SpecD and that K is a CM field of degree 2 · dim(A/Y ). Suppose that K
is an abelian extension of Q. Let Φ : Hom(K,D) → {0, 1} be the associated
CM type. By definition,

Φ(ι ◦ τ) = rk(H1,0(A/Y )ι◦c◦τ ).

We identify Φ with a function Gal(K|Q)→ {0, 1} via ι. From now until the
end of the computation, we shall drop the embedding ι from the notation.
Theorem 6.27 gives the equality:∑

τ∈Gal(K|Q)

ĉ1(H
1

Dlb(A/Y )τ )χ(τ) = −2
L′(χ, 0)

L(χ, 0)

∑
τ∈Gal(K|Q)

Φ(τ)χ(c ◦ τ)

= 2
L′(χ, 0)

L(χ, 0)

∑
τ∈Gal(K|Q)

Φ(τ)χ(τ)

in ĈH
1

Q̄(D) for any odd one-dimensional character. By assumption, we have

ĉ1(H
1

Dlb(A/Y )τ ) = −ĉ1(H
1

Dlb(A/Y )c◦τ )

so that for even characters χ, we have∑
τ∈Gal(K|Q)

ĉ1(H
1

Dlb(A/Y )τ )χ(τ) = 0.

We recall the definition of the scalar product

〈f, g〉 :=
1

[K : Q]

∑
τ∈Gal(K|Q)

f(τ)g(τ)

and of the convolution product

(f ∗ g)(σ) :=
1

[K : Q]

∑
τ∈Gal(K|Q)

g(τ)f(τ−1σ)

of two functions f, g : Gal(K|Q) → C. Recall that if h is a one-dimensional
character then we have

〈f ∗ g, h〉 = 〈f, h〉 · 〈g, h〉
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for any two functions f, g : Gal(K|Q)→ C.
Define the function Φ∨ : Gal(K|Q) → {0, 1} by Φ∨(τ) := Φ(τ−1). Us-

ing the fact that the one-dimensional characters Gal(K|Q) → C form an
orthogonal basis of the space of complex valued functions on Gal(K|Q) we
get that∑

τ

ĉ1(H
1

Dlb(A/Y )τ ) =
1

[K : Q]

∑
χ odd

χ̄(τ)
[
2
L′(χ, 0)

L(χ, 0)

∑
σ∈Gal(K|Q)

Φ(σ)χ(σ)
]

(7.1)
From (7.1) we obtain the equality

ĉ1(f∗(ΩA/Y ))

=
∑

τ∈Gal(K|Q)

ĉ1(H
1

Dlb(A/Y )τ )Φ(c ◦ τ)

= −
∑

τ∈Gal(K|Q)

ĉ1(H
1

Dlb(A/Y )τ )Φ(τ)

= − 1

[K : Q]

∑
χ odd

2
L′(χ, 0)

L(χ, 0)

( ∑
τ∈Gal(K|Q)

Φ(τ)χ̄(τ)
)( ∑

σ∈Gal(K|Q)

Φ(σ)χ(σ)
)

= − 1

[K : Q]

∑
χ odd

2
L′(χ, 0)

L(χ, 0)

( ∑
τ∈Gal(K|Q)

Φ(τ)χ̄(τ)
)( ∑

σ∈Gal(K|Q)

Φ∨(σ)χ̄(σ)
)

= −[K : Q] ·
∑
χ odd

2
L′(χ, 0)

L(χ, 0)
〈Φ ∗ Φ∨, χ〉. (7.2)

The formula (7.2) implies the formula of Colmez (see [17, Conjecture 3] and
the discussion after the statement) up to a term of the form∑

p|DK

rp log(p)

where rp ∈ Q̄.

Example 7.2 (the formula of Bost and Khn). See [39] and also an unpublished
manuscript by J.-B. Bost. In that case, A/Y is an elliptic scheme and K = Q.
Applying Theorem 6.27, we obtain

ĉh
[2]

(H̄1(A/Y )) = −
[
2
ζ ′Q(−1)

ζQ(−1)
+ 1
]
· c1(H1,0(A/Y ))

i.e.

ĉ1(ω̄)2 = −
[
2
ζ ′Q(−1)

ζQ(−1)
+ 1
]
· c1(ω) (7.3)

where ω̄ is the Hodge bundle of A (this is the restriction of the sheaf of
differentials of A/Y by the unit section) endowed with the Petersson met-
ric. Note that equality (7.3) is of little interest because if AC has non-zero
Kodaira–Spencer class then Y cannot be chosen to be proper over D (this
follows from the structure of the moduli spaces of elliptic curves) so that one
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always has c1(ω) = 0. The formula of Bost and Khn has the same shape
as (7.3) but is valid for some generically abelian semiabelian schemes over Y
(for which c1(ω) 6= 0). It allows mild singularities and can thus be understood
as a ‘special case’ of the vague Conjecture 6.32.

Note that G. Freixas gives in [23] a proof of a weak form of the formula
of Bost–Kühn by relating it to the formula obtained in Example 7.3 below,
which has almost the same form. The link comes from the Jacquet–Langlands
correspondence. A conceptually similar method is used in a different context
in the article [46], where the Fourier–Mukai transformation takes the place
of the Jacquet–Langlands correspondence.

Example 7.3 (families of abelian surfaces with complex multiplication by a
quadratic imaginary extension of Q; the formula of Kudla, Rapoport and
Yang). See [38, T. 1.05].

In that case, dim(A/Y ) = 2 and K is a quadratic imaginary extension
of Q. In particular the group Gal(K|Q) has precisely one non-trivial character
χ and this character is odd. Theorem 6.27 gives∑

τ∈Gal(K|Q)

ĉh
[1]

(H
1

Dlb(A/Y )τ )χ(τ)

= −2
L′(χ, 0)

L(χ, 0)

∑
τ∈Gal(K|Q)

rk(H1,0(A/Y )τ )χ(τ). (7.4)

Write τ̄ := c ◦ τ in the following computations. From now on until the end of
the computation, we shall drop the embedding ι from the notation. We have
a decomposition

f∗(ΩA/Y ) ' f∗(ΩA/Y )τ ⊕ f∗(ΩA/Y )τ̄

and

R1f∗(OA) ' (f∗(ΩA/Y )τ )∨ ⊕ (f∗(ΩA/Y )τ̄ )∨

so that we may rewrite (7.4) as

2
(

ĉ1(f∗(Ω̄A/Y )τ )− ĉ1(f∗(Ω̄A/Y )τ̄ )
)

= −2
L′(χ, 0)

L(χ, 0)

∑
τ∈Gal(K|Q)

rk(f∗(ΩA/Y )τ )χ(τ).

Squaring the preceding equality, we see that(
ĉ1(f∗(Ω̄A/Y )τ )− ĉ1(f∗(Ω̄A/Y )τ̄ )

)2

= ĉ1(f∗(Ω̄A/Y )τ )2 + ĉ1(f∗(Ω̄A/Y )τ̄ )2 − 2 · ĉ1(f∗(Ω̄A/Y )τ ) · ĉ1(f∗(Ω̄A/Y )τ̄ )

= 0

so that

ĉ1(f∗(Ω̄A/Y )τ )2 + ĉ1(f∗(Ω̄A/Y )τ̄ )2 = 2 · ĉ1(f∗(Ω̄A/Y )τ ) · ĉ1(f∗(Ω̄A/Y )τ̄ ).
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Now since A/Y can also be viewed as carrying an action of Q = Q(µ2),
Theorem 6.27 also gives

ĉh
[2]

(H̄1(A/Y )) = −
[
2
ζ ′Q(−1)

ζQ(−1)
+ 1
]
· c1(H1,0(A/Y ))

= −
[
2
ζ ′Q(−1)

ζQ(−1)
+ 1
]
· c1(f∗(ΩA/Y ))

where now

ĉh
[2]

(H̄1(A/Y )) = ĉ1(f∗(Ω̄A/Y )τ )2 + ĉ1(f∗(Ω̄A/Y )τ̄ )2

so that

ĉ1(f∗(Ω̄A/Y ))2 = (ĉ1(f∗(Ω̄A/Y )τ ) + ĉ1(f∗(Ω̄A/Y )τ̄ ))2

= 2 · ĉ1(f∗(Ω̄A/Y )τ )2 + 2 · ĉ1(f∗(Ω̄A/Y )τ̄ )2

and

ĉ1(f∗(Ω̄A/Y ))2 = −2 ·
[
2
ζ ′Q(−1)

ζQ(−1)
+ 1
]
· c1(f∗(ΩA/Y )). (7.5)

Formula (7.5) implies the formula [38, Th. 1.0.5] up to a factor of the form∑
p|DK

rp log(p)

where rp ∈ Q̄.

Example 7.4 (families of abelian surfaces with an action by a real quadratic
extension of Q; the formula of Bruiner, Burgos and Kühn). See [12, Th. B].
In this case dim(A/Y ) = 2 and K is a real quadratic extension of Q. All
the one-dimensional characters of Gal(K|Q) = {Id, τ0} are even and there
is only one non-trivial one-dimensional character χ0. We again drop the em-
bedding ι : K ↪→ D from the notation. For any one-dimensional character,
Theorem 6.27 gives:∑

τ∈Gal(K|Q)

ĉh
[2]

(H
1

Dlb(A/Y )τ )χ(τ)

= −
[
2
L′(χ,−1)

L(χ,−1)
+Hl−1

] ∑
τ∈Gal(K|Q)

c1(H1,0(A/Y )τ )χ(τ).

By assumption, this translates to

2
∑

τ∈Gal(K|Q)

ĉh
[2]

((f∗(ΩA/Y ))τ )χ(τ)

= −
[
2
L′(χ,−1)

L(χ,−1)
+ 1
] ∑
τ∈Gal(K|Q)

c1((f∗(ΩA/Y ))τ )χ(τ).
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Specialising this to each character, we obtain:

ĉ1((f∗(ΩA/Y ))Id)2 + ĉ1((f∗(ΩA/Y ))τ0)2

= −
[
2
ζ ′Q(−1)

ζQ(−1)
+ 1
]
c1(f∗(ΩA/Y ))

and

ĉ1((f∗(ΩA/Y ))Id)2 − ĉ1((f∗(ΩA/Y ))τ0)2

= −
[
2
L′(χ0,−1)

L(χ0,−1)
+ 1
](

c1((f∗(ΩA/Y ))Id)− c1((f∗(ΩA/Y ))τ0)
)
.

Note that this implies that

c1((f∗(ΩA/Y ))τ0)2 = c1((f∗(ΩA/Y ))Id)2 = 0.

Now we may compute

ĉ1(f∗(ΩA/Y ))3

=
(

ĉ1((f∗(ΩA/Y ))Id) + ĉ1((f∗(ΩA/Y ))τ0)
)3

= ĉ1((f∗(ΩA/Y ))Id)3 + ĉ1((f∗(ΩA/Y ))τ0)3

+ 3 · ĉ1((f∗(ΩA/Y ))τ0) · ĉ1((f∗(ΩA/Y ))Id)2

+ 3 · ĉ1((f∗(ΩA/Y ))Id) · ĉ1((f∗(ΩA/Y ))τ0)2

= −
(

c1((f∗(ΩA/Y ))Id) + 3 · c1((f∗(ΩA/Y ))τ0)
)
· 1

2

[
[2
ζ ′Q(−1)

ζQ(−1)
+ 1]·

· c1(f∗(ΩA/Y ))+ [2
L′(χ0,−1)

L(χ0,−1)
+ 1](c1((f∗(ΩA/Y ))Id)− c1((f∗(ΩA/Y ))τ0))

]
−
(

c1((f∗(ΩA/Y ))τ0) + 3 · c1((f∗(ΩA/Y ))Id)
)
· 1

2

[
[2
ζ ′Q(−1)

ζQ(−1)
+ 1]·

· c1(f∗(ΩA/Y ))− [2
L′(χ0,−1)

L(χ0,−1)
+ 1](c1((f∗(ΩA/Y ))Id)− c1((f∗(ΩA/Y ))τ0))

]
= −

(
2 · [2

ζ ′Q(−1)

ζQ(−1)
+ 1] + [2

L′(χ0,−1)

L(χ0,−1)
+ 1]

)
· c1(ΩA/Y )2.

This may be rewritten in terms of the zeta function of K. Recall that we
have

ζK(s) = ζQ(s)L(χ0, s).

We finally obtain the equality

ĉ1(f∗(ΩA/Y ))3 = −
(

2
ζ ′Q(−1)

ζQ(−1)
+ 2

ζ ′K(−1)

ζK(−1)
+ 3
)
· c1(ΩA/Y )2, (7.6)

which should be compared with [12, Th. B]. As for the formula of Bost and
Kühn, equality (7.6) is not very interesting because A is not allowed to be
semiabelian. The formula in [12, Th. B] has the same shape as (7.6) but allows
semiabelian schemes and allows the metric to have mild singularities. It can
thus again be understood as a ‘special case’ of the vague Conjecture 6.32.
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Another result that it would be very interesting to relate to our vague
Conjecture 6.32 is Th. 1.1 in the article [24], which concerns twisted Hilbert
modular surfaces. We do not know yet whether Th. 1.1 can be related to
Conjecture 6.20, or even to the vague Conjecture 6.32.
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[2] Théorie des intersections et théorème de Riemann-Roch. Lecture Notes in
Mathematics, Vol. 225. Springer-Verlag, Berlin-New York, 1971. Séminaire de
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ume 2 of Documents Mathématiques (Paris). Société Mathématique de France,
Paris, 2001.

[19] P. Deligne. Valeurs de fonctions L et périodes d’intégrales. In Automor-
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[37] K. Köhler and D. Roessler. A fixed point formula of Lefschetz type in Arakelov
geometry. I. Statement and proof. Invent. Math., 145(2):333–396, 2001.

[38] S. S. Kudla, M. Rapoport, and T. Yang. Modular forms and special cycles
on Shimura curves, volume 161 of Annals of Mathematics Studies. Princeton
University Press, Princeton, NJ, 2006.
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