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conjectures

Bruno Klingler

Abstract. We present a conjecture on the geometry of the Hodge locus of
a (graded polarizable, admissible) variation of mixed Hodge structures
over a complex smooth quasi-projective base, generalizing to this context
the Zilber–Pink conjecture for mixed Shimura varieties (in particular the
André–Oort conjecture).
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1. Introduction: Hodge locus, atypical locus and main
conjecture

1.1. Hodge locus

The general context of this paper is the study of the following geometric
problem. Let k be an algebraically closed field and let f : X → S be a smooth
morphism of quasi-projective k-varieties. Can we describe the locus of closed
points s ∈ S where the motive [Xs] of the fiber Xs is “simpler” than the
motive of the fiber at a very general point? Here “simpler” means that the
fiber Xs and its powers contain more algebraic cycles than the very general
fiber and its powers. If a Tannakian formalism of k-motives were available,
this would be equivalent to saying that the motivic Galois group GMot(Xs)
is smaller than the motivic Galois group of the very general fiber.

We restrict ourselves to k = C. From now on all algebraic varieties
are over C. Following a common abuse of notation we will still denote by S
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the complex analytic space San associated with an algebraic variety S; the
meaning will be clear from the context. By a point of S we always understand
a closed point.

We consider the Hodge incarnation of our problem. Let V → S be a
variation of mixed Hodge structures (VMHS) over a smooth quasi-projective
variety S. In this introduction we will consider QVMHS (we will restrict our-
selves to ZVMHS when monodromy arguments are involved, as it simplifies
the exposition). The weight filtration on V is denoted by W• and the Hodge
filtration on V ⊗Q OS by F •. In this paper all such variations are assumed
to be graded-polarizable and admissible. A typical example of such a gad-
get is V = Rmf∗Q for f : X → S smooth algebraic, locally trivial for the
usual topology. Precise definitions of Hodge theory are recalled in Section 2.
The non-expert reader will think of the case of a (polarizable) variation of
pure Hodge structures (corresponding geometrically to the case where f is
moreover proper).

Replacing algebraic cycles by Hodge classes and motivated by the Hodge
conjecture, one wants to understand the Hodge locus HL(S,V) ⊂ S, namely
the subset of S of points s for which exceptional Hodge tensors for Vs occur.

The Tannakian formalism available for Hodge structures is particularly
useful for describing HL(S,V). We recall it here, as it will be crucial for the
statement of our main conjecture. For every s ∈ S, the Mumford–Tate group
Ps(V) of the Hodge structure Vs is the Tannakian group of the Tannakian
category 〈V⊗s 〉 of mixed Q-Hodge structures tensorially generated by Vs and
its dual V∨s . Equivalently, the group Ps(V) is the stabiliser of the Hodge ten-
sors for Vs, i.e. the Hodge classes in the rational Hodge structures tensorially
generated by Vs and its dual. This is a connected Q-algebraic group, which is
reductive if Vs is pure, and an extension of the reductive group Ps(GrW• V) by
a unipotent group in general (where W denotes the weight filtration on V).
A point s ∈ S is said to be Hodge generic for V if Ps(V) is maximal. If S
is irreducible, two Hodge generic points of S have the same Mumford–Tate
group, called the generic Mumford–Tate group PS(V) of (S,V). The Hodge
locus HL(S,V) is the subset of points of S which are not Hodge generic.

A fundamental result of Cattani–Deligne–Kaplan [8] (in the pure case,
extended to the mixed case in [6]) states that HL(S,V) is a countable union
of closed irreducible algebraic subvarieties of S. A special subvariety of (S,V)
is by definition an irreducible subvariety of S maximal among the irreducible
subvarieties with a fixed generic Mumford–Tate group. Special subvarieties
of dimension zero are called special points of (S,V). A special point s whose
Mumford–Tate group Ps(V) is a torus is called a point with complex multi-
plication (CM-point) for (S,V).

In a nutshell, we would like to address the following vaguely stated

Question 1.1. Given a smooth quasi projective variety S, any variation of
mixed Hodge structures V→ S produces naturally a countable collection of
irreducible subvarieties of S: its special subvarieties. Can one describe the
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distribution of the special subvarieties strictly contained in S, in particular
of the CM-points?

1.2. Zariski-closure of the Hodge locus

A first precise version of Question 1.1 would be to describe the Zariski-closure
of HL(S,V), in particular to answer the following

Question 1.2. Are there any geometric constraints on the Zariski-closure
of HL(S,V)? Can one describe the couples (S,V) such that HL(S,V) is
Zariski-dense in S?

Particular cases of this problem have been classically considered by com-
plex algebraic geometers, essentially when V is pure of weight 1 or 2, and using
infinitesimal methods which lead to density results even for the Archimedean
topology:

Example 1.3 (V pure of weight 1). When V is pure of weight 1 (and hence
we are essentially considering families of Abelian varieties), Question 1.2 has
been raised in a particular case in [11] and [21]. A typical result is the fol-
lowing. Let S ⊂ Ag be a subvariety of codimension at most g of the moduli
space Ag of principally polarized Abelian varieties of dimension g. Then the
set Sk of points s ∈ S such that the corresponding Abelian variety As admits
an Abelian subvariety of dimension k is dense (for the Archimedean topology)
in S for any integer k between 1 and g−1. Let V be the VHS restriction to S
of the Hodge incarnation R1f∗Q of the universal Abelian variety f : Ag → Ag
over Ag. As Sk ⊂ HL(S,V) it follows that the set HL(S,V) is dense in S.
More generally let (G, X) be a pure Shimura datum, ShK(G, X) an associ-
ated Shimura variety, H ⊂ G a Q-reductive subgroup and S ⊂ ShK(G, X)
an algebraic subvariety. Let V→ S be the restriction to S of the variation of
pure Hodge structures on ShK(G, X) associated with any faithful algebraic
representation of G. Denote by HL(S,V,H) ⊂ HL(S,V) the subset of points
s ∈ S whose Mumford–Tate group Ps(V) is G(Q)-conjugated to H. In [9]
Chai defines an invariant c(G, X,H) ∈ N, whose value is g in the example
above, which has the property that HL(S,V,H) is dense in S as soon as S
has codimension at most c(G, X,H) in ShK(G, X).

Example 1.4 (V pure of weight 2: Noether–Lefschetz locus). Consider the
open subvariety S ⊂ PH0(P3

C,O(d)) parametrising smooth surfaces of de-
gree d in P3

C. For d > 3, the classical Noether theorem states that the very
general surface Y ∈ S has Picard group Z: every curve on Y is a complete
intersection of Y with another surface in P3

C. The countable union NL(S) of
algebraic subvarieties of S corresponding to surfaces with bigger Picard group
is called the Noether–Lefchetz locus of S. Let V → S be the VHS R2f∗Q,
where f : Y → S denotes the universal family. Clearly NL(S) ⊂ HL(S,V).
In [10] Ciliberto, Harris and Miranda proved that NL(S) is Zariski-dense in
S. Green (see [35, Prop. 5.20]) proved the stronger result that NL(S) is dense
in S for the Archimedean topology. In particular HL(S,V) is dense in S.
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Examples 1.3 and 1.4 indicate that special subvarieties for (S,V) are
quite common in general. Even if they have a Hodge theoretic significance,
they are not special enough to force any global shape for the Zariski-closure of
HL(S,V). Hence we cannot expect a naive answer to the naive Question 1.2.

1.3. Atypical locus

In this note we define a natural subset Satyp(V) ⊂ HL(S,V): the atypical
locus of (S,V). While the Zariski-closure of HL(S,V) can be wild, we con-
jecture (Main Conjecture 1.9) that the structure of Satyp(V) is simple. This
generalizes the Zilber–Pink Conjecture for Shimura varieties to any (graded-
polarized, admissible) QVMHS over any smooth quasi-projective base.

1.3.1. Hodge codimension. The crucial notion for defining the atypical locus
Satyp(V) ⊂ S is the notion of Hodge codimension:

Definition 1.5 (Hodge codimension). Let S be an irreducible quasi-projective
variety and V → Ssm a variation of mixed Hodge structures on the smooth
locus Ssm of S. Let PS be the generic Mumford–Tate group of (Ssm,V)
and pS its Lie algebra (endowed with its canonical mixed Q-Hodge structure,
of weight ≤ 0). Define the Hodge codimension of S with respect to V as

H-cd(S,V) := dimC(Gr−1
F (pS ⊗Q C))− rk Im∇,

where ∇ : TSsm → Gr−1
F (W0EndV ⊗Q OS) is the Kodaira–Spencer map

of (S,V) (see Section 2.5).

Remark 1.6. It follows from Definition 1.5 that if Y ⊂ Y ′ ⊂ S is a pair of irre-
ducible subvarieties and if PY = P′Y then H-cd(Y ′,V|Y ′sm) ≤ H-cd(Y,V|Y sm).

1.3.2. Atypical subvarieties.

Definition 1.7 (Atypical subvariety). Let S be an irreducible smooth quasi-
projective variety and V → S a variation of mixed Hodge structures on S.
An irreducible subvariety Y ⊂ S is said to be atypical for (S,V) if

H-cd(Y,V|Y sm) < H-cd(S,V). (1.1)

We denote by Satyp(V) ⊂ S the subset of S given by the union of all
atypical subvarieties for (S,V).

One easily checks that Satyp(V) is contained in HL(S,V) (Remark 4.4).

1.4. Optimal subvarieties

Let us introduce a notion cunningly different from atypicality:

Definition 1.8 (Optimal subvariety). Let S be an irreducible smooth quasi-
projective variety and V→ S a variation of mixed Hodge structures on S. An
irreducible subvariety Y ⊂ S is said to be optimal for (S,V) if, for any irre-
ducible subvariety Y $ Y ′ ⊂ S containing Y strictly, the following inequality
holds:

H-cd(Y,V|Y sm) < H-cd(Y ′,V|Y ′sm). (1.2)
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Notice that if Y ⊂ S is optimal for (S,V) then Y is atypical for (S,V)
and that, conversely, any irreducible Y ⊂ S which is atypical for (S,V) and
maximal for this property is optimal for (S,V).

1.5. Statements of the main conjecture

We have seen in Section 1.2 that the Zariski-closure of the Hodge locus
HL(S,V) can be complicated. The main object of this text is to present the
following conjectures (shown in Section 5 to be equivalent), which predict
that the subset Satyp(V) of HL(S,V) on the contrary has a simple geometry
(or equivalently that optimal subvarieties are rare):

Conjecture 1.9 (Main conjecture, form 1). For any irreducible smooth quasi-
projective variety S endowed with a variation of mixed Hodge structures
V→ S, the subset Satyp(V) is a finite union of special subvarieties of S.

Conjecture 1.10 (Main conjecture, form 2). For any irreducible smooth quasi-
projective variety S endowed with a variation of mixed Hodge structures
V→ S, the subset Satyp(V) is a strict algebraic subset of S.

Conjecture 1.11 (Main conjecture, form 3). For any irreducible smooth quasi-
projective variety S endowed with a variation of mixed Hodge structures
V→ S, the subset Satyp(V) is not Zariski-dense in S.

Conjecture 1.12 (Main conjecture, form 4). Any irreducible smooth quasi-
projective variety S endowed with a variation of mixed Hodge structures
V→ S contains only finitely many irreducible subvarieties optimal for (S,V).

1.6. Organization of the paper

This note is organized as follows. Section 2 provides a recollection on mixed
Hodge theory for the non-expert. Section 3 defines the notion of mixed Hodge
varieties (a generalization in the complex analytic category of mixed Shimura
varieties) and the corresponding period maps. Although most of the material
in this section reorganizes classical results, our treatment is resolutely “group-
oriented”: Deligne’s formalism of Shimura data (and its generalisation to
Hodge data) seems to offer an unrivaled functorial setting for Hodge theory.
Section 4 explains Conjecture 1.9 in terms of the geometry of period maps and
atypical intersections in the sense of [36]. In Section 5 we prove the equivalence
of Conjectures 1.9, 1.10, 1.11 and 1.12, and explain the relation between these
conjectures and more classical statements like the Zilber–Pink conjecture
for Shimura varieties (and its particular case the André–Oort conjecture).
Section 6 details the simplest example of Conjecture 1.9 outside the world
of Shimura varieties: the case of Calabi–Yau 3-folds. Section 7 describes the
relation between Conjecture 1.9 and a functional transcendence statement of
Ax–Schanuel type for period maps (Conjecture 7.5).
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2. Mixed Hodge theory

2.1. Deligne torus

The Deligne torus is the restriction of scalars S := ResC/RGm. So SC is
canonically isomorphic to Gm,C×Gm,C but the action of complex conjugation
on SC is given by the usual one twisted by the exchange of the two factors.
In particular S(R) = C∗ ⊂ S(C) = C∗ × C∗ consists of the points of the
form (z, z).

Let w : Gm,R → S be the cocharacter whose value on real points is given
by R∗ ⊂ C∗. We define the cocharacter µ : Gm,C → SC to be the unique
cocharacter such that z ◦ µ is trivial and z ◦ µ = Id ∈ End (Gm,C), where z
and z are the two characters of S generating its character group such that the
induced maps on points C∗ = S(R) ⊂ S(C)→ Gm(C) = C∗ are the identity,
resp. complex conjugation. On C-points, identifying S(C) = C∗×C∗, we have
µ : C∗ → C∗ × C∗ given by w 7→ (w, 1).

2.2. Pure Hodge structures

We denote by R one of the rings Z, Q, R. Given an R-module V we write
VR := V ⊗R R and VC := V ⊗R C.

A pure R-Hodge structure (resp. of weight n ∈ Z) is a Noetherian
R-module V together with a morphism of algebraic groups ϕ : S→ GL(VR)
(resp. such that ϕ ◦ w is given by C∗ = S(R) 3 z 7→ z−n · IdV ). Notice that
if R is a field, any pure R-Hodge structure is a direct sum of pure R-Hodge
structures of fixed weight.

Equivalently, a pure R-Hodge structure of weight n ∈ Z is a Noether-
ian R-module V together with a bigrading VC =

⊕
p+q=n V

p,q satisfying

V p,q = V q,p, or a decreasing filtration called the Hodge filtration F p on VC
such that F p ⊕ Fn−p+1 '−→ VC. The equivalence between ϕ, the Hodge
filtration and the bigrading is as follows: the subspace V p,q of VC is the
eigenspace of S(C) = C∗×C∗ associated with the character (z, w) 7→ z−pw−q,

F p =
⊕

p′≥p V
p′,n−p′ and V p,q = F p ∩ F q.

For example there exists a unique R-Hodge structure of weight −2n on
V = (2πi)nR called the Tate-Hodge structure and denoted R(n).

A morphism f : (V, ϕ)→ (V ′, ϕ′) of pure R-Hodge structures is a mor-
phism f : V → V ′ of R-modules such that fR : VR → V ′R commutes with the
action of S.

We denote by HR the category of pure R-Hodge structures and, for
every n ∈ Z, by HnR the full subcategory of HR of pure R-Hodge structures
of weight n.

If (V, ϕ) is a pure R-Hodge structure of weight n, a polarisation for
(V, ϕ) is a morphism of R-Hodge structures Q : V ⊗2 → R(−n) such that
(2πi)nQ(x, ϕ(i)y) is a positive-definite bilinear form on VR.
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2.3. Mixed Hodge structures

We denote by K the field R⊗Z Q.

A mixed R-Hodge structure (RMHS) is a triple (V,W•, F
•) consisting of

a Noetherian R-module V , a finite ascending filtration W• of VK := V ⊗RK
(called the weight filtration) and a finite decreasing filtration F • of VC (called

the Hodge filtration) such that for each n ∈ Z the couple (GrWn VK ,GrWn (F •))
is a pure K-Hodge structure of weight n.

A pure R-Hodge structure V of weight n ∈ Z is then a special case of
a mixed R-Hodge structure by defining the weight filtration as Wn′VK = VK
for n′ ≥ n and Wn′VK = 0 for n′ < n. The notions of weight greater or
smaller than n ∈ Z are defined in the obvious way.

We say that an RMHS is of type ε ⊂ Z × Z if the Hodge numbers
hp,q := dimC(GrWp+qVK)p,q are zero for (p, q) 6∈ ε and non-zero for (p, q) ∈ ε.

A morphism f : (V,W•, F
•) → (V ′,W ′•, F

′•) of RMHS is a morphism
f : V → V ′ of R-modules respecting the weight and the Hodge filtration.

A graded polarization of a mixed R-Hodge structure is the datum of a
polarization on the pure K-Hodge structure GrWVK .

Following [12, Th. 2.3.5], the category MHR of mixed R-Hodge struc-
tures is Abelian (where the kernels and cokernels of morphisms are en-

dowed with the induced filtrations); the functors GrWn : MHR → HnK and
GrpF : V 7→ GrpF (VC) are exact. Moreover every morphism f : (V,W•, F

•) →
(V ′,W ′•, F

′•) of RMHS is strictly compatible with the weight and the Hodge
filtrations (meaning that the inclusions f(Wn) ⊂W ′n and f(F p) ⊂ F ′p satisfy
f(Wn) = f(VK) ∩W ′n and f(F p) = f(VC) ∩ F ′p).

We wish to extend our group-theoretic description from pure Hodge
structures to mixed ones. Let (V,W•, F

•) be a mixed R-Hodge structure. A
splitting of (V,W•, F

•) is a bigrading VC =
⊕

p,q V
p,q such that the equalities

WnV =
∑
p+q≤n V

p,q and F p =
∑
r≥p V

r,s hold. Deligne proved that any
mixed R-Hodge structure admits a unique preferred splitting:

Proposition 2.1 (Deligne). Let (V,W•, F
•) be a mixed R-Hodge structure. It

admits a unique splitting (V p,q)p,q satisfying:

V p,q = V q,p mod
⊕

r<p,s<q

V r,s. (2.1)

This splitting is functorial.

Remark 2.2. A mixed R-Hodge structure (V,W•, F
•) such that Deligne’s

splitting satisfies moreover V p,q = V q,p is said to be split over R.

Given a mixed R-Hodge structure (V,W•, F
•), Deligne’s splitting on VR

defines a unique morphism ϕC : SC → GL(VC) such that V p,q is the eigen-
space for the character (z, w) 7→ z−pw−q of SC. If (V,W•, F

•) splits over R
the morphism ϕC is the complexification of a morphism ϕ : S→ GL(VR). In
particular we recover our initial definition of a pure R-Hodge structure.
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Conversely:

Proposition 2.3. [28, 1.4 and 1.5] Let V be a Noetherian R-module and let
ϕC : SC → GL(VC) be a group morphism. It defines an RMHS on V if
and only if, denoting by P the K-algebraic group Zariski closure over K
of ϕC(SC), by W the unipotent radical of P and by π : P→ G := P/W the
reductive quotient of P, the following conditions are satisfied:

(1) The composite SC
ϕC−→ PC

π−→ GC is defined over R.

(2) The composite Gm,R
w−→ S

π◦ϕ−→ GR is defined over K.

(3) The weight filtration of the mixed R-Hodge structure on p defined by
Ad P ◦ϕC satisfies W−1(p) = w, where w denotes the Lie algebra of the
K-group W.

Remark 2.4. Notice that, by (2), Ad P ◦ ϕC endows g with a pure K-Hodge
structure of weight 0, and hence, by (3), p with a mixed K-Hodge structure
of weight ≤ 0. In particular W0p = p.

2.4. Mumford–Tate groups

The category MHK of mixed K-Hodge structures is a K-linear tensor cate-
gory which is rigid and has an obvious exact faithful K-linear tensor functor
ω : (VK ,W•, F

•) 7→ VK .

For any RMHS (V,W•, F
•) we denote by 〈V 〉 the Tannakian subcate-

gory of MHK generated by (VK ,W•, F
•) and by ωV the restriction of the

tensor functor ω to 〈V 〉; in other words 〈V 〉 is the smallest full subcategory
containing (VK ,W•, F

•) and the trivial KMHS and stable under ⊕, ⊗, and
taking subquotients. Then the functor Aut⊗(ωV ) is representable by some
closed K-algebraic subgroup P(V ) of GL(VK), called the Mumford–Tate
group of V, and ωV defines an equivalence of categories 〈V 〉 ' RepKP(V )
([13, II, 2.11]).

There are various equivalent definitions for P(V ), in particular in terms
of Hodge tensors. Recall that a Hodge class for V is a vector in F 0VC∩ W0VK .
For integers m,n ≥ 0, let Tm,nVK denote the mixed K-Hodge structure
V ⊗m ⊗ Hom(V,R)⊗n ⊗R K. A Hodge tensor for V is a Hodge class in
some Tm,nVK .

Lemma 2.5 ([1, Lemma 2]). Let (V,W•, F
•) be a mixed R-Hodge structure.

Then:

(a) Any tensor fixed by P(V ) in some Tm,nVK is a Hodge tensor. Con-
versely P(V ) is the stabilizer in GL(VK) of the Hodge tensors for V .

(b) P(V ) is the K-Zariski-closure of the image of ϕ in GL(VK) (and hence
it is connected), and if moreover V is pure polarizable then P(V ) is
reductive.

(c) The group P(V ) preserves W• and is an extension of P(GrWVK) by
a unipotent subgroup; in particular if V is graded-polarizable then the
group P(GrWVK) is the quotient of P(V ) by its unipotent radical.
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2.5. Variations of mixed Hodge structures

Hodge theory as recalled above can be considered as the particular case over
a point of Hodge theory over an arbitrary base in the category of complex
manifolds.

Let S be a complex manifold and OS its sheaf of holomorphic func-
tions. A variation of mixed R-Hodge structures (RVMHS) over S is a triple
(V,W•, F •), where:

(1) V is a locally constant RS-module on S,

(2) W• is a finite increasing filtration (called the weight filtration) of the
K-local system VK by K-local sub-systems,

(3) F • is a finite descending filtration (called the Hodge filtration) of the
holomorphic vector bundle V := V⊗RS OS by holomorphic subbundles,

such that

(a) for each s ∈ S, the triple (Vs, (W•)s, F •s ) is a mixed R-Hodge structure,
(b) the flat connection ∇ : V → V ⊗ Ω1

S whose sheaf of horizontal sections
is VC satisfies the Griffiths’ transversality condition

∇F • ⊂ Ω1
S ⊗ F •−1. (2.2)

A graded polarization Ψ for (V,W•, F •) is a sequence

Ψk : GrWk (VK)×GrWk (VK) −→ K(−k)S

of ∇-flat bilinear forms inducing graded polarisations Ψk,s on the mixed
R-Hodge structure (Vs, (W•)s, F •s ) for all s ∈ S.

Variations of mixed Hodge structure over a smooth quasi-projective
base S can have a pathological behaviour at infinity. The admissibility condi-
tion was defined by Kashiwara [22] to remedy this problem. As its statement
is technical and we won’t need it in this expository note (but it will be crucial
in the proofs!), we content ourselves to refer to [22], [32] and [7, Def. 7.2]. No-
tice that every geometric variation of mixed Hodge structures is admissible.
From now on any ZVMHS is graded-polarizable and admissible.

Let (V,W•, F •) be an RVMHS over S. An important infinitesimal in-
variant associated with it is the Kodaira–Spencer map

∇ : TSsm −→ Gr−1
F (W0EndV⊗Q OS), (2.3)

which is nothing but the flat connection ∇ considered at first order. Indeed
the maps ∇ : F p → F p−1 ⊗OS Ω1

S and ∇ : F p−1 → F p−2 ⊗OS Ω1
S induce

an OS-linear morphism ∇ : GrpFV → Grp−1V ⊗OS Ω1
S . The alternative writ-

ing (2.3) follows from the fact that ∇ respects the weight filtration.

2.6. Hodge locus and special subvarieties

Let R = Z or Q. With the notation of the previous section, for s in S
let Ps ⊂ GL(VQ,s) denote the Mumford–Tate group of the fiber Vs. By [1,
Lemma 4] (following Deligne in the pure case) the group Ps is locally constant
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on the complement S0 := S \HL(S,V) of a countable union HL(S,V) ⊂ S
of proper irreducible analytic subvarieties of S. The locus HL(S,V) is called

the Hodge locus of (S,V). Let πS : S̃ → S denote a universal covering and

choose a flat trivialization π∗SVQ ' S̃ × V . The choice of a point s̃ ∈ S̃
such that πS(s̃) = s gives an identification VQ,s ' V , and hence an injective
homomorphism is̃ : Ps ↪→ GL(V ). For s ∈ S0 (such a point of S is called
Hodge generic) the image PS(V) := Im(is̃) ⊂ GL(V ) neither depends on w
nor on the choice of s̃ (it is called the generic Mumford–Tate group of (S, V ));

for all s ∈ HL(S,V) and s̃ ∈ S̃ above s, the image of is̃ is a proper subgroup
of PS(V).

When S is quasi-projective and V is of geometric origin, the Hodge con-
jecture implies that HL(S,V) is in fact a countable union of closed irreducible
algebraic subvarieties of S. The following result is fundamental in the study
of Hodge loci:

Theorem 2.6 ([8] in the pure case, [6] in the mixed one). Suppose that S
is quasi-projective. Then the Hodge locus HL(S,V) is a countable union of
closed irreducible algebraic subvarieties of S.

The irreducible components of the Zariski-closure of the strata of the
Hodge locus HL(S,V) where Ps is locally constant are called special subvari-
eties of (S,V). Special subvarieties of dimension zero are called special points
of (S,V). Special points whose Mumford–Tate group is a torus are called CM
points (where CM stands for Complex Multiplication).

3. Mixed Hodge varieties

In this section we define (connected) mixed Hodge varieties, a generalization
of (connected) mixed Shimura varieties defined by Deligne [12] and Pink [28].
All the ingredients are due to Pink [28]. We refer to the recent monograph [16]
for more details in the pure case.

3.1. Mixed Hodge data

In this section R = K = Q. We want to parametrize mixed Q-Hodge struc-
tures, with fixed weight filtration and given Hodge numbers, by a homoge-
neous space described in terms of homomorphisms ϕC : SC → PC and car-
rying a canonical complex structure. The following result of Pink will guide
our definition.

Proposition 3.1. [28, 1.7] Let (P, XP) be a pair of a connected linear alge-
braic group P over Q and a P(R)W(C)-conjugacy class XP in Hom(SC,PC)
(where W denotes the unipotent radical of P). Assume that for one ϕ ∈ XP

(and then for any) the conditions (1), (2) and (3) of Proposition 2.3 are
satisfied.

Let ρ : P → GL(M) be any faithful (finite dimensional, algebraic) rep-
resentation of P. Then:
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(a) The image DP,XP
of the obvious map

ψ : XP −→ {mixed Q-Hodge structures on M}
admits a unique structure of complex manifold such that the Hodge fil-
tration on MC depends analytically on ψ(ϕ). This structure is invariant
under P(R)W(C) and W(C) acts analytically on DP,XP

.

(b) The complex manifold DP,XP
is independent of the choice of the faithful

representation M .

Proposition 3.1 is proved by noticing that, as the weight filtration is
constant on M when ϕ varies in XP, the Hodge filtration on M gives an
injective map of DP,XP

into the flag manifold D̂P,XP
:= P(C)/ exp(F 0pC),

which is easily shown to be an open embedding.

Remark 3.2. It is important to notice that:

– the surjective map ψ : XP → DP,XP
is not a bijection in general. This

is the case if and only if F 0wC is trivial (see [28, 1.8 (b)]);

– the group P(R) does not in general act transitively on DP,XP
for the

action of P(R) on DP,XP
defined in Proposition 3.1. It acts transitively

on “the set of real points of DP,XP
”, namely the points for which the

corresponding mixed Hodge structure on (any) M is split over R.

Definition 3.3. A pair (P, XP) as in Proposition 3.1 is called a mixed Hodge
datum. We call D := DP,XP

the mixed Mumford–Tate domain associated
with the mixed Hodge datum (P, XP).

Definition 3.4. A connected mixed Hodge datum is a triple (P, XP,D+),
where (P, XP) is a mixed Hodge datum and D+ is a connected component
of D := DP,XP

.

Definition 3.5. A morphism of mixed Hodge data (P, XP) → (P′, XP′) is
a homomorphism ρ : P → P′ of Q-algebraic groups which induces maps
XP → XP′ . It naturally induces a holomorphic map D → D′. A morphism
of connected mixed Hodge data (P, XP,D+) → (P′, XP′ ,D′+) is a mor-
phism of mixed Hodge data (P, XP,D) → (P′, XP′ ,D′) whose last compo-
nent maps D+ to D′+.

3.2. Mixed Hodge datum of Shimura type

Let (P, XP) be a mixed Hodge datum and M a representation of P. The
representation M defines a P(R)W(C)-equivariant local system M on D,
supporting a family of mixed Hodge structures: a flat weight filtration W•
on M and a holomorphic Hodge filtration F • on M⊗QOD such that, for each
s ∈ D, the triple (Ms, (W•)s, F

•
s ) is a mixed Q-Hodge structure. In most

cases however, the Griffiths transversality condition (2.2) is not satisfied:

Proposition 3.6. [28, 1.10] Let (P, XP) be a mixed Hodge datum and M a
representation of P. The triple (M,W•, F

•) is a variation of mixed Q-Hodge
structures on D if and only if the Hodge structure on p is of type

{(−1, 1), (0, 0), (1,−1)}, {(−1, 0), (0,−1)}, {(−1,−1)}.
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Definition 3.7. A mixed Hodge datum (P, XP) satisfying the condition of
Proposition 3.6 is said to be of Shimura type.

Let us now relate mixed Hodge data of Shimura type with mixed Shimura
varieties in the sense of [28]. Let (P, XP) be a mixed Hodge datum of
Shimura type. Let U ⊂ W be the unique connected subgroup such that
LieU = W−2LieW. Following [28, 1.15] we define X ⊂ XP as the subset of
the ϕC’s defined by the following condition stronger than Proposition 2.3 (1):

(1’) SC
ϕC−−→ PC

π′

−→ (P/U)C is defined over R.

In [28, 1.16] Pink proves that the restriction ψ|X : X → D of ψ : XP → D
is a bijection. The triple (P,D, ψ−1

|X ) is then a mixed Shimura datum in

the sense of [28, 2.1]. Conversely if (P,X , h) is a mixed Shimura datum as
in loc. cit. let us define XP as the P(R)W(C)-conjugacy class of any point
of h(X ). Then (P, XP) is a mixed Hodge datum.

3.3. Connected mixed Hodge varieties

3.3.1. Definitions. We refer to [5] and [25, p. 33, 34, 42] for an introduction
to arithmetic groups, congruence subgroups and neat subgroups.

Let (P, XP,D+) be a connected mixed Hodge datum. The stabilizer
P(R)+ of D+ is easily seen to be open in P(R). Set P(Q)+ := P(Q)∩P(R)+.
Then any congruence subgroup Γ ⊂ P(Q)+ acts properly discontinuously
on D+, so that Γ\D+ is a complex analytic space with at most finite quotient
singularities. Every sufficiently small finite index congruence subgroup of Γ
acts freely on D+. Replacing Γ by such a subgroup if necessary, the quotient
Γ\D+ is thus a complex manifold and the map D+ −→ Γ\D+ is unramified.

Definition 3.8 (connected mixed Hodge variety). Let (P, XP,D+) be a con-
nected mixed Hodge datum and Γ ⊂ P(Q)+ a congruence subgroup. The
complex analytic variety Hod0

Γ(P, XP,D+) := Γ\D+ is called the connected
mixed Hodge variety associated with (P, XP,D+) and Γ. It is called a con-
nected (pure) Hodge variety if P is reductive. The class of an element x ∈ D+

is denoted [x] ∈ Γ\D+.

As in [28, 3.4] one obtains:

Lemma 3.9. Let ρ : (P, XP,D+) → (P′, XP′ ,D′+) be a morphism of con-
nected mixed Hodge data and Γ ⊂ P(Q)+ and Γ′ ⊂ P′(Q)+ congruence
lattices such that ρ(Γ) ⊂ Γ′. Then the map

[ρ] : Γ\D+ −→ Γ′\D′+

mapping [x] to [ρ ◦ x] is well-defined and holomorphic. Such a map is called
a Hodge morphism of connected mixed Hodge varieties.

Definition 3.10 (mixed Hodge variety). Let (P, XP) be a mixed Hodge datum
and let K ⊂ P(Af) be a compact open subgroup of the finite adelic points
of P. The mixed Hodge variety HodK(P, XP) is the complex analytic space
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P(Q)\(D×P(Af)/K). Here P(Q) acts diagonally on D and P(Af), the group
K acts on P(Af) on the right, and P(Af) is endowed with the adelic topology.

As in [25, Lemma 5.11, 5.12, 5.13] one shows:

Lemma 3.11. Fix D+ a connected component of D. Let C be a (finite) set
of representatives for the finite double coset space P(Q)+\P(Af)/K. Then
we have a homeomorphism HodK(P, XP) =

⊔
g∈C Γg\D+ , where Γg is the

congruence subgroup gKg−1 ∩P(Q)+ of P(Q)+.

In particular the mixed Hodge variety HodK(P, XP) is a finite union of
connected mixed Hodge varieties.

When (P, XP) is a mixed Hodge datum of Shimura type and (P,X , h) is
the associated mixed Shimura datum as in Section 3.2, the mixed Hodge va-
riety HodK(P, XP) coincides with the mixed Shimura variety MK(P,X )(C)
defined in [28, 3.1]. We will say that HodK(P, XP) is of Shimura type and
denote it by ShK(P, XP).

Let D+ be a connected component of D and Γ ⊂ P(Q)+ a torsion-free
congruence subgroup. If M is a representation of P, the family (M,W•, F

•)
of mixed Q-Hodge structures on D+ descends to the connected mixed Hodge
variety Γ\D+. This defines a variation of mixed Q-Hodge structures (i.e.
satisfies Griffiths’ transversality) if and only if Γ\D+ is a connected mixed
Shimura variety.

3.3.2. Algebraicity. In general the connected mixed Hodge variety Γ\D+ and
the mixed Hodge variety HodK(P, XP) are complex analytic varieties which
do not admit any algebraic structure. If (P, XP) is a pure Hodge datum one
can show ([18]) that the pure Hodge variety HodK(P, XP) admits an alge-
braic structure if and only if it fibers holomorphically or antiholomorphically
over a (connected) Shimura variety ShK(P′, XP′). A similar result should
hold in the mixed case.

3.4. Special subvarieties of Hodge varieties

Let (P, XP,D+) be a connected mixed Hodge datum and Y := Γ\D+ an
associated connected mixed Hodge variety. Although a representation M of P
does not in general define a variation of mixed Q-Hodge structures on Y , we
can still define a notion of special subvariety of Y in purely group theoretical
terms.

Definition 3.12. The image of any Hodge morphism T → Y between con-
nected mixed Hodge varieties is called a special subvariety of Y . It is said to
be of Shimura type if T is a connected mixed Shimura variety.

Definition 3.13. The Hodge locus HL(Y ) of the connected mixed Hodge va-
riety Y is the union of all special subvarieties of Y .
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3.5. Period maps

Let (P, XP) be a mixed Hodge datum,D the associated mixed Mumford–Tate
domain, K ⊂ P(Af) a neat compact open subgroup and M an algebraic
representation of P. In general, Griffiths’ transversality for (M,W•, F

•) is
recovered by restricting ourselves to horizontal subvarieties of HodK(P, XP),
which are defined as follows. The tangent bundle TD is naturally equivariant
under P(R)W(C), associated to the representation F−∞p/F 0p. The Hodge
filtration on p defined by the mixed Hodge structure ϕC : SC → PC thus
defines a natural P(R)W(C)-equivariant filtration F • on the holomorphic
tangent bundle TD.

Definition 3.14. The horizontal tangent bundle ThD is defined to be the
holomorphic subbundle F−1TD, associated to the representation Gr−1

F p. By
equivariance it descends to a holomorphic subbundle

ThHodK(P, XP) ⊂ THodK(P, XP),

called the horizontal tangent bundle of the mixed Hodge variety HodK(P,XP).
One denotes by ThHod0

Γ(P, XP) its restriction to the connected mixed Hodge
variety Hod0

Γ(P, XP) = Γ\D+.

Remark 3.15. The equality ThHodK(P, XP) = THodK(P, XP) holds if and
only if (P, XP) is of Shimura type, i.e. if HodK(P, XP) is a mixed Shimura
variety.

Definition 3.16. Let S be a complex manifold. A holomorphic map Φ: S →
HodK(P, XP) is said to be horizontal if Φ∗(TS) ⊂ ThHodK(P, XP).

Definition 3.17. Let S be a complex manifold. A holomorphic map f : S →
HodK(P, XP) is said to be locally liftable horizontal if, for each point s ∈ S,
there exists a neighbourhood Us of s in S and a commutative diagram

Us
f̃ //

f &&

D

��
HodK(P, XP)

such that f̃ is horizontal.

Definition 3.18. Let (P, XP) be a mixed Hodge datum, K ⊂ P(Af) a compact
open subgroup and HodK(P, XP) the associated Hodge variety. Let S be a
complex manifold. A map

Φ: S −→ HodK(P, XP)

is called a period map if it is holomorphic, locally liftable and horizontal.

If Φ: S → HodK(P, XP) is a period map the pullback Φ∗(M,W•, F
•)

is a QVMHS on S. Conversely suppose V → S is a ZVMHS over a con-
nected complex manifold S. Fix a Hodge generic base point s ∈ S, let PS :=
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PS(V) = P(Vs) be the generic Mumford–Tate group of V, WS its unipo-
tent radical, pS the Lie algebra of PS and XS the PS(R)WS(C)-conjugacy
class of ϕs : SC → GL(Vs,C). The pair (PS , XS) is a mixed Hodge datum.
Let D+

S be the connected component of DS := DPS ,XS containing the im-

age ψ(ϕs). The triple (PS , XS ,D+
S ) is a connected mixed Hodge datum.

Let Γ := P(Q) ∩GL(Vs,Z). We define the connected mixed Hodge variety

Hod0(S,V) as Hod0
Γ(PS , XS ,D+

S ).

The Hodge filtration for V→ S defines a period map

ΦS : S −→ Hod0(S,V). (3.1)

Moreover the Kodaira–Spencer map ∇ : TS0 → Gr−1
F W0 EndV is nat-

urally interpreted as the composed morphism of fiber bundles

TS
dΦS //

∇

66
Φ∗S ThHod0(S,V) �

� // Gr−1
F W0 EndV .

Remark 3.19. By a classical theorem of Griffiths [19, Theor. 9.6] one can,
enlarging S if necessary, assume that ΦS(S) is a closed complex analytic sub-
variety of Hod0(S,V). A long-standing conjecture of Griffiths states that the
closed complex analytic horizontal subvariety ΦS(S) should admit a canoni-
cal structure of quasi-projective algebraic variety. In the pure case we refer to
the work of Sommese [31] for partial results and to [24] and [17] which both
announce Griffiths’s conjecture (I was not able to understand their proofs).
Note added in proof: since this paper was submitted, Griffiths’s conjecture was
proven in [2].

3.6. Special subvarieties and period maps

The following proposition follows from the definitions.

Proposition 3.20. Let V = (VZ,W•, F
•) be a ZVMHS over a smooth quasi-

projective variety S with associated period map

ΦS : S −→ Hod0(S,V).

Let Z be an irreducible subvariety of S. The following conditions are equiva-
lent:

(1) Z is a special subvariety for (S,V).

(2) Z is an irreducible component of the ΦS-preimage of a special subvariety
of Hod0(S,V).

Thus:

HL(S,V) = Φ−1
S

(
ΦS(S) ∩HL(Hod0(S,V))

)
.
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4. Atypicality and optimality in terms of period maps

Let V = (VZ,W•, F
•) be a ZVMHS over a smooth quasi-projective variety S

with associated period map

ΦS : S −→ Hod0(S,V).

4.1. Hodge codimension and period maps

Let us clarify geometrically Definition 1.5 of Hodge codimension in terms
of ΦS and intersection theory.

It follows from the description of DS that

dimC Gr−1
F pS = rkThHod0(S,V)

and

rk Im∇ = dimC ΦS(S).

Hence:

Corollary 4.1. The Hodge codimension H-cd(S,V) as introduced in Defini-
tion 1.5 is equal to the codimension of the tangent space at a Hodge generic
point of ΦS(S) in the corresponding horizontal tangent space of Hod0(S,V):

H-cd(S,V) = rkThHod0(S,V)− dimC ΦS(S).

In other words, the Hodge codimension H-cd(S,V) of (S,V) is the nat-
ural codimension of ΦS(S) in Hod0(S,V) once the Griffiths’ transversality
condition is taken into account.

Remark 4.2. In the simple case where S is a closed algebraic subvariety
of a connected mixed Shimura variety Sh0

K(P, X), and V is the restriction
to S of a variation of mixed Hodge structures on Sh0

K(P, X) associated to
an algebraic representation of P, then H-cd(S,V) coincides with what Pink
in [29] calls the defect of S in Sh: the codimension of S in its special closure
(i.e. the smallest special subvariety of Sh containing S).

4.2. Atypicality and period maps

It follows that the atypicality condition (1.2) is better understood in terms
of the period map ΦS : S → Hod0(S,V) and intersection theory. Let Y ⊂ S
be an irreducible algebraic subvariety. Let PS and PY be the generic Mum-
ford–Tate groups of V and VY sm respectively, with Lie algebras pS and pY
and Mumford–Tate domain DS and DY . The restriction ΦS |Y of the period
map ΦS to Y factorises uniquely as

Y
ΦY //

ΦS |Y

77
Hod0(Y,VY sm) �

� iY,S // Hod0(S,V) .

We thus obtain the following definition, equivalent to Definition 1.7:
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Definition 4.3. Let S be an irreducible smooth quasi-projective variety and
V→ S a QVMHS on S. A subvariety Y ⊂ S is said to be atypical for (S,V)
if it is irreducible and

dimC ΦS(S)− dimC ΦS(Y ) < rkThHod0(S,V)− rkThHod0(Y,VY sm); (4.1)

i.e., an atypical subvariety of (S,V) is an irreducible subvariety Y ⊂ S such
that the subvariety ΦS(Y ) of ΦS(S) has an excess intersection with the Hodge
locus HL(Hod0(S,V)) ⊂ Hod0(S,V).

Remark 4.4. If Y ⊂ S is Hodge generic in S the atypicality condition (4.1)
is equivalent to dimC ΦS(Y ) > dimC ΦS(S), and hence is never satisfied.
Thus a subvariety Y ⊂ S atypical for V is always contained in the Hodge
locus HL(S,V).

Remark 4.5. It follows from Remark 1.6 and Definition 1.7 that if Y ⊂ Y ′ ⊂ S
if a pair of irreducible subvarieties, if PY = PY ′ and if Y is atypical for (S,V)
then Y ′ is atypical for (S,V).

Remark 4.6. If follows immediately from Definition 4.3 that any Y ⊂ S
atypical for (S,V) is contained in a unique subvariety of S atypical for (S,V),
having PY as generic Mumford–Tate group, and maximal for these properties:
the irreducible component of Φ−1

S (ΦS(S) ∩Hod0(Y,VY sm)) containing Y . In
particular maximal atypical subvarieties of S are special subvarieties of S.

Remark 4.7. As the set of special subvarieties for (PS , XS) is countable, the
set of maximal atypical subvarieties for (S,V) is countable. In particular it
follows from Remark 4.6 that Satyp(V) ⊂ HL(S,V) ⊂ S is also a countable
union of irreducible algebraic subvarieties of S.

Remark 4.8. If f : S → S′ is a surjective morphism of smooth quasi-projective
varieties and the ZVMHS V on S is the pull-back f∗V′ of some ZVMHS V′
on S′ then Satyp(V) = f−1S′atyp(V′).

4.3. Optimality and period maps

Similarly, the optimality condition is better understood in terms of period
maps: an irreducible subvariety Y ⊂ S is optimal for (S,V) if it is not strictly
contained in a better approximation to a special subvariety of Hod0(S,V).

4.4. Examples

Example 4.9. Let S be a Shimura variety and let V be a standard variation
of Hodge structure on S. Then Y ⊂ S is atypical if and only if dimC Y >
rkThHod0(Y,V|Y sm), which is impossible. Hence Satyp = ∅.

Example 4.10 (Atypical special subvarieties of Shimura type with dominant
period map).

Lemma 4.11. Let V → S be a ZVMHS over a smooth quasi-projective va-
riety S. Let Y ⊂ S be a special subvariety for (S,V), of Shimura type and
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such that the period map ΦY : Y → Sh0(Y ) is dominant. Then Y is not atyp-
ical for (S,V) if and only if (PS ,DS) is of Shimura type, the period map
ΦS : S → Sh0(S,V) is dominant, and V is the restriction to S of a standard
variation of mixed Hodge structures on Sh0(S,V).

Proof. Let ΦS : S → Hod0(S,V) be the period map for (S,V). As Y is
special of Shimura type with dominant period map, rkThHod0(Y,VY sm) =
dimC ΦS(Y ) and the atypicality condition (4.1) for Y reads as:

dimC ΦS(S) < rkThHod0(S,V). (4.2)

The variety ΦS(S) is an horizontal subvariety of Hod0(S,V) and hence
the inequality dimC ΦS(S) ≤ rkThHod0(S,V) always holds. It follows that
the special subvariety Y is not atypical for (S,V) if and only if dimC ΦS(S) =
rkThHod0(S,V). This implies that the horizontal distribution ThHod0(S,V)
of THod0(S,V) is integrable.

Suppose first that V is pure. In that case standard Lie theoretic con-
siderations imply that D+

S is a Hermitian symmetric domain. The existence

of one algebraic leaf (namely S) for the foliation on Hod0(S,V) defined by
ThHod0(S,V) implies that ThHod0(S,V) = THod0(S,V) (i.e. V is of un-
constrained type in the terminology of [16, p. 12]). Thus V comes from a
ZVMHS on Hod0(S,V) and hence (PS , XS) is of Shimura type by Proposi-
tion 3.6. The same conclusion holds in the mixed case by a classical dévissage
to the pure case.

The facts that ΦS : S → Sh0(S,V) is dominant and V is the restriction
to S of a standard variation of mixed Hodge structures on Sh0(S,V) are now
clear. �

Notice the following special case of Lemma 4.11:

Lemma 4.12. Let V → S be a ZVMHS over a smooth quasi-projective va-
riety S. Let x ∈ S be a CM-point. Then x is not atypical for (S,V) if and
only if (PS , XS) is of Shimura type and the period map ΦS : S → Sh0(S,V)
is dominant.

5. On the main conjecture and its corollaries

Proposition 5.1. Conjectures 1.9, 1.10, 1.11 and 1.12 are equivalent.

Proof. Obviously Conjecture 1.9 implies Conjecture 1.10, which in turns
implies Conjecture 1.11. Let us show that Conjecture 1.11 implies Conjec-
ture 1.9. So let S be an irreducible smooth quasi-projective variety and V→ S
a ZVMHS on S. Let Y ⊂ S be an irreducible component of the Zariski-closure
of Satyp(V). It follows from Remark 4.6 that Y is the Zariski-closure of the
union

⋃
i∈I Xi, where I is a countable set and the Xi are pairwise distinct

maximal atypical special subvarieties for (S,V). There exists an index i ∈ I
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such that the variety Xi is not atypical for (Y,V|Y ): otherwise Yatyp(V|Y )
would be Zariski-dense in Y , contradicting Conjecture 1.11. Then

H-cd(Y,V|Y sm) = H-cd(Xi,V|Xsm
i

) < H-cd(S,V), (5.1)

and hence Y is atypical in S. By maximality of the Xi’s, it follows that the
set I contains only one element {i}. Thus Y = Xi is a special subvariety
of (S,V) and the result.

It remains to show that Conjectures 1.9 and 1.12 are equivalent. Assume
that Conjecture 1.12 holds true. As maximal atypical subvarieties for (S,V)
are optimal for (S,V) Conjecture 1.9 follows. Conversely assume that Con-
jecture 1.9 holds true and let us prove Conjecture 1.12 by induction on
s = dimC S. For s = 1 the variety S is a curve, optimal subvarieties of S
are points and coincide with (maximal) atypical subvarieties of S, hence the
result in this case. Suppose Conjecture 1.12 holds true for varieties of dimen-
sion at most s − 1 and suppose S is of dimension s. Let Z1, . . . , Zn be the
finite collection of maximal atypical subvarieties for (S,V). Let (Yi)i∈I be a
set of pairwise distinct optimal subvarieties for (S,V). For each i ∈ I the op-
timal subvariety Yi ⊂ S is atypical, and hence there exists φ(i) ∈ {1, . . . , n}
such that Yi ⊂ Zφ(i). Moreover by the very definition of optimality either
Yi = Zφ(i) or Yi is optimal for (Zφ(i),V|Zsm

φ(i)
). As dimC Zφ(i) < s it follows by

the induction hypothesis that the set I is finite. Hence the result. �

5.1. Conjecture 1.9 as a generalized Zilber–Pink conjecture

Notice that the restriction of Conjecture 1.9 to the class of pairs (S,V)
where S is a subvariety of a Shimura variety Sh0(S,V) and V is the restric-
tion to S of a standard ZVMHS on Sh0(S,V) is the Zilber–Pink conjecture as
stated for example by Pila ([27, Conj. 2.3]) (this conjecture was formulated
by Zilber [38] in the case of multiplicative groups, it is a stronger version of
the original Pink conjecture [29, Conj. 1.1]).

5.2. Conjecture 1.9 and CM-points: a generalized André–Oort conjecture

Conjecture 1.9 immediately implies:

Conjecture 5.2 (André–Oort conjecture for ZVHS, version 1). Let V→ S be
a ZVMHS over a smooth irreducible quasi-projective variety S. Suppose that
the union SL(S,V) of special subvarieties for (S,V), which are of Shimura
type with dominant period map, is Zariski-dense in S. Then the Hodge da-
tum (PS , XS) is of Shimura type and the period map ΦS : S → Sh0(S,V) is
dominant.

Let us show how to deduce Conjecture 5.2 from our main Conjecture 1.9.
Let ΦS : S → Hod0(S,V) be the period map for V. By assumption the special
subvarieties of Shimura type and dominant period map are Zariski-dense in S.
It thus follows from Conjecture 1.11 and Noetherian induction that there
exists (a Zariski-dense set of) not atypical special subvarieties of Shimura type
with dominant period map in S. The conclusion follows from Lemma 4.11.
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Notice that Conjecture 5.2 immediately implies, and, by density of
CM-points in Shimura varieties, is in fact equivalent to, the following:

Conjecture 5.3 (André–Oort conjecture for ZVHS, version 2). Let V→ S be
a ZVMHS over a smooth irreducible quasi-projective variety S. Suppose that
the union of CM-points for (S,V) is Zariski-dense in S. Then (PS , XS) is of
Shimura type and the period map ΦS : S → Sh0(S,V) is dominant.

Remark 5.4. When S is moreover defined over Q, Conjecture 5.3 was orig-
inally stated (in a slightly different way) by Green–Griffiths–Kerr: see [16,
Conj. VIII. B.1 p. 275].

Notice that Conjecture 5.2 is equivalent to the union of the following
two conjectures:

Conjecture 5.5 (classical André–Oort). Let Y ⊂ Sh0
K(P, X) be a closed ir-

reducible algebraic subvariety of a connected mixed Shimura variety. If Y
contains a Zariski-dense set of CM-points then Y is a special subvariety
of ShK(P, X).

Conjecture 5.6. Let V → S be a ZVMHS over a smooth irreducible quasi-
projective variety S. Suppose that the set of CM-points for (S,V) is Zariski-
dense in S. Then (PS , XS) is of Shimura type.

Many works have been devoted to the André–Oort conjecture 5.2, cul-
minating to its proof when Sh0

K(P, X) is of Abelian type. We refer to [23]
for a detailed analysis of the André–Oort conjecture and references to the
related works. On the other hand Conjecture 5.6 is completely open.

The proof of the classical André–Oort conjecture 5.5 relies on two differ-
ent ingredients: on the one hand a precise analysis of the arithmetic of Galois
orbits of CM-points (lower bound and heights), on the other hand a geomet-
ric analysis of the distribution in ShK(P,D) of positive dimensional special
subvarieties. If (S,V) is not of Shimura type, the arithmetic of CM-points
for (S,V) seems difficult to understand. On the other hand it seems worth
focusing on positive dimensional special subvarieties, namely the following
geometric part of Conjecture 5.2:

Conjecture 5.7. Let V → S be a ZVMHS over a smooth irreducible quasi-
projective variety S. Suppose that the union SL>0(S,V) of positive dimen-
sional special subvarieties for (S,V), which are of Shimura type with dominant
period map, is Zariski-dense in S. Then (PS , XS) is of Shimura type and the
period map ΦS : S → Sh0(S,V) is dominant.

One could even ask the following question, more general than Conjec-
ture 5.2:

Question 5.8. Let V → S be a ZVMHS over a smooth irreducible quasi-
projective variety S. Suppose that the union of special subvarieties for (S,V)
which are of Shimura type (but not necessarily with dominant period maps)
is Zariski-dense in S. Is it true that necessarily (PS , XS) is of Shimura type?
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6. Example: Calabi–Yau 3-folds

Let us describe the first non-trivial incarnation of Conjecture 5.2 outside of
the world of Shimura varieties. Let X be a smooth projective Calabi–Yau
threefold (i.e. the canonical bundle KX is trivial and X has trivial funda-
mental group). Let HZ := H3(X,Z) with its natural polarized weight three
Z-Hodge structure HC = H3,0⊕H2,1⊕H1,2⊕H0,3. One can endow HZ with
two different weight one Hodge structures:

– the Weil Hodge structure H1
W for which H1,0

W := H0,3 ⊕H2,1;

– the Griffiths Hodge structure H1
G for which H1,0

G := H3,0 ⊕H2,1.

These two weight one Hodge structures define two complex structures
on the torus HR/HZ, the Weil intermediate Jacobian J(X)W := HZ\HC/H

1
W

which is an Abelian variety but does not vary holomorphically with X,
and the Griffiths intermediate Jacobian J(X)G := HZ\HC/H

1
G which is a

mere complex torus but varies holomorphically with X. In [4] Borcea proves
that HZ has CM if and only if both the Hodge structures H1

W and H1
G

have CM and their Mumford–Tate tori mutually commute in GL(HQ). Let
S = Def(X) be the family of Calabi–Yau threefolds deformation space of
X and let V be the corresponding polarized weight 3 variation of Z-Hodge
structure on Ssm with fiber HZ at X. One can choose X so that S contains
infinitely many CM-points. To the best of my knowledge, in all examples
(see [34], [37], [30]) the irreducible subvarieties of S containing a Zariski-
dense set of CM-points and maximal for these properties are of Shimura
type, as predicted by Conjecture 5.2. On the other hand it is not clear to
me that there are only finitely many such subvarieties as predicted by Con-
jecture 1.9. Notice that a weaker version of Conjecture 5.2 in this case (and
more generally for Calabi–Yau n-folds) already appears in [20].

7. Functional transcendence

One main tool for attacking Conjecture 1.9 or 5.2 consists in establishing
functional transcendence statements for the period map ΦS . It is adapted
from the Pila–Zannier strategy for proving the André–Oort conjecture 5.5,
hopefully using o-minimal techniques. We refer once more to [23] for a de-
scription of this strategy in the case of the André–Oort conjecture and focus
here on the expected statements.

7.1. Weakly special subvarieties

These functional transcendence statements detect weakly special subvarieties,
a generalisation of special subvarieties.

Definition 7.1. Consider any Hodge morphisms R
π←− T

i−→ Y between con-
nected mixed Hodge varieties and any point r ∈ R. Then any irreducible
component of i(π−1(r)) is called a weakly special subvariety of Y .
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Let V → S be a ZVMHS over a smooth quasi-projective base S with
associated period map ΦS : S → Hod0(S,V). Any irreducible component
of Φ−1

S (ΦS(S) ∩ Z), where Z is a weakly special subvariety of the con-

nected mixed Hodge variety Hod0(S,V) is called a weekly special subvariety
for (S,V).

In particular (taking R a point) special subvarieties of (S,V) are weakly
special for (S,V).

7.2. Bi-algebraic geometry

The format for the functional transcendence statements we are interested in
is the notion of bi-algebraic structure:

Definition 7.2. A bi-algebraic structure on a connected algebraic variety S is
a pair

(D : S̃ −→ X, h : π1(S) −→ Aut(X)),

where π : S̃ → S denotes the universal cover, X is an algebraic variety,
Aut(X) its group of algebraic automorphisms, h : π1(S)→ Aut(X) is a group
morphism (called the holonomy representation) and D is an h-equivariant
holomorphic map (called the developing map).

Definition 7.3. Let S be a connected algebraic variety endowed with a bi-
algebraic structure (D,h).

(i) An irreducible analytic subvariety Y ⊂ S̃ is said to be an irreducible

algebraic subvariety of S̃ if Y is an analytic irreducible component of

D−1(D(Y )
Zar

), where D(Y )
Zar

denotes the Zariski-closure of D(Y ) in X.

(ii) An irreducible algebraic subvariety Y ⊂ S̃, resp. W ⊂ S, is said to be
bi-algebraic if π(Y ) is an algebraic subvariety of S, resp. any (equiva-
lently one) analytic irreducible component of π−1(W ) is an irreducible

algebraic subvariety of S̃.

If (S,V) is a ZVMHS with lifted period map Φ̃S : S̃ → D+
S , we denote by

Φ̂S : S̃ −→ D̂S
the composite jS ◦ Φ̃S where jS : DS ↪→ D̂S denotes the open embedding of
the Mumford–Tate domain DS in its compact dual (see Section 3.1). The

pair (Φ̂S : S̃ → D̂S , ρS : π1(S) → PS(C) −→ Aut(D̂S)(C)) defines a natural
bi-algebraic structure on S, called the bi-algebraic structure of (S,V). The
relation between the bi-algebraic structure of (S,V) and Hodge theory in the
pure case is given by the following proposition, whose proof will be provided
in a sequel to this note. It is proven by Ullmo–Yafaev [33] in the case where S
is a Shimura variety, and in some special case by Friedman and Laza [14]:

Proposition 7.4. Let (S,V) be a ZVHS. The bi-algebraic subvarieties of (S, V )
are the weakly special subvarieties of (S,V).
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A similar result should hold in the mixed case (see [15, Cor. 8.3] for the
case of ZVMHS of Shimura type).

7.3. Ax–Schanuel for variation of mixed Z-Hodge structures

The main functional transcendence conjecture in this setting is:

Conjecture 7.5 (Ax–Schanuel for ZVMHS). Let (S,V) be a ZVMHS. Let

U ⊂ S̃ × S be an algebraic subvariety and let W be an irreducible component
of U ∩∆ (where ∆ denotes the graph of π : S̃ → S). Then DUW ≥ dimW

ws
,

where W
ws

denotes the smallest weakly special special subvariety of S con-
taining π(W ).

When applied to a subvariety U ⊂ S̃ × S of the form Y × π(Y )
Zar

for

Y ⊂ S̃ algebraic, Conjecture 7.5 specializes to the following:

Conjecture 7.6 (Ax-Lindemann for ZVMHS). Let (S,V) be a ZVMHS. Let

Y ⊂ S̃ be an algebraic subvariety. Then π(Y )
Zar

is a bi-algebraic subvariety
of (S,V), i.e. weakly special for (S,V).

Establishing Conjecture 7.6 is a crucial step in establishing Conjec-
ture 5.7.

Note added in proof: since this paper was submitted, Conjecture 7.5 has
been proven in [3], following the strategy of [26] for Shimura varieties.
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