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Abstract. We prove an alternating variant of the Gross-Deligne conjecture for periods of
variations of Hodge–de Rham structures endowed with a multiplication by a number field.

0. Introduction

A CM elliptic curve is an elliptic curve defined over Q endowed with multiplication by an
imaginary quadratic field K. The multiplication gives rise to an action of K on the Betti
and de Rham cohomology groups H1(E,Q), H1

dR(E/Q). Since dimK H
1
B(E,Q) = 1 one

has the eigendecompositions (H1
B(E,Q)χ, H1

dR(E/Q)χ) which are one-dimensional over Q for

each embedding χ : K → Q. The difference of the two Q-structures via the comparison
isomorphism is called the period of the χ-part. Roughly speaking, the Lerch-Chowla-Selberg
formula says that the period of a CM elliptic curve is a product of values of the gamma
function at certain rational numbers. The Gross-Deligne conjecture is a generalization of
the Lerch-Chowla-Selberg formula for the cohomology groups of smooth projective varieties
equipped with multiplication by an abelian number field [Gro78]. See §2 below for the precise
statement. The Gross-Deligne conjecture is still wide open, although some recent results give
new evidence supporting it.

Maillot and Rössler proved a variant of the conjecture for the complex absolute values of
periods [MR04]. More recently, the second author proved the conjecture for the alternating
product of the cohomology groups of a variety acted upon by an automorphism of finite order
[Fre13].

The purpose of this paper is to prove the period conjecture of Gross-Deligne for the alternat-
ing product of the cohomology of fibrations equipped with relative multiplication. Theorem
5.1 is the main result in this paper. The proof is divided into two parts, one is describing
the period as a product of gamma values, and the other is computing the Hodge indices.
The former goes in the same way as in [Fre13], and it relies heavily on the seminal paper by
Saito-Terasoma [ST97]. The latter discussion, namely computing the Hodge indices goes in a
different way from [Fre13]. We apply Saito’s Jacobi sum formula [Sai94] to obtain an explicit
description of the Hodge-Tate representation on p-adic cohomology. Then the Hodge-Tate
conjecture proved by Faltings et al. gives the relationship between the Hodge-Tate represen-
tation and the (usual) Hodge decomposition of de Rham cohomology.

This paper is organized as follows. §1 is a section of preliminaries for the notion of Hodge–de
Rham structures and the periods. In §2 we give a precise statement of the period conjecture.
The techinical key to the formulation is the lemma of Deligne-Koblitz-Ogus (Lemma 2.1).
In §3, we review the period formula of Saito–Terasoma. In §4, we apply Saito’s Jacobi sum
formula to obtain the Hodge-Tate representation and then we compute the Hodge indices.
The main result and its applications for the cohomology of fibrations are given in §5. In
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the proof of the main theorem (Theorem 5.1), we use algebraic correspondences on weight
spectral sequences of non-complete smooth varieties. Since the authors were unable to find a
suitable reference for it, an exposition is given in §6 for the convenience of the reader.

0.1. Notation and conventions. Throughout the paper, Q denotes the algebraic closure
of Q in C. By a variety over a field k we mean an integral separated k-scheme of finite type.
For a scheme X of finite type over C (resp. Q), we denote by Xan the analytic site associated
to X (resp. X×QC). The structure sheaf on the analytic site is denoted by Oan. The Zariski
site is simply denoted by X or by Xzar whenever we want to emphasize it.

We denote by µd(F ) the set of d-th roots of unity contained in a field F .

For a free R-module M of rank n with R a commutative ring, we denote the determinant
of M over R by detRM =

∧n
RM . By convention, detR{0} = R.

0.2. Acknowledgements. The first author is grateful to Dr. Kei Hagihara for stimulating
discussions, especially on algebraic Hecke characters. When he gave the first anouncement, an
additional condition was necessary in the theorem. He owes Dr. Hagihara a lot in removing
it. The second author thanks Claude Sabbah. He acknowledges support by the SNSF grants
200021-150099 and 200020-162928. The paper was completed when the authors were visiting
the MPIM.

1. Preliminaries

1.1. Periods of rank one Betti–de Rham structures. Let K ⊆ C be a subfield. A
Betti–de Rham structure over K is a triple H = (HdR, HB, ι) consisting of

• a finite-dimensional K-vector space HdR,
• a finite-dimensional Q-vector space HB,
• an isomorphism of complex vector spaces ι : HdR ⊗K C→ HB ⊗Q C.

Assume further that K ⊆ Q. To a rank one Betti–de Rham structure H, it is attached a
period as follows: let edR ∈ HdR and eB ∈ HB be bases over K and Q respectively. Then
there exists a complex number per(H) satisfying

ι(edR) = per(H)eB.

This is well-defined up to multiplication by Q×, thus yielding a class per(H) ∈ C×/Q×.

1.2. Hodge–de Rham structures. Let K ⊆ C be a subfield. A Hodge–de Rham structure
over K is a triple H = ((HdR, F

•), HB, ι) consisting of

• a finite dimensional K-vector space HdR together with a decreasing filtration F •HdR,
• a finite dimensional Q-vector space HB,
• an isomorphism of complex vector spaces ι : HdR ⊗K C→ HB ⊗Q C

such that F • induces a pure Hodge structure on HB via ι.

De Rham and Betti cohomologies of smooth proper varieties X over F , together with the
comparison isomorphism, define a Hodge–de Rham structure Hn(X). We will say that a
Hodge–de Rham structure has geometric origin if... There is a forgetful functor from the
category of Hodge–de Rham structures over F to that of Hodge structures. If F = C, the
functor is the identity, in other words, a Hodge–de Rham structure over C is nothing other
than a Hodge structure.
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Let F be a commutative Q-algebra. An F -multiplication on a Hodge-de Rham structure
H is a pair of F -actions on HdR and HB which are compatible with ι and F •. In other words,
an F -action amounts to a ring morphism F → EndHdR(H). We say that H has maximal
multiplication if F is a number field and dimF HB = 1.

Suppose that K ⊆ Q. For each embedding χ : F → Q, the χ-components

Hχ
dR = (Q⊗K HdR)χ, Hχ

B = (Q⊗K HB)χ

are defined as the subspaces Hχ
dR ⊂ Q⊗K HdR (resp. Hχ

B ⊂ Q ⊗K HB) on which 1 ⊗ g acts
by multiplication by χ(g) for all g ∈ F . Whenever the F -multiplication is maximal, the triple
(Hχ

B, H
χ
dR, ι) forms a rank one Betti–de Rham structure in the sense of §1.1. Thus the period

of the χ-component is defined and will be denoted by per(Hχ) ∈ C×/Q×.

Example 1.1. For each integer r, the Tate Hodge–de Rham structure (over Q) is defined as
Q(r) = H1(Gm,Q)⊗−r ' H2(P1,Q)⊗−r. Its period is per(Q(r)) = (2πi)−r.

1.3. Connections. Let K ⊆ C be a subfield, and U a smooth quasi-projective variety over
K. A connection over U is a triple M = ((MdR,∇),MB, ι) consisting of

• a locally-free OU -module of finite rank MdR on U , together with an integrable con-
nection ∇ : MdR →MdR ⊗OU Ω1

U ,

• a local system of Q-vector spaces MB on the analytic complex manifold Uan
C ,

• an isomorphism ι : MB ⊗Q Oan
U →MdR ⊗OU Oan

U

such that the analytic connection ∇an annhilates ι(MB ⊗Q C).

We say that the connection (MdR,∇) has regular singularities if the following holds. Let
j : U ↪→ X be a smooth compactification such that D = X \ U is a simple normal crossings
divisor. Then there exists a locally free subsheaf MdR ⊂ j∗MdR on the Zariski site such that
j∗MdR = MdR and

∇(MdR) ⊂MdR ⊗ Ω1
X(logD).

Given a connection M over U and a closed point x, we define the fiber Mx = (MB,x,MdR,x, ι).

1.4. Variations of Hodge–de Rham structure. Let U be a smooth quasi-projective va-
riety over K ⊆ C. We say that the data M = ((MdR,∇, F •),MB, ι) forms a variation of
Hodge–de Rham structures on U if

• MB is a smooth sheaf of finite-dimensional Q-vector spaces on Uan,
• MdR is a locally free Ozar

U -module, and F • is a descending filtration,
• ι : C⊗Q MB → Oan

U ⊗Ozar MdR is a homomorphism,
• (MdR,∇) is an integrable connection on U zar with regular singularities,
• (MB,O

an
U ⊗Ozar MdR, ι, F

•,∇) is a variation of Hodge structures on Uan.

If K = C, a smooth sheaf of Hodge–de Rham structure is nothing other than a variation of
Hodge structures. A polarization form is a pair of homomorphisms QB : MB ⊗MB → Q and
QdR : MdR⊗MdR → Ozar

U which induce the polarization on the variation of Hodge structures
(MB,O

an
U ⊗Ozar MdR, ι, F

•,∇).

Let K be a number field. A multiplication on M by a number field K is a ring morphism
ρ : K → End(M ). We say that M has maximal multiplication by K if the fibers of the local
system MB have dimension one over K.
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1.5. Local period.

Theorem 1.2. Let M = ((MdR,∇),MB, ι) be a rank one connection over Q. Then the period
per(Mx) does not depend on x.

Proposition 1.3. Let M = ((MdR,∇, F •),MB, ι) be a polarizable variation of Hodge–de
Rham structures endowed with maximal multiplication by a number field F . Assume K ⊆ Q.
Let Mx = (MB,x,MdR,x, ι, F

•) denote the restriction at a point x ∈ U(Q). Then for any

χ : F ↪→ Q, the period per(M χ
x ) does not depend on x.

Proof. We first show that the monodromy representation π1(Uan, x) → GL(MB,x) factors

through a finite quotient. Let χ : K ↪→ Q and Mχ
B ⊂ Q ⊗MB,t the χ-part. Then π1(Uan)

acts on Mχ
B
∼= Q. We want to show that for any T ∈ π1(Uan, x) the eigenvalue λχ of T on

Mχ
B is a root of unity or, equivalently, that the residues of (MdR,∇) are rational numbers.

Let αχ be such a residue. Since MdR is defined over Q, we have α ∈ Q. On the other hand,
In view of the previous argument, there exists a finite étale cover h : U ′ → U such that h∗MB

is a constant sheaf. Then (Mχ
B,M

χ
dR, ι,∇) is a connection with regular singularities of rank

one and Mχ
B is a constant sheaf. Now the assertion follows from Lemma 1.4. �

Lemma 1.4. Let M = ((MdR,∇),MB, ι) be a connection of rank one with regular singulari-
ties. Suppose that MB is a constant sheaf. Let eB ∈ Γ (Uan,MB) and edR ∈ Γ (U zar,MdR) be
bases and fan ∈ O(Uan)× an analytic function satisfying

ι(eB) = fan ⊗ edR ∈ Γ (Uan,Oan
U ⊗OU MdR).

Then there are c ∈ C× and f ∈ O(U zar)× such that fan = cf . In particular, if F ⊆ Q, then
the period per(Mx) does not depend on the choice of a point x ∈ U(Q).

Proof. Write UC = U ×F C. Since M has regular singularities, (MB,MdR, ι,∇) is a trivial
connection on UC by the Riemann-Hilbert correspondence (cf. [Mal87] (1,1) and (7.2.1)).
Therefore C⊗FMdR is a free Ozar

UC
-module of rank one and ι(eB) is a free basis of Γ (U zar

C ,C⊗F
MdR). Therefore fan ∈ O(U zar

C )× = C× · O(U zar)×. �

2. The Gross-Deligne conjecture

In this section, we give the precise statement of the Gross-Deligne conjecture [Gro78], as
well as a self-contained proof of a lemma by Koblitz-Ogus which plays a crucial role in the
formulation.

2.1. The gamma distribution. Let 〈α〉 be symbols indexed by Q/Z and consider the free
Q-module S generated by them

S =
⊕
α∈Q/Z

Q 〈α〉.

Let T ⊂ S denote the sub-Q-module of S generated by the symbols

〈0〉, 〈α〉+ 〈−α〉 − 2〈1/2〉,
m−1∑
i=0

〈α+ i/m〉 − (m− 1)〈1/2〉 − 〈mα〉,

where α ∈ Q/Z is non-zero and m ≥ 1.

Let {−} : Q/Z→ Q∩[0, 1) denote the inverse map of the natural bijection Q∩[0, 1)→ Q/Z.
It induces the Q-linear map {−} : S/T → Q such that {〈α〉} = {α}, which we write by the
same notation.
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The group Ẑ× acts on Q/Z in a natural way and it extends to the action on S/T . Then the

Galois group Gal(Q(µ∞)/Q) acts on S/T via the cyclotomic character Gal(Q(µ∞)/Q)
∼→ Ẑ×.

Let

Γ(s) =

∫ ∞
0

ts−1e−tdt

be the gamma function. Define a Q-linear map Γ̃ : S −→ C×/Q× by Γ̃(〈α〉) := Γ(−α̃) where
α̃ ∈ Q is a lifting of α ∈ Q/Z such that α̃ > 0. One sees that this does not depend on the
choice of the lifting by the formula Γ(s+ 1) = sΓ(s). The classical identites

Γ(1/2) =
√
π, Γ(s)Γ(1−s) =

π

sin(πs)
,

m−1∏
r=0

Γ(s+ r/m) = (2π)
1
2

(m−1)m
1
2
−msΓ(ms)

yield that Γ̃ kills T so that we have a Q-linear map

Γ : S/T −→ C×/Q×.

2.2. Lemma of Koblitz-Ogus. Let F be an abelian extension of Q. PutGF := Gal(Q(µ∞)/F ).
We denote by (S/T )GF the fixed part by GF . We then consider the Q-linear map

θF : (S/T )GF −→ Q[Gal(F/Q)]

ξ 7−→
∑

σ∈Gal(F/Q)

{σξ}σ−1.

This is a Gal(F/Q)-equivariant map.

Lemma 2.1 (Koblitz-Ogus). The map θF is injective and its image is generated by

(1) TF :=
∑

σ∈Gal(F/Q)

σ, τ − τ (τ ∈ Gal(F/Q))

where τ denotes the composition with complex conjugation In other words, θF induces a bi-
jection

(S/T )GF ' QTF ⊕Q[Gal(F/Q)]−

where Q[Gal(F/Q)]− denotes the (−1)-eigenspace for the action of complex conjugation

We shall give a self-contained proof of Lemma 2.1 below.

Remark 2.2.

2.3. The Gross-Deligne conjecture.

Conjecture 2.3 (Gross-Deligne). Let H = ((HdR, F
•), HB, ι) be a Hodge–de Rham structure

over Q of geometric origin. Suppose that H has maximal multiplication by an abelian number
field F , and fix an embedding i : F ↪→ C. For each embedding χ : F ↪→ C, let (pχ, qχ) ∈ Z2

denote the unique couple of integers such that Hχ
dR ⊂ H

pχ,qχ. Let ℘i ∈ (S/T )GF be the unique
element satisfying θK(℘i) =

∑
σ piσσ

−1 by Lemma 2.1. Then the equality

per(H iσ) = Γ(℘σi )

holds in C×/Q× for all σ ∈ Gal(F/Q).

Note that
∑

σ piσσ
−1 ∈ QTF ⊕Q[Gal(F/Q)]− since pχ + pχ̄ is a constant function of χ by

the Hodge symmetry.
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Remark 2.4. The Gross-Deligne conjecture does not depend on the choice of the embedding
i : F ↪→ C. Indeed, if i is replaced by i′ = iσ0, with σ0 ∈ Gal(F/Q), then

θK(℘i′) =
∑
σ

pi′σσ
−1 = σ0

∑
σ

piσσ
−1 = σ0(θK(℘i)) = θK(℘σ0i ).

By Lemma 2.1, this implies that ℘i′ = ℘σ0i and hence per(H iσ) = Γ(℘σi ) for all σ ∈ Gal(F/Q)

if and only if per(H i′σ) = Γ(℘σi′) for all σ ∈ Gal(F/Q).

For later use, we formulate the period conjecture for F not necessarily an abelian field.

Conjecture 2.5 (A variant of the Gross-Deligne conjecture). Let the notation be as before,
but F an arbitrary number field. Put F0 = F ∩Q(µ∞). Assume that (pχ, qχ) depends only on

χ0 := χ|F0. Then per(Hχ) depends only on χ0 and, letting ℘i ∈ (S/T )GF0 denote the unique
element satisfying θF0(℘i) =

∑
σ piσσ

−1, the equality

per(H iσ) = Γ(℘σi )

holds in C×/Q× for all σ ∈ Gal(F0/Q).

2.4. Proof of Lemma 2.1. Suppose F ⊆ Q(µm). Write Gm := Gal(Q(µ∞)/Q(µm)) and
GK := Gal(Q(µ∞)/F ). Then G = G1 ⊃ GF ⊇ Gm. There is a commutative diagram

(S/T )Gm
θm // Q[G/Gm]

(S/T )GF
θK //

OO

Q[G/GF ]

OO

where θm = θQ(µm), the left vertical arrow is the natural inclusion and the right vertical arrow
is given by

σ 7−→
∑

τ∈GK/Gm

τ σ̃, (σ̃ ∈ G are liftings).

Since the GF /Gm-fixed part of the arrow θm coincides with θK , it is enough to prove Lemma
2.1 in the case where F = Q(µm) for m ≥ 3.

2.4.1. Surjectivity of θm. For k ∈ Ẑ×, let σk ∈ G denote the automorphism given by σk(ζ) =
ζk, ζ ∈ µ∞. We want to show

(2) θm : C⊗Q (S/T )Gm −→ CTm ⊕ C[G/Gm]−, Tm :=
∑

k∈(Z/mZ)×

σk

is surjective. The surjectivity onto the component CTm is immediate as

(3) θm

〈
1

2

〉
=
∑
k

1

2
σ−1
k =

ϕ(m)

2
Tm.

Note

C[G/Gm]− =
⊕
χ:odd

C[G/Gm]χ,

where χ : G/Gm ∼= (Z/mZ)× → C× is a character and “odd” means χ(σ−1) = −1. We want
to show that C[G]χ belongs to the image of (2). Note that each C[G]χ is one-dimensional.
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We associate to χ a Dirichlet character χ : Z → C in the customary way. Namely letting fχ
be the conductor of χ, define χ(k) = χ(σk) if (k, fχ) = 1 and = 0 if (k, fχ) 6= 1. Put

eχ :=
m−1∑
i=1

χ−1(i)〈 i
m
〉 =

m−1∑
i=1

χ(i)〈 i
m
〉.

Since

σk(eχ) =
m−1∑
i=1

χ−1(i)〈ki
m
〉 =

m−1∑
i=1

χ−1(ik−1)〈 i
m
〉 = χ(k)eχ.

one has θm(eχ) ∈ C[G]χ. Thus if one can show that θm(eχ) 6= 0, then this finishes the proof.
Since

θ(eχ) =
m−1∑
i=1

∑
k∈(Z/mZ)×

χ−1(i)

{
ki

m

}
σ−1
k

it is enough to show nonvanishing of

m−1∑
i=1

χ−1(i)

{
i

m

}
=

1

m

m−1∑
i=0

iχ(i) =
1

m

m/fχ−1∑
j=0

fχ−1∑
i=0

(i+ jfχ)χ(i) =
1

fχ

fχ−1∑
i=0

iχ(i).

However, as is well-known, the last term is the special value of Dirichlet L-function for the
odd character χ

L(1, χ) = π
√
−1

τ(χ)

fχ

fχ−1∑
i=0

iχ(i)

and hence it is nonzero.

2.4.2. Injectivity of θm. Put

Sm :=
⊕

α∈ 1
m
Z/Z, or α=1/2

Q〈α〉 ⊂ SGm , Sm := Image(Sm) ⊂ (S/T )Gm .

The proof in §2.4.1 shows that Sm is onto QTm⊕Q[G/Gm]−. Therefore it is enough to show

(4) Sm = (S/T )Gm

and

(5) dimQ Sm ≤
1

2
ϕ(m) + 1

where we define

ϕ(m) :=

{
](Z/mZ)× m > 2

0 m = 1, 2

We first show (4). For m|n, let In,m := ker[(Z/nZ)× → (Z/mZ)×] and define a Q-linear
map

Trn,m :=
∑

k∈In,m

σk : SGn −→ SGm .
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Then (S/T )Gm is generated by the set{
Trn,m

〈
i

n

〉}
n,i

where n, i run over the integers such that m|n and (n, i) = 1. Hence it is enough to show that
they belongs to Sm. Since Trn′,n ◦Trn,m = Trn′,m, one can reduce it to the case n = pm with
p a prime number.

Case (p 6 |m). Let a be an integer such that 1 ≤ a ≤ p− 1 and am ≡ −1 mod p. Then Imp,m
is the set of the elements

1 + km, (0 ≤ k ≤ p− 1, k 6= a).

Hence

Trpm,m

〈
i

pm

〉
=
∑
k 6=a

〈
i(1 + km)

pm

〉

=

p−1∑
k=0

〈
i

pm
+
ik

p

〉
−
〈
i(1 + am)

pm

〉
≡
〈
i

m

〉
+
p− 1

2

〈
1

2

〉
−
〈
i(1 + am)

pm

〉
mod T

and the last term belongs to Sm as p|(1 + am).

Case (p|m). In this case Imp,m is the set of the elements

1 + km, (0 ≤ k ≤ p− 1).

Hence

Trpm,m

〈
i

pm

〉
=

p−1∑
k=0

〈
i

pm
+
ik

p

〉
≡
〈
i

m

〉
+
p− 1

2

〈
1

2

〉
mod T

and the last term belongs to Sm.

Next we show (5). Let S̃m be defined by

0 −→ Q〈1
2
〉 −→ Sm −→ S̃m −→ 0

Here the injectivity of the left arrow follows from the fact that θm〈12〉 6= 0, cf. (3). Then (5)
is equivalent to the following

(6) dimQ S̃m ≤
1

2
ϕ(m).

Let Qm ⊂ Sm be the sub Q-module generated by

〈0〉,
〈

1

2

〉
,

d−1∑
r=0

〈
i

m
+
r

d

〉
−
〈
di

m

〉
, (d|m, 1 ≤ i ≤ m− 1).

Put M := Sm/Qm on which Gal(Q(µ∞)/Q) acts. Then one easily sees that the natural map

M− −→ S̃m
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is surjective whereM− denotes the part on which the complex conjugation σ−1 ∈ Gal(Q(µ∞)/Q)
acts by multiplication by −1. Hence it is enough to show

(7) dimQM
− ≤ 1

2
ϕ(m).

Define sub Q[Gal(Q(µm)/Q)]-modules

M≤d := Image

[
d−1⊕
i=0

Q〈 i
d
〉 −→M

]
⊃M<d :=

∑
e|d,e 6=d

M e

for d|m. Obviously M≤e ⊂ M≤d if e|d, and M≤2 = 0, M = M≤m. The quotient M≤d/M<d

is a Q[Gal(Q(µd)/Q)]-module generated by 〈1d〉. Moreover it is annihilated by elements

Trd,e :=
∑

σ∈Gal(Q(µd)/Q(µe))

σ, (e|d, e 6= d).

Hence there is the surjection

Ld := Q[Gal(Q(µd)/Q)]/(Trd,e)e|d,e 6=d −→M≤d/M<d, α 7−→ α〈1
d
〉

of Q[Gal(Q(µm)/Q)]-module. Hence to show (7), it is enough to show

(8)
∑

d|m,d 6=1

dimQ(Ld)− =
∑
d|m

dimQ(Ld)− ≤ 1

2
ϕ(m)

(note (L1)− = 0). Let d =
∏
i p
ri
i be the prime decomposition. Then there is a canonical

isomorphism

Ld ∼=
⊗
i

Lp
ri
i

of Q[Gal(Q(µm)/Q)]-algebra where the tensor product is taken over Q and Gal(Q(µm)/Q)
acts on the right hand side diagonally. One can easily sees

Lp
r ∼=

Q[x]/
(
xp
n−1(p−1)−1

xp
n−2(p−1)−1

)
n ≥ 2

Q[x]/
(
xp−1−1
x−1

)
n = 1

(p ≥ 3),

L1 = L2 = Q, L4 ∼= Q[σ−1]/(σ−1 + 1),

L2n ∼= Q[σ−1, y]/(σ2
−1 − 1, y2n−3

+ 1), n ≥ 3,

where σ−1 is the complex conjugation, x corresponds to a cyclic generator of Gal(Q(µpn)/Q) ∼=
(Z/pnZ)× and y corresponds to a cyclic generator of ker[Gal(Q(µ2n)/Q)→ Gal(Q(µ4)/Q)] ∼=
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Z/2n−2Z. We thus have, if m =
∏
i p
ni
i ,∏

d|m

Ld =
∏
d|m

(⊗
i

Lp
ri
i

)

=
⊗
i

(
ni∏
k=0

Lp
k
i

)
=
⊗
i

Q[Gal(Q(µpnii
)/Q)]

= Q[Gal(Q(µm)/Q)].

Hence ∑
d|m

dim(Ld)− = dim
(
Q[Gal(Q(µm)/Q)]−

)
=

1

2
ϕ(m)

as desired. This completes the proof of (5).

3. The Saito-Terasoma theorem

Let U be a smooth quasi-projective variety, and X a smooth projective variety containing
U as the complement of a simple normal crossings divisor D = X \U , with everything defined
over Q.

Let M = ((MdR,∇),MB, ι) be a connection with regular singularities. We define

detΓ (U,MB) =
⊗
i

detH i(U,MB)⊗(−1)i ,

detΓ (U,MdR) =
⊗
i

detHi(U,DR(MdR,∇))⊗(−1)i

where the tensor product is taken over Q. There is the comparison isomorphism (also denoted
by ι) and then we have a rank one Betti–de Rham structure

detRΓ (U,M ) := (detΓ (U,MB), detΓ (U,MdR), ι)

We denote the period simply by perRΓ (U,M ).

The period of the unit object perRΓ (U,Q) is defined in the same way. However, since the
Hodge–de Rham structure detRΓ (U,Q) is a Tate twist Q(−rU ), we simply have perRΓ (U,Q) =
(2πi)−rU (Example 1.1). The value of rU is computed in [Fre13, Prop. 2.2 and Lemma 3.2]:

rU =
n∑
p=0

(−1)ppχ(X,Ωp
X(logD)).

The gamma factor Γ(∇ : MdR) is defined in the following way. Since (MdR,∇) has regular
singulaities, one has the log connection

∇ : MdR −→ Ω1
X(logD)⊗MdR,

and it gives rise to the residue map ResDi(∇) on ODi⊗MdR along an irreducible component Di

of D. Let αDi,j (j = 1, . . . , rankM ) be the eigenvalues of ResDi(∇). Put D◦i = Di \
⋃
k 6=iDk.
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Then the gamma factor is defined as

Γ(∇ : MdR) :=
∏
i,j

Γ(αDi,j)
χtop(D◦i ) ∈ C×/Q×

where χtop denotes the topological Euler characteristic.

Saito introduced the relative canonical cycle cX,U which is a zero-cycle of degree χtop(U)
on U modulo some equivalence relation which is finer than the rational equivalence. We refer
to [Sai93] §1 or [Fre13] 1.4 for the detailed construction. Let c∗X,U det M denote the Betti–de
Rham structure consisting of restrictions c∗X,U detQMB and c∗X,U detQMdR.

The main theorem of [ST97] is stated as follows.

Theorem 3.1 (Saito–Terasoma). The following equality holds in C×/Q× :

(9) perRΓ (U,M ) = perRΓ (U,Q)rankM · Γ(−∇ : MdR) · per(c∗X,U det M ).

3.1. We shall apply the theorem of Saito-Terasoma to the following case.

Theorem 3.2. Let M = (MB,MdR, ι, F
•,∇) be a polarizable variation of Hodge–de Rham

structure on U endowed with multiplication by a number field K. Put

H(M ) := detKRΓ (U,M )⊗K detK(Mx)⊗K−χ
top(U) ⊗Q detRΓ (U,Q)⊗−rankM

a Hodge–de Rham structure with maximal multiplication by K for x ∈ U(Q). Then for
χ : K ↪→ Q one has

perH(M )χ = Γ(−∇ : Mχ
dR) =

∏
i,j

Γ(−αχDi,j)
χtop(D◦i )

where αχDi,j (j = 1, . . . , rankM χ) are eigenvalues of ResDi(∇) on the χ-part Mχ
dR.

Proof. Note

H(M )χ = detQRΓ (U,M χ)⊗Q detQ(M χ
x )⊗−χ

top(U) ⊗Q detRΓ (U,Q)⊗−rankM .

Apply Theorem 3.1 to M χ. It is enough to check

per(c∗X,U det M χ) = per(detQM χ
x )χ

top(U).

Since a variation det M = (detQMB, detQMdR, ι, F
•,∇) has maximal multiplication by K

and satisfies the assumption in Proposition 1.3, the period per(detQ M χ
x ) does not depend on

x ∈ U(Q). Then the above follows from the fact that the degree of cX,U is χtop(U). �

4. Riemann-Roch

Let X be a smooth projective complex variety and D a simple normal crossings divisor on
X. Let us denote by U the complement of D in X and by j : U ↪→ X the inclusion. Let
(H,∇) be a vector bundle together with an integrable connection ∇ : H → H ⊗OU Ω1

U with
regular singularities. Then the cohomology groups

Hj
dR(U,H) = Hj(X,H ⊗OU Ω•U )

are equipped with a mixed Hodge structure. According to [Sai90, Prop. 3.11], the Hodge
filtration can be described as follows. Recall that Deligne’s canonical extension is a locally free
OX -module H together with a logarithmic integrable connection ∇ : H → H ⊗OX Ω1

X(logD)

such that (H,∇)|U ' (H,∇) and that the eigenvalues λ of the residues of ∇ along the
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irreducible components of D satisfy Re(λ) ∈ [0, 1). Define F pH = H ∩ j∗F p. It follows from
the nilpotent orbit theorem that the sheaves F pH are locally free.

Lemma 4.1. One has

F pHj
dR(U,H) = Hi(X,F p−•H ⊗ Ω•X(logD)),

hence

GrpFH
j(U,M ) = Hj(X,Grp−•F M ⊗ Ω•X(logD)).

4.1.

Theorem 4.2. Let M be a variation of Hodge-de Rham structures with multiplication by a
number field F (not necessarily maximal). Then:

pχ(detFRΓ(U,M )) = χ(U)pχ(detFMt) + rk(M χ)rU +
∑
i,j

χ(D◦i ){α
χ
Di,j
}

Proof.

pχ(detFRΓ(U,M )) =
∑
j≥0

(−1)jpχ(detFH
j(U,M ))

=
∑
j≥0

(−1)j
∑
p≥0

pdim GrpFH
j(U,M χ)

=
∑
j≥0

(−1)j
∑
p≥0

pdimHj(U,Grp−•F M χ ⊗ Ω•X(logD))

=
∑
j≥0

(−1)j
∑
p≥0

p
∑
q≥0

(−1)qhj(U,Grp−qF M χ ⊗ Ωq
X(logD))

=
∑
i,j,k

(−1)i+j(p+ j)hi(GrpFM χ ⊗ Ωj
X(logD))

We now compute each of the terms in the last sum:

Proposition 4.3. Let t be any closed point in U . Then:

(10)
∑
q≥0

(−1)q
∑
p≥0

pχ(GrpFM χ ⊗ Ωq
X(logD)) = χ(U) · pχ(detFMt)

Proof. By the Hirzebruch-Riemann-Roch theorem,∑
q≥0

(−1)qχ(GrpFM χ ⊗ Ωq
X(logD)) =

∫
X

ch(GrpFM χ)
∑
q≥0

(−1)qch(ΛqΩ1
X(logD))td(TX)

= (−1)n
∫
X

ch(GrpFM χ)cn(Ω1
X(logD))

= rk(GrpFM χ) · χ(U).

Above the first equality follows from the identity∑
q≥0

(−1)qch(ΛqF ) = (−1)rcr(F ) + higher order
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for a rank r vector bundle F , and the second uses χ(U) = (−1)n
∫
X cn(Ω1

X(logD)). Hence
the left hand side of (10) is equal to∑

p≥0

prk(GrFp M χ)χ(U) = χ(U)pχ(detFMt)

for any closed point t of U . �

Proposition 4.4. The following equality holds:∑
p≥0

(−1)ppχ(U,M χ ⊗ Ωp
X(logD)) = rk(M χ)rU +

∑
i,j

χ(D◦i ){α
χ
Di,j
}

Proof. By the Hirzebruch-Riemann-Roch theorem,

χ(U,M χ ⊗ Ωp
X(logD))− rk(M χ) · χ(U,Ωp

X(logD))

=

∫
X

[ch(M χ)− rk(M χ)]ch(Ωp
X(logD))Td(TX),

so we are reduced to compute∫
X

[ch(M χ)− rk(M χ)] · [
∑
p≥0

(−1)ppch(ΛpΩ1
X(logD)))] · Td(TX)

= (−1)n
∫
X
c1(M χ) · cn−1(Ω1

X(logD))

=
∑
i∈I

rk(Mχ)∑
j=1

χ(D◦i ){α
χ
Di,j
}.

The first equality above follows from the identity∑
q≥0

(−1)qqch(ΛqF ) = (−1)rcr−1(F ) + higher order

and the second from the combination of the identity [Fre13, Lemma 3.4]

χ(D◦i ) = (−1)n−1 deg cn−1(Ω1
X(logD))|Di

and the fact that the first Chern class of a vector bundle equipped with a connection with
regular singularities can be expressed in terms of the residues [EV87, Appendix B]

c1(M χ) = −
∑
i

Tr(ResDi∇)[Di] = −
∑
i

∑
j

{αχDi,j}

This completes the proof. �

�

5. Main Theorem and its applications

Theorem 5.1 (Main Theorem). Let M = (MB,MdR, ι, F
•,∇) be a polarizable variation of

Hodge–de Rham structure on a smooth variety Y endowed with multiplication by a number
field F . Then

(11) detFRΓ (Y,M )⊗ (detFMt)
⊗−χ(Y )

satisfies the period conjecture of Gross-Deligne 2.5.
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Proof. By Lemma 5.2 below (11) satisfies the assumption in Conjecture 2.5. Then the asser-
tion is immediate from Theorems 3.1 and 4.2. �

Lemma 5.2. Let F0 = F ∩Q(µ∞). Then, for χ : F ↪→ Q

(12) pχ(detFRΓ (Y,M )⊗ (detFMt)
⊗−χ(Y )) = rk(M )rY +

∑
i,j

χ(D◦i ){α
χ
Di,j
}

depends only on χ|F0 (the equality follows from Theorem 4.2). More precisely, let τ : C→ C
be any homomorphism of Q-algebra and let χ′ = τχ. Let s ∈ Ẑ× be the associated element to
τ |Q(µ∞) via the cyclotomic character Gal(Q(µ∞)/Q) ∼= Ẑ×. Then the collection {sαχDi,j ∈
Q/Z}j coincides with {αχ

′

Di,j
∈ Q/Z}j.

Proof. It is enough to see that
∑

j{α
χ
Di,j
} depends only on χ|F0 . Recall that αχDi,j are

defined to be the eigenvalues of ResDi(∇) on the χ-part M χ
dR. Then, as is well-known,

exp(2π
√
−1αχDi,j) are the eigenvalues of the local monodromy around Dj . More precisely,

let ρ : π1(Y, t) → GL(M χ
t ) be the monodromy representation. Let ρDi be the restriction

on Z(1)Di = 2πiZ ⊂ π1(Y ) the subgroup generated by the local monodromy TDi around
Di. By the monodromy theorem its semisimplification ρssDi is a product of characters ρssDi,j ∈
Hom(Z(1), µ∞) of finite orders. Under the canonical identification Hom(Z(1), µ∞) ∼= Q/Z,
the collection {ρssDi,j}j is associated to {αχDi,j}j .

Letting χ′ : F ↪→ C be another embedding, we compare two characteristic polynomials

det(1− zTDi : M χ
t ) and det(1− zTDi : M χ′

t ). Let τ : C→ C satisfies χ′ = τχ. Since

M χ
t = ker(χ(σ)⊗ 1− 1⊗ σ : C⊗Mt → C⊗Mt), ∃σ ∈ F

by definition, one has (τ ⊗ 1)(M χ
t ) ⊂M χ′

t . This implies

det(1− zTDi : M χ
t )τ = det(1− zTDi : M χ′

t ).

Hence the collection {τ exp(2π
√
−1αχDi,j) = exp(2π

√
−1sαχDi,j)}j coincides with the collection

{exp(2π
√
−1αχ

′

Di,j
)}j , namely {sαχDi,j}j = {αχ

′

Di,j
}j . �

5.1. Multiplication by automorphism of finite order. The following is an immediate
corollary of Theorem 5.1.

Theorem 5.3. Let f : X → Y be a smooth projective morphism over Q. Let S ⊂
∏
i End(Rif∗Q)

be a finite dimensional semisimple commutative Q-algebra. Let e : S → F be a projector onto
a number field F . Then the period conjecture holds for

detF eRΓ (X,Q)⊗ (detF eRΓ (Xt,Q))⊗−χ(Y )

where Xt = f−1(t) denotes the general fiber.

Of particular interest is the case that S is generated by an auomorphims of finite order.
Let W be a smooth projective variety over Q. Let σ : W → W be an automorphism of
order n ≥ 2. Let f : W → V = W/〈σ〉 be the quotient variety by σ. Let Y ⊂ V be
a Zariski open set in the smooth locus such that X := f−1(Y ) → Y is finite etale. Let
S ⊂

∏
i End(Rif∗Q) be the Q-algbera generated by σ. Let e : S → Q(µn) be a projec-

tor such that e(σ) is a primitive n-th root of unity. Theorem 5.3 yields the period con-

jecture for detF eRΓ (X,Q) ⊗ (detF eRΓ (Xt,Q))⊗−χ(Y ). Since Xt is 0-dimensional, one can
remove the term “detF eRΓ (Xt,Q)”. On the other hand, one finds that detF eRΓ (X,Q) =
detF eRΓ (W,Q) ([Fre13] 3.1). We thus have the following theorem.



THE GROSS DELIGNE CONJECTURE FOR VARIATIONS OF HODGE-DE RHAM STRUCTURES 15

Corollary 5.4 ([Fre13] Theorem A). Let σ : W → W be an automorphism of order n ≥ 2.
Then the period conjecture of Gross-Deligne for detQ(µn)eRΓ (W,Q) holds.

5.2. Removing detFMt. It is not obvious to remove the term detFMt from the main the-
orem. Here we give sufficient conditions.

Theorem 5.5. Assume that either of the following conditions holds.

(a) There is a point t0 such that detFMt0 satisfies the period conjecture.
(b) There is a non-constant map h : C → Y with C a smooth curve and a point P ∈

C \ C with C a compactification, such that the period conjecture holds for the nearby
cohomology detFψP (h∗M ) of Hodge–de Rham structure.

Then the period conjecture holds for detFMt and hence for detFRΓ (Y,M ).

Proof. The key is the fact that a variation of Hodge–de Rham structures with maximal
multiplication has constant periods (Proposition 1.3). In particular the periods of detFMt

do not depend on t ∈ Y (Q), and they also agree with the periods of the nearby cohomology
detFψP (h∗M ). �

Corollary 5.6. Let Y be a smooth variety and f : X → Y a family of abelian varieties
endowed with mulptiplication by F . Assume that either of the following holds.

(1) there is a point t ∈ Y (Q) such that H1(f−1(t),Q) has a maximal multiplication by a
number field F ′ ⊃ F .

(2) f has a totally degeneration at a boundary point.

Then the period conjecture holds for detFRΓ (Y,Rif∗Q) for any i.

Proof. In case of (1), the period conjecture for H1(f−1(t),Q) is known by Shimura, Deligne
and Anderson. In case of (2), the nearby cohomology detFψP (h∗M ) turns out to be of mixed
Tate type as a Hodge–de Rham structure. Now the assertion is straightforward from Theorem
5.5. �

5.3. Hypergeometric Fibrations. Even when one is able to remove the term detFMt

from the main theorem, it seems still very difficult to separate the contributions coming from
different degrees and weights, which would yield the conjecture for all detFGrWmH

j(Y,M ).
We end this section by showing a particular example, i.e. the period conjecture for the weight
graded piece of cohomology of hypergeometric fibrations. Recall the definition from [AO15].

Definition 5.7. Let F be a number field. A hypergeometric fibration with relative multipli-
cation by F is a smooth projective morphism f : X → P1 \ {0, 1,∞}, together with a relative
multiplication on R1f∗Q, such that the following two conditions hold:

(i) dimF R
1f∗Q = 2.

(ii) The local monodromy T1 of R1f∗Q around t = 1 ∈ P1 is unipotent and

2 · rk(T1 − 1) = dimQH
1(Xt,Q).

For χ : F ↪→ C, we denote by αχ0,i (i = 1, 2) the eigenvalues of Res(∇) on R1f∗Cχ at t = 0,

and αχ∞,i at t =∞.

Let g be a non-constant rational function on P1 such that there is no g0 such that g = gn0 ,
n ≥ 2. Consider the cyclic covering π : C → P1 of degree l ≥ 1 obtained from the field
extension Q(t, g1/l)/Q(t). Put a smooth motivic sheaf

M := π∗Q⊗R1f∗Q
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on Y = P1\{0, 1,∞,Supp div(g)} on which F [µl] acts in a natural way. A pair of k ∈ Z/lZ and
χ : F ↪→ C determines a morphism of Q-algebras εk⊗χ : F [µl]→ C such that (εk⊗χ)(ζl) = ζkl
and (εk ⊗ χ)|F = χ, and all morphisms are given in such a way.

The following is a vast generalization of [AO15], Theorem 4.1.

Theorem 5.8. Let e : F [µl] → E be a projector onto a number field E. Fix a complex
embedding of E and let εk ⊗ χ : F [µl] → C factor through e. Put r0 := ordt=0(g) and
r∞ := ordt=∞(g). Assume r∞k/l + αχ∞,i 6∈ Z for i = 1, 2 and that either of the following the
conditions holds.

(1) r0k/l + αχ0,i 6∈ Z for i = 1, 2,

(2) αχ0,1 or αχ0,2 ∈ Z.

Then the period conjecture for detEW2H
1(Y, eM ) holds.

Remark 5.9. Note that r0k/l+αχ0,i and r∞k/l+αχ∞,i are the eigenvalues of Res(∇) on M .
It follows from Lemma 5.2 that the conditions in Theorem 5.8 depend only on e but not on
the choice of (εk, χ) factoring through e.

Proof. Let j : Y ↪→ P1 denote the inclusion. Then there is an exact sequence

0 // H1(P1, j∗M ) // H1(Y,M ) // H0(P1, R1j∗M ) // 0.

W2H
1(Y,M )

Since H0(Y,M ) = 0 and M satisfies condition (b) in Theorem 5.5, one has the period
conjecture for detEH

1(Y, eM ). Therefore it is enough to show that the period conjecture for
the determinant of

(R1j∗M )α = Coker[Tα − 1 : ψαM → ψαM ⊗Q(−1)]

holds for each α ∈ {0, 1,∞, Supp div(f)} where Tα is the local monodromy at t = α, and
ψαM = ψαπ∗Q ⊗ ψαR

1f∗Q is the nearby cohomology equipped with the limiting mixed
Hodge–de Rham structure at t = α.

In case α =∞, since r∞k/l + αχ∞,i 6∈ Z this implies (R1j∗M )∞ = 0.
In case α = 1 the assertion follows from the fact that ψ1Mt is a mixed Tate Hodge–de

Rham structure.
In case α ∈ Supp div(f) \ {0, 1,∞}, one finds

(R1j∗M )α = Coker[Tα − 1 : H0(π−1(t))→ H0(π−1(t))]⊗Q (R1f∗Q)α

and hence

detEe(R
1j∗M )α = detEe[Coker(Tα − 1)⊗Q detF (R1f∗Q)α].

Since detF (R1f∗Q)t is of Tate type, the period conjecture also holds.
There remains the case α = 0. If condition (1) is satisfied, then (R1j∗M )0 = 0 so there is

nothing to prove. Suppose that condition (2) is satisfied. Let

ψ0R
1f∗Q = ψunip

0 ⊕ ψ 6=unip
0

be the decomposition into the unipotent part and the non-unipotent part with respect to
the local monodromy T0 at t = 0. If both αχ0,i ∈ Z, then T0 is unipotent and non-trivial

because H1(Xt)
χ is an irreducible F [π1(P1 \ {0, 1,∞})]-module ([AO15] Lemma 3.8). This
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implies that ψ 6=unip
0 = 0 and ψunip

0 is of mixed Tate type. Hence the period conjecture for
detF e(R

1j∗M )0 follows.

Suppose that αχ0,1 ∈ Z and αχ0,2 6∈ Z. In this case ψ 6=unip
0 and ψunip

0 are one-dimensional

over F . We first claim that both of ψ 6=unip
0 and ψunip

0 (with multiplication by F ) satisfy

the period conjecture. Indeed, it is enough to see it only for ψunip
0 because detFR

1f∗Q =

ψunip
0 ⊗F ψ 6=unip

0 is of Tate type. Note that both of αχ∞,i cannot be integers (if ∃αχ∞,i ∈ Z,

then H1(Xt)
χ is a reducible F [π1(P1 \ {0, 1,∞})]-module, which does not happen by [AO15]

Lemma 3.8). This implies dimF Coker(T∞ − 1) = 0. Since dimF Coker(T1 − 1) = 1 and
dimF H

1(P1 \ {0, 1,∞}, R1f∗Q) = 2, one has

H1(P1 \ {0, 1,∞}, R1f∗Q) ∼= Coker(T0 − 1)⊕Coker(T1 − 1) = ψunip
0 ⊕Coker(T1 − 1).

Since R1f∗Q satisfies (b) in Theorem 5.5, detFH
1(P1 \ {0, 1,∞}, R1f∗Q) satisfies the period

conjecture. Since Coker(T1 − 1) is of Tate type, the period conjecture for ψunip
0 follows.

We now have the period conjecture for ψunip
0 and ψ 6=unip

0 , and hence for e(ψ0π∗Q⊗ ψunip
0 )

and e(ψ0π∗Q⊗ ψ 6=unip
0 ) with multiplication by E. Since e(ψ0π∗Q⊗ ψunip

0 ) is one-dimensional
over E,

eCoker[T0 − 1 : ψ0π∗Q⊗ ψunip
0 → ψ0π∗Q⊗ ψunip

0 ⊗Q(−1)] = ψ0π∗Q⊗ ψunip
0 ⊗Q(−1) or 0,

and the same holds for ψ 6=unip
0 . Hence

eR1j∗M = ψ0π∗Q⊗ ψunip
0 ⊗Q(−1) or ψ0π∗Q⊗ ψ 6=unip

0 ⊗Q(−1) or 0 ∼= E or 0

and this satisfies the period conjecture. This completes the proof in case α = 0. �

6. Hodge-Tate decomposition

6.1. Infinite type of algebraic Hecke characters. Let F and E be number fields. We
denote by Z[Hom(F,E)] the free abelian group generated by the embeddings of F into a fixed
algebraic closure E of E. If f is an integral ideal of F , we denote by IF,f the multiplicative
group of fractional ideals of F prime to f.

Definition 6.1. An algebraic Hecke character with conductor dividing f of infinite type T =∑
σ nσσ ∈ Z[Hom(F,E)] is a homomorphism Φ : IF,f → E× which satisfies

Φ((α)) = αT =
∏

σ(α)nσ ∈ E

if α ∈ F× is totally positive and α ≡ 1 mod f.

We refer the reader to [Sch88, Ch. 0].

Let A×F = (R ⊗Q F )× × (Ẑ ⊗Z F )× be the group of ideles of F . Using the approximation
theorem ([Neu99] Ch II, (3.4)), one can show that the algebraic Hecke character Φ induces a
unique continuous homomorphism

Φ̃ : A×F → E×

satisfying the following conditions:

(i) Φ̃(s) =
∏

l Φ(l)ordl(s) for s a finite idele prime to f,

(ii) Φ̃(α) = αT for α ∈ F×.
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The infinite type T can be viewed as an homomorphism ResF/QGm → ResE/QGm of algebraic

groups in a canonical way. Hence it induces a homomorphism TA : A×F → A×E . For a prime p

of E, we write Tp := prp ◦ TA : A×F → E×p where prp is the projection onto the component at
p. We then have a well-defined continuous character

ΦA,p : A×F /F
× −→ E×p , ΦA,p(s) := Φ̃(s)Tp(s)−1.

The following is an easy exersice (and well-known).

Lemma 6.2. ΦA,p factors through a finite quotient if and only if T = 0.

Let l be a prime of F and Fl the completion. Suppose that both of l and p are prime to f.
Then the composition

ρl : O×Fl
↪→ F×l −→ A×F /F

× −→ E×p

is given by ρl(α) =
∏′ σ(α)−nσ where

∏′ means that σ runs over the embeddings such that
l|σ−1(pOE).

Lemma 6.3. Suppose that F = E is a finite Galois extension of Q and l = p. Let V (ρp)

be the one-dimensional Galois representation of Gal(F p/Fp) over Fp defined by ρp. Let Cp
be the completion of F p and Cp(r) := Cp ⊗Zp Zp(r) denotes the Tate twist. Then there is an
isomorphism

(13) Cp ⊗Fp V (ρp) ∼= Cp(nid)

of Gal(F p/Fp)-modules where g ∈ Gal(F p/Fp) acts on the left hand side by g ⊗ g

Proof. See [Ser98] Chapter III, A.6, Exercise 2. �

6.2. Smooth sheaves of mixed realization. Let F be a number field embedded into Q.
Let X be a smooth projective smooth variety over F and D a simple normal crossings divisor
on X with irreducible components Di. Let U = X \ D denote the complement of D in X.
We assume that X and all Di are geometrically irreducible over F .

We say that a collection M = (MB,MdR, F
•,W•,∇,MQl , ιC, ιl) with l primes is a smooth

sheaf of mixed realization on U if

• MB is a smooth sheaf of Z-modules of finite rank on Uan equipped with the weight
filtration W• on MB,Q = Q⊗Z MB,
• (MdR,W•, F

•) is a locally free sheaf of OU -module of finite rank with the weight
filtration W• and the Hodge filtrartion F •,
• ιC : (Oan

U ⊗Z MB,W•) ∼= (Oan
U ⊗OU MdR,W•) a comparison isomorphism of filtered

modules,
• ∇ : MdR → Ω1

U/k ⊗MdR is an integrable connection,

• (MB,MdR, F
•,W•,∇, ιC) is an admissible VMHS,

• (MQl ,W•) is a filtered finite dimensional smooth Ql-sheaf on U ét which is defined on
a model of U of finite type over Z,
• ιl : (Ql ⊗Z MB,W•) ∼= (MQl ,W•) comparison isomorphisms of filtered modules on
Uan,

If U = SpecF we simply say M a mixed realization over F . The standard operations ⊗,
Hom are defined in the customary way. For f : U → V a morphism of smooth varieties, the
pull-back f∗ is defined in a canonical way. Moreover if the sheaf Rif∗MB is a smooth sheaf,
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then Rif∗M carries a mixed realization in such a way that the underlying admissible VMHS
is given by the theory of Hodge modules due to M. Saito. There is the functor

GrW• : (Mixed realizations over F ) // (Hodge–de Rham structures over F )

by taking a weight piece. Letting π : Gm ×Z U → U the Tate twist is defined as Q(r) :=
(R1π∗Q)⊗−r. If there is a finite extension F ′/F such that each graded piece GrWw M |U×FF ′
is isomorphic to a product of copies of Tate twists, then we say it a sheaf of mixed Tate
realization.

Suppose that M has multiplication by a number field K (we do not fix an embedding
K ↪→ Q). Put

m = rankKM , detQRΓ(U,Q) = Q(−rU ).

For a point ix : SpecF → U , we write Mx = i∗x(M ) the pull-back. This is a mixed realization
over F and the determinant detK(Mx) does not depend on x.

We shall discuss a mixed realization

(14) H = H(M ) := detKRΓ(U,M )⊗K

−χtop(U)︷ ︸︸ ︷
detK(Mx)⊗K · · · ⊗K detK(Mx)⊗QQ(rUm),

especially the Hodge decomposition on HdR(M ).

Let χ : K ↪→ Q be an embedding. Let Mχ
B be the χ-component of Q ⊗Q MB, i.e. the

subspace on which 1 ⊗ g acts by multiplication by χ(g) ⊗ 1 for all g ∈ K. Let ρ be the
monodromy representation of πB1 (U, x) on MB,x and ρDi the restriction on Z(1)Di = 2πiZ ⊂
πB1 (U)ab ∼= H1(U,Z) the subgroup generated by the local monodromy around Di. By the
monodromy theorem, its semisimplification ρssDi factors through a finite quotient. Hence one
has a decomposition

ρssDi |M
χ
B
∼=

m⊕
j=1

ρχDi,j

where ρχDi,j : Z(1)→ Q/Z(1) ∼= µ∞ ⊂ Q× is a character of finite order. Let αχDi,j ∈ Q/Z be the

corresponding element to ρχDi,j under the canonical isomorphism Hom(Z(1),Q/Z(1))
∼→ Q/Z.

Fix an integer d ≥ 1 such that αχDi,j ∈
1
dZ/Z for all i, j (e.g. the least common multiple of

orders of αχDi,j ’s).

Lemma 6.4. Let χ′ = σχ for σ ∈ Gal(Q/Q). Then, by changing the numbering ‘j’ if
necessary,

exp(2πiαχ
′

Di,j
) = exp(2πiαχDi,j)

σ.

In particular if χ = χ′ on K0 = K ∩Q(µ∞) then αχDi,j = αχ
′

Di,j
.

Proof. This follows from the fact that the isomorphism σ⊗1 : Q⊗MB → Q⊗MB is compatible

with the action of π1(U, x) and it satisfies (σ ⊗ 1)(Mχ
B) ⊂Mχ′

B . �
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6.3. Saito’s Jacobi sum formula [Sai94]. Let p be a prime number such that (p, d) = 1.
Fix an embedding τ : Q ↪→ Qp. Let p be a prime of K associated to the embedding τ ◦ χ,

and Kp the completion. Hence τ ◦ χ is naturally extended to an embedding Kp ↪→ Qp. Let
Mχ
Kp
⊂ Kp ⊗Qp MQp be the part on which 1⊗ g acts by multiplication by χ(g)⊗ 1. Then

(15) H(M )χKp
∼= detKpRΓ(U,Mχ

Kp
)⊗Kp detKp(Mχ

Kp,x
)⊗−χ

top(U) ⊗Qp Qp(rUm)

is a one-dimensional Qp-sheaf on Spec(F ) where the tensor product “⊗ − χtop(U)” in the
middle term is taken over Kp.

In the paper [Sai94], Saito introduced a sheaf JD,Mχ
Kp

of Jacobi Hecke sum character which

is determined by the ramification data of Mχ
Kp

and showed that there is an isomorphism

(16) H(M )χKp
∼= JD,Mχ

Kp

of sheaves on U = U ét. Let us briefly recall the definition of JD,Mχ
Kp

.

Let µd = µd(Q) ⊂ Q× be the group of d-th roots of unity in Q. Let φij : Ẑ(1)Q → µd ⊂ Q×

be the homomorphism associated to αχDi,j ∈
1
dZ/Z. Put Tij := SpecF (µd) and nij := χtop(D◦i )

where D◦i = Di \
⋃
k 6=i(Di ∩ Dk). Then the datum {(Tij)i,j , (τ ◦ φij)i,j , (nij)i,j} defines the

Jacobi datum on SpecF with coefficient in Kp in the sense of [Sai94] p.416, Definition (see,
loc.cit. p.424, Theorem 1). It defines a one-dimensional Kp-sheaf on SpecF , which we denotre
by JD,Mχ

Kp
(loc.cit. p.417, Proposition 2). Moreover, by the Hasse-Davenport theorem, one

can show that it is isomorphic to the sheaf arising from an algebraic Hecke character (loc.cit.
p.418, Corollary). More precisely let IQ(µd),d be the group of fractional ideals of Q(µd) prime

to d. Let p0 be a prime of Q(µd) corresponding to Q(µd) ⊂ Q τ→ Qp, so that we have an

embedding Q(µd)p0 ↪→ Qp. Then there is an algebraic Hecke character

(17) Φ: IQ(µd),d2 −→ Q(µd)
×

with conductor dividing d2 such that

(18) Kp(µd)⊗Kp u
∗JD,Mχ

Kp

∼= Kp(µd)⊗Q(µd)p0
v∗JΦ,Q(µd)

where u : SpecF (µd) → SpecF , v : SpecF (µd) → SpecQ(µd) and JΦ,Q(µd) is the one-
dimensional Q(µd)p-sheaf on SpecQ(µd) associated to the Hecke character

ΦA,p : A×Q(µd)/Q(µd)
× → Q(µd)p

at p arising from Φ.

Let us give an explicit description of Φ (17). Let l be a prime of Q(µd) which does not
divide d. Let κ(l) be the residue field of l and µd(κ(l)) denotes the group of d-th roots of
unity in κ(l). Since the reduction µd = µd(Q) → µd(κ(l)) modulo l is bijective, there is a
unique homomorphism φij : κ(l)× → µd such that

φij(x) ≡ x(ls−1)αχDi,j mod l, ls := ]κ(l).

Fix a nontrivial additive character ψ : κ(l)→ Q. Let τ(φij) := −
∑

x∈κ(l)× φ
−1
ij (x)ψ(x) be the

Gauss sum. The Jacobi sum is defined to be

J(l) :=
∏
i,j

τ(φij)
nij =

∏
i,j

τ(φij)
χtop(D◦i ) ∈ Q(µd)
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and this is independent of the choice of ψ. Then the algebraic Hecke character (17) is given
by

Φ(s) =
∏
l

J(l)−ordl(s), s ∈ IQ(µd),d2 .

By the theorem of Weil [Wei52], the infinite type of Φ is

(19) T =
∑

t∈(Z/dZ)×

∑
i,j

−χtop(D◦i ){tα
χ
Di,j
}

σ−1
t ∈ Z[Gal(Q(µd)/Q)]

where σt is defined by ζσt = ζt.

Proposition 6.5 (Hodge-Tate representation ofH(M )Qp). Let ℘ be the prime of F associated

to F ⊂ Q ↪→ Qp and F℘ the completion. Let F ′℘ ⊂ Qp be the composition of fields F℘ and Kp.
Then there is an isomorphism

Cp ⊗Kp H(M )χKp
∼= Cp(−pHT

χ ), pHT
χ :=

∑
i,j

χtop(D◦i ){α
χ
Di,j
}

of Gal(Qp/F
′
℘)-modules where Cp = Q̂p and g ∈ Gal(Qp/F

′
℘) acts on the left hand side by

g ⊗ g.

Proof. We may replace F by any finite extension. Hence we can assume Q(µd) ⊂ F . By
(15) and (18) we can reduce the assertion to the case of JΦ,Q(µd), and then this follows from
Lemma 6.3 and (19). �

6.4. Hodge-Tate conjecture for cohomology with coefficients in a mixed realiza-
tion. Let H be a mixed realization over F . Let ℘ be a prime of F above p and F℘ the
completion. Let S ⊂ End(H) be a subring. We say that the S-equivariant Hodge-Tate
conjecture for H over F℘ holds if there is a Cp-linear isomorphism

Cp ⊗Qp HQp
∼=
⊕
i

Cp(−i)⊗F℘ GriFHdR,F℘

which is compatible with the actions of S and Gal(Qp/F℘). Here HdR,F℘ = F℘ ⊗F HdR and

F •HdR denotes the Hodge filtration. The action of g ∈ Gal(Qp/F℘) is given by g ⊗ g on the
left hand side, and g⊗ 1 on the right hand side. The action of r ∈ S is given by 1⊗ r on both
sides.

Proposition 6.6. Let the notation be as in §6.2. Let ℘ be a primeof F above p prime to d.
Assume that the K-equivariant Hodge-Tate conjecture for H(M ) over F℘ holds. Then

pχ = pHT
χ =

∑
i,j

χtop(D◦i ){α
χ
Di,j
}

for each χ : K ↪→ Q. Here pχ is the unique integer satisfying that the χ-component H(M )χdR
belongs to the Hodge (pχ, qχ)-component. In particular, the period conjecture of Gross-Deligne
holds for H(M ).
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Proof. Let τ : Q ↪→ Qp be an embedding extending F ↪→ F℘ ⊂ Qp. Let p be the prime of K
associated to τ ◦ χ and Kp the completion. Then the K-equivariant Hodge-Tate conjecture
for H(M ) over F℘ immediately implies an isomorphism

(20) Cp ⊗Kp H(M )χKp
∼= Cp(−pχ)⊗τ H(M )χdR

of Gal(Qp/F
′
℘)-modules where F ′℘ = F℘Kp. Thus the assertion follows from Proposition

6.5 �

The following is a variant of Proposition 6.6, and the proof goes in the same way.

Proposition 6.7. Let Mi be smooth sheaves of mixed realizations equipped with multiplication
by a number field K. Assume that the K-equivariant Hodge-Tate conjecture for

H :=
⊗
i

H(Mi)
⊗ni

over F℘ holds where the tensor product is taken over K. Then the period conjecture of Gross-
Deligne holds for H.

7. Appendix : Note on S-equivariant Hodge-Tate conjecture for graded
weight pieces

Let f : X → Y be a smooth proper morphism of quasi-projective smooth varieties over a
field. Let Γ ∈ CHr(X ×Y X) be an algebraic cycle of codimension r. It induces an algebraic
correspondence

Γ∗ : H•(X,Q) −→ H•+2r−2d(X,Q(r − d)), d := dimX − dimY

on any Borel-Moore cohomology groups which is the composition of the maps

H•(X,Q)
p∗1−→ H•(X ×Y X,Q)

∪[Γ]−→ H•+2r(X ×Y X,Q(r))
p2∗−→ H•+2r−2d(X,Q(r− d))

where the middle arrow denotes the cup-product with the cycle class [Γ] ∈ H2r(X×Y , X,Q(r)).
Suppose that the base field is a p-adic local field k. Write Xk := X×kk. Then the algebraic

correspondence induces maps

Γ∗ : GrWw H
•
dR(X/k) −→ GrWw+2r−2dH

•+2r−2d
dR (X/k)

Γ∗ : GrWw H
•
ét(Xk,Qp) −→ (GrWw+2r−2dH

•+2r−2d
ét (Xk,Qp))⊗Qp(r − d)

on the graded weight pieces. In the proof of Theorem ??, we used the fact that there is a
Galois equivariant isomorphism

(21) Cp ⊗GrWw H
•
ét(Xk,Qp) ∼=

⊕
i

Cp(−i)⊗GriFGrWw H
•
dR(X/k)

which is compatible with the algebraic correspondence Γ∗. In this section we give an explicit
construction of it. To do this it is enough to construct the Hodge-Tate isomorphism (21) for
each smooth varieties X over k which satisfies the following compatibilities.

(a) Compatibility with the pull-back of morphisms,
(b) Compatibility with the Gysin maps f∗ for proper morphisms f ,
(c) Compatibility with the cup-product ∪[Z] for Z ∈ CHr(X).
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If X is a smooth projective variety, then the the Hodge-Tate isomorphim is given by Faltings
et al and it is compatible with the pull-back (cf. [Ill94] 3.1.2). It is also compatible with the
Gysin map f∗ for f : X1 → X2 a morphism of projective smooth varieties, since it is the dual
map of the pull-back f∗. For non-complete X, let X ⊃ X be a smooth compactification such
that the complement D = ∪iDi = X \ X is a simple normal crossing divisor. There is the
exact sequence

· · · −→ Hj
D(X) ∼= H2 dimX−j(D)

i1−→ Hj(X)
i2−→ Hj(X) −→ · · ·

Note that i1 is the Gysin map. Hence

GrWw H
j(X) =


coker[GrWj H2 dimX−j(D)→ Hj(X)] w = j

ker[GrWj+1H2 dimX−j−1(D)→ Hj+1(X)] w = j + 1

GrWw H2 dimX−j−1(D) w > j + 1

Since GrWw H•(D) is described by the cohomology groups H2 dimX−j(D
[q]) where D[q] denotes

the sum of q-fold intersections of components of D, one obtains the Hodge-Tate isomorphism
for the graded pieces GrWw H•(D) and hence for GrWw H•(X).

Next we see the compatibility (a). Let f : X1 → X2 be a morphism of smooth varieties.
Let Xi ⊃ Xi be smooth compctifications such that the complement Di = Xi \Xi is a simple
normal crossing divisor and f extends to a map f̄ : X1 → X2. To see the comaptibility
(a), it is enough to see the comaptibility of the Hodge-Tate isomorphism for f

∗
on H•(Xi)

and on GrWw H•(Di). The former is immediate. To see the latter, we look at the map f̄∗ :
GrWw H

•
D2

(X2) → GrWw H
•
D1

(X1) in an explicit way. Let Di = ∪kDi,k be the irreducible

decomposition, and let f̄−1(D2,k) =
∑

l eklD1,l be the scheme-theoretic inverse image. The

pull-back f̄∗ on GrWw H
•
Di

(Xi) is induced from the map f̄−1Rqj2∗Q→ Rqj1∗Q where ji : Xi ↪→
Xi. One has the composition

(22) f̄−1QD2,k1
∩···∩D2,kq

→ Q
D

[q]
2

∼= f̄−1Rqj2∗Q→ Rqj1∗Q ∼= Q
D

[q]
1

→ QD1,l1
∩···∩D2,lq

and this is described in the following way. If det(eks,lt)1≤s,t≤q = 0 then (22) is zero. If
det(eks,lt)1≤s,t≤q 6= 0, then f̄(D2,k1 ∩ · · · ∩ D2,kq) ⊂ D1,l1 ∩ · · · ∩ D2,lq and (22) is equal to

det(eks,lt) · (f̄ |D2,k1
∩···∩D2,kq

)∗. Now the desired compatibility is immediate.

Let us see the compatibility (b). Let f : X1 → X2 and f̄ be as before and assume that f
is proper. Then f̄−1(D2) = D1 (as f is proper). The compatibility for f∗ on GrWw H

•(Xi) is
reduced to the comatibility for f∗ on H•(Xi) and on GrWw H•(Di). The former is clear because
it is the dual map of the pull-back. To see the latter it is enough to see the compatibility
of the Hodge-Tate isomorphism for f̄∗ : GrWw H

•(D2) → GrWw H
•(D1). The graded piece

GrWw H
•(Di) is described by the cohomology of the components of a proper hypercovering of

Di ([Del74] 8.3.5), and the Hodge-Tate isomorphism is induced from them. Now the assertion
follows from the functoriality of proper hypercoverings (loc.cit. 6.2.8).

We finally see the compatibility (c). We now have isomorphims (21) which satisfy the
compatibilities (a) and (b). Moreover it is also compatible with the Künneth decomposition.
To see (c), we may assume that Z is an irreducible subvariety in X. Let Z ′ → Z be a
desingularization and let i : Z ′ → X be the morphism into X. Then letting i∗ : Q ∼=
H0(Z ′,Q)→ H2r(X,Q(r)) be the Gysin map, one has [Z] = i∗(1) and the cup-product ∪[Z]
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is given as the composition

H i(X) ∼= H0(Z ′)⊗H i(X)
i∗⊗1−→ H2r(X)⊗H i(X)

∆∗−→ H2r+i(X)

where ∆ : X → X ×kX denotes the diagonal embedding. Thus the compatibility (c) follows.
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ETH Zürich, D-MATH, Rämistrasse 101, CH-8092 Zürich, Switzerland
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