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Abstract The Hilali conjecture predicts that for a simply connected elliptic space,
the total dimension of the rational homotopy does not exceed that of the rational
homology. Here, we give a proof of this conjecture for a class of elliptic spaces
known as hyperelliptic.
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1 Introduction

Let X be a simply connected CW-complex. Then, X is said to be of elliptic type
if both dim H ∗(X, Q) < ∞ and dim π∗(X) ⊗ Q < ∞. For these spaces, Hilali
conjectured in [5] the following:

Conjecture 1 If X is a simply connected CW-complex of elliptic type, then

dim π∗(X) ⊗ Q ≤ dim H ∗(X, Q) .
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By the theory of minimal models of Sullivan [3], the rational homotopy type of
X is encoded in a differential algebra (A, d) called the minimal model of X. This is
a free graded algebra A = ΛV , generated by a graded vector space V =⊕k≥2 V

k ,

and with decomposable differential, i.e., d : V k → (

Λ≥2V
)k+1

. It satisfies that:

V k = (πk(X)⊗ Q)∗ ,

Hk(ΛV , d) = Hk(X, Q) .

Therefore, the Hilali conjecture can be rewritten as follows: for a finite-
dimensional graded vector space V (in degrees bigger or equal than two), we
have

dim V ≤ dim H ∗(ΛV , d)

for any decomposable differential d on ΛV .
An elliptic space X is called of pure type if its minimal model (ΛV , d) satisfies

that V = V even ⊕ V odd , d(V even) = 0 and d(V odd) ⊂ ΛV even. Also X is called
hyperelliptic if d(V even) = 0 and d(V odd) ⊂ Λ+V even ⊗ΛV odd .

In his thesis [5] in 1990, Hilali proved Conjecture 1 for elliptic spaces of pure type.
The conjecture is known to hold [6, 7] also in several cases: H-spaces, nilmanifolds,
symplectic, and cosymplectic manifolds, coformal spaces with only odd-degree gen-
erators, and formal spaces. Hilali and Mamouni [6, 7] have also proved Conjecture 1
for hyperelliptic spaces under various conditions in the homotopical and homological
Euler characteristics.

The main result of this paper is the following:

Theorem 1 Conjecture 1 holds for hyperelliptic spaces.
We shall start by proving it for elliptic spaces of pure type in Sect. 3. This requires

reducing the question to a problem about Tor functors of certain modules of finite
length over a polynomial ring. We solve it by using a semicontinuity result for the
Tor functor. Then, in Sect. 4 we prove Theorem 1 for hyperelliptic spaces. For this
we have to prove a semicontinuity result for the homology of elliptic spaces, and
apply it to reduce the general case to the case in which the minimal model only has
generators of odd degree and zero differential. We give two different proofs of an
inequality from which the result follows.

2 Minimal Models

We recall some definitions and results about minimal models [2]. Let (A, d) be a
differential algebra, that is, A is a (positively) graded commutative algebra over
the rational numbers, with a differential d which is a derivation, i.e., d(a · b) =
(da) · b + ( − 1)deg (a)a · (db), where deg (a) is the degree of a. We say that A is
connected if A0 = Q, and simply connected if moreover A1 = 0.
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A simply connected differential algebra (A, d) is said to be minimal if:

1. A is free as an algebra, that is, A is the free algebra ΛV over a graded vector
space V = ⊕k≥2V

k , and
2. Forx ∈ V k , dx ∈ (ΛV )k+1 has no linear term, i.e., it lives inΛV>0·ΛV>0 ⊂ ΛV .

Let (A, d) be a simply connected differential algebra.A minimal model for (A, d) is
a minimal algebra (ΛV , d) together with a quasi-isomorphism ρ : (ΛV , d) → (A, d)
(that is, a map of differential algebras such that ρ∗ : H ∗(ΛV , d) → H ∗(A, d) is an
isomorphism). A minimal model for (A, d) exists and it is unique up to isomorphism.

Now consider a simply connected CW-complex X. There is an algebra of piece-
wise polynomial rational differential forms

(

Ω∗
PL(X), d

)

defined in [3, Chap. VIII].
A minimal model of X is a minimal model (ΛV , d) for

(

Ω∗
PL(X), d

)

. We have that

V k = (πk(X) ⊗ Q)∗ ,

Hk(ΛV , d) = Hk(X, Q) .

A space X is elliptic [1] if both
∑

dim πk(X) ⊗ Q < ∞ and
∑

dim
Hk(X, Q) < ∞. Equivalently, if (ΛV , d) is the minimal model, we require that both
V and H ∗(ΛV , d) are finite dimensional. For elliptic spaces, the Euler–Poincaré and
the homotopic characteristics are well defined:

χ =
∑

i≥0

( − 1)i dim Hi(ΛV , Q),

χπ =
∑

i≥0

( − 1)i dim πi(X) ⊗ Q = dim V even − dim V odd .

We refer the reader to [2, Theorem 32.10] for the proof of the following:

Proposition 1 Let (ΛV , d) be an elliptic minimal model. Then, χ ≥ 0 and χπ ≤ 0.
Moreover, χπ < 0 if and only if χ = 0.

In his thesis [5], M. Hilali conjectured that for elliptic spaces:

dim π∗(X) ⊗ Q ≤ dim H ∗(X, Q) .

In algebraic terms, this is equivalent to

dim V ≤ dim H ∗(ΛV , d) ,

whenever (ΛV , d) is a minimal model with dim V < ∞. Note that finiteness of both
dim H ∗(X, Q) and dim π∗(X)⊗Q is necessary. Otherwise, one can easily construct
counterexamples such as X = S3 ∨ S3.
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3 Proof of the Hilali Conjecture for Elliptic Spaces of Pure Type

A minimal model (ΛV , d) is of pure type if V = V even ⊕ V odd , with

d (V even) = 0, d
(

V odd
) ⊂ ΛV even.

An elliptic space is of pure type if its minimal model is so. These spaces are widely
studied in [2, § 32]. By Proposition 1, we have that dim V even − dim V odd ≤ 0. Let
n = dim V even and n + r = dim V odd , where r ≥ 0. Write x1, . . . , xn for the
generators of even degree, and y1, . . . , yn+r for the generators of odd degree. Then,
dxi = 0, and dyj = Pj (x1, . . . , xn), where Pj are polynomials without linear terms.

In this section, we prove the following:

Theorem 2 The Hilali conjecture holds for elliptic spaces of pure type.

3.1 Expressing the Homology as a Tor Functor

To work over nice modules, we would like to reorder the generators y1, . . . , yn+r ,
so that P1, . . . ,Pn form a regular sequence in Λ(x1, . . . , xn). Recall that this means
that the image of Pi in Λ(x1, . . . , xn)/(P1, . . . ,Pi−1) is not a zero divisor, for any
i = 1, . . . , n. But this is not possible in general, as shown by the following example.

Example 1 Let V = Q〈x1, x2, y1, y2, y3〉, where deg (x1) = 2 and deg (x2) = 6.
Define a differential d on ΛV by

dy1 = x6
1 + x2

2 , dy2 = x9
1 + x3

2 , dy3 = x4
1x2 + x1x

2
2 .

Then, (ΛV , d) is a pure minimal model. It can be proved that it is elliptic if and
only if there exist exact powers of x1 and x2. This is the case, since 2x10

1 =
d
(

x4
1y1 + x1y2 − x2y3

)

and 2x4
2 = d

(

x2
2y1 + x2y2 − x5

1y3
)

. But for the same rea-
son, models

(

Λ(x1, x2, yi , yj ), d
)

are not elliptic for any choice of indices i, j . This
amounts to say that dyi , dyj are not a regular sequence in Λ(x1, x2).

However, Halperin showed in [4, Lemma 8] that pure models always admit a basis
z1, . . . , zn+r of V odd such that dz1, . . . , dzn is a regular sequence in Λ(x1, . . . , xn).
This basis is not necessarily homogeneous but it is possible to preserve the lower
grading induced by the number of odd elements, that is

(ΛV )pq = (ΛV even ⊗ΛqV odd
)p

.

This grading passes to cohomology and by taking into account the quasi-
isomorphisms

(Λ(x1, . . . , xn, y1, . . . , yn+r ), d)
∼−→ (Λ(x1, . . . , xn, z1, . . . , zn+r ), d)

(Λ(x1, . . . , xn, z1, . . . , zn), d)
∼−→ (Λ(x1, . . . , xn)/(dz1, . . . , dzn), d)
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with respect to the lower grading, one deduces that:

H∗(ΛV , d) ∼= H∗(Λ(x1, . . . , xn)/(dz1, . . . , dzn) ⊗Λ(zn+1, . . . , zn+r ), d).

So let z1, . . . , zn+r be a basis such that dz1, . . . , dzn form a regular sequence. Put
Pj = dzj for j = 1, . . . , n+ r and consider the module

M = Q[x1, . . . , xn]/(P1, . . . ,Pn)

over the ring
R = Q[x1, . . . , xn] .

Consider the ring
S = Q[λ1, . . . , λr ]

and the map f : S → R, λi �→ Pn+i . Then, M becomes an S-module.
Consider also the S-module

Q0 = S/(λ1, . . . , λr ).

Then, we have the following:

Proposition 2 H∗(ΛV , d) ∼= Tor∗S(M , Q0).

Proof Let U = 〈z1, . . . , zn〉, W = 〈zn+1, . . . , zn+r〉 so that V odd = U ⊕W . Then,
the map (ΛV even ⊕ U , d) → (M , 0) is a quasi-isomorphism. Actually, the Koszul
complex

R ⊗ΛnU → R ⊗Λn−1U → . . . → R ⊗Λ1U → R → M

is exact, which means that (R ⊗ΛU, d)
∼−→ (M, 0).

Therefore,

(ΛV , d) = (R ⊗ΛU ⊗ΛW , d)
∼−→ (M ⊗ΛW , d ′) , (1)

is a quasi-isomorphism, where the differential d ′ is defined as zero on M , and
d ′zn+i = P̄n+i ∈ M . This can be seen as follows: the map (1) is a map of dif-
ferential algebras. Grading both algebras in such a way that ΛkW has degree k, we
get two spectral sequences. The map between their E1-terms is

H ∗(R ⊗ΛU, d)⊗ΛW → M ⊗ΛW .

As this is a quasi-isomorphism, it follows that the map in the E∞-terms is also an
isomorphism. The E∞-terms are the homology of both algebras in (1). So the map
(1) is a quasi-isomorphism.
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Finally, we have to identify H ∗(M ⊗ ΛW , d ′) ∼= Tor∗S(M , Q0). Note that the
homology of (M ⊗ΛW , d ′) is computed as follows: Take the Koszul complex

S ⊗ΛrW → S ⊗Λr−1W → . . . → S ⊗Λ1 W → S → Q0 ,

and tensor it with M over S (with the S-module structure given above), to get

(

M ⊗S (S ⊗ΛW ), d ′) = (M ⊗ΛW , d ′) .

The homology of this computes Tor∗S(M , Q0).

Lemma 1 Under our assumptions,

dim Tor0
S(M , Q0) ≥ n+ 1 and dim TorrS(M , Q0) ≥ n+ 1.

Proof Clearly,

Tor0
S(M , Q0) = M ⊗S Q0 = M/

(

P̄n+1, . . . , P̄n+r

) = R/ (P1, . . . ,Pn+r ) .

As all the polynomials P1, . . . ,Pn+r have no linear part, this module contains the
constant and linear monomials at least, so dim Tor0

S(M , Q0) ≥ n+ 1.
For the other inequality, note that TorrS(M , Q0) is the kernel of M ⊗ ΛrW →

M ⊗Λr−1W , i.e., the kernel of

(Pn+1, . . . ,Pn+r ) : M → M⊕ (r). . . ⊕M . (2)

Now we use the following fact: As M is a complete intersection R-module (it is
the quotient of R by a regular sequence), it has Poincaré duality in the sense that

there is a map M → Q such that Γ : M ⊗ M
mult−→ M → Q is a perfect pairing.

Take elements ν,μj ∈ M , j = 1, . . . , n, such that

Γ
(

ν, xj
) = 0, j = 1, . . . , n, Γ (ν, 1) = 1,

Γ
(

μj , xk
) = δjk , j , k = 1, . . . , n, Γ

(

μj , 1
) = 0,

Γ (ν,Q) = Γ
(

μj ,Q
) = 0, for any quadratic Q ∈ R.

Since the elements ν,μj are in the kernel of (2) and they are linearly independent,
we get dim TorrS(M , Q0) ≥ n+ 1.

3.2 Semicontinuity Theorem

We are going to prove a semicontinuity theorem for the Tor functors TorkS(M , Q0)
for flat families of modules M of finite length (i.e., finite dimensional as Q-vector
spaces).
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Consider a variable t . A family of S-modules is a module M over S[t] such that
for each t0, the S-module

Mt0 = M/(t − t0)

is of finite length. We say that M is flat over Q[t] if it is a flat Q[t]-module, under
the inclusion Q[t] ↪→ S[t]. Consider M as a Q[t]-module. Then

M ∼= Q[t]N ⊕ Q[t]

(t − t1)
b1

⊕ . . .⊕ Q[t]

(t − tl)bl
,

for some N ≥ 0, l ≥ 0, 1 ≤ b1 ≤ . . . ≤ bl . The module is flat if and only if there

is no torsion part, i.e., l = 0 (to see this, tensor the exact sequence 0 → Q[t]
t−ti−→

Q[t] → Q[t]/(t − ti) → 0 with M). Note that for generic ξ , length(Mξ ) = N .
Therefore, the flatness is equivalent to M/(t − ti) being of length N , i.e.,

M is flat ⇐⇒ length(Mt ) = N , ∀t .

Lemma 2 For any flat family M,

dim TorkS(M0, Q0) ≥ dim TorkS(Mξ , Q0),

for generic ξ ∈ Q.

Proof Let us resolve M as an S[t]-module:

0 → S[t]ar → . . . → S[t]a0 → M → 0 . (3)

As M is flat as Q[t]-module, if we tensor the inclusion Q[t]
t

↪→ Q[t] by M over

Q[t], we have that M t
↪→ M is an inclusion. Hence, the sequence

0 → M t
↪→ M → M/(t) → 0

is exact. But this sequence is the sequence 0 → S[t] → S[t] → S[t]/(t) → 0
tensored by M over S[t]. Hence, Tor1

S[t](M, S[t]/(t)) = 0. Obviously

TorjS[t](M, S[t]/(t)) = 0 for j ≥ 2 (since the resolution S[t]/(t) has two terms).
Using the above, we can tensor (3)⊗S[t]S[t]/(t) to get an exact sequence:

0 → Sar → . . . → Sa0 → M0 → 0 . (4)

Now we tensor (4) by ⊗SQ0 and take homology to obtain Tor∗S(M0, Q0). But

(4) ⊗S Q0 = (3) ⊗S[t] Q0 = ((3) ⊗S[t] Q[t]) ⊗Q[t] Q[t]/(t) = (5) ⊗Q[t] Q[t]/(t) ,

where Q0 = S[t]/(λ1, . . . , λr , t), and

0 → Q[t]ar → . . . → Q[t]a0 → F = M/(λ1, . . . , λr ) → 0. (5)
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(This is just a complex, maybe not exact.) Analogously,

Tor∗S(M0, Qξ ) = H ∗((5) ⊗Q[t] Q[t]/(t − ξ )) .

So it remains to see that for a complex L• of free Q[t]-modules like (5), it holds
that

dim Hk(L• ⊗ Q[t]/(t − ξ )) ≤ dim Hk(L• ⊗ Q[t]/(t)),

for generic ξ . (Tensor products are over Q[t], which we omit in the notation
henceforth.) For proving this, just split (5) as short exact sequences

0 → Zi → Li → Bi−1 → 0, (6)

and note that Zi ,Bi are free Q[t]-modules, being submodules of free modules. So
Zi = Q[t]zi and Bi = Q[t]bi . Now 0 → Bi → Zi → Hi(L•) → 0 gives that

Hi(L•) = Q[t]zi−bi ⊕ torsion.

For generic ξ , we have dim Hi(L• ⊗ Q[t]/(t − ξ )) = zi − bi . Hence,

0 → Zi ⊗ Q[t]/(t) → Li ⊗ Q[t]/(t) → Bi−1 ⊗ Q[t]/(t) → 0
↓ || ↓

0 → Zi(L• ⊗ Q[t]/(t)) → Li ⊗ Q[t]/(t) → Bi−1(L• ⊗ Q[t]/(t)) → 0 .

The first sequence is (6) tensored by Q[t]/(t). Thus, the last vertical map is
surjective, and the first vertical map is injective.

Therefore, we get

dim Hi(L• ⊗ Q[t]/(t)) = dim Zi(L• ⊗ Q[t]/(t)) − dim Bi(L• ⊗ Q[t]/(t))

≥ dim Zi ⊗ Q[t]/(t) − dim Bi ⊗ Q[t]/(t)

= dim Hi(L•) ⊗ Q[t]/(t) − dim TorQ[t]
1 (Hi(L•), Q[t]/(t))

= zi − bi ,

where we have used in the third line that there is an exact sequence

0 → TorQ[t]
1 (Hi(L•), Q[t]/(t)) → Bi ⊗ Q[t]/(t)

→ Zi ⊗ Q[t]/(t) → Hi(L•) ⊗ Q[t]/(t) → 0,

and in the fourth line that dim (N ⊗ Q[t]/(t)) = dim TorQ[t]
1 (N , Q[t]/(t)) for a

torsion Q[t]-module N .
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3.3 Proof of Theorem 2

We proceed to the proof of the Hilali conjecture for elliptic spaces of pure type. We
have to prove that

dim H ∗(ΛV , d) ≥ 2n+ r.

By Proposition 2, we need to prove that dim Tor∗S(M , Q0) ≥ 2n+ r . Consider the
family

M = Q[t , x1, . . . , xn]

(P1 + tx1, . . . ,Pn + txn)
.

For small t , the hypersurfaces P1 + tx1, . . . ,Pn + txn intersect in N points near
the origin accounted with multiplicity, where N = length(M). Therefore, M is a
flat family. By Lemma 2, it is enough to bound below dim Tor∗S

(

Mξ , Q0
)

. But for
generic t , the hypersurfaces P1 + tx1, . . . ,Pn + txn intersect in N distinct points
(at least, it is clear that they intersect in several points and the origin is isolated of
multiplicity one). Therefore,

TorkS
(

Mξ , Q0
) = TorkS(Q0, Q0) .

This is easily computed to have dimension
(
r

k

)

(using the Koszul complex).
Therefore , using Lemma 1,

dim Tor∗S(M , Q0) ≥ (n+ 1) +
r−1
∑

k=1

dim TorkS(M , Q0) + (n+ 1)

≥ 2n+ 2 +
r−1
∑

k=1

dim TorkS
(

Mξ , Q0
)

= 2n+ 2 +
r−1
∑

k=1

(

r

k

)

= 2n+ 2r ≥ 2n+ r .

Remark 1 The above computation works for r ≥ 1. If r = 0 then we have to prove
that length(M) ≥ 2n. But then computing the degree 2 nonzero elements in M , we
have that they are at least

(
n+1

2

)− n. So for any n,

length(M) ≥ 1 + n+
(

n+ 1

2

)

− n = 1

2
(n+ 1)n+ 1 ≥ 2n.

4 The Hyperelliptic Case

A minimal model (ΛV , d) of elliptic type is hyperelliptic if V = V even ⊕ V odd , and

d (V even) = 0, d
(

V odd
) ⊂ Λ+V even ⊗ΛV odd . (7)
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An elliptic space is hyperelliptic if its minimal model is so. Note that elliptic
spaces of pure type are in particular hyperelliptic.

By Proposition 1 we have that dim V even − dim V odd ≤ 0. Let n = dim V even

and n + r = dim V odd , where r ≥ 0. Write x1, . . . , xn for the generators of even
degree, and y1, . . . , yn+r for the generators of odd degree. Then, dxi = 0, and
dyj = Pj

(

x1, . . . , xn, y1, . . . , yj−1
)

, where Pj do not have linear terms.
In this section, we prove the following:

Theorem 3 The Hilali conjecture holds for hyperelliptic spaces.

4.1 Semicontinuity for Elliptic Minimal Models

Lemma 3 Let V be a graded rational finite-dimensional vector space, and let d
be a differential for ΛV ⊗ Q[t] such that dt = 0, where t has degree 0. Take a
non-countable field k ⊃ Q, Vk = V ⊗ k. We denote by dξ the differential induced
on ΛVk = ΛV ⊗ k[t]/(t − ξ ), for ξ ∈ k. Then

dim H
(

ΛVk, dξ
) ≤ dim H (ΛV , d0) ,

for generic ξ ∈ k.

Proof Write
0 → K̃ → ΛV ⊗ k[t] → Ĩ → 0 ,

where K̃ and Ĩ are the kernel and image of d , respectively. Note that both K̃ and Ĩ

are free k[t]-modules, being submodules of ΛV ⊗ k[t].
Denote by kξ = k[t]/(t − ξ ). Then, we have a diagram

0 → K̃ ⊗ kξ → (ΛV ⊗ k[t])⊗ kξ → Ĩ ⊗ kξ → 0
↓ || ↓

0 → K → ΛVk → I → 0.
(8)

(Here, the tensor products of all k[t]-modules are over k[t], and the tensor product
ΛV ⊗ k[t] is over the rationals.) Therefore, the last vertical map is a surjection, and
the first map is an injection.

We have
0 → Ĩ → K̃ → H (ΛV ⊗ k[t], d) → 0 ,

which is an exact sequence of k[t]-modules. Then, H (ΛV ⊗ k[t], d) contains a free
part and a torsion part. The torsion is supported at some points, which are at most
countably many. Therefore, for generic ξ ∈ k,

0 → Ĩ ⊗ kξ → K̃ ⊗ kξ → H (ΛV ⊗ k[t], d) ⊗ kξ → 0

is exact. As Ĩ ⊗ kξ � I ⊂ K and Ĩ ⊗ kξ ⊂ K̃ ⊗ kξ ⊂ K , we have that the last
map in (8) is an injection, therefore an isomorphism, and thus the first map is also
an isomorphism by the snake lemma.
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Note that also, when tensoring with k(t), we have an exact sequence

0 → Ĩ ⊗ k(t) → K̃ ⊗ k(t) → H (ΛV ⊗ k[t], d) ⊗ k(t) → 0 .

Also H (ΛV ⊗k[t], d)⊗k(t) = H (ΛV ⊗k(t), d), since k(t) is a flat k[t]-module.
Hence,

dim H (ΛVk, dξ ) = dim K − dim I

= dim K̃ ⊗ kξ − dim Ĩ ⊗ kξ

= dim H (ΛV ⊗ k(t), d) .

In the first line, we mean dim K − dim I =∑d≥0

(

dim Kd − dim I d
)

.

Take now ξ = 0. The map K̃ → K → K/I factors as K̃/Ĩ → K/I . Tensor this
map by k0 to get (K̃/Ĩ ) ⊗ k0 → K/I . Note that there is an exact sequence

Ĩ ⊗ k0 → K̃ ⊗ k0 → (K̃/Ĩ ) ⊗ k0 → 0,

but the first map may not be injective. Then, there is a map

K̃ ⊗ k0

Im(Ĩ ⊗ k0)
= (K̃/Ĩ ) ⊗ k0 → K/I .

By (8), this is an inclusion. Now we have:

dim H (ΛV , dξ ) = dim H (ΛV ⊗ k(t), d)

= dim (K̃/Ĩ ) ⊗ k(t)

≤ dim (K̃/Ĩ ) ⊗ k0

= dim
K̃ ⊗ k0

Im(Ĩ ⊗ k0)

≤ dim K/I

= dim H (ΛVk, d0)

= dimQ H (ΛV , d0) .

4.2 Perturbing the Minimal Model

Let x1, . . . , xn denote generators for V even, and y1, . . . , yn+r generators for V odd .
Here, dxi = 0 and dyj = Pj

(

x1, . . . , xn, y1, . . . , yj−1
)

.
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We consider the algebra

(ΛW , d) = (ΛV , d) ⊗ (Λȳ1, 0) ,

where deg (ȳ1) = deg (x1) − 1. Then

dim H (ΛW , d) = 2 dim H (ΛV , d) .

Consider now the differential δ on ΛW such that δxj = 0, δyj = 0 and δȳ1 = x1.
Hence, δ2 = 0 and dδ = δd = 0. So,

dt = d + tδ

is a differential on ΛW ⊗ k[t].
For generic ξ ∈ k, (ΛWk, dξ ) verifies that dξ ȳ1 = ξx1. So, for nonzero ξ , there

is a KS-extension [8, § 1.4]
(

Λ(x1, ȳ1), dξ
) −→ (

ΛWk, dξ
) −→ (Λ(x2, . . . , xn, y1, . . . yn+r ), d) .

As H (Λ(x1, ȳ1), dξ ) = k, we have that

H (ΛWk, dξ ) ∼= H (Λ(x2, . . . , xn, y1, . . . yn+r ), d) .

Now we apply Lemma 3 to this to obtain that

dim H (Λ(x2, . . . , xn, y1, . . . yn+r ), d) ≤ dim H (ΛW , d) = 2 dim H (ΛV , d) .

Repeating the argument n times, we get that

dim H (Λ(y1, . . . yn+r ), d) ≤ 2n dim H (ΛV , d) .

But the hyperelliptic condition says that d = 0 for the first space, so

2n dim H (ΛV , d) ≥ dim H (Λ(y1, . . . yn+r ), d) = 2n+r .

This gives

dim H (ΛV , d) ≥ 2r . (9)

4.3 Another Proof of Inequality (9)

In this section, we present a different proof of the inequality dim H (ΛV , d) ≥ 2r for
hyperelliptic spaces. Recall that if A is a commutative graded differential algebra,
and if M ,N are differential graded A-modules, the differential Tor is defined as

Tor∗(M ,N ) = H ∗(P ⊗A N ),

where P
∼−→ M is a semifree resolution, i.e., a quasi-isomorphism from a semifree

A-module P to M (see [2, § 6]).
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Lemma 4 Let C
ϕ←− A

ψ−→ B be morphisms of commutative differential graded
algebras. There exists a convergent spectral sequence

E
p,q
2 = Hp(B) ⊗ TorqA(Q,C) ⇒ Torp+q

A (B,C).

Proof Decompose ϕ and ψ as

A

ψ

A ⊗ ΛW

∼α

A

ϕ

A ⊗ ΛU

∼β

B C

Then, α : A⊗ΛW
∼−→ B is a semifree resolution of B regarded as A-module, so

Tor∗A(B,C) = H ∗((A⊗ΛW ) ⊗A C).

Moreover, Id ⊗ β : (A ⊗ ΛW ) ⊗A A ⊗ ΛU
∼−→ (A ⊗ ΛW ) ⊗A C is a quasi-

isomorphism and (A⊗ΛW )⊗A (A⊗ΛU ) ∼= A⊗ΛW ⊗ΛU. Therefore, one gets
a rational fibration

A⊗ΛW → A⊗ΛW ⊗ΛU → ΛU ,

whose associated Serre spectral sequence has the form

E
p,q
2 = Hp(A⊗ΛW ) ⊗Hq(ΛU ) ⇒ Hp+q(A⊗ΛW ⊗ΛU ).

On the one hand, H ∗(A⊗ΛW ) = H ∗(B).On the other hand, since β is a semifree
resolution of C, we have that

H ∗(ΛU ) = H ∗((A⊗ΛU ) ⊗A Q) = Tor∗A(Q,C).

Putting all pieces together, we get

E
p,q
2 = Hp(B) ⊗ TorqA(Q,C) ⇒ Torp+q

A (B,C).

Theorem 4 Let (ΛV , d) be a hyperelliptic minimal model. Then

dim H (ΛV , d) ≥ 2r .

Proof Write as usual x1, . . . , xn for generators of X = V even and y1, . . . , yn+r

for generators of Y = V odd . When we apply the previous lemma to morphisms
Q←−ΛX↪→ΛV we get a spectral sequence

E2 = H (ΛV , d) ⊗ Tor∗ΛX(Q, Q) ⇒ Tor∗ΛX(ΛV , Q).

On the one hand,

Tor∗ΛX(Q, Q) = H ∗(Λ(x1, . . ., xn), 0) = Λ(x1, . . . , xn),

where Λ(x1, . . ., xn, x1, . . ., xn)
∼−→ Q is a semifree resolution of Q regarded as

ΛX-module. Hence, xi are all of odd degree.
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On the other hand, ΛV is already ΛX-semifree, so

Tor∗ΛX(ΛV , Q) = H (ΛV ⊗ΛX Q) = H ∗(Λ(y1, . . ., yn+k), 0) = Λ(y1, . . ., yn+k).

Then, the inequality

dim H ∗(ΛV , d) · dim Tor∗ΛX(Q, Q) ≥ dim Tor∗ΛX(ΛV , Q)

coming from the spectral sequence translates into

2n dim H ∗(ΛV , d) ≥ 2n+r ,

so the result follows.

4.4 Proof of Theorem 3

Now we prove the inequality dim H (ΛV , d) ≥ 2n+ r , for the hyperelliptic minimal
model.

If r = 0, then χπ = 0. So [2, Prop. 32.10] says that the model is pure, and this
case is already covered by Remark 1.

If r > 0, then χπ < 0. So by Proposition 1, χ = 0, and hence, it is enough to
prove that

dim H even(ΛV , d) ≥ n+ r
2 .

Suppose that r = 1, 2. As the degree 0 and degree 1 elements give always nontrivial
homology classes, then dim H even(ΛV , d) ≥ n+ 1, and we are done.

Therefore, we can assume r ≥ 3. We use the following fact: if P (x) is a quadratic
polynomial on the x, and P (x) = dα, α ∈ ΛV , then α must be linear, α ∈ V odd and
denoting by do the composition

V odd −→ Λ+V even ⊗ΛV odd � Λ+V even ,

we have P (x) = doα. So there are at least
(
n+1

2

) − (n + r) quadratic terms in the
homology. Conjecture 1 is proved if

{

either 1 + n+ (n+1
2

)− (n+ r) ≥ n+ r
2 ,

or 2r ≥ 2n+ r .
(10)

So now assume that (10) does not hold. Then

2r − r ≤ 2n− 1 , (11)

and 1 + (n+1
2

)− n < 3
2 r , i.e.,

(2n− 1)2 ≤ 12r − 11. (12)
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Putting together (11) and (12), we get 2r − r ≤ √
12r − 11, i.e., 2r ≤ r +√

12r − 11. This is easily seen to imply that r ≤ 3. So, r = 3 and n = 3.
It remains to deal with the case n = 3, r = 3, and do is an isomorphism of the

odd degree elements onto Λ2 V even. Let x1, x2, x3 be the even-degree generators, of
degrees d1 ≤ d2 ≤ d3, respectively. The degrees of x2

1 , x1x2, x2
2 , x1x3, x2x3, x2

3 are
the six numbers

2d1 ≤ d1 + d2 ≤ 2d2, d1 + d3 ≤ d2 + d3 ≤ 2d3.

We have two cases:

• Case 2d2 ≤ d1+d3. We can arrange the odd generators y1, . . . , y6 with increasing
degree and so that doy1 = x2

1 , doy2 = x1x2, doy3 = x2
2 , doy4 = x1x3, doy5 =

x2x3, doy6 = x2
3 . Clearly, dy1 = x2

1 . Then, dy2 = x1x2 + P (x1), where P (x1) is
a polynomial on x1, i.e., of the form c xn

1 , n ≥ 2. But this can be absorbed by
a change of variables y2 �→ y2 − c xn−2

1 y1. So, we can write dy2 = x1x2. Now
the even-degree closed elements in Λ(x1, x2, x3, y1, y2) are again polynomials on
x1, x2, x3. So, we can assume dy3 = x2

2 as before. Continuing the computation,
the even-degree closed elements in Λ(x1, x2, x3, y1, y2, y3) are either polynomials
on the xi’s or a multiple of the element x2

2y1y2 −x1x2y1y3 +x2
1y2y3 = d(y1y2y3),

which is exact. Therefore, we can again manage to arrange that dy4 = x1x3.
• Case 2d2 > d1 + d3. Then, we have that doy3 = x1x3 and doy4 = x2

2 . As
before, we can arrange dy3 = x1x3. Now the even-degree closed elements in
Λ(x1, x2, x3, y1, y2, y3) are polynomials on the xi’s or a multiple of x3y1y2 −
x2y1y3 + x1y2y3. But this element has degree 3d1 + d2 + d3 − 2 > 2d2, so it must
be dy4 = x2

2 .

In either case, dy1, dy2, dy3, dy4 are x2
1 , x1x2, x2

2 and x1x3. Let us assume that we are
in the first case to carry over the notation.

Now we compute the even-degree closed elements in Λ(x1, x2, x3, y1, y2, y3, y4).
These are polynomials on xi’s or combinations of

x2
2y1y2 − x1x2y1y3 + x2

1y2y3 = d(y1y2y3),

x3y1y2 − x2y1y4 + x1y2y4,

x1x3y2y3 − x2
2y2y4 + x1x2y3y4 = d(y2y3y4), and

x1x3y1y3 + x2
1y3y4 − x2

2y1y4 = d(y1y3y4).

Only the second one is nonexact, but its degree is strictly bigger than d2 + d3. So
again we can arrange that dy5 = x2x3.

Finally, the minimal model is:
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

dy1 = x2
1 ,

dy2 = x1x2,
dy3 = x2

2 ,
dy4 = x1x3,
dy5 = x2x3,
dy6 = x2

3 + P (xi , yj ).
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The even-degree closed elements in Λ(x1, x2, x3, y1, y2, y3, y4, y5) contain at least

α1 = x3y2y3 + x1y3y5 − x2y2y5 ,

α2 = x3y1y2 − x2y1y4 + x1y2y4 .

At most, one of them does not survive in H (ΛV , d), so proving the existence of
at least another even-degree cohomology class. Hence, dim H (ΛV , d) ≥ 10 ≥ 9, as
required.
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