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Abstract. In this introductory article, we will explain what Shimura
varieties are and why they are useful, with an emphasis on examples. We
will also describe various compactifications of Shimura varieties, again
with an emphasis on examples, and summarize what we know about the
integral models of Shimura varieties and their compactifications.

Contents

1. Introduction 3

2. Double coset spaces 5

2.1. Algebraic groups 5

2.2. Manifolds 7

2.3. Shimura data 10

2.4. Shimura varieties and their canonical models 12

3. Hermitian symmetric domains 15

3.1. The case of Sp2n(R) 15

3.1.1. Siegel upper half-spaces 15

3.1.2. Transitivity of action 17

3.1.3. Bounded realization 17

3.1.4. Interpretation as conjugacy classes 18

3.1.5. Moduli of polarized abelian varieties 19

3.2. The case of Ua,b 20

3.2.1. Bounded realization 20

The author was partially supported by the National Science Foundation under agreement
No. DMS-1352216, and by an Alfred P. Sloan Research Fellowship. Any opinions, findings,

and conclusions or recommendations expressed in this article are those of the author and
do not necessarily reflect the views of these organizations.



2 Kai-Wen Lan

3.2.2. Unbounded realization 21

3.2.3. The special case where a = b: Hermitian upper half-spaces 22

3.2.4. Generalized Cayley transformations and transitivity of actions 23

3.2.5. Interpretation as conjugacy classes 24

3.3. The case of SO∗2n 25

3.3.1. Unbounded realization, and interpretation as a conjugacy class 25

3.3.2. The special case where n = 2k: quaternion upper half-spaces 26

3.4. The case of SOa,2(R) 26

3.4.1. Projective coordinates 26

3.4.2. The case where a ≥ 1 and b = 2 27

3.4.3. Connected components and spin groups 28

3.4.4. Interpretation as conjugacy classes 29

3.5. The case of E7 29

3.5.1. Cayley numbers 30

3.5.2. An exceptional Jordan algebra over R 30

3.5.3. A real Lie group with Lie algebra e7(−25) 31

3.5.4. An octonion upper half-space 32

3.5.5. Bounded realization 34

3.6. The case of E6 34

3.6.1. Bounded and unbounded realizations 34

3.6.2. A real Lie group of Lie algebra e6(−14) 35

3.6.3. Interpretation as conjugacy classes 36

3.7. A brief summary 36

4. Rational boundary components and compactifications 37

4.1. Examples of rational boundary components 38

4.1.1. Cases with D = H 38

4.1.2. Cases with D = H×H 38

4.1.3. Cases with D = Hn 39

4.1.4. Cases with D = Ha,b, with a ≥ b 43

4.1.5. Cases with D = HSO∗2n
46

4.1.6. Cases with D+ = H+
SOa,2

, with a ≥ 2 48

4.1.7. Cases with D = HE6 or D = HE7 51

4.2. Compactifications and algebraicity 52

4.2.1. Overview 52

4.2.2. (Γ\D)
min

= Γ\D∗ 52

4.2.3. (Γ\D)
tor
Σ 52

4.2.4. (Γ\D)BS 53



An example-based introduction to Shimura varieties 3

4.2.5. (Γ\D)RBS 54

4.2.6. Models over number fields or their rings of integers 54

4.2.7. Algebro-geometric definition of modular forms 54

4.2.8. Mixed Shimura varieties 55

5. Integral models 56

5.1. PEL-type cases 56

5.1.1. PEL datum 56

5.1.2. Smooth PEL moduli problems 59

5.1.3. PEL-type Shimura varieties 59

5.1.4. Toroidal and minimal compactifications of PEL moduli 62

5.1.5. Integral models not defined by smooth moduli 63

5.1.6. Langlands–Rapoport conjecture 64

5.2. Hodge-type and abelian-type cases 65

5.2.1. Hodge-type Shimura varieties 65

5.2.2. Abelian-type Shimura varieties 66

5.2.3. Integral models of these Shimura varieties 68

5.2.4. Integral models of toroidal and minimal compactifications 69

5.3. Beyond abelian-type cases 70

5.4. Beyond Shimura varieties? 71

Acknowledgements 72

References 72

Index 82

1. Introduction

Shimura varieties are generalizations of modular curves, which have played
an important role in many recent developments of number theory. Just to
mention a few examples with which this author is more familiar, Shimura
varieties were crucially used in the proof of the local Langlands conjecture
for GLn by Harris and Taylor (see [65]); in the proof of the Iwasawa main
conjecture for GL2 by Skinner and Urban (see [173]); in the construction of
p-adic L-functions for unitary groups by Eischen, Harris, Li, and Skinner (see
[64] and [46]); in the construction of Galois representations (in the context of
the global Langlands correspondence) for all cohomological automorphic rep-
resentations of GLn by Harris, Taylor, Thorne, and this author (see [63]); and
in the analogous but deeper construction for torsion cohomological classes
of GLn by Scholze (see [159]).
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One of the reasons that Shimura varieties are so useful is because they
carry two important kinds of symmetries—the Hecke symmetry and the Ga-
lois symmetry. Roughly speaking, the Hecke symmetry is useful for studying
automorphic representations, the Galois symmetry is useful for studying Ga-
lois representations, and the compatibility between the two kinds of symme-
tries is useful for studying the relations between the two kinds of representa-
tions, especially in the context of the Langlands program.

However, the theory of Shimura varieties does not have a reputation
of being easy to learn. There are important foundational topics such as the
notion of Shimura data and the existence of canonical models, and courses
or seminars on Shimura varieties often spend a substantial amount of the
time on such topics. But learning these topics might shed little light on how
Shimura varieties are actually used—in some of the important applications
mentioned above, the “Shimura varieties” there were not even defined using
any Shimura data or canonical models. In reality, it is still a daunting task
to introduce people to this rich and multifaceted subject.

In this introductory article, we will experiment with a somewhat differ-
ent approach. We still urge the readers to read the excellent texts such as [37],
[40], and [120]. But we will not try to repeat most of the standard materials,
such as variation of Hodge structures, the theory of canonical models, etc,
which have already been explained quite well by many authors. We simply
assume that people will learn them from some other sources. Instead, we will
try to explain the scope of the theory by presenting many examples, and
many special facts which are only true for these examples. Our experience
is that such materials are rather scattered in the literature, but can be very
helpful for digesting the abstract concepts, and for learning how to apply the
general results in specific circumstances. We hope that they will benefit the
readers in a similar way.

We will keep the technical level as low as possible, and present mainly
simple-minded arguments that should be understandable by readers who are
willing to see matrices larger than 2×2 ones. This is partly because this arti-
cle is based on our notes for several introductory lectures targeting audiences
of very varied backgrounds. The readers will still see a large number of tech-
nical phrases, often without detailed explanations, but we believe that such
phrases can be kept as keywords in mind and learned later. We will provide
references when necessary, but such references do not have to be consulted
immediately—doing that will likely disrupt the flow of reading and obscure
the main points. (It is probably unrealistic and unhelpful to try to consult
all of the references, especially the historical ones.) We hope that the readers
will find these consistent with our goal of explaining the scope of the theory.
There will inevitably be some undesirable omissions even with our limited
goal, but we hope that our overall coverage will still be helpful.
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Here is an outline of the article. In Section 2, we define certain double
coset spaces associated with pairs of algebraic groups and manifolds, and in-
troduce the notion of Shimura data. We also summarize the main results con-
cerning the quasi-projectivity of Shimura varieties and the existence of their
canonical models. In Section 3, we give many examples of Hermitian sym-
metric domains, which provide the connected components of the manifolds
needed in the definition of Shimura data. Our examples actually exhaust all
possibilities of them. In Section 4, we give many examples of rational bound-
ary components and describe the corresponding minimal compactifications.
We also summarize the properties of several kinds of useful compactifications.
In Section 5, we explain how the so-called integral models of Shimura varieties
are constructed. This is very sensitive to the types of Shimura varieties we
consider, and we also take this opportunity to summarize many special facts
and many recent developments for each type of them. For the convenience of
the readers, we have also included an index at the end of the article.

2. Double coset spaces

2.1. Algebraic groups

Let Ẑ := lim←−N (Z/NZ), A∞ := Ẑ ⊗Z Q, and A := R×A∞. Suppose G is

a reductive algebraic group over Q. Then there is a natural way to define
the topological groups G(R), G(A∞), and G(A) = G(R)×G(A∞), with the
topology given either as a restricted product (following Weil) (see [139, Sec-
tion 5.1]), or as an affine scheme (of finite presentation) over the topological
ring A (following Grothendieck), and the two approaches coincide in this case
(see [34] for a detailed discussion on this matter). We will not try to define
and summarize all the needed properties of reductive linear algebraic groups
(from textbooks such as [15] and [175]). Instead, we will just provide many
examples of such groups.

Example 2.1.1 (general and special linear groups). For each ring R and each
integer n ≥ 0, we define GLn(R) to be the group of invertible n×n matrices
with entries in R, and define SLn(R) to be the subgroup of GLn(R) formed by
matrices of determinant one. When n = 1, we have GL1(R) = Gm(R) := R×.
The assignments of GLn(R) and SLn(R) are functorial in R, and in fact they
are the R-points of the affine group schemes GLn and SLn over Z, respec-
tively. The pullbacks of these group schemes to Q are affine algebraic varieties
serving as prototypical examples of reductive algebraic groups. Moreover, the
pullback of SLn to Q is a prototypical example of a semisimple algebraic
group.

For simplicity of exposition, we will often introduce a linear algebraic
group G by describing it as the pullback to Q of some explicitly given closed
subgroup scheme of GLm, for some m, over Z. By abuse of notation, we will
often denote this group scheme over Z by the same symbol G, which is then
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equipped with a fixed choice of a faithful matrix representation G ↪→ GLm.
The readers should not be too worried about these technical terminologies
concerning group schemes over Z. Concretely, they just mean we will explic-
itly represent the elements of G(R) as invertible m × m matrices, for each
ring R, whose entries satisfy certain defining conditions given by algebraic
equations that are compatible with all base ring extensions R→ R′.

Example 2.1.2 (symplectic groups). Let n ≥ 0 be any integer, and let 0n
and 1n denote the zero and identity matrices of size n. Consider the skew-
symmetric matrix

Jn :=

(
0n 1n
−1n 0n

)
(2.1.3)

of size 2n. Then the assignments

Sp2n(R) := {g ∈ GL2n(R) : tgJng = Jn} (2.1.4)

and

GSp2n(R) := {(g, r) ∈ GL2n(R)×R× = (GL2n×Gm)(R) : tgJng = rJn}
(2.1.5)

are functorial in R, and define closed subgroup schemes Sp2n and GSp2n of
GL2n and GL2n+1, respectively. Here we view GL2n×Gm as a closed sub-
group scheme of GL2n+1 by block-diagonally embedding the matrix entries.
To better understand the meaning of these definitions, consider the alternat-
ing pairing

〈 · , · 〉 : R2n×R2n → R (2.1.6)

defined by setting

〈x, y〉 = txJny, (2.1.7)

for all x, y ∈ R2n (written as vertical vectors). For each g ∈ GL2n(R), we
have

〈gx, gy〉 = tx tgJngy. (2.1.8)

Therefore, g satisfies the condition tgJng = Jn exactly when

〈gx, gy〉 = 〈x, y〉, (2.1.9)

for all x, y ∈ R2n. That is, g preserves the above pairing 〈 · , · 〉. Note that we
have not used exactly what Jn is, except for its skew-symmetry. Similarly,
(g, r) ∈ GL2n(R)×R× satisfies the condition tgJng = rJn exactly when

〈gx, gy〉 = r〈x, y〉, (2.1.10)

for all x, y ∈ R2n. That is, g preserves the above pairing 〈 · , · 〉 up to the
scalar factor r. The assignment of r to (g, r) defines a homomorphism

ν : GSp2n(R)→ Gm(R), (2.1.11)

called the similitude character of GSp2n(R), whose kernel is exactly Sp2n(R),
for each ring R. We can define similar groups and homomorphisms by replac-
ing Jn with any other matrices (with entries over Z, if we still want to define
a group scheme over Z). In fact, many people would prefer to define Sp2n and
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GSp2n using anti-diagonal matrices (just not a “block anti-diagonal matrix”

like the above Jn =

(
0n 1n
−1n 0n

)
).

Example 2.1.12 (orthogonal groups and special orthogonal groups). Consider
any integers n, a, b ≥ 0, and consider the symmetric matrices 1n and

1a,b :=

(
1a
−1b

)
, (2.1.13)

with empty slots being filled up by zero matrices of suitable sizes. Then the
assignments

On(R) := {g ∈ GLn(R) : tgg = 1n}, (2.1.14)

SOn(R) := On(R)∩SLn(R), (2.1.15)

Oa,b(R) := {g ∈ GLn(R) : tg1a,bg = 1a,b}, (2.1.16)

SOa,b(R) := Oa,b(R)∩SLa+b(R) (2.1.17)

are functorial in R, and define closed subgroup schemes On, SOn, Oa,b,
and SOa,b of GLn, GLn, GLa+b, and GLa+b, respectively. As in the case
of Sp2n(R) above, On(R) and Oa+b(R) are the group of matrices preserving
the symmetric bilinear pairings defined by 1n and 1a,b, which have signatures
(n, 0) and (a, b), respectively.

2.2. Manifolds

Let us fix a choice of G, and consider any manifold D with a smooth tran-
sitive action of G(R). For technical reasons, we shall consider only algebraic
groups G over Q each of whose connected components in the Zariski topol-
ogy contains at least one rational point. This requirement is satisfied by every
connected algebraic group, because the identity element is always rational,
and also by all the examples in Section 2.1. Then G(Q) is dense in G(R) in
the real analytic topology, by applying a special case of the weak approxima-
tion theorem as in [139, Section 7.3, Theorem 7.7] to the identity component
of G (namely, the connected component containing the identity element) in
the Zariski topology, and by translations between this identity component
and other connected components.

Example 2.2.1. For each integer n ≥ 0, consider the manifold

Sn := {X ∈ Symn(R) : X > 0, det(X) = 1}
= {X ∈ Mn(R) : tX = X > 0, det(X) = 1},

(2.2.2)

where Mn (resp. Symn) denotes the space of n×n matrices (resp. symmetric
matrices), and where X > 0 means being positive definite. Consider the
action of g ∈ SLn(R) on Sn defined by

X 7→ tgXg, (2.2.3)

for each X ∈ Sn. This action is transitive because each positive definite
matrix X is of the form

X = Y 2 = tY Y (2.2.4)
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for some positive definite matrix Y , and if det(X) = 1 then det(Y ) = 1 as
well. The stabilizer of X = 1n ∈ Sn is, by definition, SOn(R), and so we have

Sn = SLn(R) · 1n ∼= SLn(R)/SOn(R). (2.2.5)

Note that

dimR(Sn) = 1
2n(n+ 1)− 1. (2.2.6)

In the classification in [66, Chapter X, Section 6], Sn is a noncompact Rie-
mannian symmetric space of type A I.

Example 2.2.7. When n = 2, we also have the familiar example of

g =

(
a b
c d

)
∈ SL2(R) (2.2.8)

acting on the Poincaré upper half-plane

H := {z ∈ C : Im(z) > 0} (2.2.9)

by the Möbius transformation

z 7→ gz =
az + b

cz + d
, (2.2.10)

for each z ∈ H. Note that this is actually induced by the natural SL2(C)

action on P1(C): If we identify z ∈ C with

(
z
1

)
∈ P1(C), then(

a b
c d

)(
z
1

)
=

(
az + b
cz + d

)
∼
(
gz
1

)
. (2.2.11)

For readers who have studied modular forms, the factor (cz + d) involved in
the above identification between projective coordinates is exactly the same
automorphy factor (cz + d) in the definition of holomorphic modular forms.
(This is not just a coincidence.) It is well known that this action of SL2(R)
on H is transitive (which will be generalized in Section 3.1.2 below), and the
stabilizer of i ∈ H is{(

a −b
b a

)
∈ SL2(R)

}
= SO2(R) =

{(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
, (2.2.12)

so that we have

H = SL2(R) · i ∼= SL2(R)/SO2(R). (2.2.13)

Example 2.2.14. The isomorphisms H ∼= SL2(R)/SO2(R) ∼= S2 show that H
can be viewed as a special case of Sn with n = 2. But this is the only
example of Sn, with n ≥ 1, such that Sn has a complex structure. Since
dimR(Sn) = 1

2n(n+ 1)− 1 is odd when n = 3, for example, there is no hope
for S3 to be a complex manifold.

For any (G,D) as above, and for any open compact subgroup U of
G(A∞), we can define the double coset space

XU := G(Q)\(D×G(A∞))/U , (2.2.15)



An example-based introduction to Shimura varieties 9

where G(Q) acts diagonally on D×G(A∞) from the left-hand side, and
where U only acts on G(A∞) from the right-hand side. The reader might
naturally wonder why we need to consider a complicated double quotient
as in (2.2.15). One important justification is that the group G(A∞) has a
natural right action on the collection {XU}U , induced by

D×G(A∞)
∼→ D×G(A∞) : (x, h) 7→ (x, hg), (2.2.16)

for each g ∈ G(A∞), which maps XgUg−1 to XU because h(gug−1)g = hgu,
for all h ∈ G(A∞) and u ∈ U . Such an action provides natural Hecke actions
on, for example, the limit of cohomology groups lim−→U H

∗(XU ,C). Such a

symmetry of {XU}U is what we meant by Hecke symmetry in the introduction
(see Section 1). This is crucial for relating the geometry of such double coset
spaces to the theory of automorphic representations.

Let D+ be a connected component of D, which admits a transitive action
of G(R)+, the identity component (namely, the connected component con-
taining the identity element) of G(R) in the real analytic topology. Let G(R)+

denote the stabilizer of D+ in G(R), which necessarily contains G(R)+. Let

G(Q)+ := G(Q)∩G(R)+, (2.2.17)

which is the subgroup of G(Q) stabilizing D+. Then

G(Q)+\(D+×G(A∞))/U → G(Q)\(D×G(A∞))/U (2.2.18)

is surjective because G(Q) is dense in G(R) (see the beginning of this Section
2.2), and is injective by definition. It is known (see [12, Theorem 5.1]) that

#(G(Q)+\G(A∞)/U) <∞, (2.2.19)

which means there exists a subset {gi}i∈I of G(A∞) indexed by a finite set
I such that we have a disjoint union

G(A∞) =
∐
i∈I

G(Q)+ gi U . (2.2.20)

Then

XU ∼= G(Q)+\(D+×G(A∞))/U

=
∐
i∈I

G(Q)+\(D+×G(Q)+ gi U)/U

=
∐
i∈I

Γi\D+,

(2.2.21)

where
Γi := G(Q)+ ∩ (giUg−1

i ), (2.2.22)

because γgiu = giu exactly when γ ∈ giUg−1
i , for any γ ∈ G(Q)+, i ∈ I, and

u ∈ U .

Each such Γi is an arithmetic subgroup of G(Q); namely, a subgroup
commensurable with G(Z) in the sense that Γi ∩G(Z) has finite indices in
both Γi and G(Z). In fact, since U is an open compact subgroup of G(A∞),
each such Γi is a congruence subgroup of G(Z); namely, a subgroup containing
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the principal congruence subgroup ker(G(Z) → G(Z/NZ)) for some integer
N ≥ 1. By definition, congruences subgroups are arithmetic subgroups. Note
that, although the definition of principal congruence subgroups depends on
the choice of some faithful matrix representation G ↪→ GLm over Z (see
Section 2.1), the definition of congruence subgroups does not, because con-
gruence subgroups of G(Q) can be characterized alternatively as the intersec-
tions of G(Q) with open compact subgroups of G(A∞). More generally, the
definition of arithmetic subgroups of G(Q) does not depend on the choice of
the faithful matrix representation either (see [13, 7.13] or [139, Section 4.1]).

If each Γi acts freely on D+, then XU is a manifold because D+ is.
This is the case when each Γi is a neat arithmetic subgroup of G(Q) (as
in [13, (17.1)]), which is in turn the case when U is a neat open compact
subgroup of G (as in [138, 0.6]). For reading the remainder of this article, it
suffices to know that, when people say such groups are neat (or, much less
precisely, sufficiently small), they just want to ensure that the stabilizers of
geometric actions are all trivial. For simplicity, we shall tacitly assume that
the arithmetic subgroups or open compact subgroups we will encounter are
all neat, unless otherwise stated.

Now the question is what each Γi\D+ is, after knowing that it is a
manifold because Γi is neat. What additional structures can we expect from
such quotients?

Example 2.2.23. When G = SL2 and D = H as in Example 2.2.7, the
groups Γi are congruence subgroups of SL2(Z), each of which contains the
principal congruence subgroup

Γ(N) := ker(SL2(Z)→ SL2(Z/NZ)) (2.2.24)

for some integer N ≥ 1. The quotients Γi\H are familiar objects called mod-
ular curves, each of which admits a good compactification into a compact
Riemann surface (or, in other words, complex analytifications of complete al-
gebraic curves over C) by adding a finite number of points, which are called
cusps. (We will revisit this example in more detail in Section 4.1.1 below.)

Remark 2.2.25. We may replace the manifold D above with other geometric
objects over D that still have a smooth (but not necessarily transitive) action
of G(R). For example, when G = SL2 and D = H, we may consider the space

H× Symk(C2), and obtain natural vector bundles or local systems over XU .

2.3. Shimura data

Shimura varieties are not just any double coset spaces XU as above. For arith-
metic applications, it is desirable that each XU “is” (by abuse of language,
meaning it is the complex analytification of) an algebraic variety over C with
a model over some canonically determined number field.

This led to the notion of a Shimura datum (G,D) (see [40, 2.1.1] and
[120, Definition 5.5]). Consider the Deligne torus S, which is the restriction
of scalars ResC/R Gm,C (as an algebraic group over R), so that S(R) = C×.
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Then we require G to be a connected reductive algebraic group, and require D
to be a G(R)-conjugacy class of homomorphisms

h : S→ GR, (2.3.1)

where the subscript “R” means “base change to R” as usual, satisfying the
following conditions:

(1) The representation defined by h and the adjoint representation of G(R)
on g = Lie G(C) induces a decomposition

g = k⊕ p+⊕ p− (2.3.2)

such that

z ∈ S(R) = C× (2.3.3)

acts by 1, z/z, and z/z, respectively, on the three summands.

(2) h(i) induces a Cartan involution on Gad(R). (Here Gad denotes the
adjoint quotient of G; namely, the quotient of G by its center.)

(3) Gad
R has no nontrivial Q-simple factor H such that H(R) is compact (or,

equivalently, such that the composition of h with the projection to H is
trivial, because of the previous condition (2)).

In this case, any finite-dimensional R-representation of G(R) defines a varia-
tion of (real) Hodge structures, and D is a finite union of Hermitian symmet-
ric domains. Without going into details, let us just emphasize that D and
its quotients XU , for neat open compact subgroups U of G(A∞), are then
complex manifolds, not just real ones.

For studying only the connected components D+ (of some D which
appeared in the last paragraph) and their quotients, it is easier to work with
what is called a connected Shimura datum (G,D+) (see [120, Definition 4.22]),
which requires G to be a connected semisimple algebraic group, and requires
D+ to be a Gad(R)+-conjugacy class of homomorphisms

h : S→ Gad
R , (2.3.4)

where Gad(R)+ denotes (as before) the identity component of Gad(R) in the
real analytic topology, satisfying the same three conditions (1), (2), and (3)
as above.

A homomorphism as in (2.3.4) determines and is determined by a ho-
momorphism

h : U1 → Gad
R , (2.3.5)

where

U1 := {z ∈ C : |z| = 1} (2.3.6)

is viewed as an algebraic group over R here, via the canonical homomorphism

S→ U1 (2.3.7)
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induced by z 7→ z/z. In many cases we will study, the restriction of the
homomorphism (2.3.4) to U1 (now viewed as a subgroup of S) lifts to a
homomorphism

h : U1 → GR, (2.3.8)

whose composition with GR → Gad
R then provides a square-root of the h

in (2.3.5). This is nonstandard, but sometimes more convenient, when we
prefer to describe GR instead of Gad

R in many practical examples (to be given
in Section 3 below).

2.4. Shimura varieties and their canonical models

Now we are ready to state the following beautiful results, whose assertions
can be understood without knowing anything about their proofs:

Theorem 2.4.1 (Satake, Baily–Borel, and Borel; see [9] and [14]).
Suppose (G,D) is a Shimura datum as in Section 2.3. Then the whole collec-
tion of complex manifolds {XU}U , with U varying among neat open compact
subgroups of G(A∞), is the complex analytification (see [163, §2]) of a canon-
ical collection of smooth quasi-projective varieties over C. Moreover, the
analytic covering maps

XU → XU ′ , (2.4.2)

when U ⊂ U ′, are also given by the complex analytifications of canonical finite
étale algebraic morphisms between the corresponding varieties.

Alternatively, suppose (G,D+) is a connected Shimura datum as in
Section 2.3. Then analogous assertions hold for the collection {Γ\D+}Γ,
with Γ varying among neat arithmetic subgroups of Gad(Q) that are con-
tained in Gad(R)+. (If we consider also (G,D), where D is the correspond-
ing G(R)-conjugacy class of any h in D+, then the connected components
of XU , where U is a neat open compact subgroup of G(A∞), are all of the
form Γ\D+, as explained in Section 2.2.)

Theorem 2.4.3 (Shimura, Deligne, Milne, Borovŏı, and others; see
[168], [37], [40], [117], [23], and [24]). Suppose (G,D) is a Shimura da-
tum as in Section 2.3. Then there exists a number field F0, given as a sub-
field of C depending only on (G,D), called the reflex field of (G,D), such
that the whole collection of complex manifolds {XU}U , with U varying among
neat open compact subgroups of G(A∞), is the complex analytification of the
pullback to C of a canonical collection of smooth quasi-projective varieties
over F0, which satisfies certain additional properties qualifying them as the
canonical models of {XU}U . Moreover, the analytic covering maps

XU → XU ′ , (2.4.4)

when U ⊂ U ′, are also given by the complex analytifications of canonical
finite étale algebraic morphisms defined over F0 between the corresponding
canonical models.
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Remark 2.4.5. Theorem 2.4.1 is proved by constructing the so-called Sa-
take–Baily–Borel or minimal compactifications of XU or Γ\D+, which are
projective varieties over C. (See Sections 4.2.2 and 4.2.7 below.) The asser-
tion that the quasi-projective varieties XU and Γ\D+ are defined over Q, the
algebraic closure of Q in C, can be shown without using the theory of canon-
ical models, as in [47]. But these general results cannot explain why each XU
is defined over some particular number field.

Remark 2.4.6. In Theorem 2.4.3, since each XU is algebraic and defined over
F0, its arithmetic invariants such as the étale cohomology group H∗ét(XU ,Q`),
for any prime number `, carry a canonical action of Gal(Q/F0), where the
algebraic closure Q of Q in C contains F0 because F0 is given as a subfield
of C. (Recall that any base change between separably closed fields induces
a canonical isomorphism between the étale cohomology groups—see, for ex-
ample, [39, Arcata, V, 3.3].) This is an instance of what we meant by Galois
symmetry in the introduction (see Section 1). Since the maps XU → XU ′ are
also algebraic and defined over F0, we have a canonical action of Gal(Q/F0)
on lim−→U H

∗
ét(XU ,Q`), which is compatible with the Hecke action of G(A∞).

This is an instance of what we meant by the compatibility between Hecke and
Galois symmetries in the introduction (see Section 1).

Remark 2.4.7. In Theorem 2.4.3, if we assume instead that (G,D+) is a
connected Shimura datum, and consider the collection {Γ\D+}Γ as in The-
orem 2.4.1, then it is only true that each Γ\D+ is defined over a number
field depending on both (G,D+) and Γ, but in general we cannot expect the
whole collection {Γ\D+}Γ, or just the subcollection formed by those Γ whose
preimages in G(Q) contain congruence subgroups, to be defined over a single
number field depending only on (G,D). This is a generalization of the follow-
ing classical phenomenon: When (G,D) = (SL2,H), and when interpreting
the quotient Γ(N)\H as in Example 2.2.23 as a parameter space for complex
elliptic curves Ez = C/(Zz + Z) with level N -structures

αN : (Z/NZ)2 ∼→ Ez[N ] :

(a, b) 7→ ( aN z + b
N ) mod (Zz + Z),

(2.4.8)

where z ∈ H and Ez[N ] denotes the N -torsion subgroup of Ez, by identifying
Ez with Eγz for all γ ∈ Γ(N), the value of the Weil pairing of αN ((1, 0), (0, 1))
is a constant primitive N -th root ζN of unity on Γ(N)\H. (See the introduc-
tion of [44].) We can only expect Γ(N)\H to have a model over Q(ζN ), rather
than Q.

Remark 2.4.9. In the context of Theorem 2.4.3, people may refer to either the
varieties XU over C, or their canonical models over F0, or the projective limits
of such varieties over either C or F0, as the Shimura varieties associated with
the Shimura datum (G,D). For the sake of clarity, people sometimes say
that XU and its canonical model are Shimura varieties at level U . In the
context of Remark 2.4.7, people often refer to quotients of the form Γ\D+,
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where Γ are arithmetic subgroups of

Gad(Q)+ := Gad(Q)∩Gad(R)+ (2.4.10)

whose preimages under the canonical homomorphism G(Q) → Gad(Q) con-
tain congruence subgroups of G(Q), as the connected Shimura varieties as-
sociated with the connected Shimura datum (G,D+). We allow all such sub-
groups Γ of Gad(Q)+, rather than only the images of the congruence sub-
groups of G(Q), so that the connected Shimura varieties thus defined are
useful for studying all connected components of Shimura varieties.

Remark 2.4.11. By a morphism of Shimura data

(G1,D1)→ (G2,D2), (2.4.12)

we mean a group homomorphism G1 → G2 mapping D1 into D2. In case
D1 = G1(R) ·h0 is the conjugacy class of some homomorphism h0 : S→ G1,R,
then this means the composition of h0 with G1,R → G2,R lies in the conjugacy
class D2. If U1 and U2 are open compact subgroups of G1(A∞) and G2(A∞),
respectively, such that U1 is mapped into U2, then we obtain the corre-
sponding morphism XU1 → XU2 between Shimura varieties. This morphism
is defined over the subfield of C generated by the reflex fields of (G1,D1)
and (G2,D2). There are also analogues of these assertions for connected
Shimura data and the corresponding connected Shimura varieties.

Remark 2.4.13. An important special case of a morphism of Shimura data
as in Remark 2.4.11 is when the homomorphism G1 → G2 is injective, and
when U1 is exactly the pullback of U2 under the induced homomorphism
G1(A∞) → G2(A∞). In this case, up to replacing U2 with an open com-
pact subgroup (satisfying the same conditions), XU1 is a closed subvariety
of XU2 . (It is always possible to find such a U2 for any given U1—see [37,
Proposition 1.15]. The neatness of U2 can be arranged when U1 is neat, by
taking U2 to be generated by the image of U1 and some suitable neat open
compact subgroup of G2(A∞).) Subvarieties of this kind are called special
subvarieties. The most important examples are given by special points or
(with some additional assumptions on the Shimura data) CM points, which
are zero-dimensional special subvarieties defined by subgroups G1 of G2 that
are tori (see [120, Definition 12.5]). These are generalizations of the points of
modular curves parameterizing CM elliptic curves with level structures, which
are represented by points of the Poincaré upper half-plane with coordinates
in imaginary quadratic field extensions of Q. Zero-dimensional Shimura va-
rieties and special points are important because their canonical models can
be defined more directly, and hence they are useful for characterizing the
canonical models of Shimura varieties of positive dimensions.

We will not try to explain the proofs of Theorems 2.4.1 and 2.4.3 in this
introductory article. In fact, we will not even try to explain in any depth the
background notions such as variations of Hodge structures or Hermitian sym-
metric domains, or key notions such as zero-dimensional Shimura varieties,
the Shimura reciprocity law, and the precise meaning of canonical models,
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because most existing texts already present them quite well, and there is lit-
tle we can add to them. Instead, we will start by presenting many examples
of (G,D) and (G,D+), so that the readers can have some idea to where the
theory applies. We hope this will benefit not only readers who would like
to better understand the existing texts, but also readers who have concrete
arithmetic or geometric problems in mind.

3. Hermitian symmetric domains

In this section, we will explore many examples of Hermitian symmetric do-
mains, which can be interpreted as generalizations of the Poincaré upper
half-plane H (see Example 2.2.7) in many different ways. Most of these will
give the (G(R),D) or (G(R),D+) for some Shimura data (G,D) or connected
Shimura data (G,D+), respectively, as in Section 2.3, although we will not
be using the structure of G(Q) in this section. (Later we will indeed use the
structure of G(Q) in Section 4.)

However, we will not define Hermitian symmetric domains. Our excuse
for this omission is that there is a complete classification of all irreducible ones
(namely, those that are not isomorphic to nontrivial products of smaller ones),
and we will see all of them in our examples. (For a more formal treatment,
there are general introductions such as [120, Section 1], with references to
more advanced texts such as [66].)

In our personal experience, especially in number-theoretic applications
requiring actual calculations, the abstract theory of Hermitian symmetric
domains cannot easily replace the knowledge of these explicit examples. (Al-
ready in the classical theory for SL2 or GL2, it is hard to imagine studying
modular forms without ever introducing the Poincaré upper half-plane.)

We shall begin with the case of Sp2n(R) in Section 3.1, followed by
the case of Ua,b in Section 3.2, the case of SO∗2n in Section 3.3, the case
of SOa,2(R) in Section 3.4, the case of E7 in Section 3.5, the case of E6 in
Section 3.6, and a summary of all these cases in Section 3.7.

3.1. The case of Sp2n(R)

3.1.1. Siegel upper half-spaces. Let n ≥ 0 be any integer. Consider the
Siegel upper half-space

Hn := {Z ∈ Symn(C) : Im(Z) > 0}
= {Z ∈ Mn(C) : tZ − Z = 0, 1

2i (
tZ − Z) < 0}

=

Z ∈ Mn(C) :

t

(
Z
1

)(
0 1
−1 0

)(
Z
1

)
= 0,

1
2i
t

(
Z
1

)(
0 1
−1 0

)(
Z
1

)
< 0

 ,

(3.1.1.1)

where Mn (resp. Symn) denotes the space of n×n matrices (resp. symmetric
matrices) as before, and where the notation > 0 (resp. < 0) means positive
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definiteness (resp. negative definiteness) of matrices, which admits a natural
(left) action of g = (A B

C D ) ∈ Sp2n(R):

Z 7→ gZ := (AZ +B)(CZ +D)−1 (3.1.1.2)

(note that (CZ +D)−1 is multiplied to the right of (AZ +B)). Again, such
an action should be understood in generalized projective coordinates:(

A B
C D

)(
Z
1

)
=

(
AZ +B
CZ +D

)
∼
(
gZ
1

)
(3.1.1.3)

(by multiplying (CZ +D)−1 to the right).

Remark 3.1.1.4. By generalized projective coordinates given by an m×n ma-
trix, we mean anm×nmatrix of rank n that is identified up to the right action
of invertible n× n matrices. Giving such a matrix is equivalent to defining a
point of the Grassmannian of n-dimensional subspaces of an m-dimensional
vector space. Later we will encounter some similar generalized projective co-
ordinates when defining other Hermitian symmetric domains, and the readers
can interpret them as defining points on some other Grassmannians. This is
closely related to the interpretation of Hermitian symmetric domains as pa-
rameter spaces of variations of Hodge structures, where the Grassmannians
parameterize some Hodge filtrations.

Let us briefly explain why the action is indeed defined. Since

t

(
A B
C D

)(
0 1
−1 0

)(
A B
C D

)
=

(
0 1
−1 0

)
, (3.1.1.5)

we have

t

(
Z
1

)(
0 1
−1 0

)(
Z
1

)
= t

(
Z
1

)
tg

(
0 1
−1 0

)
g

(
Z
1

)
= t(CZ +D) t

(
gZ
1

)(
0 1
−1 0

)(
gZ
1

)
(CZ +D) = 0

(3.1.1.6)

if and only if

t

(
gZ
1

)(
0 1
−1 0

)(
gZ
1

)
= 0; (3.1.1.7)

and

1
2i
t

(
Z
1

)(
0 1
−1 0

)(
Z
1

)
= 1

2i
t

(
Z
1

)
tg

(
0 1
−1 0

)
g

(
Z
1

)
= 1

2i
t(CZ +D) t

(
gZ
1

)(
0 1
−1 0

)(
gZ
1

)
(CZ +D) < 0

(3.1.1.8)

if and only if

1
2i
t

(
gZ
1

)(
0 1
−1 0

)(
gZ
1

)
< 0. (3.1.1.9)

Thus, Z ∈ Hn if and only if gZ ∈ Hn, and the action is indeed defined.



An example-based introduction to Shimura varieties 17

3.1.2. Transitivity of action. If Z = X + iY ∈ Hn, then(
1 −X
0 1

)
Z = iY, (3.1.2.1)

with Y > 0, and so there exists some A ∈ GLn(R) such that

tAY A = 1n, (3.1.2.2)

which shows that (
tA 0
0 A

)
(iY ) = i1n. (3.1.2.3)

These show that

Hn = Sp2n(R) · (i1n). (3.1.2.4)

The stabilizer of i1n is

K :=

{(
A B
−B A

)
∈ Sp2n(R)

}
∼= Un :=

{
g = A+ iB : tgg = 1n

}
(3.1.2.5)

(where the conditions on A and B are the same for
(
A B
−B A

)
∈ Sp2n(R) and

for g = A + iB ∈ Un), which is a maximal compact subgroup of Sp2n(R).
(Certainly, the precise matrix expressions of these elements depend on the
choice of the point i1n.) Thus, we have shown that

Hn ∼= Sp2n(R)/Un. (3.1.2.6)

When n = 1, this specializes to the isomorphism H = H1
∼= SL2(R)/SO2(R)

in Example 2.2.7, because SL2(R) ∼= Sp2(R) and SO2(R) ∼= U1. Note that

dimCHn = dimC
(
Symn(C)

)
= 1

2n(n+ 1), (3.1.2.7)

for all n ≥ 0.

3.1.3. Bounded realization. There is also a bounded realization of Hn.
Note that (

1 −i
1 i

)(
i
1

)
=

(
0
2i

)
∼
(

0
1

)
. (3.1.3.1)

Set

U := (Z − i1n)(Z + i1n)−1, (3.1.3.2)

so that (
1 −i
1 i

)(
Z
1

)
=

(
Z − i1n
Z + i1n

)
∼
(
U
1

)
(3.1.3.3)

in generalized projective coordinates (cf. Remark 3.1.1.4). Note that this
assignment maps Z = i10 to U = 0. Since(

1 1
−i i

)(
0 1
−1 0

)(
1 −i
1 i

)
=

(
0 2i
−2i 0

)
= 2i

(
0 1
−1 0

)
, (3.1.3.4)

we have
tZ = Z ⇐⇒ tU = U, (3.1.3.5)
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and

1
2i (

tZ − Z) = 1
2i
t

(
Z
1

)(
0 1
−1 0

)(
Z
1

)
= 1

8i
t

(
Z
1

)(
1 1
i −i

)(
1 −i
1 i

)(
0 1
−1 0

)(
1 1
i −i

)(
1 −i
1 i

)(
Z
1

)
< 0

⇐⇒ tUU − 1n = t

(
U
1

)(
1 0
0 −1

)(
U
1

)
< 0,

(3.1.3.6)

and so

Hn ∼= Dn := {U ∈ Symn(C) : tUU − 1n < 0}. (3.1.3.7)

This generalizes the Cayley transforms that move the Poincaré upper half-
plane H to the open unit disc {u ∈ C : |u| < 1}. (But the formula for the
action of Sp2n(R) has to be conjugated, and is more complicated.)

In the classification in [66, Chapter X, Section 6], Hn ∼= Dn is a Hermit-
ian symmetric domain of type C I. In Cartan’s classification, it is a bounded
symmetric domain of type IIIn.

3.1.4. Interpretation as conjugacy classes. Now consider the homomor-
phism

h0 : U1 → Sp2n(R) : x+ yi 7→
(
x −y
y x

)
. (3.1.4.1)

For simplicity, in the matrix at the right-hand side, we denoted by x and y
the scalar multiples of the n× n identity matrix 1n by x and y, respectively.
(We will adopt similar abuses of notation later, without further explanation.)
Then we have (

A B
C D

)(
0 1
−1 0

)
=

(
0 1
−1 0

)(
A B
C D

)
⇐⇒

(
−B A
−D C

)
=

(
C D
−A −B

)
⇐⇒ A = D, B = −C,

(3.1.4.2)

which shows that

Centh0
(Sp2n(R)) = Un (3.1.4.3)

as subgroups of Sp2n(R), where Cent denotes the centralizer, and so that

Hn = Sp2n(R) · h0, (3.1.4.4)

with the action given by conjugation. That is, Hn is the Sp2n(R)-conjugacy
class of h0. In this case, (Sp2n,Hn) is a connected Shimura datum as in
Section 2.3 (where we use Sp2n to denote the algebraic group over Q, not
the group scheme over Z), taking into account the variant (2.3.8) of (2.3.5)
as explained there. (For simplicity, we shall not repeat such an explanation
in what follows.)
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The above is compatible with the similarly defined action of GSp2n(R)
on

H±n := {Z ∈ Mn(C) : tZ = Z, and either Im(Z) > 0 or Im(Z) < 0}.
(3.1.4.5)

Then

H±n = GSp2n(R) · h0, (3.1.4.6)

where

h0 : C× → GSp2n(R) : x+ yi 7→
(
x −y
y x

)
(3.1.4.7)

also encodes the action of R× ⊂ C×, and is better for the purpose of studying
variations of Hodge structures (and also for various other reasons). In this
case, (GSp2n,H±n ) is a Shimura datum as in Section 2.3 (where we use GSp2n

to denote the algebraic group over Q, not the group scheme over Z).

3.1.5. Moduli of polarized abelian varieties. For each Z ∈ Hn, we have
a lattice

LZ := ZnZ + Zn (3.1.5.1)

in Cn such that

AZ := Cn/LZ (3.1.5.2)

is not only a complex torus, but also a polarized abelian variety . (See [125,
Sections 1–3] and [129, Chapter II, Sections 1 and 4].) When n = 1, this is
just an elliptic curve.

The point is that the abelian variety AZ = Cn/LZ (as a complex torus)
can be identified with the fixed real torus

R2n/Z2n (3.1.5.3)

with its complex structure induced by the one on R2n defined by

h(i) ∈ Sp2n(R) ⊂ GL2n(R), (3.1.5.4)

where the homomorphism

h = g · h0 ∈ Hn = Sp2n(R) · h0 (3.1.5.5)

corresponds to the point

Z = g · (i1n) ∈ Hn = Sp2n(R) · (i1n). (3.1.5.6)

Accordingly, varying the lattice LZ in Cn with Z = g · (i1n) corresponds
to varying the complex structure J = h(i) on R2n with h = g · h0. (Such a
variation of complex structures can be interpreted as a variation of Hodge
structures.)

The pairing on Z2n defined by the perfect pairing 〈 · , · 〉 defines (up to
a sign convention) a principal polarization λZ on AZ (and the existence of
such a polarization was the reason that the complex torus AZ is an abelian
variety). If (AZ , λZ) ∼= (AZ′ , λZ′) for Z and Z ′ corresponding to h and h′,

respectively, then we have an induced isomorphism R2n ∼→ R2n preserving
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Z2n and 〈 · , · 〉, which defines an element g = (A B
C D ) ∈ Sp2n(Z) conjugating

h to h′ and mapping Z to Z ′. Conversely, if we have

Z ′ = gZ = (AZ +B)(CZ +D)−1 (3.1.5.7)

for some g = (A B
C D ) ∈ Sp2n(Z), then we have a homothety of lattices

LZ = Z2nZ + Z2n = Z2n(AZ +B) + Z2n(CZ +D)

= (Z2nZ ′ + Z2n)(CZ +D) = LZ′(CZ +D) ∼ LZ′ ,
(3.1.5.8)

which implies that (AZ , λZ) ∼= (AZ′ , λZ′). If g lies in a congruence subgroup Γ
of Sp2n(Z), then the above isomorphism (AZ , λZ) ∼= (AZ′ , λZ′) also respects
certain (symplectic) level structures. Therefore, Γ\Hn (or the manifolds XU
defined using G = GSp2n and D = H±n ) are Siegel modular varieties param-
eterizing polarized abelian varieties with certain level structures (depending
on Γ or U). The spaces Γ\Hn are, a priori, just complex manifolds. The name
“Siegel modular varieties” will be justified in Sections 4.1.3 and 4.2.2 below,
where we shall see that they are indeed the complex analytifications of some
canonical algebraic varieties.

The fact that spaces like Γ\Hn parameterize polarized abelian varieties
with level structures is perhaps just a coincidence, but such a coincidence
is extremely important. One can redefine them as the C-points of certain
moduli problems of polarized abelian schemes with level structures; and then
their constructions can be extended over the integers in number fields, be-
cause the moduli schemes of polarized abelian schemes, called Siegel moduli
schemes, have been constructed over the integers. (See [130, Chapter 7] for
the construction based on geometric invariant theory. Alternatively, geomet-
ric invariant theory can be avoided by first constructing algebraic spaces or
Deligne–Mumford stacks by verifying Artin’s criterion—see [2] and [91, Sec-
tion B.3] for such a criterion, and see [48, Chapter I, Section 4] and [91,
Chapter 2] for its verification for the moduli of polarized abelian schemes;
and then showing that they are quasi-projective schemes by constructing
their minimal compactifications as in [48, Chapter V] or [91, Chapter 7]—see
Section 5.1.4 below.)

Such integral models of Γ\Hn are very useful because we can understand
their reductions in positive characteristics by studying polarized abelian va-
rieties over finite fields, for which we have many powerful tools. We will
encounter more general cases of Γ\D later, but we have good methods for
constructing integral models for them (namely, methods for which we can
say something useful about the outputs) only in cases that can be related to
Siegel modular varieties at all.

3.2. The case of Ua,b

We learned some materials here from [171] and [170].

3.2.1. Bounded realization. Let a ≥ b ≥ 0 be any integers. Recall that
we have introduced the symmetric matrix 1a,b =

(
1a
−1b

)
in (2.1.13), which
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we now view as a Hermitian matrix, which defines a Hermitian pairing of
signature (a, b). Consider the group

Ua,b := {g ∈ GLa+b(C) : tg1a,bg = 1a,b}, (3.2.1.1)

which acts on

Da,b :=

{
U ∈ Ma,b(C) : t

(
U
1

)(
1a
−1b

)(
U
1

)
= tUU − 1b < 0

}
,

(3.2.1.2)
where Ma,b denotes the space of a× b matrices, by

U 7→ gU = (AU +B)(CU +D)−1 (3.2.1.3)

for each g = (A B
C D ) ∈ Ua,b. This action is based on the identity(

A B
C D

)(
U
1

)
=

(
AU +B
CU +D

)
∼
(

(AU +B)(CU +D)−1

1

)
(3.2.1.4)

in generalized projective coordinates (cf. Remark 3.1.1.4). Note that Ua,b is
a real Lie group, but not a complex one, despite the use of complex numbers
in its coordinates; and that

dimCDa,b = dimC
(
Ma,b(C)

)
= ab. (3.2.1.5)

For any (A B
C D ) ∈ Ua,b, as soon as B = 0, we must also have C = 0, by

the defining condition in (3.2.1.1). Hence, the stabilizer of 0 ∈ Da,b is

K :=

{(
A

D

)
∈ Ua,b

}
∼= Ua×Ub :

(
A

D

)
7→ (A,D). (3.2.1.6)

Remark 3.2.1.7. For the purpose of introducing Hermitian symmetric do-
mains, it might be more natural to consider the semisimple Lie group SUa,b—
namely, the subgroup of Ua,b of elements of determinant one—or its adjoint
quotient, but we still consider the reductive Lie group Ua,b, because it is
easier to write down homomorphisms of the form U1 → Ua,b, as in (2.3.8).

However, to show the transitivity of the action of Ua,b on Da,b, and for
many other computations for which it is easier to work with block upper-
triangular matrices, it will be easier to switch to some unbounded realization.

3.2.2. Unbounded realization. Consider

U′a,b := {g ∈ GLa+b(C) : tgJa,bg = Ja,b}, (3.2.2.1)

where the matrix

Ja,b :=

 1b
S

−1b

 (3.2.2.2)

is skew-Hermitian with −iS > 0, for some choice of a skew-Hermitian ma-
trix S (depending on the context), so that there exists some T ∈ GLn(C) such



22 Kai-Wen Lan

that −iS = tTT . We warn the readers that the notation of Ja,b and U′a,b here

is rather nonstandard. Then U′a,b acts on

Ha,b :=



(
Z
W

)
∈ Ma,b(C) ∼= Mb(C)×Ma−b,b(C) :

−i t
Z
W
1

Ja,b
Z
W
1

 = −i( tZ − Z + tWSW ) < 0

 (3.2.2.3)

by (
Z
W

)
7→ g

(
Z
W

)
=

(
(AZ + EW +B)(CZ +HW +D)−1

(FZ +MW +G)(CZ +HW +D)−1

)
, (3.2.2.4)

for each g =
(
A E B
F M G
C H D

)
∈ U′a,b, based on the identity

g

Z
W
1

 =

AZ + EW +B
FZ +MW +G
CZ +HW +D

 ∼
 (AZ + EW +B)(CZ +HW +D)−1

(FZ +MW +G)(CZ +HW +D)−1

1


(3.2.2.5)

in generalized projective coordinates (cf. Remark 3.1.1.4).

If we consider

Hermb(C) := {X ∈ Mb(C) : tX = X}, (3.2.2.6)

where Hermb denotes the space of b×b Hermitian matrices (which are over C
here), then we have a canonical isomorphism

Mb(C)
∼→ Hermb(C)⊗

R
C : X 7→ Re(X) + i Im(X), (3.2.2.7)

where

Re(X) := 1
2 (X + tX) (3.2.2.8)

and

Im(X) := 1
2i (X −

tX) (3.2.2.9)

are the Hermitian real and imaginary parts (abusively denoted by the usual
symbols), and we can rewrite the condition

− i( tZ − Z + tWSW ) < 0 (3.2.2.10)

as

Im(Z) > 1
2
tW (−iS)W. (3.2.2.11)

3.2.3. The special case where a = b: Hermitian upper half-spaces.
In this case, we can omit the second coordinate W in the above unbounded
realization, and we have

Hb,b = {Z ∈ Mb(C) ∼= Hermb(C)⊗
R
C : Im(Z) > 0}, (3.2.3.1)

which can be viewed as a generalization of

Hn = {Z ∈ Symn(C) ∼= Symn(R)⊗
R
C : Im(Z) > 0}. (3.2.3.2)
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That is, we can view the symmetric matrices in Symn(R) as being Hermitian
with respect to the trivial involution of R, which then generalizes to the usual
complex Hermitian matrices in Hermn(C) as being Hermitian with respect
to the complex conjugation of C over R. These two examples will be further
generalized with R and C replaced with the other two normed (but possibly
nonassociative) division algebras H and O over R, the rings of Hamilton and
Cayley numbers, respectively, in Sections 3.3.2 and 3.5.4 below.

3.2.4. Generalized Cayley transformations and transitivity of ac-
tions. Since

−i


1√
2

− i√
2

tT
−1

1√
2

i√
2


 1

S
−1

 1√
2

1√
2

T−1

i√
2

− i√
2


=

1
1
−1

 ,

(3.2.4.1)

we have an isomorphism

U′a,b
∼→ Ua,b : g 7→


1√
2

− i√
2

T
1√
2

i√
2

 g

 1√
2

1√
2

T−1

i√
2

− i√
2

 , (3.2.4.2)

and accordingly an isomorphism

Ha,b
∼→ Da,b :

Z
W
1

 7→


1√
2

− i√
2

T
1√
2

i√
2


Z
W
1

 ∼ (U
1

)
(3.2.4.3)

equivariant with the above isomorphism (3.2.4.2). This is a generalization of
the classical Cayley transformation and maps

(
i1b
0

)
∈ Ha,b to 0 ∈ Da,b.

Now, given any ( ZW ) ∈ Ha,b, we have1 ∗ ∗
1 −W

1

Z
W
1

 =

Z ′0
1

 , (3.2.4.4)

1 −Re(Z ′)
1

1

Z ′0
1

 =

i Im(Z ′)
0
1

 , (3.2.4.5)

 tA
−1

1
A

i Im(Z ′)
0
1

 =

i1b0
1

 , (3.2.4.6)

for some Z ′ ∈ Mb(C) and some A ∈ GLb(C) such that Im(Z ′) = tAA, where
the first matrix in each equation is some element of U′a,b. These show that

Ha,b = U′a,b ·
(
i1b
0

)
∼= Da,b = Ua,b · 0 ∼= Ua,b/(Ua×Ub), (3.2.4.7)
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and hence the actions of Ua,b and U′a,b on Da,b and Ha,b, respectively, are
transitive.

In the classification in [66, Chapter X, Section 6], Ha,b ∼= Da,b is a
Hermitian symmetric domain of type A III. In Cartan’s classification, it is a
bounded symmetric domain of type Iba.

3.2.5. Interpretation as conjugacy classes. Consider the homomorphism

h0 : U1 → Ua,b : x+ yi 7→
(
x− yi

x+ yi

)
, (3.2.5.1)

with x− yi and x+ yi denoting multiples of 1a and 1b, respectively. Then

Centh0
(Ua,b) = Ua×Ub (3.2.5.2)

(as subgroups of Ua,b) and so that

Da,b = Ua,b · h0. (3.2.5.3)

Via the inverse of the isomorphism Ua,b
∼→ U′a,b above defined by conjugation,

we obtain

h′0 : U1 → U′a,b : x+ yi 7→

x −y
x− yi

y x

 , (3.2.5.4)

so that

Ha,b = U′a,b · h′0. (3.2.5.5)

Both of these are compatible with the extensions of the actions of Ua,b

and U′a,b on Da,b and Ha,b, respectively, to some actions of

GUa,b := {(g, r) ∈ GLa+b(C)×R× : tg1a,bg = r1a,b} (3.2.5.6)

and

GU′a,b := {(g, r) ∈ GLa+b(C)×R× : tgJa,bg = rJa,b} (3.2.5.7)

on some

D±a,b = GUa,b · h0 (3.2.5.8)

and

H±a,b = GUa,b · h′0 (3.2.5.9)

(where we omit the explicit descriptions of D±a,b and H±a,b, for simplicity),

where h0 and h′0 are now homomorphisms

h0 : C× → GUa,b (3.2.5.10)

and

h′0 : C× → GU′a,b (3.2.5.11)

defined by the same expressions as in (3.2.5.1) and (3.2.5.4), respectively.
(As in Section 3.1.4, the upshot here is that the pairs (GUa,b,D±a,b) and

(GU′a,b,H±a,b) can be of the form (G(R),D) for some Shimura data (G,D).

We shall omit such remarks in later examples.)
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Since the real part of any skew-Hermitian pairing is alternating, there
is an injective homomorphism of the form

Ua,b
∼= U′a,b ↪→ Sp2n(R), (3.2.5.12)

with n = a + b, whose pre-composition with h0 : U1 → Ua,b lies in the
conjugacy class of the analogous homomorphism for Sp2n(R) in (3.1.4.1).

3.3. The case of SO∗2n

3.3.1. Unbounded realization, and interpretation as a conjugacy
class. Consider the subgroup SO∗2n of

SO2n(C) = {g ∈ SL2n(C) : tgg = 12n} (3.3.1.1)

preserving the skew-Hermitian form defined by
(

1n
−1n

)
. That is,

SO∗2n = SO2n(C)∩U′n,n (3.3.1.2)

as subgroups of GL2n(C), where U′n,n is defined as in (3.2.2.1), with Lie
algebra

so∗2n =

{(
A B
−B A

)
: A,B ∈ Mn(C), tA = −A, tB = B

}
(3.3.1.3)

as Lie subalgebras of M2n(C) (see, for example, [81, Chapter I, Section 1]
or [82, Chapter I, Section 17]). By explanations as before, SO∗2n acts transi-
tively on

HSO∗2n
:=


Z ∈ Mn(C) : t

(
Z
1

)(
Z
1

)
= tZZ + 1 = 0,

−i t
(
Z
1

)(
1

−1

)(
Z
1

)
= −( tZ − Z) < 0

 , (3.3.1.4)

whose stabilizer at i1n ∈ HSO∗2n
is

K :=

{(
A B
−B A

)
∈ SO∗2n : A,B ∈ Mn(R)

}
∼= Un, (3.3.1.5)

so that

HSO∗2n
= SO∗2n · h0

∼= SO∗2n/Un, (3.3.1.6)

where

h0 : U1 → SO∗2n : x+ yi 7→
(
x −y
y x

)
. (3.3.1.7)

As before, there is also another version of SO∗2n which acts on some bounded
realization DSO∗2n

, but we shall omit them for simplicity. Since SO∗2n ⊂ U′n,n,
by the same explanation as in Section 3.2.5, there are injective homomor-
phisms

SO∗2n ↪→ Sp4n(R), (3.3.1.8)

whose pre-composition with h0 : U1 → SO∗2n lies in the conjugacy class of
the analogous homomorphism for Sp4n(R) as in (3.1.4.1).
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In the classification in [66, Chapter X, Section 6], HSO∗2n
∼= DSO∗2n

is a
Hermitian symmetric domain of type D III. In Cartan’s classification, it is a
bounded symmetric domain of type IIn.

3.3.2. The special case where n = 2k: quaternion upper half-spaces.
Since we have the isomorphism

H ∼= C2 : x+ yi+ j(z + wi) 7→
(
x+ yi
z + wi

)
(3.3.2.1)

of right C-modules, where H denotes the Hamiltonian quaternion algebra
over R, we have a homomorphism

H→ M2(C) : x+ yi+ j(z + wi) 7→
(
x+ yi −z + wi
z + wi x− yi

)
(3.3.2.2)

induced by the left action of H on itself. Using this, we can show that

SO∗4k
∼=
{
g ∈ GL2k(H) : tg

(
1k

−1k

)
g =

(
1k

−1k

)}
, (3.3.2.3)

namely, the subgroup Sp2k(H) of GL2k(H) respecting the skew-Hermitian
pairing on Hk defined by

(
1k

−1k

)
(see, for example, [57, Section 1.1.4], com-

bined with a Gram–Schmidt process as in [91, Section 1.2.3]); and that

HSO∗4k
∼= {Z ∈ Hermk(H)⊗

R
C : Im(Z) > 0}, (3.3.2.4)

with the action of g = (A B
C D ) ∈ GL2k(H) given by

gZ = (AZ +B)(CZ +D)−1, (3.3.2.5)

which is similar to the action of Sp2k(R) on Hk in Section 3.1.1. This is
a quaternion upper half-space, further generalizing the examples from Sec-
tions 3.1.1 and 3.2.3.

3.4. The case of SOa,2(R)

We learned some materials here from [153, Appendix, Section 6].

3.4.1. Projective coordinates. Let a, b ≥ 0 be any integers. Consider

SOa,b(R) := {g ∈ SLa+b(R) : tg1a,bg = 1a,b}, (3.4.1.1)

where 1a,b =
(

1a
−1b

)
is defined as before. Let us temporarily write V := Ra+b

and VC := V ⊗
R
C ∼= Ca+b. Then, by definition, SOa,b(R) acts on

H̃SOa,b :=

{
v ∈ VC : tv

(
1a
−1b

)
v = 0, tv

(
1a
−1b

)
v < 0

}/
C×.

(3.4.1.2)
Note that v 6= 0 in the above definition, and hence the quotient by C× means
we are actually working with a subset of Pa+b−1(C) ∼= (VC − {0})/C×. (This
is consistent with our use of generalized projective coordinates in previous ex-
amples.) However, H̃SOa,b is in general not connected, and even its connected
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components do not have the structure of Hermitian symmetric domains for
arbitrary a, b ≥ 0.

3.4.2. The case where a ≥ 1 and b = 2. In this case, we do get Hermitian
symmetric domains. (This follows from the general theory, but since we have
not defined Hermitian symmetric domains, we are merely stating this as
a fact.)

Suppose we have an orthogonal direct sum

V = Ra+2 = Ra⊕R2 (3.4.2.1)

such that the pairings on Ra and R2 are defined by
(

1a−1

−1

)
and(

1/2
1/2

)
, respectively, which have signatures (a− 1, 1) and (1, 1) summing

up to (a, 2) in total. Note that we have(
1 1
−1 1

)(
1
2

1
2

)(
1 −1
1 1

)
=

(
1
−1

)
. (3.4.2.2)

Then we also have

VC ∼= Ca⊕C2, (3.4.2.3)

and we denote the coordinates of Ca and C2 by (z1, . . . , za) and (w1, w2),
respectively. With these coordinates, we have

H̃SOa,2
∼=
{

z2
1 + · · ·+ z2

a−1 − z2
a + w1w2 = 0,

|z1|2 + · · ·+ |za−1|2 − |za|2 + Re(w1w2) < 0

}
. (3.4.2.4)

If w2 = 0, then the two conditions in (3.4.2.4) imply that

|z1|2 + · · ·+ |za−1|2 < |za|2 = |z1 + · · ·+ za−1|2, (3.4.2.5)

which is not possible. Hence, we must have w2 6= 0, and so, up to scaling of
the projective coordinates, we may assume that w2 = 1. Then

w1 = z2
a − z2

1 − · · · − z2
a−1 (3.4.2.6)

by the first condition, and the second condition becomes

|z1|2 + · · ·+ |za−1|2 − |za|2 + Re(w1) < 0. (3.4.2.7)

If we write zj = xj + iyj , then

|zj |2 − Re(z2
j ) = 2y2

j , (3.4.2.8)

for each 1 ≤ j ≤ a. Thus, we have

H̃SOa,2
∼= HSOa,2 :=

z = (zj) ∈ Ca : y = Im(z) > 0 in the sense that

ty

(
1a−1

−1

)
y < 0, i.e., y2

a > y2
1 + · · · y2

a−1

 .

(3.4.2.9)

The condition

y2
a > y2

1 + · · · y2
a−1 (3.4.2.10)
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defines a familiar light cone with two connected components, one being de-
fined by

ya >
√
y2

1 + · · · y2
a−1, (3.4.2.11)

the other being defined by

ya < −
√
y2

1 + · · · y2
a−1. (3.4.2.12)

These two connected components correspond to two connected components
H+

SOa,2
and H−SOa,2

of HSOa,2 .

Note that

dimC H̃SOa,2 = dimCHSOa,2 = dimCH+
SOa,2

= dimC Ca = a. (3.4.2.13)

Also, HSO1,2
∼= H±1 and H+

SO1,2

∼= H1 = H, when a = 1. In particular, we

have obtained yet another generalization of the Poincaré upper half-plane H.

3.4.3. Connected components and spin groups. Under the assump-
tion that a ≥ 1, the real Lie group SOa,2(R) has two connected components
(see, for example, [66, Chapter X, Section 2, Lemma 2.4] or [82, Proposi-
tion 1.145]), and the stabilizer of H+

SOa,2
in G(R) = SOa,2(R) is the identity

component G(R)+ = SOa,2(R)+; namely, the connected component contain-
ing the identity element (in the real analytic topology). The group SOa,2(R)
can be viewed as the group of R-points of the algebraic group SOa,2 defined
over R, which admits a simply-connected two-fold covering group Spina,2.
This is only a covering of algebraic groups, which means we can only expect
a surjection on C-points. In fact, the induced morphism

Spina,2(R)→ SOa,2(R) (3.4.3.1)

on R-points is not surjective, because Spina,2(R) is connected and factors

through SOa,2(R)+. Here we are keeping the language as elementary as pos-
sible, without introducing the spin groups in detail—see, for example, [57,
Chapter 6], for a review of their construction based on Clifford algebras. But
the connectedness of Spina,2(R), nevertheless, is a general feature of the real
points of any isotropic simply-connected connected simple algebraic group
over Q—see [139, Section 7.3, Theorem 7.6].

To understand this issue better, consider the Gal(C/R)-equivariant short
exact sequence

1→ {±1} → Spina,2(C)→ SOa,2(C)→ 1, (3.4.3.2)

which induces by taking Galois cohomology the long exact sequence

1→ {±1} → Spina,2(R)→ SOa,2(R)→ H1(Gal(C/R), {±1}) ∼= {±1},
(3.4.3.3)

where the homomorphism

SOa,2(R)→ {±1} (3.4.3.4)
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(induced by the connecting homomorphism) is the spinor norm. The ker-
nel of the spinor norm is SOa,2(R)+, which is at the same time the image
of Spina,2(R).

We shall omit the verification that SOa,2(R)+ does act transitively
on H+

SOa,2
, with stabilizers isomorphic to

SOa(R)×SO2(R). (3.4.3.5)

Accordingly, SOa,2(R) acts transitively on HSOa,2 , with stabilizers also iso-
morphic to SOa(R)×SO2(R). We shall also omit the description of some
bounded realizations D+

SOa,2
and DSOa,2 of H+

SOa,2
and HSOa,2 , respectively.

In the classification in [66, Chapter X, Section 6],H+
SOa,2

∼= D+
SOa,2

(with

a ≥ 1) is a Hermitian symmetric domain of type BD I (with (p, q) = (a, 2)
in the notation there). In Cartan’s classification, it is a bounded symmetric
domain of type IVa.

3.4.4. Interpretation as conjugacy classes. Consider the homomorphism

h0 : U1 → SOa,2(R) : eiθ 7→

1a
cos 2θ − sin 2θ
sin 2θ cos 2θ

 . (3.4.4.1)

Note that the image of h0 is connected because U1 is, and hence lies in
SOa,2(R)+. Moreover,

K := Centh0(SOa,2(R)+) =

{(
A

D

)
∈ SOa,2(R)+

}
∼= SOa(R)×SO2(R) :(

A
D

)
7→ (A,D).

(3.4.4.2)

Then K is a maximal compact subgroup of SOa,2(R)+, and we have

H+
SOa,2

= SOa,2(R)+ · h0
∼= SOa,2(R)+/(SOa(R)×SO2(R)). (3.4.4.3)

Note that there is a coefficient 2 of θ in the above definition of h0.
This h0 lifts to a homomorphism

h̃0 : U1 → Spina,2(R), (3.4.4.4)

where Spina,2(R) is the above double cover of SOa,2(R)+, and there is an
injective homomorphism

Spina,2(R) ↪→ Sp2n(R), (3.4.4.5)

with n = 2a (cf. Examples 5.2.1.3 and 5.2.2.11 below), whose pre-composition

with h̃0 lies in the conjugacy class of the analogous homomorphism for Sp2n(R)
in (3.1.4.1).

3.5. The case of E7

Our main references are [8], [76], [56], and [45, Chapter 12].
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3.5.1. Cayley numbers. Consider the algebra O of Cayley numbers, which
is an octonion (i.e., degree eight) division algebra over R which is normed,
distributive, noncommutative, and nonassociative. We have

O = R⊕Re1⊕ · · ·⊕Re7 (3.5.1.1)

as an R-vector space, which satisfies the multiplication rules given by

e2
i = −1 (3.5.1.2)

and
(eiei+1)ei+3 = ei(ei+1ei+3) = 1 (3.5.1.3)

(with the indices periodically identified modulo 7) for all 1 ≤ i ≤ 7. We have

x := x0 − x1e1 − · · · − x7e7 (3.5.1.4)

and
N(x) := xx = x2

0 + x2
1 + ·+ x2

7 ≥ 0 (3.5.1.5)

for each
x = x0 + x1e1 + · · ·+ x7e7 ∈ O, (3.5.1.6)

where the square-root of N(x) defines the norm of x.

3.5.2. An exceptional Jordan algebra over R. Consider the Albert al-
gebra

A := Herm3(O), (3.5.2.1)

the 3× 3 Hermitian matrices over O, which is a formally real Jordan algebra
of exceptional type, with the Jordan algebra multiplication given by

X · Y = 1
2 (XY + Y X), (3.5.2.2)

where XY and Y X are the usual matrix multiplications. (See, for example,
[49, Chapters II–V and VIII] for a general introduction to Jordan algebras
and the classification of formally real ones. See also [5, Chapter II, Remark
at the end of Section 1] or [6, Chapter II, Remark 1.11], and the sections
following there, for why they matter.)

For

X =

a x y
x b z
y z c

 ∈ A (3.5.2.3)

(with a, b, c ∈ R and x, y, z ∈ O), we can define the trace

tr(X) = a+ b+ c (3.5.2.4)

and the determinant

det(X) = abc− aN(z)− bN(y)− cN(x) + tr((xz)y). (3.5.2.5)

Then we also have an inner product

(X,Y ) := tr(X · Y ) (3.5.2.6)

and a trilinear form ( · , · , · ) satisfying the identity

(X,X,X) = det(X). (3.5.2.7)
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This trilinear form defines a cross product X × Y such that

(X × Y,Z) = 3(X,Y, Z), (3.5.2.8)

for X,Y, Z ∈ A, which specializes to

X ×X =

bc−N(z) yz − cx xz − by
zy − cx ac−N(y) xy − az
zx− by yx− az ab−N(x)

 (3.5.2.9)

when X = Y .

Since O is nonassociative, it is rather a miracle that the above definitions
can be made for 3× 3 Hermitian matrices over O—nothing similar works for
larger matrices.

3.5.3. A real Lie group with Lie algebra e7(−25). Consider the Lie group

M := {(g, r) ∈ GL(A)×R× : det(gX) = r det(X)}, (3.5.3.1)

so that we have a homomorphism

ν : M → R× : (g, r) 7→ r. (3.5.3.2)

Then we have

ker(ν) = {g ∈ GL(A) : det(gX) = det(X)}. (3.5.3.3)

It is known that ker(ν) is a connected semisimple real Lie group of real rank 2
with Lie algebra isomorphic to e6(−26). The number −26 in the notation
of e6(−26) means it is the real form of the complex simple Lie algebra of
type E6 such that the Killing form has signature (a, b) with a− b = −26; or,
equivalent, that every Cartan involution has trace 26 = −(−26). For complex
simple Lie algebras of exceptional type, such numbers already classify their
real forms up to isomorphism. (The same explanation applies to other real
Lie algebras of exceptional type below.) Also, the center of M is

Z(M) ∼= R× (3.5.3.4)

with x ∈ R× acting as multiplication by the scalar x on A, so that ν(x) = x3.
In this case, the Lie algebra of M is the direct sum of those of Z(M) and
ker(ν), and ker(ν) is the derived group of M . The ker(ν)-orbit of 1 in A is
isomorphic to the quotient of ker(ν) by a maximal compact subgroup with Lie
algebra isomorphic to f4. In the classification in [66, Chapter X, Section 6],
this orbit is a noncompact Riemannian symmetric space of type E IV, which
is not Hermitian.

Moreover, g ∈M induces g∗ ∈M by

(gX, g∗Y ) = (X,Y ). (3.5.3.5)

Then M acts on

W := A⊕R⊕A⊕R (3.5.3.6)

by

g(X, ε,X ′, ε′) := (gX, ν(g)−1ε, g∗X ′, ν(g)ε′). (3.5.3.7)
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There is also an additive action

ρ : A ↪→ GL(W) : B 7→ ρB (3.5.3.8)

with ρB defined by

ρB


X
ε
X ′

ε′

 :=


X + 2B ×X ′ + εB ×B

ε
X ′ + εB

ε′ + (B,X) + (B ×B,X ′) + εdet(B)

 , (3.5.3.9)

with elements of W represented by column vectors (cf. (3.5.3.6)).

Consider the Lie group

U := image(ρ). (3.5.3.10)

It is known that M normalizes U . Let ι ∈ GL(W) be defined by

ι(X, ε,X ′, ε′) := (−X ′,−ε′, X, ε). (3.5.3.11)

Consider the Lie groups
P := M n U (3.5.3.12)

and
G := 〈ι, P 〉 (3.5.3.13)

(i.e., G is generated by ι and P ) as subgroups of GL(W). It is known that G is
a connected semisimple Lie group of real rank 3 with Lie algebra isomorphic
to e7(−25), and that P is the maximal parabolic subgroup of G stabilizing the
subspace {(0, 0, 0, ε′) : ε′ ∈ R} of W.

These definitions might seem rather complicated and unmotivated, but
it is worth drawing the analogy of the element ι and the subgroups U , M ,
and P of G with the corresponding element

(
1n

−1n

)
and the subgroups{(

1n ∗
1n

)}
, {( ∗ ∗ )}, and {( ∗ ∗∗ )} of Sp2n(R).

A more systematic definition is that G is the Lie subgroup of GL(W)
consisting of elements preserving both the quartic form

Q(X, ε,X ′, ε′) :=(X ×X,X ′ ×X ′)
− εdet(X)− ε′ det(X ′)− 1

4 ((X,X ′)− εε′)2
(3.5.3.14)

and the skew-symmetric bilinear form

〈(X1, ε1, X
′
1, ε
′
1), (X2, ε2, X

′
2, ε
′
2)〉 := (X1, X

′
2)− (X2, X

′
1) + ε1ε

′
2 − ε2ε

′
1

(3.5.3.15)
on W. But, as we shall see, it is useful to know the explicit facts (3.5.3.13)
and (3.5.3.12).

3.5.4. An octonion upper half-space. Consider

HE7
:= {Z ∈ A⊗

R
C : Im(Z) > 0}, (3.5.4.1)

where Im(Z) > 0 means the left multiplication of Im(Z) on A induces a
positive definite linear transformation, or equivalently that Im(Z) lies in the
interior of the set {X2 : X ∈ A} with its natural real analytic topology (see
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[49, Theorem III.2.1]). (For an analogy, consider the case of symmetric ma-
trices over R, where positive definite matrices are exactly those matrices in
the interior of the set of squares of symmetric matrices with its natural real
analytic topology.) This is the most exotic generalization of the various clas-
sical upper half-spaces in Sections 3.1.1, 3.2.3, and 3.3.2 defined by Hermitian
matrices over R, C, and H, respectively. Together with the “semi-classical”
examples in Section 3.4.2, these are all the irreducible examples (namely,
ones that are not isomorphic to nontrivial products of smaller ones) of the
so-called tube domains. They are all of the form

{X + iY : X,Y ∈ J, Y > 0} ⊂ J⊗
R
C, (3.5.4.2)

where J is a formally real Jordan algebra (see [49, Chapters VIII–X]; see
also [5, Chapter III, Section 1] or [6, Chapter III, Section 1]), where the
symbol i denotes the action of 1⊗ i on J⊗R C. In the definition of HE7

, we
have J = A = Herm3(O).

Note that

dimCHE7
= dimC(A⊗

R
C) = dimR(A) = 27. (3.5.4.3)

The group U acts on HE7 by the translation

Z 7→ Z +B, (3.5.4.4)

for each ρB ∈ U associated with B ∈ A. The group M acts on HE7
by

its natural action on A⊗
R
C (up to a sign convention), which preserves the

subset HE7
. The element ι ∈ G acts on HE7

by

ι(Z) := −Z−1, (3.5.4.5)

where Z−1 is defined by inverting the Jordan algebra multiplication in A⊗RC.
One can check that these actions are compatible with each other, and define
an action of G on HE7

.

Given any Z = X + iY ∈ HE7 , where X,Y ∈ A and where the symbol i
denotes the action of 1⊗ i on A⊗R C, we have

ρ−X(Z) = iY (3.5.4.6)

for some Y > 0. By Freudenthal’s theorem (which intriguingly asserts that
matrices in Herm3(O) can also be diagonalized ; see [49, Theorem V.2.5]),
there exists some g ∈M such that

gY = 13, (3.5.4.7)

and so that

g(iY ) = i13. (3.5.4.8)

This shows that

HE7 = G · i13 (3.5.4.9)

and so that the action of G on HE7 is transitive.



34 Kai-Wen Lan

Let K denote the stabilizer of i13 in G. Then

K = Centι(G) (3.5.4.10)

as subgroups of G, which is a maximal compact subgroup of G and is a
connected compact Lie group with Lie algebra e6⊕R. Consider the homo-
morphism

h0 : U1 → G (3.5.4.11)

defined in block matrix form by setting

h0(cos θ + i sin θ) =


cos θ − sin θ

cos 3θ sin 3θ
sin θ cos θ

− sin 3θ cos 3θ

 ∈ GL(W)

(3.5.4.12)
(by left multiplication on column vectors representing elements in W; cf.
(3.5.3.6)). In particular, h0(i) = ι, so that we also have

HE7
= G · h0

∼= G/K. (3.5.4.13)

There is no homomorphism of the form G → Sp2n(R), for any n ≥ 1,
whose pre-composition with h0 : U1 → G lies in the conjugacy class of the
analogous homomorphism for Sp2n(R) in (3.1.4.1) (see [40, 1.3.10(i)] or [121,
Section 10, p. 531]; cf. the end of Section 5.2.2 below).

3.5.5. Bounded realization. There is also a bounded realization DE7 of
HE7 , also with coordinates in A⊗R C, with a change of coordinates

HE7

∼→ DE7 : Z 7→ (Z − i13)(Z + i13)−1, (3.5.5.1)

where (Z + i13)−1 is (as before) defined by inverting the Jordan algebra
multiplication in A⊗R C, which is yet another generalization of the classical
Cayley transform (cf. Sections 3.1.3 and 3.2.4).

In the classification in [66, Chapter X, Section 6], HE7
∼= DE7 is a

Hermitian symmetric domain of type E VII. In Cartan’s classification, it is a
bounded symmetric domain of type VI.

3.6. The case of E6

3.6.1. Bounded and unbounded realizations. There is (up to isomor-
phism) just one irreducible Hermitian symmetric domain that we have not
discussed yet. (Again, being irreducible means not isomorphic to a nontrivial
products of smaller ones.) Let us start with a bounded realization, given by

DE6 := DE7 ∩


0 x y
x 0 0
y 0 0

 : x, y ∈ O⊗
R
C

 (3.6.1.1)

in A⊗RC (see Section 3.5.5), where x and y are the conjugations induced by
the ones in O, which can be embedded as an open submanifold of O2⊗RC. Let
us also let HE6

denote the preimage of DE6
under the isomorphism (3.5.5.1),

which is then an unbounded realization.
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Essentially by construction, we have

dimCHE6 = dimCDE6 = 2 dimC(O⊗
R
C) = 2 dimR O = 16. (3.6.1.2)

By [71, Section 3], DE6
and henceHE6

admit transitive actions of a connected
semisimple Lie group G of rank 2 with Lie algebra isomorphic to e6(−14), with
stabilizers given by maximal compact subgroups of G which are connected
Lie groups with Lie algebras isomorphic to so10⊕R.

In the classification in [66, Chapter X, Section 6], HE6
∼= DE6

is a
Hermitian symmetric domain of type E III. In Cartan’s classification, it is a
bounded symmetric domain of type V.

3.6.2. A real Lie group of Lie algebra e6(−14). It is not easy to de-
scribe DE6

and HE6
, together with the actions of certain G as above, in

explicit coordinates. Nevertheless, let us define a real Lie group G with Lie
algebra e6(−14), which can be given the structure of the R-points of an alge-
braic group over Q, and which acts on DE6

and HE6
by the abstract theory

of Hermitian symmetric domains.

Consider the pairing

〈X,Y 〉 := (Xc, Y ), (3.6.2.1)

for X,Y ∈ A ⊗R C, where c denotes the complex conjugation with respect
to the tensor factor C; consider the involution σ on A = Herm3(O) (which
extends linearly to A⊗R C) defined bya x y

x b z
y z c

σ

=

 a −x −y
−x b z
−y z c

 ; (3.6.2.2)

and consider

G := {g ∈ GL(A⊗
R
C) : det(gX) = det(X), 〈gX, gY 〉σ = 〈X,Y 〉σ},

(3.6.2.3)
where

〈X,Y 〉σ := 〈Xσ, Y 〉. (3.6.2.4)

We note that

{g ∈ GL(A⊗
R
C) : det(gX) = det(X)} (3.6.2.5)

is a complex Lie group with Lie algebra e6(C), and so the upshot is that the
condition

〈gX, gY 〉σ = 〈X,Y 〉σ (3.6.2.6)

defines a real form of rank 2 of this complex Lie group with Lie algebra
isomorphic to e6(−14), which is not isomorphic to either its compact form
(see (3.5.4.10) and the remark following it) or the noncompact real form

{g ∈ GL(A) : det(gX) = det(X)} (3.6.2.7)
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(see (3.5.3.3) and the remark following it) whose Lie algebra is isomorphic
to e6(−26). (Thus far, we have seen three kinds of real Lie groups of type E6

in our examples, with one compact and the other two of real rank 2.)

3.6.3. Interpretation as conjugacy classes. Consider the homomorphism

h0 : U1 → G (3.6.3.1)

defined by

h0(α)

a x y
x b z
y z c

 =

α4a αx αy
αx α−2b α−2z
αy α−2z α−2c

 , (3.6.3.2)

with α acting as 1⊗α on O⊗Z C. Then it can be checked directly that

K := Centh0
(G) (3.6.3.3)

is a maximal compact subgroup of G, which is a connected Lie group with
Lie algebra isomorphic to so10⊕R, so that we have

HE6 = G · h0
∼= G/K. (3.6.3.4)

There is no homomorphism of the form G→ Sp2n(R), for some n ≥ 1,
whose pre-composition with h0 : U1 → G lies in the conjugacy class of the
analogous homomorphism for Sp2n(R) in (3.1.4.1) (see [40, 1.3.10(i)] or [121,
Section 10, p. 530]; cf. the end of Section 5.2.2 below).

3.7. A brief summary

Let us summarize the groups and symmetric domains we have considered
as follows. Let us also include the information of the corresponding special
node on each Dynkin diagram, marked with a unique double circle on the
diagram. Such special nodes have not been explained, but should be useful
for the readers when they consult more advanced texts.

(1) G(R) = Sp2n(R), K ∼= Un, D = Hn:d d · · · d d < da (3.7.1)

(2) G(R) = Ua,b, K ∼= Ua×Ub, D = Ha,b:d d · · · da · · · d d (3.7.2)

Here the special node is the b-th from the left, or alternatively, from the
right, because it is only up to automorphisms of the Dynkin diagram.

(3) G(R) = SO∗2n, K ∼= Un, D = HSO∗2n
, with n ≥ 2:

d d · · · d · · · d��
HH

d
da (3.7.3)

Again, the special node is only up to automorphisms of the Dynkin
diagram. Therefore, it can be, alternatively, the other right-most node.

(4) G(R)+ = SOa,2(R)+, K ∼= SOa(R)×SO2(R), D+ = H+
SOa,2

, with a ≥ 1

but a 6= 2:
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(a) a = 2n− 1 is odd, with n ≥ 1:da d · · · d d > d (3.7.4)

(b) a = 2n− 2 is even, with n ≥ 3:

da d · · · d · · · d��
HH

d
d (3.7.5)

(In the excluded case a = 2, we have Spin2,2(R) ∼= SL2(R)× SL2(R),

and H+
SO2,2

∼= H×H is not irreducible.)

(5) LieG ∼= e6(−14), LieK ∼= so10⊕R, D = HE6
:

da d d
d

d d (3.7.6)

Yet again, the special node is only up to automorphisms of the Dynkin
diagram. Therefore, it can be, alternatively, the right-most node.

(6) LieG ∼= e7(−25), LieK ∼= e6⊕R, D = HE7
:

da d d d
d

d d (3.7.7)

These exhaust all the possibilities of irreducible Hermitian symmetric do-
mains.

In the cases (1), (2), and (3), there exist injective homomorphisms of
the form G(R) → Sp2n′(R), for some n′ ≥ 1, whose pre-composition with
h0 : U1 → G(R) lies in the conjugacy class of the analogous homomorphism
for Sp2n′(R) as in (3.1.4.1). In the case (4), the analogous assertion is true
after replacing SOa,2(R)+ with its double cover Spina,2(R). In the cases (5)
and (6), the analogous assertion is simply false. (In Section 5.2.2 below, we
will encounter this issue again in the classification of abelian-type Shimura
data, although the question there is more subtle because we need to also
consider the structure of algebraic groups over Q.)

4. Rational boundary components and compactifications

In this section, we will explain how the double coset spaces

XU = G(Q)\(D×G(A∞))/U ∼=
∐
i∈I

Γi\D+

as in (2.2.15) and (2.2.21) are compactified and shown to be algebraic varieties
in cases where D are Hermitian symmetric domains or their finite unions.
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4.1. Examples of rational boundary components

Let us start by explaining the notion of rational boundary components in
many examples, based on the Hermitian symmetric domains we have seen in
Section 3. We will begin with the cases with D = H in Section 4.1.1, followed
by the cases with D = H×H in Section 4.1.2; the cases with D = Hn in
Section 4.1.3; the cases with D = Ha,b, with a ≥ b, in Section 4.1.4; the cases
with D = HSO∗2n

in Section 4.1.5; the cases with D+ = H+
SOa,2

, with a ≥ 2,

in Section 4.1.6; and the cases with D = HE6
or D = HE7

in Section 4.1.7.

4.1.1. Cases with D = H. Suppose G = SL2, so that we have D = H as in
Examples 2.2.7 and 2.2.23, and we have to consider quotients of the form Γ\D,
where Γ is an arithmetic subgroup of SL2(Q). Note that the action of SL2(Q)
preserves

H∗ := H∪P1(Q) (4.1.1.1)

as a subset of P1(C).

In the natural topology of P1(C), the boundary ofH is P1(R)=SL2(R)·∞,
where ∞ means just ( 1

0 ) in projective coordinates. The reason to consider
instead the rational subset P1(Q) = SL2(Q) · ∞ is the reduction theory : The
fundamental domain ofH under the action of Γ can be compactified by adding
only points in P1(Q) = SL2(Q) · ∞. The irrational points are completely ir-
relevant. Therefore, by topologizing H∗ at the points of P1(Q) using open
discs bounded by the so-called horocycles, namely, circles tangent to P1(R)
at the points of P1(Q) (see [169, Section 1.3]), we obtain a compactification

Γ\H ↪→ Γ\H∗ (4.1.1.2)

such that Γ\H∗ has the structure of a compact Riemann surface (or, in other
words, a complete algebraic curve over C), with finitely many boundary points

Γ\H∗ − Γ\H ∼= Γ\P1(Q) (4.1.1.3)

called cusps. (Here the finiteness of Γ\P1(Q) can be deduced from the el-
ementary fact that P1(Q) = SL2(Q) · ∞ = SL2(Z) · ∞.) The points of
P1(Q) = SL2(Q) · ∞ are the so-called rational boundary components of H,
which are prototypical examples of their analogues for more general Hermit-
ian symmetric domains.

The notions of cusps and rational boundary components depend on the
structure of G = SL2 as an algebraic group over Q in an essential way. There
exist other algebraic groups G′ over Q such that G′(R) ∼= G(R) = SL2(R)
and such that the fundamental domains for the actions of the corresponding
arithmetic subgroups Γ′ of G′(Q) on D are already compact, in which case
there is no need to add any cusps (cf. the example of Shimura curves in
Section 5.2.2 below).

4.1.2. Cases with D = H×H. There are two important cases of G with
G(R) acting on D = H×H.
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The first G is simply SL2×SL2. Then we should take

D∗ := H∗×H∗

= (H×H)∪
(
G(Q) · (H×∞)

)
∪
(
G(Q) · (∞×H)

)
∪
(
G(Q) · (∞×∞)

)
(4.1.2.1)

as subsets of P1(C)×P1(C). There are three G(Q)-orbits of rational boundary
components (which are those orbits other than H×H).

The other G is the restriction of scalars ResF/Q SL2, for some real
quadratic extension field F of Q. It is the group scheme G over Q whose
R-points are

G(R) = SL2(R⊗
Q
F ), (4.1.2.2)

for each Q-algebra R. In particular, we have G(Q) = SL2(F ). This is the
case of Hilbert modular surfaces, which are generalized to higher-dimensional
Hilbert modular varieties by replacing F with totally real extension fields
of Q of higher degrees. Then we should take

D∗ := (H×H)∪
(
G(Q) · (∞×∞)

)
, (4.1.2.3)

with only one G(Q)-orbit of rational boundary components (which is the
unique orbit other than H×H).

In both cases, we can topologize D∗ such that Γ\D∗ is a compactification
of Γ\D for each arithmetic subgroup Γ of G(Q). When G is simply SL2×SL2,
this is just doubling the case where G = SL2. When G is ResF/Q SL2, this is
essentially proved in [165], in a different language. This generalizes the case
where G = SL2 but will be superseded by the introduction of Satake topology
in general.

Here are some general principles, which are valid for not only these two
examples, but also for the forthcoming ones:

(1) The rational boundary components are in one-one correspondence with
(rational) parabolic subgroups P of the algebraic group G over Q whose
pullback to each Q-simple (almost) factor G′ of G is either the whole
G′ or a maximal proper parabolic subgroup P′. When the group G is
Q-simple, we will just say that such a P is a maximal parabolic subgroup.

(2) For classical groups G defined by nondegenerate pairings over finite-
dimensional semisimple algebras over Q, the (rational) parabolic sub-
groups of G are always stabilizers of increasing sequences of totally
isotropic subspaces.

4.1.3. Cases with D = Hn. Suppose G = Sp2n, so that G(R) acts on Hn
as in Section 3.1.1.

When n = 2, there are three G(Q)-orbits of proper parabolic subgroups
of G(Q), with the following representatives, respectively: (We warn the read-
ers that, although we will write down only the groups of Q-points, we will
still be working with algebraic groups over Q. This is a somewhat misleading
abuse of language, which we adopt only for simplicity of exposition.)
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(1) A Borel subgroup

B(Q) =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗


 (4.1.3.1)

(which is a minimal parabolic subgroup) stabilizing the increasing se-
quence 


∗
0
0
0


 ⊂



∗
∗
0
0


 (4.1.3.2)

of totally isotropic subspaces of Q4. Note that we have

∗
0
0
0



⊥

=



∗
∗
0
∗


 (4.1.3.3)

and 

∗
∗
0
0



⊥

=



∗
∗
0
0


 (4.1.3.4)

with respect to the alternating pairing

〈 · , · 〉 : Q4×Q4 → Q (4.1.3.5)

defined by the matrix J2 =
(

12
−12

)
, and so we can complete the above

sequence (4.1.3.2) into a flag


0
0
0
0


 ⊂



∗
0
0
0


 ⊂



∗
∗
0
0


 ⊂



∗
∗
0
∗


 ⊂



∗
∗
∗
∗


 (4.1.3.6)

in Q4. This also explains why the entries of B are not exactly upper-
triangular. Sometimes it is convenient to work with upper-triangular
matrices—then one should replace J2 with a matrix that is indeed anti-
diagonal, not just block anti-diagonal, as remarked in Example 2.1.2.

(2) The Klingen parabolic subgroup

P(1)(Q) =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗


 (4.1.3.7)
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(which is a maximal parabolic subgroup) stabilizing the totally isotropic
subspace 


∗
0
0
0


 (4.1.3.8)

of Q4.

(3) The Siegel parabolic subgroup

P(2)(Q) =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗


 (4.1.3.9)

(which is a maximal parabolic subgroup) stabilizing the totally isotropic
subspace 


∗
∗
0
0


 (4.1.3.10)

of Q4.

The Borel subgroup B is not maximal, and hence will not be needed in the
consideration of rational boundary components. Nevertheless, we have

B(Q) = P(1)(Q)∩P(2)(Q) (4.1.3.11)

by definition, and P(1)(Q) and P(2)(Q) will both be needed.

Now that we have seen the maximal parabolic subgroups when n = 2,
let us consider a more general n. The rational boundary components of Hn
are given by elements of the G(Q)-orbits of(

∞r

Hn−r

)
∼= Hn−r, (4.1.3.12)

which means 


1r
Z

0r
1n−r

 : Z ∈ Hn−r

 (4.1.3.13)

in generalized projective coordinates (cf. Remark 3.1.1.4), for r = 1, . . . , n.
(When r = 0, we just get Hn itself.)

There is a topology, called the Satake topology (see [148], [9, Theorem
4.9], and [19, Section III.3] for systematic treatments not just for this case),
on the set

H∗n := Hn ∪
(
∪

1≤r≤n
G(Q) · Hn−r

)
, (4.1.3.14)

where Hn−r stands for
(∞r

Hn−r
)

as in (4.1.3.12), such that Hn−r lies in the
closure ofHn−s exactly when r ≥ s, and such that Γ\H∗n is a compactification
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of Γ\Hn as a topological space, for every arithmetic subgroup Γ of G(Q) (by
the reduction theory, as in [18] and [11]). According to [9], Γ\H∗n is a normal
projective variety over C, which is called the Satake–Baily–Borel or minimal
compactification of Γ\Hn. (The references given above are not the historical
ones mainly for H∗n and Γ\H∗n, such as [147], [7], [28], and [155]—see [154,
Section 2] for a nice review. Rather, they are more recent ones that also work
for our later examples.)

Each

(
∞r

Hn−r

)
, or rather




1r
Z

0r
1n−r

 : Z ∈ Hn−r

 in gener-

alized projective coordinates (see (4.1.3.13)), is stabilized by a maximal par-
abolic subgroup of G(Q) of the form

P(r)(Q) =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗


 (4.1.3.15)

because 
∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗




1
∗

0
1

 =


∗ ∗
∗

0
1

 ∼


1
∗

0
1

 , (4.1.3.16)

where the sizes of the block matrices are given by r, n − r, r, and n − r,
both horizontally and vertically. This P(r)(Q) is the stabilizer of the totally
isotropic Q-subspace 


x
0
0
0

 : x ∈ Qr

 (4.1.3.17)

of

Q2n ∼= Qr ⊕Qn−r ⊕Qr ⊕Qn−r. (4.1.3.18)

We have

P(r)(Q) = L(r)(Q) n U(r)(Q), (4.1.3.19)

where

L(r)(Q) =



X

A B
tX−1

C D

 :
X ∈ GLr(Q),(

A B
C D

)
∈ Sp2n−2r(Q)


∼= GLr(Q)×Sp2n−2r(Q)

(4.1.3.20)
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is a Levi subgroup, and where

U(r)(Q) =




1 ∗ ∗ ∗
1 ∗

1
∗ 1


 (4.1.3.21)

is the unipotent radical . Note that L(r)(Q) acts on the rational boundary
component H2n−2r via the second factor Sp2n−2r(Q). This is the so-called

Hermitian part of the Levi subgroup L(r)(Q). The unipotent radical U(r)(Q)
is an extension

1→W(r)(Q)→ U(r)(Q)→ V(r)(Q)→ 1, (4.1.3.22)

where

W(r)(Q) =




1 Y
1

1
1

 : Y ∈ Symr(Q)

 ∼= Symr(Q) (4.1.3.23)

is the center of U(r)(Q), and where

V(r)(Q) ∼= Q2n−2r (4.1.3.24)

(by viewing Symr(Q) and Q2n−2r as commutative algebraic groups over Q).

4.1.4. Cases with D = Ha,b, with a ≥ b. Suppose E is some imaginary
quadratic extension field of Q. Suppose G is a group scheme over Q defined by

G(R) := {g ∈ GLa+b(E⊗
Q
R) : tgJa,bg = Ja,b}, (4.1.4.1)

for each Q-algebra R, where Ja,b is some skew-Hermitian matrix as in (3.2.2.2)
with S a skew-Hermitian matrix with entries in E. (We do not need to choose
any S when a = b.) Then G(R) is the group U′a,b defined by Ja,b as in (3.2.2.1),
which acts on Ha,b as in Section 3.2.2.

In this case, the rational boundary components of Ha,b (with respect to
the choice of G) are given by elements of the G(Q)-orbits of(

∞r

Ha−r,b−r

)
∼= Ha−r,b−r, (4.1.4.2)

which means 


1r

Z
W

0r
1b−r

 :

(
Z
W

)
∈ Ha−r,b−r

 (4.1.4.3)

in generalized projective coordinates (cf. Remark 3.1.1.4), for r = 1, . . . , b.
(When r = 0, we just get Ha,b itself.)



44 Kai-Wen Lan

With the Satake topology (see the reference given in Section 4.1.3, which
we shall not repeat) on the set

H∗a,b := Ha,b ∪
(
∪

1≤r≤b
G(Q) · Ha−r,b−r

)
, (4.1.4.4)

where Ha−r,b−r stands for
(∞r

Ha−r,b−r
)

as in (4.1.4.2), Ha−r,b−r lies in
the closure of Ha−s,b−s exactly when r ≥ s, and the quotient Γ\H∗a,b is

a compactification of Γ\Ha,b as a topological space, for every arithmetic
subgroup Γ of G(Q). Again, according to [9], Γ\H∗a,b is a normal projective

variety over C, which is the minimal compactification of Γ\Ha,b.

Each
(∞r

Ha−r,b−r
)
, or rather

{( 1r
Z
W

0r
1b−r

)
: ( ZW ) ∈ Ha−r,b−r

}
in gen-

eralized projective coordinates (see (4.1.4.3)), is stabilized by a maximal par-
abolic subgroup of G(Q) of the form

P(r)(Q) =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗
∗ ∗ ∗ ∗


 , (4.1.4.5)

where the sizes of the block matrices are given by r, b− r, a− b, r, and b− r,
both horizontally and vertically. This P(r)(Q) is the stabilizer of the totally
isotropic E-subspace 


x
0
0
0
0

 : x ∈ Er

 (4.1.4.6)

of

Ea+b ∼= Er ⊕Eb−r ⊕Ea−b⊕Er ⊕Eb−r. (4.1.4.7)

We have

P(r)(Q) = L(r)(Q) n U(r)(Q), (4.1.4.8)

where

L(r)(Q) =




X

A E B
F M G

tX
−1

C H D

 :

X ∈ GLr(E),A E B
F M G
C H D

 ∈ G(r)(Q)


∼= GLr(E)×G(r)(Q)

(4.1.4.9)
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is a Levi subgroup, where G(r) is the analogue of G defined by the smaller
matrix

Ja−r,b−r =

 1b−r
S

−1b−r

 (4.1.4.10)

with the same S; and where

U(r)(Q) =




1 ∗ ∗ ∗ ∗

1 ∗
1 ∗

1
∗ 1


 (4.1.4.11)

is the unipotent radical. Note that L(r)(Q) acts on the rational boundary
componentHa−r,b−r via the second factor G(r)(Q). This is the Hermitian part

of the Levi subgroup L(r)(Q). The unipotent radical U(r)(Q) is an extension

1→W(r)(Q)→ U(r)(Q)→ V(r)(Q)→ 1, (4.1.4.12)

where

W(r)(Q) =




1 Y

1
1

1
1

 : Y ∈ Hermr(E)


∼= Hermr(E)

(4.1.4.13)
is the center of U(r)(Q), and where

V(r)(Q) ∼= E(a−r)+(b−r) (4.1.4.14)

(by viewing Hermr(E) and E(a−r)+(b−r) as commutative algebraic groups
over Q). We note that the overall picture is very similar to the case of Hn in
Section 4.1.3, although we need to work with coordinates over E and hence
with GLr(E) as an algebraic group over Q (which means we are working with
the restriction of scalars ResE/Q GLr), and with the matrix S when a > b.

Let us mention two important variants which frequently appear in the
literature.

The first variant replaces the imaginary quadratic extension field E of
Q in the above definition of G with a CM extension (namely, a totally imagi-
nary quadratic extension of a totally real extension) F of Q, and replaces Ja,b
with a nondegenerate skew-Hermitian matrix J over OF such that −iJ de-
fines a Hermitian pairing of signatures (a1, b1), (a2, b2), . . . , (ad, bd) at the d
real places of the maximal totally real subextension F+ of Q in F , where
d := [F+ : Q], for some integers aj ≥ bj ≥ 0 and n ≥ 0 such that aj + bj = n,
for all j = 1, . . . , d. Then

G(R) ∼= U′a1,b1 ×U′a2,b2 × · · ·×U′ad,bd (4.1.4.15)

acts on
D ∼= Ha1,b1 ×Ha2,b2 × · · ·×Had,bd , (4.1.4.16)
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and the rational boundary components of D are given by elements of the
G(Q)-orbits of some

D(r) ∼= Ha1−r,b1−r ×Ha2−r,b2−r × · · ·×Had−r,bd−r, (4.1.4.17)

for r = 1, . . . ,min(b1, b2, . . . , bd). Note that there is no r at all if at least one
of b1, b2, . . . , bd is zero.

In the special case where (a1, b1) = (a, b) but (aj , bj) = (n, 0) for all
j 6= 1, for some integers a ≥ b ≥ 0 and n = a+ b ≥ 0, we simply have

D ∼= Ha,b. (4.1.4.18)

If d = 1, then this is just as before. If d ≥ 2, then D∗ = D and the quo-
tient Γ\D is automatically compact, for every arithmetic subgroup Γ of G(Q).
Whether d ≥ 2 or not, when (a, b) = (2, 1) (and when (4.1.4.18) holds), the
quotient Γ\D is called a Picard modular surface.

The second variant is a further generalization of the above first variant,
by replacing F with a central simple algebra B over a CM extension over Q
that is equipped with a positive involution ? (namely, an anti-automorphism
of order 2) such that trB/Q(xx?) > 0 for every x 6= 0 in B, and by defin-
ing G using a nondegenerate skew-Hermitian pairing over a finitely generated
B-module. Then we still have an isomorphism as in (4.1.4.16), and the ratio-
nal boundary components of D are still of the same form as in (4.1.4.17), but
the values of r allowed in (4.1.4.17) are more restrictive, depending on the
possible Q-dimensions of totally isotropic B-submodules. If B is a division
algebra and the pairing is defined over a simple B-module, then no r > 0 is
allowed, in which case Γ\D is again automatically compact, for every arith-
metic subgroup Γ of G(Q).

4.1.5. Cases with D = HSO∗2n
. Starting with this case, we will be less

explicit about the choices of G. There exists a group scheme G over Q such
that G(R) ∼= SO∗2n, such that the rational boundary components of HSO∗2n

are given by elements of the G(Q)-orbits of some D(r) ∼= HSO∗2n−4r
(which

we shall abusively denote as HSO∗2n−4r
), with r = 1, . . . , bn2 c, and such that,

with the Satake topology on

H∗SO∗2n
:= HSO∗2n

∪
(

∪
1≤r≤bn2 c

G(Q) · HSO∗2n−4r

)
, (4.1.5.1)

HSO∗2n−4r
lies in the closure of HSO∗2n−4s

exactly when r ≥ s, and the quo-

tient Γ\H∗SO∗2n
gives the minimal compactification of Γ\HSO∗2n

, for every

arithmetic subgroup Γ of G(Q).

When n = 2k, an example of G is given by

G(R) := {g ∈ GL2k(O⊗
Z
R) : tgJkg = Jk}, (4.1.5.2)

for each Q-algebra R, where B is a quaternion algebra over Q such that
B ⊗Q R ∼= H, and where Jk =

(
1k

−1k

)
is as before. Then we can describe
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the rational boundary components HSO∗4k−4r
of HSO∗4k

as{(
∞r

Z

)
: Z ∈ Hermk−r(H)⊗

R
C, Im(Z) > 0

}
, (4.1.5.3)

which means


1r
Z

0r
1k−r

 : Z ∈ Hermk−r(H)⊗
R
C, Im(Z) > 0

 (4.1.5.4)

in generalized projective coordinates (cf. Remark 3.1.1.4), for r = 1, . . . , k.
Each HSO∗4k−4r

as above is stabilized by a maximal parabolic subgroup of

G(Q) of the form

P(r)(Q) =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗


 (4.1.5.5)

because 
∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗




1
∗

0
1

 =


∗ ∗
∗

0
1

 ∼


1
∗

0
1

 , (4.1.5.6)

where the sizes of the block matrices are given by r, n − r, r, and n − r,
both horizontally and vertically. This P(r)(Q) is the stabilizer of the totally
isotropic B-submodule 


x
0
0
0

 : x ∈ Br

 (4.1.5.7)

of

B2n ∼= Br ⊕Bn−r ⊕Br ⊕Bn−r, (4.1.5.8)

with left B-module structures given by having each b ∈ B act by right mul-
tiplication of its conjugate b, so that they do not intervene with left multi-
plications of matrix entries. We have

P(r)(Q) = L(r)(Q) n U(r)(Q), (4.1.5.9)

where

L(r)(Q) =



X

A B
tX
−1

C D

 :
X ∈ GLr(B),(
A B
C D

)
∈ G(r)(Q)


∼= GLr(B)×G(r)(Q)

(4.1.5.10)
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is a Levi subgroup, where G(r) is the analogue of G defined by the smaller
matrix

Jk−r =

(
1k−r

−1k−r

)
; (4.1.5.11)

and where

U(r)(Q) =




1 ∗ ∗ ∗
1 ∗

1
∗ 1


 (4.1.5.12)

is the unipotent radical. Note that L(r)(Q) acts on the rational boundary
component HSO∗4n−4r

via the second factor G(r)(Q). This is the Hermitian

part of the Levi subgroup L(r)(Q). The unipotent radical U(r)(Q) is an ex-
tension

1→W(r)(Q)→ U(r)(Q)→ V(r)(Q)→ 1, (4.1.5.13)

where

W(r)(Q) =




1 Y
1

1
1

 : Y ∈ Hermr(B)

 ∼= Hermr(B) (4.1.5.14)

is the center of U(r)(Q), and where

V(r)(Q) ∼= B2k−2r (4.1.5.15)

(by viewing Hermr(B) and B2k−2r as commutative algebraic groups over Q).
We note that, again, the overall picture is very similar to the one in Sec-
tion 4.1.3, although we need to work with coordinates over B and hence
with GLr(B) as an algebraic group over Q.

4.1.6. Cases with D+ = H+
SOa,2

, with a ≥ 2. Suppose G is a group

scheme over Q defined by some Q-valued symmetric bilinear form Q on
Qa+2 which has signature (a, 2) over R, so that G(R) ∼= SOa,2(R) and
G(R)+ ∼= SOa,2(R)+. (The precise choice of Q will not be important for
our exposition.)

The maximal parabolic subgroups of G(Q) = SO(Qa+2, Q), where
SO(Qa+2, Q) denotes the subgroup of SLa+2(Q) consisting of elements pre-
serving the pairing Q (and we shall adopt similar notation in what follows),
are in bijection with the nonzero subspaces I of Qa+2 that are totally isotropic
with respect to the bilinear form Q. Then we must have 1 ≤ dimQ(I) ≤ 2
because the signature of Q is (a, 2) over R. (But it might happen that no
such I exists.) For each such I, we have a parabolic subgroup of G(Q) of the
form

PI(Q) ∼= LI(Q) n UI(Q), (4.1.6.1)

where

LI(Q) ∼= SO(I⊥/I,Q|I⊥/I)×GLQ(I) (4.1.6.2)
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is the Levi quotient (which is also noncanonically a subgroup), and where
UI(Q) is the unipotent radical which fits into a short exact sequence

1→ ∧2I → UI(Q)→ HomQ(I⊥/I, I)→ 1. (4.1.6.3)

When dimQ(I) = 1, we have

LI(R) ∼= SOa−1,1(R)×GL1(R), (4.1.6.4)

and so LI(R)∩G(R)+ acts trivially on some zero-dimensional rational bound-
ary component

H+
I
∼= H0. (4.1.6.5)

When dimQ(I) = 2, we have

LI(R) ∼= SOa−2(R)×GL2(R), (4.1.6.6)

and so LI(R)∩G(R)+ acts via the usual Möbius transformation of

GL2(R)+ = {g ∈ GL2(R) : det(g) > 0} (4.1.6.7)

on some one-dimensional rational boundary component

H+
I
∼= H1. (4.1.6.8)

For example, suppose (for simplicity) that Q is defined by the symmetric
matrix 

1a−2

0 1
1 0

0 1
1 0

 , (4.1.6.9)

where the sizes of the block matrices are given by a− 2, 1, 1, 1, and 1. If

I =




0
0
0
∗
0


 , (4.1.6.10)

which is one-dimensional, then

PI(Q) =




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗



∼= LI(Q) n UI(Q), (4.1.6.11)

where

LI(Q) =




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

X
X−1

 :

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 ∈ SOa−1,1(Q), X ∈ Q×


(4.1.6.12)
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and

UI(Q) =




1 x

1 y
1 z

− tx −z −y 1 − 1
2
txx− yz

1

 : x ∈ Qa−2, y, z ∈ Q

 ;

(4.1.6.13)
and PI(Q) stabilizes

H+
I =




0
0
0
1
0


 (4.1.6.14)

because 
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗




0
0
0
1
0

 =


0
0
0
∗
0

 ∼


0
0
0
1
0

 (4.1.6.15)

in projective coordinates. Alternatively, if

I =




0
∗
0
∗
0


 , (4.1.6.16)

which is two-dimensional, then

PI(Q) =




∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗



∼= LI(Q) n UI(Q), (4.1.6.17)

where

LI(Q) =




X

a b
a′ b′

c d
c′ d′

 :

X ∈ SOa−2(Q),

t

(
a′ b′

c′ d′

)−1

=

(
a b
c d

)
∈ GL2(Q)


(4.1.6.18)
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and

UI(Q) =




1 0 x 0 y
− tx 1 − 1

2
txx 0 w

0 0 1 0 0
− ty 0 −w − txy 1 − 1

2
tyy

0 0 0 0 1

 : w ∈ Q, x, y ∈ Qa−2

 ;

(4.1.6.19)
and PI(Q)∩G(R)+ stabilizes

H+
I =




0
z
0
1
0

 : z ∈ C, Im z > 0

 (4.1.6.20)

because
∗ ∗ ∗
∗ a b ∗

∗ ∗
∗ c ∗ d ∗

∗ ∗




0
z
0
1
0

 =


0

az + b
0

cz + d
0

 ∼


0
(az + b)(cz + d)−1

0
1
0

 (4.1.6.21)

in projective coordinates.

There is a systematic way to combine these into a union

(H+
SOa,2

)∗ = H+
SOa,2

∪

 ∪
06=I totally

isotropic

H+
I

 , (4.1.6.22)

equipped with Satake topology, such that H+
I lies in the closure of H+

I′ (for
nonzero I and I ′) exactly when I ⊂ I ′ (which is qualitatively quite differ-
ent from the previous cases in Sections 4.1.3, 4.1.4, and 4.1.5, where rational
boundary components associated with larger totally isotropic subspaces are
smaller) and such that the quotient Γ\(H+

SOa,2
)∗ gives the minimal com-

pactification of Γ\H+
SOa,2

, for every arithmetic subgroup Γ of G(Q) that is

contained in G(R)+.

4.1.7. Cases with D = HE6 or D = HE7 . We shall be very brief in these
two cases. For HE6 , there exists a group scheme G over Q such that G(R) is
as in Section 3.6.2 and such that the rational boundary components of HE6

are isomorphic to either H5,1 or H0. For HE7
, there exists a group scheme G

over Q such that G(R) is as in Section 3.5.3 and such that the rational
boundary components of HE7

are isomorphic to either H+
SO10,2

, H1, or H0.

In each of these two cases, by [140, Section 3, Proposition 3], there exists
some G such that G(R) is as above and such that rankQ G = rankR GR; or, in
other words, G is as split as GR allows. In both cases, we have the minimal
compactifications of Γ\D, as usual, for arithmetic subgroups Γ of G(Q).
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4.2. Compactifications and algebraicity

4.2.1. Overview. In all cases considered so far, we have the following dia-
gram of useful compactifications of Γ\D, with canonical morphisms between
them denoted by solid arrows:

(Γ\D)
tor
Σ

&&

not directly related
(Γ\D)BS

��

(Γ\D)RBS

uu
(Γ\D)

min

(4.2.1.1)

Let us explain the objects in this diagram.

4.2.2. (Γ\D)
min

= Γ\D∗. This is the Satake–Baily–Borel or minimal com-
pactification of Γ\D, which is a normal projective variety over C (see [9]).
Here D∗ is the union of D with its rational boundary components, equipped
with the Satake topology, as explained in Section 4.1. The transition from
the analytic quotient Γ\D∗ to an algebraic variety is achieved by first en-
dowing Γ\D∗ with the structure of a complex analytic space (see [163, §1]) in
which the closed complement of the open subset Γ\D of Γ\D∗ is a closed com-
plex analytic subspace; and then by constructing a closed immersion of Γ\D∗
into a projective space PN (C) for some N , and by applying Chow’s theo-
rem (or “GAGA” for closed complex analytic subspaces of PNC , showing that
they are all complex analytifications of algebraic subvarieties—see [163, §3,

19, Proposition 13]). Then the open subspace Γ\D of (Γ\D)
min

= Γ\D∗ is
a quasi-projective variety over C, by applying Chow’s theorem again to the
closed complement. (This is the only known general method to show that Γ\D
is an algebraic variety.) Moreover, it is proved in [14] that any holomorphic
map from a quasi-projective variety to Γ\D is the complex analytification
of a morphism of algebraic varieties. In particular, the structure of Γ\D as
an algebraic variety is unique up to isomorphism. (These are the key results
used in the proof of Theorem 2.4.1.)

The compactification (Γ\D)
min

is canonical and does not depend on
any choices, but is highly singular in general. As we have seen in the ex-

amples in Section 4.1, the boundary (Γ\D)
min−(Γ\D) has a high codimen-

sion in (Γ\D)
min

in general. When the connected components of D are ir-
reducible in the sense explained in the beginning of Section 3 but are not
one-dimensional, and when Γ\D is not already compact, this codimension is
always at least two. The intuition is that we are collapsing a lot into a small
neighborhood of each boundary point.

4.2.3. (Γ\D)
tor
Σ . This is the toroidal compactification of Γ\D (see [5] or [6],

and see also [127]), which is an algebraic space depending on the choice of
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some combinatorial data Σ called a cone decomposition (or fan). (More pre-
cisely, Σ is a compatible collection of cone decompositions, but we prefer not
to go into the details here.) This means (Γ\D)

tor
Σ is not a canonical compacti-

fication of Γ\D in the sense that it does not just depend on Γ\D. Nevertheless,

it depends only on Γ\D and Σ, and there exist choices of Σ such that (Γ\D)
tor
Σ

is a smooth projective variety , and such that the boundary (Γ\D)
tor
Σ − (Γ\D)

is a simple normal crossings divisor . Such choices can always be achieved by
replacing any given Σ with a refinement . In particular, we obtain meaning-
ful smooth projective compactifications by paying the price of working with
the noncanonical Σ’s. (As a comparison, we have no precise control on the

smooth compactifications obtained by resolving the singularities of (Γ\D)
min

using Hironaka’s general theory in [69, 70].)

As in the case of (Γ\D)
min

, the boundary of (Γ\D)
tor
Σ is stratified by

locally closed subsets corresponding to Γ-orbits of the proper parabolic sub-
groups P of the algebraic group G over Q whose pullback to each Q-simple
(almost) factor G′ of G is either the whole G′ or a maximal parabolic sub-
group P′. This stratification is further refined by a stratification in terms of
the cones in the cone decomposition Σ. The incidence relations of the strata
in this finer stratification is dual to the incidence relations of the cones in the
cone decomposition Σ. The canonical map (Γ\D)

tor
Σ → (Γ\D)

min
in (4.2.1.1)

respects such stratifications.

One subtlety is that, except in very special cases, no choice of Σ can be
compatible with all Hecke correspondences. For arithmetic applications, it is
necessary to systematically work with refinements of Σ.

4.2.4. (Γ\D)BS. This is the Borel–Serre compactification of Γ\D (see [20]
and [19, Section III.5]; see also [58, Section 4]), which is a (real analytic)
manifold with corners. It can be defined more generally when D is a Rie-
mannian symmetric space that is not Hermitian, but is almost never an al-
gebraic variety. Already when G = SL2 and D = H (and when Γ is neat),
the compactification (Γ\D)BS is achieved by adding circles to D (instead of
adding points to D as in the case of D∗). In general, its boundary is stratified
by locally closed subsets corresponding to the Γ-orbits of all proper rational
parabolic subgroups P of the algebraic group G over Q, and the construction
of the subset associated with P uses the whole P, instead of just its Levi

quotient as in the case of (Γ\D)
min

.

The most important feature of (Γ\D)BS is that the canonical open em-
bedding Γ\D ↪→ (Γ\D)BS is a homotopy equivalence, which makes (Γ\D)BS

useful for studying the cohomology of Γ\D, and also that of the arithmetic
subgroup Γ of G(Q), which are closely related to the theory of automorphic
representations and Eisenstein series (see, for example, [22], [162], [54], [55],
and [107]). But let us remark here, as an addendum to Section 4.2.2 above,
that cuspidal automorphic representations are more closely related to the
L2-cohomology of Γ\D, and this L2-cohomology is canonical isomorphic to
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the intersection cohomology of (Γ\D)
min

. This was conjectured by Zucker (see
[178, (6.20)]) and proved by Looijenga (see [109]), Saper–Stern (see [146]),
and Looijenga–Rapoport (see [110]).

4.2.5. (Γ\D)RBS. This is the reductive Borel–Serre compactification of Γ\D
(see [178, Section 4], [59, Part I], and [19, Section III.6]; see also [58, Section
5]), which is similar to (Γ\D)BS in the following aspects: It can also be de-
fined more generally when D is a Riemannian symmetric space that is not
Hermitian, and its boundary is also stratified by locally closed subsets cor-
responding to the Γ-orbits of all proper rational parabolic subgroups P of
G. But there is a key difference—the subset associated with P is constructed
using only the (reductive) Levi quotient L of P. The reductive Borel–Serre
compactification (Γ\D)RBS is useful for studying, for example, the weighted
cohomology of Γ (see [59, Parts II–IV]; see also [58, Section 6.8]).

4.2.6. Models over number fields or their rings of integers. Although
(Γ\D)BS and (Γ\D)RBS are very useful analytic objects, when it comes to
applications requiring algebraic varieties (or at least algebraic spaces or alge-

braic stacks) defined over number fields, we need to work with Γ\D, (Γ\D)
min

,

and (Γ\D)
tor
Σ , the last being perhaps the most complicated. It is known that

(Γ\D)
min

and (Γ\D)
tor
Σ also have models over the same number fields over

which Γ\D is defined (see [138]), and they extend to good models over the
integers in many important special cases (see Sections 5.1.4 and 5.2.4 below).

All assertions so far in this Section 4.2 have their counterparts for
Shimura varieties; i.e., the double coset spaces XU defined by Shimura data.
(As we explained in Section 4.2.2, the results there are used in the proof of
Theorem 2.4.1.) Moreover, the minimal and toroidal compactifications also
have canonical models over the same reflex field F0 determined by (G,D) as
in Theorem 2.4.3 (see [138] again).

4.2.7. Algebro-geometric definition of modular forms. The projec-

tive coordinates of the minimal compactification (Γ\D)
min

= Γ\D∗ are given
by (holomorphic) modular forms, namely, holomorphic functions f : D → C
satisfying the following two conditions:

(1) Automorphy condition: f(γZ) = j(γ, Z)f(Z), for all γ ∈ Γ and Z ∈ D,
for some automorphy factor j : Γ×D → C× defining the weight of
f , satisfying the cocycle condition j(γ′γ, Z) = j(γ′, Z)j(γ, Z) for all
γ, γ′ ∈ Γ and Z ∈ D. (This means f represents a section of an automor-
phic line bundle over Γ\D defined by j. The line bundles used in [9] are
powers of the canonical bundle, namely, the top exterior power of the
cotangent bundle, of the complex manifold Γ\D.)

(2) Growth condition: f(Z) stays bounded near D∗ − D. (When Γ is neat,
this implies that the section represented by f extends to a section of a

line bundle over (Γ\D)
min

= Γ\D∗.) If f satisfies the additional condi-
tion that f(Z)→ 0 as Z → D∗ −D, then f is called a cusp form.



An example-based introduction to Shimura varieties 55

Ratios of such modular forms f define modular functions which are in
general highly transcendental as functions of the coordinates of D. Therefore,

to give models of Γ\D and (Γ\D)
min

over number fields or over their rings of
integers, we cannot just naively use the coordinates of D.

Not all modular forms are defined as above using only automorphy
factors valued in C×. It is possible to consider automorphy factors valued
in Centh0

(G(C)), so that it makes sense to consider modular forms with
weights given by all finite-dimensional representations W of Centh0

(G(C)).
But there is a subtlety here: For such a W , in general, the associated au-
tomorphic vector bundle W over Γ\D does not extend to a vector bundle

over (Γ\D)
min

. (This is consistent with the fact that, in general, the bound-

ary (Γ\D)
min−(Γ\D) has a high codimension in (Γ\D)

min
.) Nevertheless, the

automorphic vector bundle W has canonical extensions (see [128] and [61])

to vector bundles W can over the toroidal compactifications (Γ\D)
tor
Σ , whose

sections are independent of Σ. (When W is the restriction of a representation
of G(C), the vector bundle W is equipped with an integrable connection, and
its canonical extension W can is equipped with an integrable connection with
log poles along the boundary and coincides with the one given in [35].) The
global sections or more generally the cohomology classes of such canonical
extensions W can over (Γ\D)

tor
Σ then provide an algebro-geometric definition

of modular forms with coefficients in W . There are also the subcanonical
extensions W sub := W can(−∞), where ∞ abusively denotes the boundary

divisor (Γ\D)
tor−(Γ\D) with its reduced structure, whose global sections are

(roughly speaking) useful for studying cusp forms. The cohomology of W can

and W sub is often called the coherent cohomology of (Γ\D)
tor

. It is this ap-
proach that will allow us to define modular forms in mixed or positive char-
acteristics and study congruences among them using integral models. Even
in characteristic zero, there have been some results which have only been
proved with such an algebro-geometric definition. (See [62], [118], [89], and
[97] for some surveys on this topic.)

4.2.8. Mixed Shimura varieties. Just as Shimura varieties parameterize
certain variations of Hodge structures with additional structures, there is
also a notion of mixed Shimura varieties parameterizing certain variations of
mixed Hodge structures with additional structures. Then there is also a theory
of canonical models for such mixed Shimura varieties, and even for their
toroidal compactifications—see [118] and [138]. Many mixed Shimura varieties
naturally appear along the boundary of the toroidal compactifications of pure
Shimura varieties (i.e., the usual ones associated with reductive groups as in
Sections 2.3 and 2.4).

The theory of mixed Shimura varieties is even heavier in notation than
the theory of (pure) Shimura varieties, and is beyond the scope of this in-
troductory article. But let us at least mention the following prototypical ex-
ample. Consider the Shimura varieties XU associated to (G,D) = (GL2,H±),
whereH± := H±1 , which are modular curves. For each integer m ≥ 1, consider
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the (non-reductive) semidirect product G̃ = GL2 n (G2
a)m, with G = GL2

acting diagonally on (G2
a)m, where Ga is the additive group scheme over Z,

so that GL2(R) acts by left multiplication on (G2
a)(R) = R2 for every ring R.

Consider the corresponding action of G̃(R) on D̃ = H± × (R2)m. Then we
obtain by considering double coset spaces as in Section 2.2 the mixed Shimura

varieties X̃Ũ over XU for neat open compact subgroups Ũ with image in U un-

der the canonical homomorphism G̃(A∞)→ G(A∞), which are torsors under
abelian schemes over XU that are isogenous to the m-fold self-fiber product

of the universal elliptic curve over XU . Specifically, there exists some Ũ such

that X̃Ũ is exactly isomorphic to the m-fold self-fiber product of the univer-
sal elliptic curve over XU . The projective smooth toroidal compactifications
of such mixed Shimura varieties then provide generalizations of the classical
Kuga–Sato varieties, whose cohomology with trivial coefficients are useful for
studying the cohomology with nontrivial coefficients over the usual modular
curves XU , or even for the construction of related motives—see, for example,
[36, Section 5] and [156]. (We can also reduce questions about the cohomol-
ogy of Shimura varieties with nontrivial coefficients to questions about the
cohomology of mixed Shimura varieties with trivial coefficients in many more
general cases—see the end of Section 5.1.4 below.)

5. Integral models

5.1. PEL-type cases

All currently known constructions of integral models of Shimura varieties
(which we can describe in some reasonable detail) rely on the important
coincidence that, as explained in Section 3.1.5, when G = Sp2n and Γ is a
congruence subgroup of G(Z), the Siegel modular variety Γ\Hn parameterizes
polarized abelian varieties with level structures; and on the fact that we can
define moduli problems over the integers that naturally extend such complex
varieties. More generally, we can define the so-called PEL moduli problems,
which parameterize abelian schemes with additional PEL structures. As we
shall see below, the abbreviation PEL stands for polarizations, endomorphism
structures, and level structures. This is the main topic of this subsection.

5.1.1. PEL datum. The definition of PEL moduli problems require some
linear algebraic data. Suppose we are given an integral PEL datum

(O, ?, L, 〈 · , · 〉, h0), (5.1.1.1)

whose entries can be explained as follows:

(1) O is an order in a finite-dimensional semisimple algebra over Q.

(2) ? is a positive involution of O; namely, an anti-automorphism of order
2 such that trO⊗ZR/R(xx?) > 0 for every x 6= 0 in O ⊗Z R.
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(3) L is an O-lattice; namely, a finitely generated free Z-module L with the
structure of an O-module.

(4) 〈 · , · 〉 : L×L → Z(1) is an alternating pairing satisfying the condition
that

〈bx, y〉 = 〈x, b?y〉 (5.1.1.2)

for all x, y ∈ L and b ∈ O. Here

Z(1) := ker(exp : C→ C×) = 2πiZ (5.1.1.3)

is the formal Tate twist of Z.

(5) h0 is an R-algebra homomorphism

h0 : C→ EndO⊗
Z
R(L⊗

Z
R), (5.1.1.4)

satisfying the following conditions:
(a) For any z ∈ C and x, y ∈ L⊗ZR, we have 〈h0(z)x, y〉 = 〈x, h0(z)y〉,

where z 7→ z denotes the complex conjugation.

(b) The (symmetric) R-bilinear pairing (2πi)−1〈 · , h0(i)( · )〉 on L⊗ZR
is positive definite.

What do these mean? Given any integral PEL datum as above, we can
write down a real torus

A0 := (L⊗
Z
R)/L (5.1.1.5)

with a complex structure given by h0 : C→ EndO⊗ZR(L⊗ZR), which can be
shown to be an abelian variety (not just a complex torus) with a polarization

λ0 : A0 → A∨0
∼= (L⊗

Z
R)/L#, (5.1.1.6)

where A∨0 is the dual abelian variety of A0, with

L# := {x ∈ L⊗
Z
Q : 〈x, y〉 ∈ Z(1), for all y ∈ L} (5.1.1.7)

the dual lattice of L with respect to 〈 · , · 〉, and where the λ0 is induced by
the natural inclusion L ⊂ L# (see [125, Chapter I, Section 2, and Chapter
II, Section 9] and [88, Section 2.2]; cf. [91, Section 1.3.2]). The assumptions
that L is an O-lattice and that the compatibility (5.1.1.2) holds imply that
we have an endomorphism structure

i0 : O → EndC(A0) (5.1.1.8)

satisfying the Rosati condition; namely, for each b ∈ O, the diagram

A0
λ0 //

i(b?)

��

A∨0

(i(b))∨

��

A0
λ0

// A∨0

(5.1.1.9)
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is commutative (cf. [91, Section 1.3.3]). Moreover, for each integer n ≥ 1, we
have a principal level-n structure

(α0,n : L/nL
∼→ A0[n], ν0,n : (Z/nZ)(1)

∼→ µn), (5.1.1.10)

where A0[n] denotes the n-torsion subgroup of A0, which is canonically iso-
morphic to ( 1

nL)/L because of (5.1.1.5), where α0,n is induced by this canon-
ical isomorphism, and where ν0,n is induced by the exponential function
exp : C→ C× (with kernel Z(1) by definition), so that the diagram

(L/nL)×(L/nL)

α0,n×α0,n o
��

〈 · , · 〉
// (Z/nZ)(1)

ν0,no
��

A0[n]×A0[n]
λ0-Weil pairing

// µn

(5.1.1.11)

is commutative (see [88, Sections 2.2 and 2.3]; cf. [91, Section 1.3.6]), and so
that such a level structure is liftable to all higher levels n′ divisible by n. (The
second entry ν0,n in (α0,n, ν0,n) is often omitted in the notation, although ν0,n

is not determined by α0,n when 〈 · , · 〉 is not a perfect pairing modulo n.)
Furthermore, the homomorphism h0 : C→ EndO⊗ZR(L⊗ZR) defines a Hodge
decomposition

H1(A0,C) ∼= L⊗
Z
C = V0⊕V 0, (5.1.1.12)

where

V0 := {x ∈ L⊗
Z
C : h0(z)x = (1⊗ z)x, for all z ∈ C} (5.1.1.13)

and

V 0 := {x ∈ L⊗
Z
C : h0(z)x = (1⊗ z)x, for all z ∈ C}. (5.1.1.14)

Then we also have
LieA0

∼= V0 (5.1.1.15)

as O⊗ZC-modules. The reflex field F0 for h0 (which is defined in this context
without referring to any Shimura datum) is the field of definition of the
isomorphism class of V0 as an O⊗Z C-module, or more precisely the subfield

F0 := Q(tr(b|V0) : b ∈ O) (5.1.1.16)

of C (see [91, Section 1.2.5]). This is the smallest subfield of C over which
we can formulate a trace or determinantal condition on the Lie algebra of
an abelian variety, to ensure that the pullback to C of its Lie algebra is
isomorphic to V0 as an O ⊗Z C-module (see [91, Sections 1.2.5 and 1.3.4]).

The upshot is that, by combining all of these, we obtain a tuple

(A0, λ0, i0, (α0,n, ν0,n)), (5.1.1.17)

which is an abelian variety with a polarization, an endomorphism structure,
and a level structure, such that LieA0 satisfies the Lie algebra condition
defined by h0. These additional structures form the so-called PEL structures.
Thus, writing down an integral PEL datum means writing down such a tuple.
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5.1.2. Smooth PEL moduli problems. Given any integral PEL datum
as in (5.1.1.1), we can define the associated PEL moduli problems (at varying
levels) over (the category of schemes over) F0, or over suitable localizations
of the ring of integers OF0

. Roughly speaking, they are the smallest mod-
uli problems (over the respective base rings) parameterizing tuples of abelian
schemes with additional PEL structures as above, including the one we wrote
down in (5.1.1.17). See [91, Section 1.4.1] for more details on defining smooth
PEL moduli problems over localizations of OF0 of good residue characteris-
tics. (A prime number p is good for (O, ?, L, 〈 · , · 〉, h0) if it satisfies all of
the following conditions: p is unramified in O, as in [91, Definition 1.1.1.18];
p does not divide [L# : L]; p 6= 2 whenever (O ⊗Z R, ?) has a simple factor
isomorphic to a matrix algebra over the Hamiltonian numbers H with its
canonical positive involution; and there is no nontrivial level structure at p.
See [91, Definition 1.4.1.1].) Note that people often talk about good reduc-
tions instead of smoothness when describing integral models, even though it
is not always clear what reductions should mean without some properness
assumption.

The moduli problems above are defined using the language of isomor-
phism classes. If we use the language of isogeny classes instead, then it is
more natural to work with the rational PEL datum

(O⊗
Z
Q, ?, L⊗

Z
Q, 〈 · , · 〉, h0), (5.1.2.1)

which is good for defining PEL moduli problems over F0 (in characteristic
zero) up to isogenies of all possible degrees, or with its p-integral version

(O⊗
Z
Z(p), ?, L⊗

Z
Z(p), 〈 · , · 〉, h0), (5.1.2.2)

which is good for defining PEL moduli problems over OF0,(p) only up to
isogenies of degrees prime to p. The latter was done in [84, Section 5] and
generalized in [91, Section 1.4.2], and then compared in [91, Section 1.4.3]
with the definition by isomorphism classes in [91, Section 1.4.3]. (While the
comparison was not difficult, the author still found it helpful to have the
details recorded in the literature.)

5.1.3. PEL-type Shimura varieties. The PEL moduli problems as above
are related to the double coset spaces in Section 2 as follows. Firstly, the
subtuple (O, ?, L, 〈 · , · 〉) of (5.1.1.1) defines a group scheme G over Z by

G(R) :=

 (g, r) ∈ EndO(L⊗
Z
R)
××R× :

〈gx, gy〉 = r〈x, y〉, for all x, y ∈ L⊗
Z
R

 , (5.1.3.1)

for each ring R. The elaborate conditions for a prime p to be good, in the first
paragraph of Section 5.1.2, then imply that G(Zp) is a so-called hyperspecial
open compact subgroup of G(Qp) when GQp is connected as an algebraic
group over Qp. Secondly, the remaining entry h0 : C → EndO⊗ZR(L ⊗Z R)
defines a homomorphism

h0 : C× → G(R), (5.1.3.2)
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whose G(R)-conjugacy class defines a manifold

D := G(R) · h0. (5.1.3.3)

Then (G,D) defines a double coset space XU as in (2.2.15), for each neat open
compact subgroup U of G(A∞). When (G,D) is a Shimura datum (which is,
however, not always the case), we say it is a PEL-type Shimura datum, and
say XU is a PEL-type Shimura variety . In this case, the reflex field F0 for h0

coincides with the reflex field of (G,D) (see Theorem 2.4.3).

Example 5.1.3.4. Suppose O = Z; ? is trivial; L = Z2n; 〈 · , · 〉 is defined by
the matrix 2πi

(
1n

−1n

)
; and h0(eiθ) =

(
cos θ − sin θ
sin θ cos θ

)
, for all θ ∈ R. Then

G ∼= GSp2n (see Example 2.1.2), and D = G(R) · h0
∼= H±n (see (3.1.4.6)).

This is the important special case of Siegel moduli problems.

Example 5.1.3.5. Suppose O = OE is an order in an imaginary quadratic
extension field E of Q, with a fixed isomorphism E ⊗Q R ∼= C; ? is the
complex conjugation of E over Q; L = Oa+b for some integers a ≥ b ≥ 0;
〈 · , · 〉 is defined by 2πi times the composition of the skew-Hermitian pairing

defined by some matrix

(
1b

ε1a−b
−1b

)
with trO/Z : O → Z, where ε ∈ O

satisfies −iε ∈ R>0; and h0(eiθ) =

(
cos θ − sin θ

e−iθ

sin θ cos θ

)
, for all θ ∈ R. Then

G(R) ∼= GUa,b
∼= GU′a,b, and D = G(R) · h0

∼= H±a,b (see (3.2.5.9)).

Example 5.1.3.6. SupposeO is an order in a quaternion algebra B over Q such
that B ⊗Q R ∼= H and O is stabilized by the canonical positive involution ?;
L = O2n; 〈 · , · 〉 is 2πi times the composition of the skew-Hermitian pairing
defined by the matrix

(
1n

−1n

)
with trO/Z :O → Z; and h0(eiθ)=

(
cos θ − sin θ
sin θ cos θ

)
for all θ ∈ R. Then the derived group of G(R) is isomorphic to SO∗2n, and
D = G(R) · h0 contains HSO∗2n

as a connected component (see Section 3.3.1).
However, G is not connected as an algebraic group over Q.

These three examples are prototypical for integral PEL data and the
associated PEL moduli problems. By the classification of positive involutions
(see the review in [91, Propositions 1.2.1.13 and 1.2.1.14] based on Albert’s
classification, or just the classification over R in [84, Section 2]), up to cocenter
(i.e., up to replacing the group with a subgroup containing the derived group),
G(R) factorizes as a product of groups of the form Sp2n(R), Ua,b, or SO∗2n
(with varying values of n ≥ 0 and a ≥ b ≥ 0). Thus, the connected compo-
nents of D are products of the Hermitian symmetric domains we have seen
in Sections 3.1, 3.2, and 3.3. However, we never see the Hermitian symmetric
domains in Sections 3.4, 3.6, and 3.5 as factors, except when it is because
of the accidental (or special) isomorphisms H+

SO1,2

∼= H ∼= H1,1
∼= HSO∗4

,

H+
SO2,2

∼= H×H, H+
SO3,2

∼= H2, H+
SO4,2

∼= H2,2, and H+
SO6,2

∼= HSO∗8
in low

dimensions (see [66, Chapter X, Section 6]).

For a PEL moduli problem defined by an integral PEL datum with
O ⊗Z Q a simple algebra over Q, the complex Lie group G(C) factorizes up



An example-based introduction to Shimura varieties 61

to cocenter (i.e., again, up to replacing the group with a subgroup containing
the derived group) as a product of symplectic, special linear group, or special
orthogonal groups, but only one type of them can occur. Accordingly, we
say the PEL moduli problem is of type C, type A, or type D. People often
also say that a PEL moduli problem of type A is a unitary Shimura variety,
even when G violates Condition (3) in Section 2.3 and so (G,D) is not a
Shimura datum. However, by orthogonal Shimura varieties, people might not
mean PEL moduli problems of type D. On one hand, this is because there
are useful abelian-type Shimura varieties associated with special orthogonal
groups, as we shall see in Example 5.2.2.11 below. On the other hand, since
the groups G associated with PEL moduli problems of type D are not even
connected, the corresponding pairs (G,D) violate the conditions for being
Shimura data in a more fundamental way, and hence there is some ambiguity
in what PEL-type Shimura varieties of type D should mean.

In all cases, whether (G,D) is a Shimura datum or not, when the cor-
responding (smooth) PEL moduli problem MU is defined at level U , there is
an open and closed immersion

XU ↪→ MU (C) (5.1.3.7)

(see [88, Sections 2.4 and 2.5]), which is generally not an isomorphism, due
to the so-called failure of Hasse’s principle (see [91, Remark 1.4.3.12] and
[84, Sections 7–8]). More concretely, this is because the definition of MU
uses only the adelic group G(A)—the level structures use G(A∞), while the
Lie algebra condition uses G(R). But there can be more than one mutually
nonisomorphic algebraic groups G(1), . . . ,G(m) (including G) over Q such
that G(j)(A) ∼= G(A), for all j, and such that MU (C) is the disjoint union of

the X
(j)
U ’s defined using G(j)’s. (When the pairs (G(j),D)’s are Shimura data,

by checking the action of Aut(C/F0) on the dense subset of the so-called CM
points, it can be shown that this disjoint union descends to a disjoint union

over F0 of the canonical models of the X
(j)
U ’s.) In cases of types A and C,

such a failure is harmless in practice, because all the X
(j)
U ’s are isomorphic to

each other, even at the level of canonical models over F0 (see [84, Section 8]).
However, in cases of type D, such a failure can be quite serious. It can even

happen that some of the X
(j)
U ’s are noncompact, while others are not (see [92,

Example A.7.2]).

With the tacit running assumption that U is neat (see [138, 0.6] again,
or see [91, Definition 1.4.1.8]), MU is a (smooth) quasi-projective scheme
because it is finite over the base change of some Siegel moduli scheme (see
Section 3.1.5), and hence an open and closed subscheme of MU serves as an
integral model of XU . (When U is not neat, we still obtain a Deligne–Mumford
stack whose associated coarse moduli space is a quasi-projective scheme.)

Remark 5.1.3.8. The consideration of certain Shimura varieties or connected
Shimura varieties as parameter spaces for complex abelian varieties with
PEL structures has a long history—see, for example, Shimura’s articles [166]
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and [167]. The theory over the complex numbers is already quite compli-
cated and heavy in notation, which seems inevitable for anything involving
semisimple algebras and positive involutions, but there is an additional sub-
tlety when formulating the PEL structures over the integers. That is, we can
no longer talk about the singular homology or cohomology of an abelian va-
riety over a general base field, let alone their relative versions for an abelian
scheme over a general base scheme. Instead, we have resorted to the (relative)
de Rham and étale homology or cohomology. This is the reason that PEL
moduli problems suffer from the failure of Hasse’s principle, and that these
moduli problems can only be easily defined in mixed characteristics (0, p)
when there is no ramification or level at p. (In Section 5.1.5 below, we will
summarize the known constructions when there are indeed some ramification
and levels at p.)

5.1.4. Toroidal and minimal compactifications of PEL moduli. The
above PEL moduli MU carry universal or tautological objects, which are
abelian schemes with additional PEL structures, essentially by definition.

In the important special case of Siegel moduli problems considered in
Example 5.1.3.4, the tautological objects are just principally polarized abelian
schemes with level structures (but with no nontrivial endomorphism struc-
tures or polarization degrees specified in the moduli problem). By vastly gen-
eralizing results due to Mumford (see [126]), Faltings and Chai constructed
toroidal compactifications of the Siegel moduli problems by studying the de-
generation of polarized abelian schemes into semi-abelian schemes (see [48,
Chapters III and IV]). Over such toroidal compactifications, they can alge-
bro-geometrically define modular forms, and construct minimal compactifi-
cations of Siegel moduli problems as the projective spectra of some graded
algebras of modular forms (with inputs of positivity results from [124]; see
[48, Chapter V]). The main difficulty in Faltings and Chai’s construction was
that they needed to glue together boundary strata parameterizing degener-
ations of different ranks. This was much more complicated than the earlier
boundary construction in [141], based on the original results of [126].

The generalization of the results of [48, Chapters III–V] to all smooth
PEL moduli problems was carried out in [91]. Later in [88], it was shown that
the toroidal and minimal compactifications in [91] (and also in [48, Chapters
III–V], both based on the theory of degeneration) are indeed compatible with
the toroidal and minimal compactifications in [61] and [138] (based on the
constructions in [9] and [5] using analytic coordinate charts). In other words,
toroidal and minimal compactifications of PEL moduli problems provide inte-
gral models of toroidal and minimal compactifications of PEL-type Shimura
varieties.

Over the integral models of PEL-type Shimura varieties and their
toroidal compactifications, by considering the relative cohomology of certain
Kuga families (which are abelian scheme torsors which are integral models
of certain mixed Shimura varieties as in Section 4.2.8) and their toroidal



An example-based introduction to Shimura varieties 63

compactifications, we can also define automorphic vector bundles and their
canonical and subcanonical extensions over these integral models (see [48,
Chapter VI], [90, especially Section 6], [101, Sections 1–3], and [102, Sec-
tions 4–5]), whose global sections and cohomology classes then provide an
algebro-geometric definition of modular forms in mixed characteristics, gen-
eralizing the theory over C in Section 4.2.7. See [89] and [97] again for some
surveys on this topic. See also [67] and [68], for example, for some appli-
cation to the theory of p-adic modular forms, with the assumptions on the
integral models of toroidal and minimal compactifications justified by the
constructions in [91].

5.1.5. Integral models not defined by smooth moduli. Let p be any
prime number, which is not necessarily good for the integral PEL datum.
(The conditions for being good for the integral PEL datum are the same as
the conditions for being good for defining the PEL moduli, except that we
ignore the condition of having no nontrivial level structure at p.)

Let Ẑp := lim←−p-N (Z/NZ) and A∞,p := Ẑp⊗ZQ, with the superscript “p”

meaning “away from p”. When the level U ⊂ G(A∞) is of the form U = UpUp,
where Up ⊂ G(A∞,p) and Up ⊂ G(Qp) such that Up is a parahoric open com-
pact subgroup of G(Qp)—that is, when Up is the identity component of the
stabilizer of some multichain of Zp-lattices in L⊗Z Qp—there is also a natu-
ral way to define a PEL moduli problem parameterizing not just individual
abelian schemes with additional PEL structures, but rather multichains of
isogenies of them. (See [143, Chapters 3 and 6].) This generalizes the idea
that, in the case of modular curves, the moduli problem at level Γ0(p) pa-
rameterizes degree-p cyclic isogenies of elliptic curves. (See, for example, [75,
Sections 3.4 and 6.6], which gave a moduli interpretation of the corresponding
construction in [44] that was by merely taking normalizations.)

PEL moduli problems at parahoric levels at p are generally far from
smooth in mixed characteristics (0, p), in which case we say that the integral
models have bad reductions. Nevertheless, people have developed a theory of
local models which describes the singularities of such moduli problems—see,
for example, [143], [132], [133], [134], and [136]. (See also [142], [60], and [135]
for some surveys.) Beginners should be warned that the forgetful morphisms
from a higher parahoric level to a lower one, or more precisely from one
such moduli problem defined by some multichain of Zp-lattices to another
one defined by a simpler multichain, is usually just projective but not finite.
This is very different from what we have seen in characteristic zero (or in the
classical modular curve case in [44] and [75]).

For higher levels at p, the older ideas in [44] by taking normalizations,
and in [75] by generalizing the so-called Drinfeld level structures, are both
useful. But they are useful in rather different contexts—exactly which strat-
egy is more useful depends on the intended applications.
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The idea of generalizing Drinfeld level structures played important roles
in [65], [114], [115], and [116], and in subsequent works based on them such
as [172], where people needed to compute the cohomology of certain nearby
cycles and count points, and hence would prefer to work with moduli prob-
lems even when they are not flat . (It was known much earlier—see [29, Ap-
pendix A]—that moduli problems defined by Drinfeld level structures are
generally not even flat over the base rings.) But such moduli problems tend
to be very complicated, and might be too cumbersome when it comes to the
construction of compactifications, because most known techniques of gluing
require at least some noetherian normal base schemes. (The results in [65],
[114], [115], [116], and [172] were all for compact PEL-type Shimura varieties.)

On the contrary, the idea of taking normalizations produces, essentially
by definition, noetherian normal schemes flat over the base rings. It had been
overlooked for a long time because of its lack of moduli interpretations, and
because no theory of local models was available for them. While these two
problems still remain, recent developments beyond the PEL-type cases (see
the discussion on the Hodge-type cases below in Section 5.2.3), and also de-
velopments in the construction of p-adic modular forms (as in [63], which
was based on [95] and did not require the integral models to be constructed
as moduli problems) motivated people to systematically reconsider the con-
structions by taking normalizations. In the PEL-type cases, we can construct
good compactifications for all such integral models (and their variants)—see
[93], [94], and [96]. Such compactifications are good in the sense that the com-
plications in describing its local structures and its boundary stratifications
are completely independent of each other. This is useful in, for example, [99,
Section 6.3], which generalized the results of [115] and [116] to all noncom-
pact cases, without having to compactify any moduli problems defined by
Drinfeld level structures.

In [98], it is shown that many familiar subsets of the reductions of
the integral models of Shimura varieties in characteristic p > 0, such as
p-rank strata, Newton strata, Oort central leaves, Ekedahl–Oort strata, and
Kottwitz–Rapoport strata, and their pullbacks to the integral models de-
fined by taking normalizations at arbitrarily higher levels at p, admit partial
toroidal and minimal compactifications with many properties similar to the
whole toroidal and minimal compactifications.

5.1.6. Langlands–Rapoport conjecture. In [103] and [104], where the
terminology Shimura varieties first appeared in the literature, Langlands
proposed to study Hasse–Weil zeta functions of Shimura varieties and re-
late them to the automorphic L-functions, generalizing earlier works for GL2

and its inner forms by Eichler, Shimura, Kuga, Sato, and Ihara. This is very
ambitious— see the table of contents of [105] for the types of difficulties that
already showed up in the case of Picard modular surfaces. This motivated
the Langlands–Rapoport conjecture, which gives a detailed description of the
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points of the reduction modulo p of a general Shimura variety at a hyperspe-
cial level at p—see [106], [137], [144], and [142]. See also [83] for a variant of
the conjecture due to Kottwitz, which was proved by himself for all PEL-type
Shimura varieties of types A and C in [84].

5.2. Hodge-type and abelian-type cases

5.2.1. Hodge-type Shimura varieties.

Definition 5.2.1.1. A Hodge-type Shimura datum (G,D) is a Shimura
datum such that there exists a Siegel embedding

(G,D) ↪→ (GSp2n,H±n ); (5.2.1.2)

namely, an injective homomorphism G ↪→ GSp2n of algebraic groups over Q
inducing an (automatically closed) embedding D ↪→ H±n , for some n ≥ 0 (cf.
Remarks 2.4.11 and 2.4.13). A Hodge-type Shimura variety is a Shimura
variety associated with a Hodge-type Shimura datum.

When D = G(R) · h0 is the conjugacy class of some homomorphism
h0 : C× → G(R) as before, the above means the composition of h0 with
G(R) ↪→ GSp2n(R) lies in the conjugacy class of an analogous homomor-
phism for GSp2n(R) as in (3.1.4.7). As explained in Remark 2.4.13, each
neat open compact subgroup U of G(A∞) is the pullback of some neat open
compact subgroup U ′ of GSp2n(A∞) such that the Shimura variety XU as-
sociated with (G,D) at level U is a special subvariety of the Siegel modular
variety at level U ′. Then the points of XU are equipped with polarized abelian
varieties with level structures, which are pulled back from the Siegel modular
varieties (and hence depend on the choice of the Siegel embedding above).

Example 5.2.1.3. All the PEL-type Shimura data are, essentially by defini-
tion, of Hodge type, because of the definition of G in (5.1.3.1), and because of
the condition on h0 in Section 5.1.1. But there are many Hodge-type Shimura
data which are not of PEL type. Important examples of this kind are given
by general spin groups (with associated Hermitian symmetric domains as in
Section 3.4.3), which admit Siegel embeddings thanks to the so-called Ku-
ga–Satake construction (see [150], [152], and [85]; see also the reviews in [38,
Sections 3–4] and [112, Sections 1 and 3]).

The injectivity of the homomorphism G ↪→ GSp2n means we have a
faithful 2n-dimensional symplectic representation of G. By [43, Chapter I,
Proposition 3.1], the faithfulness of this representation implies that G(Q)
is the subgroup of GSp2n(Q) fixing some tensors (si) in the tensor algebra

generated by Q2n and its dual. But since C× h0−→ G(R)→ GSp2n(R) defines a
Hodge structure on R2n, by [43, Chapter I, Proposition 3.4], these tensors (si)
are Hodge tensors; namely, tensors of weight 0 and Hodge type (0, 0) with
respect to the induced Hodge structure on the tensor algebra of R2n.

Then the Shimura varieties XU associated with (G,D) can be inter-
preted as parameter spaces of polarized abelian varieties (over C) equipped
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with some Hodge cycles and level structures. According to Deligne (see [43,
Chapter I, Main Theorem 2.11]), Hodge cycles on complex abelian varieties
are absolute Hodge cycles. Roughly speaking, this means that the Hodge cy-
cles can be conjugated, as if they were known to be defined by algebraic cycles
(as if the Hodge conjecture were true for them), when the underlying abelian
varieties are conjugated by an automorphism of C. This defines a canonical
action of Aut(C/F0) on the points of XU by conjugating the Hodge cycles of
the corresponding abelian varieties, which coincides with the action given by
the structure of XU as the C-points of its canonical model over F0. Because
of this, people can formulate some moduli interpretation for the points of the
canonical model of XU over F0.

Such a pointwise moduli interpretation has not really helped people
write down any useful moduli problem, but they are still important for study-
ing the less direct construction by taking normalizations, to be introduced in
Section 5.2.3 below.

5.2.2. Abelian-type Shimura varieties.

Definition 5.2.2.1. An abelian-type Shimura datum (G,D) is a Shimura
datum such that there exist a Hodge-type Shimura datum (G1,D1) and a cen-
tral isogeny

Gder
1 → Gder (5.2.2.2)

between the derived groups which induces an isomorphism

(Gad
1 ,Dad

1 )
∼→ (Gad,Dad) (5.2.2.3)

between the adjoint quotients. An abelian-type Shimura variety is a
Shimura variety associated with an abelian-type Shimura datum.

By definition, every Hodge-type Shimura datum (resp. Shimura variety)
is of abelian type. Essentially by definition, the connected components of an
abelian-type Shimura variety are finite quotients of those of some Hodge-type
Shimura variety. Thus, results for abelian-type Shimura varieties are often
proved by reducing to the case of Hodge-type Shimura variety.

Example 5.2.2.4. The simplest and perhaps the most prominent examples of
abelian-type Shimura varieties that are not of Hodge type are the Shimura
curves, which are associated with Shimura data (G,D) with G(Q) = B×,
where B is a quaternion algebra over a totally real extension F of Q of
degree d > 1 such that

B⊗
Q
R ∼= M2(R)×Hd−1, (5.2.2.5)

in which case
D ∼= H± (5.2.2.6)

is one-dimensional. More generally, there are abelian-type Shimura data
(G,D) with G(Q) = B×, where B is a quaternion algebra over F such that

B⊗
Q
R ∼= M2(R)a×Hb (5.2.2.7)
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for some a, b ≥ 1, in which case

D ∼= (H±)a (5.2.2.8)

(cf. [169, Section 9.2]). Even more generally, as explained in [37, Section 6],
with the same B and F (and a, b ≥ 1), for each integer n ≥ 1, there are
abelian-type Shimura data (G,D) such that G(Q) is the group of similitudes
over F of a symmetric bilinear pairing over Bn, and such that

G(R) ∼= GSp2n(R)a×Hb, (5.2.2.9)

where H is a real form of GSp2n(C) with compact derived group (which is H×
when n = 1), in which case

D ∼= (H±n )a. (5.2.2.10)

In all these cases, the related Hodge-type Shimura data (as in Definition
5.2.2.1) and their Siegel embeddings (as in Definition 5.2.1.1) can be con-
structed with some auxiliary choice of imaginary quadratic field extensions
of Q (see [37, Section 6], and also [26, Section 2]). However, none of these are
of Hodge type (let alone of PEL type) because the Hodge structures defined
by rational representations of G are not rational Hodge structures (see [120,
Section 9, part (c) of the last example]).

Example 5.2.2.11. There are also the abelian-type Shimura varieties associ-
ated with Shimura data (G,D) such that the derived group of G as an alge-
braic group over Q is the special orthogonal group defined by some symmetric
bilinear form over Q of signature (a, 2) over R, for some a ≥ 1, so that G(R)+

is up to cocenter the group SOa,2(R)+ studied in Section 3.4.3. (See also the
last paragraph of Section 3.4.4.) In this case, the related Hodge-type Shimura
data (as in Definition 5.2.2.1) are general spin groups, with their Siegel em-
beddings (as in Definition 5.2.1.1) given by the Kuga–Satake construction,
as in Example 5.2.1.3, mapping G into GSp2n with n = 2a (see the same
references in Example 5.2.1.3). Such Shimura varieties associated with spe-
cial orthogonal groups are important because they are related to the moduli
of interesting algebraic varieties. For example, when a = 19 in the above,
the corresponding Shimura varieties contain as open subspaces the moduli
spaces of polarized K3 surfaces with level structures (see, for example, [145,
Section 6], [111, Sections 2 and 4], and [164, Section 4.2]).

In [40, 2.3], based on earlier works due to Satake (see [149]; and see
also [151] and [153, Chapter IV]), Deligne analyzed all abelian-type Shimura
data (G,D) that are adjoint and simple in the sense that G is adjoint and
simple as an algebraic group over Q. (See also [121, Section 10].) When G
is simple over Q, there is up to isomorphism a unique irreducible Dynkin
diagram associated with all the simple factors of GC, or rather Lie G(C). (In
fact, in this case, Gad ∼= Resk/Q H for some number field k and some connected
semisimple algebraic group algebraic group H over k such that HQ remains

simple over the algebraic closure Q of Q in C; see, for example, [21, 6.21(ii)].)
We say that the group is of type An, Bn, Cn, Dn, E6, or E7 accordingly
to the type of such a Dynkin diagram (cf. the summary in Section 3.7). In
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cases of type Dn, for n ≥ 5, we further single out the special case of type DR
n

(resp. DH
n) if all the noncompact simple factors of Lie G(R) are isomorphic

to so2n−2,2 (resp. so∗2n). In cases of type D4, the situation is more complicated
because so6,2

∼= so∗8, but we can still single out some special cases of type DR
4

and DH
4 . For simplicity, we shall drop the subscript n when it is not used in the

discussion. Deligne showed that an adjoint and simple Shimura datum (G,D)
is of abelian type exactly when it is of types A, B, C, DR, or DH. In cases
of types A, B, C, and DR, the related Hodge-type Shimura datum (G1,D1)
(as in Definition 5.2.1.1) can be chosen such that the derived group Gder

1 is
simply-connected as an algebraic group over Q. However, in the remaining
cases of DH

n , where n ≥ 4, the related Hodge-type Shimura datum can only be
chosen such that the noncompact simple factors of Gder

1 (R) are all isomorphic
to SO∗2n. (Although this could have been a more precise statement in terms
of algebraic groups, we are content with the simpler statement here in terms
of real Lie groups.)

More generally, suppose that (G,D) is a Shimura datum that is simple
in the sense that the adjoint quotient Gad is simple. (But we no longer as-
sume that G itself is adjoint.) Then we can still classify the type of (G,D)
by classifying the type of (Gad,Dad) as above, and we have the following
possibilities:

(1) All cases of types A, B, C, and DR are of abelian type.

(2) Cases of type DH can be of abelian type only when Gder is the quotient
of Gder

1 for the Hodge-type datum (G1,D1) mentioned in the last para-
graph. In particular, Gder

1 (R) cannot have factors isomorphic to the spin
group cover Spin∗2n of SO∗2n.

(3) Cases of mixed type D, namely, those that are neither of type DR nor of
type DH, are not of abelian type. Such cases exist by a general result
due to Borel and Harder (see [17, Theorem B]).

(4) Cases of type E6 and E7 are never of abelian type.

Thus, roughly speaking, all Shimura varieties associated with symplectic and
unitary groups are of abelian type, and none of the Shimura varieties asso-
ciated with exceptional groups can be of abelian type, while there are some
complications for Shimura varieties associated with spin groups or special
orthogonal groups.

5.2.3. Integral models of these Shimura varieties. The strategy for
constructing integral models of Hodge-type Shimura varieties goes as follows.
Suppose (G,D) is a Hodge-type Shimura datum with Siegel embedding

(G,D) ↪→ (GSp2n,H±n ), (5.2.3.1)

and suppose U is an open compact subgroup of G(A∞) that is the pullback
of some open compact subgroup U ′ of GSp2n(A∞) such that U ′ = U ′,pU ′p,
where U ′,p is some neat open compact subgroup of GSp2n(A∞,p), and where
U ′p = GSp2n(Zp). (In the literature, people have considered the more general
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setting where U ′p is the stabilizer in GSp2n(Qp) of some Zp-lattice, which can
nevertheless be reduced to our setting here by modifying the Siegel embed-
ding (5.2.3.1), at the expense of replacing n with 8n, using “Zarhin’s trick”
as in [93, Lemma 4.9] or [95, Lemma 2.1.1.9].) Let v|p be a place of F0, and
let OF0,(v) demote the localization of F0 at v. Then we have a canonical
morphism

XU,F0
→ XU ′,OF0,(v)

, (5.2.3.2)

where XU,F0
abusively denotes the canonical model of XU over F0, and where

XU ′,OF0,(v)
denotes the base change to OF0,(v) of the Siegel moduli scheme at

level U ′. Then we define the integral model

XU,OF0,(v)
(5.2.3.3)

of XU,F0 over OF0,(v) by taking the normalization of XU ′,OF0,(v)
in XU,F0 under

the above canonical morphism.

A priori, this is a very general construction, which also makes sense
when U is just a subgroup of the pullback of U ′. This is what we did in the
PEL-type cases in [95] and [93], as reviewed in Section 5.1.5, and similar ideas
can be traced back to [44].

But when U is of the form UpUp such that Up is a neat open compact
subgroup of G(A∞,p) and such that Up is a hyperspecial maximal open com-
pact subgroup of G(Qp), Vasiu, Kisin, and others (see [119, Remark 2.15],
[177], [123], [78], and [77]) proved that XU,OF0,(v)

is smooth and satisfies cer-

tain extension properties making it an integral canonical model . (The for-
mulations of the extension properties vary from author to author. See, in
particular, [119, Section 2], [123, Section 3], and [78, (2.3.7)]. An integral
canonical model then just means an integral model satisfying some formula-
tion of the extension property. This notion is not expected to be useful when
the levels at p are not hyperspecial.) They also showed that, roughly speak-
ing, by working with connected components, by taking suitable quotients of
integral models of Hodge-type ones by finite groups, and by descent, we also
obtain integral models for all abelian-type Shimura varieties at hyperspecial
levels at p, which are smooth and satisfy the same extension properties.

When p > 2, and when G splits over a tamely ramified extension of Qp,
Kisin and Pappas proved in [80] that all abelian-type Shimura varieties at
parahoric levels at p have integral models which have local models as predicted
by the group-theoretic construction in [136], and which satisfy a weaker ex-
tension property.

In [79], Kisin proved a variant of the Langlands–Rapoport conjecture
(partly following Kottwitz’s variant; cf. Section 5.1.6) for all abelian-type
Shimura varieties at hyperspecial levels at p, when p > 2.

5.2.4. Integral models of toroidal and minimal compactifications.
In [113], it is proved that, by taking normalizations over the toroidal and
minimal compactifications of Siegel moduli constructed in [48] and [91], we
also have good integral models of toroidal and minimal compactifications of
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integral models of Hodge-type Shimura varieties constructed in the previous
subsection. The cone decompositions for the toroidal compactifications thus
obtained are rather inexplicit pullbacks of certain smooth ones for the Siegel
moduli. But it is believed that, by considering normalizations of blowups of
the minimal compactifications as in [94], we can obtain toroidal compactifi-
cations associated with more general projective and smooth cone decompo-
sitions as well.

As in the PEL-type cases in Section 5.1.5, such compactifications are
good in the sense that the complications in describing its local structures and
its boundary stratifications are completely independent of each other. Using
the toroidal compactifications thus constructed, we showed in [99] and [100]
that, for each integral model of Hodge-type or abelian-type Shimura varieties
constructed in [78], [77], and [80], and for any prime ` different from the
residue characteristics, the `-adic étale nearby cycle cohomology over the
special fiber is canonically isomorphic to the `-adic étale cohomology over
the (geometric) generic fiber, without resorting to the proper base change
theorem (cf. [3, XII, 5.1] and [41, XIII, (2.1.7.1) and (2.1.7.3)]). (In [100], the
proof in the case of abelian-type Shimura varieties is achieved by reduction to
the case of Hodge-type Shimura varieties.) Intuitively speaking, the special
fibers of these integral models have as many points as there should be, at
least for studying the `-adic étale cohomology of Shimura varieties.

5.3. Beyond abelian-type cases

Although abelian-type Shimura varieties are already very useful and general,
as we have seen in Section 5.2.2, they do not cover all possibilities of Shimura
varieties. Among those associated with simple Shimura data, we are not just
missing those of types E6 and E7—we are also missing the majority (depend-
ing on one’s viewpoint) of type D cases. But these missing cases can still be
quite interesting, both for geometric and arithmetic reasons.

For example, in [122], Milne and Suh showed that there are many ex-
amples of geometrically connected quasi-projective varieties X over number
fields F such that the complex analytifications of X⊗F,σC and X⊗F,τ C have
nonisomorphic fundamental groups for different embeddings σ and τ of F
into C, by considering connected Shimura varieties of mixed type D (which
exist by [17, Theorem B]).

As another example, we have the following result of R. Liu and X. Zhu’s:

Theorem 5.3.1 (see [108, Theorem 1.2]). Suppose XU is a Shimura vari-
ety associated with a general Shimura datum (G,D) (which can certainly
be simple of types E6, E7, or mixed D) at some level U . Suppose V is an
étale Qp-local system associated with some finite-dimensional representation
of Gc = G/Zs(G), where Zs(G) is the minimal subtorus of the center Z(G)
such that the torus Z(G)◦/Zs(G) has the same split ranks over Q and R.
Suppose x : Spec(F )→ XU is a closed point of XU , together with a geometric
point x : Spec(F ) → XU lifting x. Then the stalk Vx, when regarded as a
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representation of Gal(F/F ), is geometric in the sense of Fontaine–Mazur
(see [53, Part I, Section 1]). That is, it is unramified at all but finitely many
places of F , and is de Rham at the places of F above p.

Recall that Fontaine and Mazur conjectured that every irreducible geo-
metric Galois representation comes from geometry in the sense that it ap-
pears as a subquotient of the étale cohomology of an algebraic variety (see
[53, Part I, Section 1] again). Theorem 5.3.1 would have been less surprising
if it only considered abelian-type Shimura varieties with certain assumptions
such that the stalks as in the theorem are just the p-adic realizations of some
abelian motives. But the theorem does consider non-abelian-type Shimura
varieties as well, and we do not know any families of motives parameterized
by these general Shimura varieties. We hope that there are such families, but
this is a difficult problem that is still wide open.

Both results mentioned above are about Shimura varieties or connected
Shimura varieties in characteristic zero. But what can we say about their in-
tegral models? Certainly, any quasi-projective variety over the reflex field F0

has some integral model over the ring of integers OF0 in F0, but we are not
interested in such a general construction. It would be desirable to have a
construction such that the pullback to OF0,(p) of the integral model at level
U is smooth and satisfies some reasonable extension property, when U is
of the form UpUp, where Up is a neat open compact subgroup of G(A∞,p)
and where Up is a hyperspecial maximal open compact subgroup of G(Qp).
Moreover, it would be desirable that the reduction modulo p of such integral
models can be described by some variant of the Langlands–Rapoport conjec-
ture (see Section 5.1.6 and the end of Section 5.2.3). These are also difficult
and wide open problems, but their nature might be very different from that
of the problem (in the previous paragraph) of finding motives parameterized
by such Shimura varieties.

5.4. Beyond Shimura varieties?

There are some exciting recent developments which are not about integral
models of Shimura varieties, or not even about Shimura varieties, but it would
have been a shame not to mention them at all.

In [159], Scholze constructed perfectoid Shimura varieties in all Hodge-
type cases, which are limits at the infinite level at p (in a subtle sense) of
Shimura varieties at finite levels. Base on these, in [164], Shen also constructed
perfectoid Shimura varieties in all abelian-type cases. Although the construc-
tions in [159] used Siegel moduli schemes over the integers, these perfectoid
Shimura varieties are objects (called adic spaces) defined over the character-
istic zero base field Cp (the completion of an algebraic closure Qp of Qp). But
the property of being perfectoid (see [158]) makes them much more powerful
than integral models at finite levels for studying many questions about torsion
in the cohomology of Shimura varieties and related geometric objects—see,
for example, [159], [131], and [25].
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Even the concept of Shimura varieties itself has been challenged and
generalized. In his Berkeley–MSRI lectures in the Fall of 2014 (see [161]),
Scholze defined certain moduli spaces of mixed-characteristic shtukas, which
can be viewed as a local analogue of Shimura varieties, but is much more gen-
eral than the previously studied local geometric objects such as the so-called
Rapoport–Zink spaces (see [143]) and can be defined for all reductive linear
algebraic groups over Qp. He proposed to use them to construct local Lang-
lands parameters for all reductive linear algebraic groups over Qp, along the
lines of Vincent Lafforgues’s construction of global Langlands parameters for
global fields of positive characteristics (see [87]), but in the much fancier
category of diamonds (see [161] and [160]).
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Birkhäuser, Boston, 2nd edition, 1998.



[176] J. Tilouine, H. Carayol, M. Harris, and M.-F. Vignéras, editors. Formes au-

tomorphes (I): Actes du semestre du Centre Émile Borel, printemps 2000.
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morphism of Shimura varieties, 14
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