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Abstract The Hilali conjecture predicts that for a simply connected elliptic space,
the total dimension of the rational homotopy does not exceed that of the rational
homology. Here, we give a proof of this conjecture for a class of elliptic spaces
known as hyperelliptic.
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1 Introduction

Let X be a simply connected CW-complex. Then, X is said to be of elliptic type
if both dim H*(X,Q) < oo and dim,(X) ® Q < oo. For these spaces, Hilali
conjectured in [5] the following:

Conjecture I If X is a simply connected CW-complex of elliptic type, then

dim 7(X) ® Q < dim H*(X, Q).
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By the theory of minimal models of Sullivan [3], the rational homotopy type of
X is encoded in a differential algebra (A, d) called the minimal model of X. This is
a free graded algebra A = AV, generated by a graded vector space V = P, vk,

and with decomposable differential, i.e., d : vk - (AZZV)kH. It satisfies that:

VE = (m(X) @ Q)F,
H*AV,d) = HYX,Q).

Therefore, the Hilali conjecture can be rewritten as follows: for a finite-
dimensional graded vector space V (in degrees bigger or equal than two), we
have

dimV < dim H*(AV,d)

for any decomposable differential d on AV.

An elliptic space X is called of pure type if its minimal model (AV,d) satisfies
that V = Veer @ vodd gveery = 0 and d(V°%) ¢ AV, Also X is called
hyperelliptic if d(V¢") = 0 and d(V°™) C ATV @ AV,

In his thesis [5]in 1990, Hilali proved Conjecture 1 for elliptic spaces of pure type.
The conjecture is known to hold [6, 7] also in several cases: H-spaces, nilmanifolds,
symplectic, and cosymplectic manifolds, coformal spaces with only odd-degree gen-
erators, and formal spaces. Hilali and Mamouni [6, 7] have also proved Conjecture 1
for hyperelliptic spaces under various conditions in the homotopical and homological
Euler characteristics.

The main result of this paper is the following:

Theorem 1 Conjecture 1 holds for hyperelliptic spaces.

We shall start by proving it for elliptic spaces of pure type in Sect. 3. This requires
reducing the question to a problem about Tor functors of certain modules of finite
length over a polynomial ring. We solve it by using a semicontinuity result for the
Tor functor. Then, in Sect. 4 we prove Theorem 1 for hyperelliptic spaces. For this
we have to prove a semicontinuity result for the homology of elliptic spaces, and
apply it to reduce the general case to the case in which the minimal model only has
generators of odd degree and zero differential. We give two different proofs of an
inequality from which the result follows.

2 Minimal Models

We recall some definitions and results about minimal models [2]. Let (A,d) be a
differential algebra, that is, A is a (positively) graded commutative algebra over
the rational numbers, with a differential d which is a derivation, i.e., d(a - b) =
(da) - b+ ( — 1)¥2@gq . (db), where deg (a) is the degree of a. We say that A is
connected if A’ = Q, and simply connected if moreover A! = 0.
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A simply connected differential algebra (A, d) is said to be minimal if:

1. A is free as an algebra, that is, A is the free algebra AV over a graded vector
space V = @, V¥, and
2. Forx € V¥,dx € (AV)**!hasnolinearterm, i.e., itlivesin AV=°-AV>? c AV.

Let (A, d) be asimply connected differential algebra. A minimal model for (A, d) is
aminimal algebra (AV, d) together with a quasi-isomorphism p : (AV,d) — (A, d)
(that is, a map of differential algebras such that p, : H*(AV,d) — H*(A,d) is an
isomorphism). A minimal model for (A, d) exists and it is unique up to isomorphism.

Now consider a simply connected CW-complex X. There is an algebra of piece-
wise polynomial rational differential forms (.Q;‘, L(X), d) defined in [3, Chap. VIII].
A minimal model of X is a minimal model (AV,d) for (.Q;‘, (X)), d). ‘We have that

VE= m(X) @ ),
HYAV,d) = H'(X,Q).
A space X is elliptic [1] if both Y dimm(X) ® Q < oo and ) dim
H*(X,Q) < co. Equivalently, if (AV,d) is the minimal model, we require that both

V and H*(AV,d) are finite dimensional. For elliptic spaces, the Euler—Poincaré and
the homotopic characteristics are well defined:

X =Y (—1idimH'(AV,Q),
i>0

Xr =Y (= D dim7;(X) ® Q = dim V" — dim V%,

i>0
We refer the reader to [2, Theorem 32.10] for the proof of the following:

Proposition 1 Let (AV,d) be an elliptic minimal model. Then, y > 0 and x, < 0.
Moreover, x; < 0ifandonlyif x = 0.
In his thesis [5], M. Hilali conjectured that for elliptic spaces:

dim7.(X) ® Q < dim H*(X,Q).
In algebraic terms, this is equivalent to
dimV <dim H*(AV,d),

whenever (AV, d) is a minimal model with dim V < oo. Note that finiteness of both
dim H*(X, Q) and dim 7,(X) ® Q is necessary. Otherwise, one can easily construct
counterexamples such as X = §3 v §3.



24 J. Fernandez de Bobadilla et al.

3 Proof of the Hilali Conjecture for Elliptic Spaces of Pure Type

A minimal model (AV,d) is of pure type if V.= V" & Vo with
d (Veven) — O, d (Vodd) C Ayeven

An elliptic space is of pure type if its minimal model is so. These spaces are widely
studied in [2, § 32]. By Proposition 1, we have that dim V¢"** — dim V°% < 0. Let

n = dim Ve and n + r = dim V°%_ where r > 0. Write xi,...,x, for the
generators of even degree, and yy, ... , y,4, for the generators of odd degree. Then,
dx; =0, and dy ;= Pj(x1,...,x,), where P; are polynomials without linear terms.

In this section, we prove the following:

Theorem 2 The Hilali conjecture holds for elliptic spaces of pure type.

3.1 Expressing the Homology as a Tor Functor

To work over nice modules, we would like to reorder the generators yi, ... , Yutr,
so that Py, ..., P, form a regular sequence in A(xy,... ,x,). Recall that this means
that the image of P; in A(xy,...,x,)/(Pi,..., P;—1) is not a zero divisor, for any
i =1,...,n. Butthis is not possible in general, as shown by the following example.

Example 1 Let V.= Q({x1,x2,y1, Y2, y3), where deg (x;) = 2 and deg(x;) = 6.
Define a differential d on AV by

6, .2 9, .3 4 2
dy, =x{ +x3, dy,=x] +x;5, dy;=xix2+xx;.

Then, (AV,d) is a pure minimal model. It can be proved that it is elliptic if and
only if there exist exact powers of x; and x,. This is the case, since 2x110 =
d (xfyl 4+ x1y2 — x2y3) and 2)63 =d (x%yl + X2y — xlsy3). But for the same rea-
son, models (A(xl,xz, Vi, Vi), d) are not elliptic for any choice of indices i, j. This
amounts to say that dy;, dy; are not a regular sequence in A(xy, x2).

However, Halperin showed in [4, Lemma 8] that pure models always admit a basis
2y s Zntr Of Vodd guch that dz, . .. ,dz, is a regular sequence in A(xy,... ,X,).
This basis is not necessarily homogeneous but it is possible to preserve the lower
grading induced by the number of odd elements, that is

(AV)P = (AV @ ATVoH)P

This grading passes to cohomology and by taking into account the quasi-
isomorphisms

(AT Xy Ve e e s Yugr)s d) —> (AR, - e 3 Xy Zhse e s Znir)s d)
(AQ1y e s Xy 2l 5 20)s d) —> (AX1, -, X0) /21y -2 1 d2Zy), d)
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with respect to the lower grading, one deduces that:

H(AV,d) = H (A1, ... ,x,)/(dz1s ... d2,) @ AZpgts -+ »Znar), d).

Soletz,...,z,4r be abasis such thatdzy,. .. ,dz, form a regular sequence. Put
P; =dzjfor j =1,... ,n+r and consider the module

M =Qlxi,... . x21/(P1,..., Py)
over the ring
R =Qlxi,...,xa].

Consider the ring
S =QlA1,... ]

and themap f : S — R, A; — P,.;. Then, M becomes an S-module.
Consider also the S-module

Qo =S/(Ase- s Ap).
Then, we have the following:
Proposition 2 H,(AV,d) = Tors(M, Qo).

Proof LetU = (z1,...,20)s W = (Zng1s- .. »Znsr) 50 that V% = U @ W. Then,
the map (AV®" & U,d) — (M,0) is a quasi-isomorphism. Actually, the Koszul
complex

RIANU—>RIAN'U— ... > RIANU—>R—>M

is exact, which means that (R ® AU,d) — (M, 0).
Therefore,

(AV,d) = (R® AU Q AW, d) — (M @ AW, d)), (1)

is a quasi-isomorphism, where the differential d’ is defined as zero on M, and
d'zy4i = P,y € M. This can be seen as follows: the map (1) is a map of dif-
ferential algebras. Grading both algebras in such a way that A*W has degree k, we
get two spectral sequences. The map between their E-terms is

H*R® AU, QAW — M @ AW ..

As this is a quasi-isomorphism, it follows that the map in the E-terms is also an
isomorphism. The E.-terms are the homology of both algebras in (1). So the map
(1) is a quasi-isomorphism.
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Finally, we have to identify H*(M ® AW,d’) = Torg(M, Qo). Note that the
homology of (M ® AW,d’) is computed as follows: Take the Koszul complex

SRAW > SQAW—...>850A' W > S — Qo,
and tensor it with M over S (with the S-module structure given above), to get
(M Qs (S® AW),d') = (M @ AW.d').

The homology of this computes Tor§(M, Qo).

Lemma 1 Under our assumptions,

dim Torfy(M,Qy) > n+1 and dimTory(M,Qp) > n + 1.

Proof Clearly,
Tor§(M, Qo) = M ®5 Qo = M/ (Puy1s--. s Pasy) = R/ (P, Poyy) .

As all the polynomials Py, ... , P,4, have no linear part, this module contains the
constant and linear monomials at least, so dim Torg(M ,Qp)>n+1.

For the other inequality, note that Tor’s(M, Q) is the kernel of M ® A"W —
M Q@ AW, i.e., the kernel of

(Pn+1,~--,Pn+r):M_>M® ~(':)- DM . (2)
Now we use the following fact: As M is a complete intersection R-module (it is

the quotient of R by a regular sequence), it has Poincaré duality in the sense that
mult

thereisamap M — Qsuchthat I' : M @ M — M — Q is a perfect pairing.
Take elements v, u; € M, j =1,... ,n,such that
F(v,xj)zo,jzl,...,n, rv,1) =1,

I (wjoa) =8 jok=1,....n, I (uj1)=0,
rov,o)=r (,uj, Q) = 0, for any quadratic Q € R.

Since the elements v, u ; are in the kernel of (2) and they are linearly independent,
we get dim Tor's(M, Q) > n + 1.

3.2 Semicontinuity Theorem

We are going to prove a semicontinuity theorem for the Tor functors Tor’g(M , Qo)
for flat families of modules M of finite length (i.e., finite dimensional as QQ-vector
spaces).
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Consider a variable ¢. A family of S-modules is a module M over S[¢] such that
for each fg, the S-module

Mto = M/([ — o)

is of finite length. We say that M is flat over Q[z] if it is a flat Q[¢]-module, under
the inclusion Q[z] < S[t]. Consider M as a Q[#]-module. Then

Qlr] Qlr]

~ N
MECe G &

forsome N > 0,1 > 0,1 < by < ... < b;. The module is flat if and only if there

is no torsion part, i.e., [ = 0 (to see this, tensor the exact sequence 0 — Q[¢] =
Qlt] — QI[t]l/(t — t;) — 0 with M). Note that for generic &, length(Ms) = N.
Therefore, the flatness is equivalent to M /(¢ — t;) being of length N, i.e.,

M is flat < length(M,;) = N, Vr.

Lemma 2 For any flat family M,
dim Tork (Mo, Qp) > dim Tork(M¢, Qy),

for generic & € Q.

Proof Let us resolve M as an S[t]-module:
0— S[t]*" - ... = S[t] - M —= 0. 3)

As M is flat as Q[z]-module, if we tensor the inclusion Q[¢] < Q[t] by M over

t . . .
Q[z], we have that M < M is an inclusion. Hence, the sequence

0> M M— M/1t)— 0

is exact. But this sequence is the sequence 0 — S[t] — S[¢] — S[¢]/(t) — O
tensored by M over S[t]. Hence, TorISI,](./\/l,S[t]/(t)) = 0. Obviously

Torgm(/\/l, S[t]/(t)) = 0 for j > 2 (since the resolution S[#]/(¢) has two terms).
Using the above, we can tensor (3)®g(;1S[¢]/(¢) to get an exact sequence:

0= 8" - ...—> 5> My—0. 4)
Now we tensor (4) by ®sQo and take homology to obtain Tor’(Mo, Q). But
4) ®s Qo = (3) ®s111 Qo = (3) Rspr) Q1) Ry QUz1/(2) = (5) gy QI1/ (1)
where Qo = S[t1/(A1, ... . A1), and

0— Q] - ...=> Q] - F=M/(\,...,A) — 0. (5)
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(This is just a complex, maybe not exact.) Analogously,

Tors(Mo, Qz) = H*((5) ®qp QI11/(t — &)).

So it remains to see that for a complex L, of free Q[¢]-modules like (5), it holds
that
dim H*(L. ® Q[1]/(t — £)) < dim H (L. ® Q[t]/(1)),

for generic &. (Tensor products are over Q[z], which we omit in the notation
henceforth.) For proving this, just split (5) as short exact sequences

0— Z,‘—)L,‘—)B,‘_1—>O, (6)

and note that Z;, B; are free Q[¢]-modules, being submodules of free modules. So
Z:; = Q[t]% and B; = Q[t]*. Now 0 — B; — Z; — H'(L,) — 0 gives that

H'(L,) = Q[t] ™" @ torsion.
For generic &, we have dim H(L,® Q[t]/(t — &)) = z; — b;. Hence,

0 — Z eQltl/(0) — Li®Qlr]/(1) — Bi-i ® Ql1]/(1) -0
\ I -
0 — Zi(L.®Qltl/(t) — Li®Qlt]/) — Bi-1(L.®Qlr]/() — 0.

The first sequence is (6) tensored by Q[t]/(¢). Thus, the last vertical map is
surjective, and the first vertical map is injective.
Therefore, we get

dim H'(L, ® QI1]/(1)) = dim Z;(L. ® Q[t]/(+)) — dim B;(L, ® Q[1]/(1))
> dim Z; ® Q[t]/(¢) — dim B; ® Q[]/(¢)
= dim H'(L.) ® Q11/(t) — dim Tor "/ (H' (L), Q11/1))
=z —bi,
where we have used in the third line that there is an exact sequence
0 — Tor?"\(H'(L.), Ql11/(1) — Bi ® Qlr]/(1)
— Z; ® Qltl/(1) - H'(L,) ® Q[t]/(t) — 0,

and in the fourth line that dim (N ® Q[#]/(1)) = dim Tor (N, Q[¢]/(r)) for a
torsion Q[#]-module N.
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3.3 Proof of Theorem 2

We proceed to the proof of the Hilali conjecture for elliptic spaces of pure type. We
have to prove that
dim H*(AV,d) > 2n +r.

By Proposition 2, we need to prove that dim Tor’s(M, Qo) > 2n +r. Consider the
family

_ Q[I,XI,... ,xn]
(P +txq,... ,P,,—i—txn)'
For small ¢, the hypersurfaces P, + txy, ..., P, + tx, intersect in N points near

the origin accounted with multiplicity, where N = length(M). Therefore, M is a
flat family. By Lemma 2, it is enough to bound below dim Tor¥ (Mg, Qo). But for
generic t, the hypersurfaces P; + txy,..., P, + tx, intersect in N distinct points
(at least, it is clear that they intersect in several points and the origin is isolated of
multiplicity one). Therefore,

Tor (Me, Qo) = Tor§(Qo, Qo) .

This is easily computed to have dimension (;{) (using the Koszul complex).
Therefore , using Lemma 1,

r—1

dim Torg(M, Qo) = (n+ 1)+ Zdim Torlg(M,Qo) +(n+1)
k=1
r—1

>2n+2+ Zdim Tor’_é (Mé, Qo)
k=1

r—1
=2n+2+2(;>=2n+2’32n+r.
k=1

Remark 1 The above computation works for » > 1. If r = 0 then we have to prove
that length(M) > 2n. But then computing the degree 2 nonzero elements in M, we
have that they are at least ("}') — n. So for any n,
n+1

length(M) > 1 +n + ( )

1
)—n:z(n+l)n+122n.

4 The Hyperelliptic Case

A minimal model (AV,d) of elliptic type is hyperelliptic if V = V" @ V°¥  and

d (Veven) — 0, d (Vodd) C A+ Veven ® Avt)dd . (7)
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An elliptic space is hyperelliptic if its minimal model is so. Note that elliptic
spaces of pure type are in particular hyperelliptic.
By Proposition 1 we have that dim V" — dim V°% < 0. Let n = dim V<"

and n + r = dim V°%_ where r > 0. Write xi, ..., x, for the generators of even
degree, and yy,...,y,y, for the generators of odd degree. Then, dx; = 0, and
dy; = P; (xl, B S s ,yj_l), where P; do not have linear terms.

In this section, we prove the following:

Theorem 3 The Hilali conjecture holds for hyperelliptic spaces.

4.1 Semicontinuity for Elliptic Minimal Models

Lemma 3 Let V be a graded rational finite-dimensional vector space, and let d
be a differential for AV @ Q[t] such that dt = 0, where t has degree 0. Take a
non-countable field k O Q, Vx = V ® k. We denote by d; the differential induced
on AVx = AV QK[t]/(t — &), for & € k. Then

dim H (AV,dg) < dim H(AV, dy),
for generic & € k.

Proof Write 5 ~
0> K—> AVRK[t]>1—>0,

where K and I are the kernel and image of d, respectively. Note that both K and I
are free k[t]-modules, being submodules of AV ® Kk[t].
Denote by ke = Kk[#]/(t — &). Then, we have a diagram

0 - K®ki — (AVRki)®ks — Ik — 0

2 I 2 3)
0 — K — AV — 1 — 0.

(Here, the tensor products of all k[¢]-modules are over Kk[#], and the tensor product
AV ®K[t] is over the rationals.) Therefore, the last vertical map is a surjection, and
the first map is an injection.
We have
0—>1— K— HAV ®K[t],d) — 0,

which is an exact sequence of k[7]-modules. Then, H(AV ® k[t], d) contains a free
part and a torsion part. The torsion is supported at some points, which are at most
countably many. Therefore, for generic £ € k,

0> I®k: > K®k: - H(AV ®k[1],d) @ ks — 0

isexact. As I @ ks - I C Kand I @ ke C K ® ke C K, we have that the last
map in (8) is an injection, therefore an isomorphism, and thus the first map is also
an isomorphism by the snake lemma.
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Note that also, when tensoring with k(z), we have an exact sequence
0— I ®k(t) — K @k(t) > H(AV @KIt],d) ®k(t) — 0.

Also H(AV QKk[t],d)QKk(t) = H(AV QK(¢), d), since k() is a flat k[#]-module.
Hence,

dim H(AW,ds) = dim K — dim /
=dimK @ k: — dim / ® k¢
= dim H(AV ®k(1),d).

In the first line, we mean dim K — dim [ = Zdzo (dim K9 — dim Id).

Take now & = 0. The map K—>K— K /I factors as K /I — K /I. Tensor this
map by ko to get (K/I) ® kg — K /I. Note that there is an exact sequence

I®k)— K ®ky— (K/I) ®ky — 0,
but the first map may not be injective. Then, there is a map

K ®ko o
22N _(R/D®ky— K/I.
Im({ ® ko)

By (8), this is an inclusion. Now we have:

dim H(AV,d;) = dim H(AV ® k(1),d)
=dim (K /I) ® k(1)
<dim(K/I) Q ko

im [2~® ko

Im(/ ® Ko)
<dimK/I

= dim H(AVy, dy)

= dimg H(AV, dy).

4.2 Perturbing the Minimal Model

Let xy,...,x, denote generators for V<", and yi,... , y,4, generators for yodd,
Here, dx; = 0 and dyj =P; (xl, R A2 P ,yj_l).
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We consider the algebra
(AW,d) = (AV,d) ® (Ay1,0),
where deg (y;) = deg (x;) — 1. Then
dim H(AW,d) =2dim H(AV,d).

Consider now the differential § on AW such that §x; = 0, y; = 0and 6y, = x;.
Hence, 82 = 0 and d§ = 8d = 0. So,

is a differential on AW ® K[¢].
For generic & € Kk, (AWy,dg) verifies that dgy; = £x;. So, for nonzero &, there
is a KS-extension [8, § 1.4]

(A(xl, i), dg) — (AWk,dg) —> (AX2y oo 3 Xy V1o e e Yogr)sd)
As H(A(x1, y1),d:) = K, we have that

H(AWi,de) = H(A(X2, ... , X0 Y15+ - Yngr ) d)
Now we apply Lemma 3 to this to obtain that
dim H(A(x2, ... X5, Y15« - Yntr),d) < dim H(AW,d) =2dim H(AV,d).
Repeating the argument » times, we get that

dim H (A(y1, .-« Ynir),d) <2"dim H(AV,d).
But the hyperelliptic condition says that d = 0 for the first space, so

2"dim H(AV,d) > dim H(A(y1,. .. Ynyr),d) = 2",
This gives
dim H(AV,d) = 2". ©)]

4.3 Another Proof of Inequality (9)

In this section, we present a different proof of the inequality dim H(AV,d) > 2" for
hyperelliptic spaces. Recall that if A is a commutative graded differential algebra,
and if M, N are differential graded A-modules, the differential Tor is defined as

Tor*(M,N) = H*(P ®4 N),

where P —> M is a semifree resolution, i.e., a quasi-isomorphism from a semifree
A-module P to M (see [2, § 6]).
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Lemma 4 LetC <— A <, B be morphisms of commutative differential graded
algebras. There exists a convergent spectral sequence

E}? = HP(B) ® Tor%(Q, C) = Tors (B, C).

Proof Decompose ¢ and ¢ as

A—A QAW A—=A4A QAU
o 5
\l \Bl
B C

Then,a: AQ AW —> B is a semifree resolution of B regarded as A-module, so
Tory(B,C) = H*(A® AW) ®4 O).

Moreover, [d® B : (AR AW) R4 AQ AU S (A AW)®4 Cisa quasi-
isomorphism and (A @ AW) R4 (AR AU) = AR AW & AU. Therefore, one gets
a rational fibration

ARAW - AR AW @ AU — AU,
whose associated Serre spectral sequence has the form
EP' = HN(A® AW)® HI(AU) = H'(A® AW ® AU).

On the one hand, H*(A® AW) = H*(B). On the other hand, since S is a semifree
resolution of C, we have that

H*(AU) = H*(A® AU) ®4 Q) = Tor,(Q, C).
Putting all pieces together, we get

E}Y = HP(B) ® Tor%(Q, C) = Tors (B, C).

Theorem 4 Let (AV,d) be a hyperelliptic minimal model. Then
dim H(AV,d) > 2".

Proof Write as usual xy,...,x, for generators of X = V" and yi,..., yytr
for generators of Y = V%% When we apply the previous lemma to morphisms
Q<«—AX<— AV we get a spectral sequence

E, = H(AV,d) ® Tor% ,(Q, Q) = Tor’ ,(AV, Q).
On the one hand,

Tor’ v (Q,Q) = H*(A(X1,....Xn),0) = AKX, ... ,Xn),

where A(xy, ..., X0, X1,...,Xp) N Q is a semifree resolution of Q regarded as
AX-module. Hence, X; are all of odd degree.
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On the other hand, AV is already A X-semifree, so

Tor’yx (AV,Q) = H(AV ®@4x Q) = H* (A1, -+ Yutk), 0) = A1+ - o Yutk)-
Then, the inequality
dim H*(AV,d) - dim Tor* , (Q, Q) > dim Tor’ ,(AV,Q)
coming from the spectral sequence translates into
2" dim H*(AV,d) = 2",

so the result follows.

4.4 Proof of Theorem 3

Now we prove the inequality dim H(AV,d) > 2n + r, for the hyperelliptic minimal
model.
If r =0, then x, = 0. So [2, Prop. 32.10] says that the model is pure, and this
case is already covered by Remark 1.
If r > 0, then x, < 0. So by Proposition 1, x = 0, and hence, it is enough to
prove that
dim H""(AV.,d) > n + 5.

Suppose that r = 1,2. As the degree 0 and degree 1 elements give always nontrivial
homology classes, then dim H***(AV,d) > n + 1, and we are done.

Therefore, we can assume r > 3. We use the following fact: if P(x) is a quadratic
polynomial on the x, and P(x) = do, o € AV, then @ must be linear, « € Vodd and
denoting by d, the composition

Vodd N A+Veven®AV0dd s A+Veven’

we have P(x) = d,a. So there are at least (";’1) — (n + r) quadratic terms in the

homology. Conjecture 1 is proved if

elther 1+n+(n42-1)—(n+r)2n+£, (10)
or 2">2n+r.
So now assume that (10) does not hold. Then
2 —r<2n-1, (11

and 1 + ("erl) —n< %r, ie.,

Qn—1>*<12r —11. (12)
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Putting together (11) and (12), we get 2" —r < /12r — 11, 1e., 2" < r +
A/ 12r — 11. This is easily seen to imply that r < 3. So,r =3 and n = 3.

It remains to deal with the case n = 3, r = 3, and d, is an isomorphism of the
odd degree elements onto A? V", Let x1, x,, x3 be the even-degree generators, of
degrees di < d» < d, respectively. The degrees of x7, x1xa, X3, X1X3, X2X3, X5 are
the six numbers

2dy <dy+dy £2dy, dy+d3 <dy+d3 < 2d;.
We have two cases:

e Case2d, < d;+ds. We can arrange the odd generators yy, . . . , y¢ with increasing
degree and so that dyy; = x%,d,y2 = x1%2,d,y3 = X3,dpys = X1%3,d,y5 =
x2x3,d,Ys = x3. Clearly, dy, = x?. Then, dy, = x1x, + P(x;), where P(x) is
a polynomial on xj, i.e., of the form cx{, n > 2. But this can be absorbed by
a change of variables y, — y, — cxf_zyl. So, we can write dy, = x1x3. Now
the even-degree closed elements in A(x, x2, X3, y1, ¥2) are again polynomials on
X1,X2,Xx3. S0, we can assume dy; = x% as before. Continuing the computation,
the even-degree closed elements in A(xy, x2, X3, Y1, y2, ¥3) are either polynomials
on the x;’s or a multiple of the element x3 y; y» — X1 X2y1y3 + X7 y2y3 = d(y1y2)3),
which is exact. Therefore, we can again manage to arrange that dy, = x;x3.

e Case 2d, > d; + d;. Then, we have that d,y; = x;x3 and d,y4 = x%. As
before, we can arrange dy; = x;x3. Now the even-degree closed elements in
A(x1,x2,X3, Y1, Y2, ¥3) are polynomials on the x;’s or a multiple of x3y;y, —
X2y1y3 + Xx1y2y3. But this element has degree 3d; +d, +d3s —2 > 2d,, so it must
be dy, = x3.

In either case, dy,, dy,, dy;, dy, are xlz, X1X2, x% and x;x3. Let us assume that we are
in the first case to carry over the notation.
Now we compute the even-degree closed elements in A(xy, X2, X3, V1, Y2, V3, V4)-

These are polynomials on x;’s or combinations of

X3Y1y2 — X131 Y3 + X132y = d(31y2)3),

X3Y1Y2 — X2Y1Y4 + X1Y2Y4,

X1X3Y23 — X3 Y294 + X1%23y4 = d(y2Y3)4), and

X1X3Y1Y3 4 X1 y3ya — X3 Y194 = d(y1y3y4).

Only the second one is nonexact, but its degree is strictly bigger than d, + d3. So
again we can arrange that dys = xpx3.
Finally, the minimal model is:

dy, = x12’
dy, = x1x2,
dy; = x%,
dy, = x1x3,
dys = x2x3,

dys = x32 + P(x;,y;)).
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The even-degree closed elements in A(xy, X2, X3, Y1, Y2, ¥3, Y4, ¥5) contain at least

o1 = X3Y2y3 + X1Y3Y5 — X2)2)s,

o) = X3y1Y2 — X2Y1Y4 + X1Y2V4 -

At most, one of them does not survive in H(AV,d), so proving the existence of
at least another even-degree cohomology class. Hence, dim H(AV,d) > 10 > 9, as
required.
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