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Chapter 1

Overview

1.1 Historical motivation

The subject of these lectures arose from attempts to generalise one of the most beau-
tiful theorems in transcendental number theory, which at the end of the 19th century
completely settled the question of understanding the arithmetic nature of the values of
the exponential function at algebraic arguments.

Theorem 1.1 (Hermite–Lindemann–Weierstrass, 1885). Let 𝑛 ≥ 1 be an integer, and
let 𝛼1, . . . , 𝛼𝑛 be Q-linearly independent algebraic numbers. Then 𝑒𝛼1 , . . . , 𝑒𝛼𝑛 are
algebraically independent over Q.

For 𝑛 = 1, the theorem says that the exponential of a non-zero algebraic number is
transcendental; in particular, the numbers 𝑒 and 𝜋 are transcendental (use 𝑒𝜋𝑖 = −1 for
the latter). Thanks to the identity 𝑒𝛼+𝛽 = 𝑒𝛼𝑒𝛽 , the study of algebraic relations imme-
diately reduces to that of linear relations, so it suffices to prove that the exponentials
of distinct algebraic numbers are Q-linearly independent.

Because of the role that the functional equation of the exponential plays in its
proof, it was unclear how to extend the Hermite–Lindemann–Weierstrass theorem to
other special functions. Of particular interest where the Bessel functions of integral
order 𝑘 ≥ 0, given by the formula

𝐽𝑘 (𝑧) =
∞∑︁
𝑛=0

(−1)𝑛
𝑛!(𝑛 + 𝑘)!

( 𝑧
2

)2𝑛+𝑘

=
1

2𝜋𝑖

∫
|𝑥 |=1

exp
(
𝑧

2
(
𝑥 − 1

𝑥

) ) 𝑑𝑥

𝑥𝑘+1 .

They appear in the solutions of the wave equation{
𝜕2𝑢
𝜕𝑡2

= 𝜕2𝑢
𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 if 𝑥2 + 𝑦2 < 1,
𝑢 = 0 if 𝑥2 + 𝑦2 = 1,

that governs the vibrations of a circular membrane. Here,𝑢(𝑥, 𝑦, 𝑡) represents the height
of the point of coordinates (𝑥, 𝑦) at time 𝑡, and the boundary condition expresses the
fact that the boundary of the membrane stays fixed. In polar coordinates, the radial part
of a solution 𝑢(𝑟, 𝜃, 𝑡) = 𝑅(𝑟)Θ(𝜃)𝑇 (𝑡) in separated variables is given by 𝑅(𝑟) = 𝐽𝑘 (𝜆𝑟)
for 𝑘 = 0, 1, . . . and a zero 𝜆 of the Bessel function. In deriving these solutions in his
1866 memoir [7], Bourget noticed that the sets of non-trivial zeros of Bessel functions
of different order seem to be disjoint.
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Figure 1.1. Real plots of Bessel functions of different orders

Conjecture 1.1 (Bourget’s hypothesis, 1866). Bessel functions of different orders do
not have any non-zero common zero.

This is elementary for Bessel functions of consecutive orders, combining the facts
that 𝐽𝑘 (𝑧) satisfies a differential equation of order 2, and that the derivative of 𝐽𝑘 (𝑧)
is equal to 𝑘

𝑧
𝐽𝑘 (𝑧) − 𝐽𝑘+1(𝑧). Besides, there are recurrence relations

𝐽𝑘+𝑚(𝑧) = 𝐽𝑘 (𝑧)𝑅𝑚,𝑘 (𝑧) − 𝐽𝑘−1(𝑧)𝑅𝑚+1,𝑘−1(𝑧)

for some explicit 𝑅𝑚,𝑘 ∈ Q[𝑧−1] called Lommel polynomials. From this, one derives
that a non-trivial common zero would be algebraic. Therefore, a solution of Conjec-
ture 1.1 would follow from the transcendence of non-zero zeros of the Bessel functions,
or more generally from the statement that 𝐽𝑘 (𝛼) is transcendental for each non-zero
algebraic number 𝛼. This was proved by Siegel in his 1929 monograph [16].

1.2 Definition of arithmetic Gevrey series

Definition 1.1. Let 𝑠 ∈ Q be a rational number. An arithmetic Gevrey series of order 𝑠
is a formal power series with algebraic coefficients

𝑓 (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛 (𝑛!)𝑠𝑧𝑛 ∈ Q[[𝑧]]

that satisfies the following conditions:
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(1) 𝑓 is a solution of a linear differential equation with polynomial coefficients;
that is, there exists a non-zero differential operator 𝐿 ∈ Q[𝑧, 𝑑/𝑑𝑧] satisfying

𝐿 · 𝑓 = 0;

(2) there exists a real number 𝐶 > 0 such that

|𝜎(𝑎𝑛) | ≤ 𝐶𝑛 and 𝑑𝑛 ≤ 𝐶𝑛 for all 𝑛 ≥ 1 and all 𝜎 ∈ Gal(Q/Q),

where 𝑑𝑛 denotes the smallest integer ≥ 1 such that 𝑑𝑛𝑎0, . . . , 𝑑𝑛𝑎𝑛 are algeb-
raic integers (“the common denominator” of 𝑎0, . . . , 𝑎𝑛).

Remark 1.1. The condition that 𝑓 satisfies a differential equation is equivalent to ask-
ing that the sequence (𝑎𝑛)𝑛≥0 satisfies a linear recurrence with polynomial coefficients:
there exist polynomials 𝑃0, . . . , 𝑃𝜇 ∈ Q[𝑋] such that, for all 𝑛 ≥ 1,

𝑃0(𝑛)𝑎𝑛 + 𝑃1(𝑛 + 1)𝑎𝑛+1 + · · · + 𝑃𝜇 (𝑛 + 𝜇)𝑎𝑛+𝜇 = 0.

In particular, there exists a number field 𝐾 such that 𝑓 (𝑧) belongs to 𝐾 [[𝑧]], so that
in the second condition one only needs to check a finite number of Galois conjugates.
In fact, every arithmetic Gevrey series of order 𝑠 is an algebraic linear combination of
arithmetic Gevrey series of order 𝑠 with rational coefficients.

Most questions revolving around arithmetic Gevrey series can be reduced, by
means of elementary manipulations, to questions about those of orders 𝑠 = −1, 𝑠 = 0,
and 𝑠 = 1. They are called, respectively, 𝐸-functions, 𝐺-functions, and Э-functions.
The first two names come from the case where 𝑎𝑛 = 1 for all 𝑛, where one finds

∞∑︁
𝑛=0

𝑧𝑛

𝑛!
= Exponential function,

∞∑︁
𝑛=0

𝑧𝑛 = Geometric series.

These were the notions introduced by Siegel. The name Э-function is a tribute to Euler
who studied the divergent series

∑∞
𝑛=0(−1)𝑛𝑛! when he was in Saint Petersburg.

Remark 1.2. Actually, Siegel’s 1929 definition of 𝐸-functions and 𝐺-functions was
slightly different. Instead of condition (2), he required that, for every 𝜀 > 0 and large
enough 𝑛, the quantities |𝜎(𝑎𝑛) | and 𝑑𝑛 grow at most like (𝑛!)𝜀 . We do not know of a
single example where one can prove that a power series is an arithmetic Gevrey series
in this larger sense but not in the stricter one. For solutions of a differential equations,
the conditions |𝜎(𝑎𝑛) | ≤ 𝐶𝑛 and |𝜎(𝑎𝑛) | < (𝑛!)𝜀 are in fact known to be equivalent,
and the same is conjectured to be true for the denominators.
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1.3 Examples

(1) Polynomials in Q[𝑧] are arithmetic Gevrey series of every order. Conversely,
a formal power series which satisfies the conditions in Definition 1.1 for two
different values of 𝑠 is a polynomial with algebraic coefficients.

(2) Exponential polynomials 𝑓 (𝑧) = ∑𝑟
𝑖=0 𝑃𝑖 (𝑧)𝑒𝛼𝑖 𝑧 ,with 𝑃𝑖 ∈ Q[𝑋] and 𝛼𝑖 ∈ Q

are examples of 𝐸-functions. The associated 𝐺-functions are rational func-
tions. Indeed, for 𝑒𝛼𝑖 𝑧 =

∑∞
𝑛=0 𝛼

𝑛
𝑖
𝑧𝑛/𝑛! one finds

∑∞
𝑛=0 𝛼

𝑛
𝑖
𝑧𝑛 = 1/(1− 𝛼𝑖𝑧), and

if 𝑓 is an 𝐸-function with associated 𝐺-function 𝑔, then 𝑧 𝑓 is an 𝐸-function
with associated 𝐺-function 𝑧2𝑔′ (𝑧) + 𝑧𝑔(𝑧).

(3) All Bessel functions 𝐽𝑘 (𝑧) are examples of 𝐸-functions. Indeed, they are solu-
tions of the Bessel differential operator

𝐿 = 𝑧2
( 𝑑
𝑑𝑧

)2 + 𝑧 𝑑
𝑑𝑧

+ 𝑧2 − 𝑘,

and rewriting their power series representation as

𝐽𝑘 (𝑧) =
∞∑︁
𝑛=0

(−1)𝑛
22𝑛+𝑘

(
2𝑛 + 𝑘
𝑛 + 𝑘

)
𝑧2𝑛+𝑘

(2𝑛 + 𝑘)! ,

we have |𝑎𝑛 | ≤ 1 for all 𝑛 ≥ 0 and 𝑑𝑛 = 2𝑛.
For 𝑘 = 0, the associated 𝐺-function is

∞∑︁
𝑛=0

(−1)𝑛
4𝑛

(
2𝑛
𝑛

)
𝑧2𝑛 =

1
√

1 + 𝑧2
,

which is in this case algebraic. It is an old theorem of Eisenstein [9] that algeb-
raic functions which are regular at 𝑧 = 0 are 𝐺-functions.

(4) A rich family of examples of arithmetic Gevrey series is given by hypergeo-
metric series. For integers 𝑝, 𝑞 ≥ 0, and rational numbers 𝑎1, . . . , 𝑎𝑝 ∈ Q and
𝑏1, . . . , 𝑏𝑞 ∈ Q \ Z≤0, they are given by

𝑓

(
𝑎1 . . . 𝑎𝑝
𝑏1 . . . 𝑏𝑞

�� 𝑧) =

∞∑︁
𝑛=0

(𝑎1)𝑛 · · · (𝑎𝑝)𝑛
(𝑏1)𝑛 · · · (𝑏𝑞)𝑛

𝑧𝑛,

where (𝑥)𝑛 = 𝑥(𝑥 + 1) · · · (𝑥 + 𝑛 − 1) denotes the Pochhammer symbol. We
claim that this is an arithmetic Gevrey series of order 𝑝 − 𝑞. The only difficulty
is to show that the denominators have the right growth, which follows from a
lemma by Siegel [16] deducing that

den
(
(𝑎)0
(𝑏)0

,
(𝑎)1
(𝑏)1

, · · · , (𝑎)𝑛(𝑏)𝑛

)
< 𝐶𝑛

from a weak form of the prime number theorem.
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In his 1929 paper, Siegel asked whether every 𝐸-function can be written as a poly-
nomial expression in 𝐸-functions of the form

𝑓

(
𝑎1 . . . 𝑎𝑝
𝑏1 . . . 𝑏𝑞

��𝜆𝑧𝑝−𝑞)
for various values of 𝑞 > 𝑝 ≥ 0, the parameters 𝑎𝑖’s and 𝑏 𝑗’s, and 𝜆 ∈ Q. The answer
turns out to be positive for 𝐸-functions which are a solution of a differential equation
of order at most 2 (Gorelov, 2004), but negative starting from differential equations of
order 3 (Fresán–Jossen, 2021). Fischler and Rivoal [13] raised the question whether
every 𝐺-function is a polynomial expression in 𝐺-functions of the form

𝜇(𝑧) · 𝑓
(
𝑎1 . . . 𝑎𝑝
𝑏1 . . . 𝑏𝑏

��𝜆(𝑧)) ,
where 𝜇 and 𝜆 are algebraic over Q(𝑧) and holomorphic at 𝑧 = 0, and 𝜆(0) = 0. The
answer is expected to be negative already for 𝐺-functions that are solution of a differ-
ential equation of order 2.

1.4 Structure of the differential equations

Consider a differential operator of order 𝜇, written as

𝐿 = 𝑃𝜇 (𝑧)
( 𝑑
𝑑𝑧

)𝜇 + · · · + 𝑃0(𝑧).

The singularities at finite distance of 𝐿 are the zeros of the leading polynomial 𝑃𝜇.
To deal with the point at infinity, one considers the differential operator 𝐿̃ obtained
by formally replacing 𝑧 with 1/𝑧 and 𝑑/𝑑𝑧 with −𝑧2𝑑/𝑑𝑧 in 𝐿. One says that ∞ is a
singularity of 𝐿 if 0 is a pole of some of the rational coefficients of 𝐿̃. If 𝜉 ∈ C is not a
singularity, then 𝐿 admits a basis of holomorphic solutions in C[[𝑧 − 𝜉]]. This might
still hold for some singularities 𝜉, and one then says that they are trivial. A singularity
𝜉 ∈ C is said to be regular if there exists a basis of solutions of the form1∑︁

finite
(𝑧 − 𝜉)𝛼𝑖 log𝑘𝑖 (𝑧 − 𝜉) 𝑓𝑖 (𝑧 − 𝜀)

1The regularity of a singularity can be tested purely in terms of the differential operator by
means of the so-called Fuchs’s criterium: the singularity 𝜉 is regular if and only if, for all 𝑖,

𝑖 − ord𝜉 (𝑃𝑖) ≤ 𝜇 − ord𝜉 (𝑃𝜇).
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where 𝛼𝑖 are complex numbers, called the exponents, 𝑘𝑖 are non-negative integers,
and 𝑓𝑖 are complex power series. In case 𝑓𝑖 is a C-linear combination of arithmetic
Gevrey series of order 𝑠, we call such an expression a Nilson–Gevrey arithmetic func-
tion of order 𝑠. We denote by NGA{𝑧 − 𝜉}𝑠 the set of those.

Theorem 1.2 (André, Chudnovsky2, Katz). Let 𝐿 ∈ Q[𝑧, 𝑑/𝑑𝑧] be a differential oper-
ator of minimal order annihilating a 𝐺-function. Then 𝐿 has regular singularities,
rational exponents, and a basis of solutions in NGA{𝑧 − 𝜉}0 for every 𝜉 ∈ C ∪ {∞}.

Theorem 1.3 (André [3]). Let 𝐿 ∈ Q[𝑧, 𝑑/𝑑𝑧] be a differential operator of minimal
order annihilating an 𝐸-function. Then:

(1) the only non-trivial singularities of 𝐿 are 0 and ∞;
(2) 0 is a regular singularity with rational exponents and there exists a basis of

solutions in NGA{𝑧}−1.
(3) ∞ is in general an irregular singularity and there exists a basis of solutions

of the form 𝑢𝑖 (1/𝑧) exp(𝜁𝑖𝑧), with 𝑢𝑖 ∈ NGA{1/𝑧}1 and 𝜁𝑖 ∈ Q.

1.5 Arithmetic of special values

By a special value of an arithmetic Gevrey series we will generally mean the value
taken at an algebraic argument 𝛼 ∈ Q, but of course one needs to be careful with the
various radiuses of convergence. 𝐸-functions have infinite radius of convergence; the
set of their special values will be denoted by

E = { 𝑓 (𝛼) | 𝑓 an 𝐸-function , 𝛼 ∈ Q}.

Excluding the trivial case of polynomials, 𝐺-functions have finite non-zero radius of
convergence. By a special value we will mean the evaluation at an argument inside the
disc of convergence. One could consider the more general notion of evaluation at any
algebraic argument of any analytic continuation of any 𝐺-function, but this doesn’t
change the set G of special values. An intriguing difference between the sets E and G
comes from the results of Fischler and Rivoal [10, 11] that

G = { 𝑓 (1) | 𝑓 a 𝐺-function with coefficients in Q(𝑖)},

whether letting E𝐾 denote the set of special values of 𝐸-functions with coefficients in
a given number field 𝐾 , multiplication induces an isomorphism E𝐾 ⊗𝐾 Q → E.
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Theorem 1.4 (Siegel–Shidlovsky–André–Beukers). Let 𝑛 ≥ 1 be an integer, and let
𝑓1, . . . , 𝑓𝑛 be 𝐸-functions satisfying a linear system of differential equations

𝑑

𝑑𝑧

©­­«
𝑓1
...

𝑓𝑛

ª®®¬ = 𝐴(𝑧)
©­­«
𝑓1
...

𝑓𝑛

ª®®¬ 𝐴(𝑧) ∈ 𝑀𝑛×𝑛 (Q(𝑧)).

Let 𝛼 ∈ Q be a non-zero algebraic number at which none of the entries of 𝐴(𝑧) has
a pole. Then every algebraic relation among the numbers 𝑓1(𝛼), . . . , 𝑓𝑛 (𝛼) arises by
specialisation at 𝑧 = 𝛼 from an algebraic relation among the functions 𝑓1(𝑧), . . . , 𝑓𝑛 (𝑧).

Concretely, this means that for every polynomial 𝑃 ∈ Q[𝑋1, . . . , 𝑋𝑛] satisfying

𝑃( 𝑓1(𝛼), . . . , 𝑓𝑛 (𝛼)) = 0,

there exists a polynomial 𝑄 ∈ Q[𝑧, 𝑋1, . . . , 𝑋𝑛] satisfying

𝑄(𝛼, 𝑋1, . . . , 𝑋𝑛) = 𝑃(𝑋1, . . . , 𝑋𝑛) and 𝑄(𝑧, 𝑓1(𝑧), . . . , 𝑓𝑛 (𝑧)) = 0.

In particular, there is an equality of transcendence degrees

trdegQ Q( 𝑓1(𝛼), . . . , 𝑓𝑛 (𝛼)) = trdegQ(𝑧)Q(𝑧) ( 𝑓1, . . . , 𝑓𝑛).

Such kind of results are in general totally false for𝐺-functions (for those coming from
geometry, this is related to the existence of Hodge loci).

For the functions 𝑓𝑖 (𝑧) = 𝑒𝛼𝑖 𝑧 , the Siegel–Shidlovsky theorem gives back the
Hermite–Lindemann–Weierstrass theorem, on noting that all functional relations come
from Q-linear relations between the 𝛼𝑖’s. In the case of the Bessel function 𝐽𝑘 (𝑧) and
its derivative, the system of linear differential equations takes the form

𝑑

𝑑𝑧

(
𝑓1
𝑓2

)
=

(
0 1

𝑧2−𝑘
𝑧2 − 1

𝑧

) (
𝑓1
𝑓2

)
,

so the result applies to each non-zero algebraic number 𝛼. Since one can prove, for
example using differential Galois theory, that the function 𝐽𝑘 (𝑧) and its derivative are
algebraically independent, it follows that 𝐽𝑘 (𝛼) is transcendental, and even algebraic-
ally independent with 𝐽′

𝑘
(𝛼). One of the goals of these lectures is to explain, following

André and Beukers, how one can prove such transcendence results purely from the
structure of the differential equations satisfied by 𝐸-functions (“Transcendance sans
transcendance”). The motivating example of the Hermite–Lindemann–Weierstrass the-
orem will be explained in the next chapter.

In the case of Э-functions (again excluding the case of polynomials), the radius of
convergence is 0. We will discuss two ways to give a meaning to, say,

∑∞
𝑛=0 𝑎𝑛𝑛! for

an Э-function
∑∞
𝑛=0 𝑎𝑛𝑛!𝑧𝑛 with rational coefficients:
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(1) the series
∑∞
𝑛=0 𝑎𝑛𝑛! converges in Q𝑝 for almost all prime numbers 𝑝 (we don’t

know much about these 𝑝-adic numbers, for example,
∑∞
𝑛=0 𝑛! is not known

to be irrational for a single value of 𝑝);
(2) the associated 𝐺-function 𝑔(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 has analytic continuation along

almost all half rays [0, 𝜉∞], and one can consider the finite integral∫ 𝜉∞

0
𝑔(𝑥)𝑒−𝑥𝑑𝑥.

For example, for Euler’s Э-function, one finds Gompertz’s constant
∫ ∞
0

𝑒−𝑥

1+𝑥 𝑑𝑥.
An extension of the Siegel–Shidlovsky theorem to these values would imply
that this number is transcendental.

1.6 Integral representations

Some classical 𝐺-functions, like Gauss’s hypergeometric function admit integral rep-
resentations that realise them as period functions of families of algebraic varieties:

Γ(𝑎)Γ(𝑐 − 𝑎)
Γ(𝑐 − 𝑎) 2𝐹1

(
𝑎𝑏

𝑐

�� 𝑧) =

∫ 1

0
𝑡𝑎−1(1 − 𝑡)𝑐−𝑎−1(1 − 𝑡𝑧)−𝑏𝑑𝑡.

In this case, it is a family of curves 𝑦𝑁 = 𝑥𝐴(1 − 𝑥)𝐵 (1 − 𝑡𝑧)𝐶 parameterized by 𝑡.

Theorem 1.5 (André, [2]). Every period function
∫
𝛾
𝜔𝑧 associated with a family 𝑋 →

P1 \ 𝑆 of algebraic varieties over Q belongs to2 NGA{𝑧}0.

Conjecture 1.2 (Bombieri–Dwork). Every 𝐺-function arises this way.

The numerical aspect of this conjecture is that the set G of special values of 𝐺-
functions should be equal to the ring of periods with 𝜋 inverted. I will explain the “easy”
inclusion. The fact that 1/𝜋 belongs to G follows from formulas of Ramanujan, e.g.

1
𝜋
=

1
2

∞∑︁
𝑛=0

(−1)𝑛 (4𝑛 + 1) (1/2)3
𝑛

𝑛!3 ,

where the right-hand side is a special value of a hypergeometric 𝐺-function.
What about 𝐸-functions? One way to find them in geometry is to consider integrals

of the shape ∫
𝜎

𝑒−𝑧 𝑓𝜔,

2one can be more precise about the coefficients in the complex linear combinations
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where 𝑓 : 𝑋 → A1 is a regular function on some algebraic variety 𝑋 defined over Q,
𝜔 is an algebraic differential form on 𝑋 and 𝜎 is a rapid decay cycle on 𝑋 (C), which
roughly means that Re( 𝑓 ) goes to infinity along the boundary 𝜕𝜎.

Theorem 1.6 (Fresán–Jossen). The exponential period function
∫
𝜎
𝑒−𝑧 𝑓𝜔 belongs to

NGA{𝑧}−1, and more precisely to

Q(periods, Γ(1/𝑑), . . . , Γ((𝑑 − 1)/𝑑), 𝛾) [𝑧 1
𝑑

Z, log(𝑧), 𝐸-functions],

where 𝑑 is the order of the finite part of the monodromy around 𝑧 = 0.

Corollary 1.1. Every exponential period
∫
𝜎
𝑒− 𝑓𝜔 is a polynomial expression in clas-

sical periods, special values of the gamma function, Euler’s gamma constant, and
special values of 𝐸-functions.

Conjecture 1.3. Every 𝐸-function arises this way.

We will show that this is closely related to the Bombieri–Dwork conjecture.

1.7 Historical notes

Hermite (1873) proved that the exponentials of distinct rational numbers are Q-linearly
independent, which suffices to establish the transcendence of 𝑒. In 1882, Lindemann
[14] generalised his method to show that 𝑒𝛼 is transcendental for every non-zero algeb-
raic number𝛼, and stated without proof Theorem 1.1. A proof was given by Weierstrass
(1885) and later simplified by Hilbert (1893).

Born tells that when he was hesitating between becoming a physicist or a mathem-
atician, Hilbert suggested him to try to prove that some zeros of some Bessel functions
are transcendental; after a few months he gave up and went into physics.

Weil tells in his memoir [?]





Chapter 2

The Hermite–Lindemann–Weierstrass theorem

The modern theory of 𝐸-functions started with the discovery by Bézivin and Robba [6]
of the equivalence between the Hermite–Lindemann–Weierstrass theorem and a state-
ment about exponential polynomials vanishing at 1.

2.1 Equivalent formulations

Recall that an exponential polynomial is a formal power series of the form

𝑓 (𝑧) =
𝑚∑︁
𝑖=1

𝑃𝑖 (𝑧)𝑒𝛼𝑖 𝑧 ,

where 𝑃𝑖 are polynomials with algebraic coefficients and 𝛼𝑖 are algebraic numbers,
which will always be assumed to be distinct. We say that 𝑓 has constant coefficients if
all 𝑃𝑖’s are constant polynomials. If 𝛼1, . . . , 𝛼𝑚 are distinct complex numbers, then the
functions 𝑒𝛼𝑖 𝑧 are C(𝑧)-linearly independent (see Lemma 2.1 below). In particular, an
exponential polynomial is identically zero if and only if 𝑃𝑖 = 0 for all 𝑖.

Proposition 2.1. The following statements are equivalent:
(1) Let 𝛼1, . . . , 𝛼𝑛 be distinct algebraic numbers. Then 𝑒𝛼1 , . . . , 𝑒𝛼𝑛 are linearly

independent over Q.
(2) Let 𝛼1, . . . , 𝛼𝑚 be algebraic numbers that are linearly independent over Q.

Then 𝑒𝛼1 , . . . , 𝑒𝛼𝑚 are algebraically independent over Q.
(3) Let 𝑓 ∈ Q[[𝑧]] be an exponential polynomial with rational coefficients satis-

fying 𝑓 (1) = 0. Then 𝑓 (𝑧)/(𝑧 − 1) is an exponential polynomial.
(4) Let 𝑓 ∈ Q[[𝑧]] be an exponential polynomial with constant coefficients. If

𝑓 (1) = 0, then 𝑓 = 0.

Proof. We first prove that (1) implies (2). Let𝛼1, . . . , 𝛼𝑚 be distinct algebraic numbers,
and let 𝑃 =

∑
𝑏𝐼𝑋

𝐼 ∈ Q[𝑋1, . . . , 𝑋𝑚] be a polynomial satisfying 𝑃(𝑒𝛼1 , . . . , 𝑒𝛼𝑚) = 0.
Using the functional equation 𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤, this can be written as

∑
𝑏𝐼𝑒

𝛼𝐼 = 0 for some
algebraic numbers 𝛼𝐼 , which are all distinct because of the Q-linear independence of
the 𝛼𝑖’s. By (1), all 𝑏𝐼 are zero, and hence 𝑃 = 0.

Conversely, let
∑𝑛
𝑖=1 𝛽𝑖𝑒

𝛼𝑖 = 0 be a Q-linear relation among the 𝑒𝛼𝑖 ’s, and let 𝐾
be a Galois number field containing all 𝛽𝑖’s. Then

𝑃(𝑋1, . . . , 𝑋𝑛) =
∏

𝜎∈Gal(𝐾/Q)

(
𝜎(𝛽1)𝑋1 + · · · + 𝜎(𝛽𝑛)𝑋𝑛

)
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is a polynomial with rational coefficients satisfying 𝑃(𝑒𝛼1 , . . . , 𝑒𝛼𝑛 ) = 0. By (2), 𝑃
is the zero polynomial, and since all factors are Galois conjugates to each other, this
implies that 𝛽1 = · · · = 𝛽𝑛 = 0. Hence (1) and (2) are equivalent.

That (1) implies (3) is seen as follows. Let 𝑓 (𝑧) = ∑𝑚
𝑖=0 𝑃𝑖 (𝑧)𝑒𝛼𝑖 𝑧 ∈ Q[[𝑧]] be an

exponential polynomial. If the Q-linear combination 𝑓 (1) = ∑𝑚
𝑖=1 𝑃𝑖 (1)𝑒𝛼𝑖 vanishes,

then 𝑃𝑖 (1) = 0 by (1), and hence there exist polynomials 𝑄𝑖 (𝑧) such that

𝑓 (𝑧) = (𝑧 − 1)
𝑚∑︁
𝑖=1

𝑄𝑖 (𝑧)𝑒𝛼𝑖 𝑧 .

Let us now prove that (3) implies (4). Let 𝑓 =
∑𝑡
𝑖=1 𝛽𝑖𝑒

𝛼𝑖 𝑧 ∈ Q[[𝑧]] be such that
𝑓 (1) = 0. By (3), there exist polynomials 𝑄𝑖 ∈ Q[𝑧] such that

𝑡∑︁
𝑖=1

𝛽𝑖𝑒
𝛼𝑖 𝑧 =

𝑟∑︁
𝑗=1

(𝑧 − 1)𝑄𝑖 (𝑧)𝑒𝛾𝑖 𝑧 ,

but then all 𝛽𝑖 vanish by the linear independence of the functions 𝑒𝛼𝑖 𝑧 , and hence 𝑓 = 0.
Finally, that (4) implies (1) is seen as follows. Let 𝛼1, . . . , 𝛼𝑚 be distinct algebraic

numbers and let
∑𝑛
𝑖=1 𝛽𝑖𝑒

𝛼𝑖 = 0 be a Q-linear relation. Then

𝑓 (𝑧) =
∏

𝜎∈Gal(𝐾/Q)

𝑛∑︁
𝑖=1

𝜎(𝛽𝑖)𝑒𝜎 (𝛼𝑖 )𝑧 ∈ Q[[𝑧]]

is an exponential polynomial with constant rational coefficients satisfying 𝑓 (1) = 0.
By (4), this implies 𝑓 = 0, and hence

∑𝑛
𝑖=1 𝛽𝑖𝑒

𝛼𝑖 𝑧 = 0. Since the functions 𝑒𝛼𝑖 𝑧 are
linearly independent, we get 𝛽1 = · · · = 𝛽𝑛 = 0.

2.2 The modified Laplace transform

Definition 2.1. Let 𝑓 (𝑧) =∑∞
𝑛=0

𝑓𝑛
𝑛! 𝑧

𝑛 ∈ C[[𝑧]] be a formal power series. The modified
Laplace transform of 𝑓 is the formal power series

𝑓 (𝑦) =
∞∑︁
𝑛=0

𝑓𝑛𝑦
𝑛 ∈ C[[𝑧]] .

Actually, the “true” Laplace transform is given by the integral

(L 𝑓 ) (𝑦) =
∫ ∞

0
𝑓 (𝑧)𝑒−𝑦𝑧𝑑𝑧.

If 𝑓 is of exponential type (that is, | 𝑓 (𝑧) | = 𝑂 (𝑒 |𝐶 |𝑧) for some real number 𝐶 > 0),
then L 𝑓 converges for Re(𝑦) > 𝐶 and

(L 𝑓 ) (𝑦) =
∞∑︁
𝑛=0

𝑓𝑛

𝑛!

∫ ∞

0
𝑧𝑛𝑒−𝑦𝑧𝑑𝑧 =

∞∑︁
𝑛=0

𝑓𝑛

𝑦𝑛+1 ,



Proof of Proposition 2.1 13

so that 𝑓 (𝑦) = 1
𝑦
(L 𝑓 ) ( 1

𝑦
) has radius of convergence at least 1/𝐶. Note that this is in

particular the case if 𝑓 is an 𝐸-function.
We will use the following three properties of modified Laplace transform:
(1) 𝑓 is of exponential type if and only if 𝑓 has a non-zero radius of convergence.
(2) The modified Laplace transform of 𝑧 𝑓 (𝑧) is 𝑦2 𝑓 ′ (𝑦) + 𝑦 𝑓 (𝑦).
(3) 𝑓 is an exponential polynomial if and only if 𝑓 is a rational function.
Property (2) follows from a direct computation. Indeed,

𝑧 𝑓 (𝑧) =
∞∑︁
𝑛=0

𝑓𝑛

𝑛!
𝑧𝑛+1 =

∞∑︁
𝑛=1

𝑛 𝑓𝑛−1
𝑧𝑛

𝑛!

has modified Laplace transform
∑∞
𝑛=1 𝑛 𝑓𝑛−1𝑦

𝑛, and this formal power series is the
same as 𝑦2 𝑓 ′ (𝑦) + 𝑦 𝑓 (𝑦).

Lemma 2.1. Let𝛼1, . . . , 𝛼𝑛 be distinct complex numbers. The functions 𝑒𝛼1𝑧 , . . . , 𝑒𝛼𝑛𝑧

are linearly independent over C(𝑧).

Proof. It suffices to prove that a non-trivial linear combination

𝑓 (𝑧) = 𝑃1(𝑧)𝑒𝛼𝑖 𝑧 + · · · + 𝑃𝑛 (𝑧)𝑒𝛼𝑛𝑧

where 𝑃𝑖 (𝑧) lie in C[𝑧], cannot be identically zero. This is obviously true for 𝑛 = 1.
If 𝑛 ≥ 2, then one of the exponents 𝛼 𝑗 is non-zero, and then the rational function 𝑓

has a pole at 1/𝛼 𝑗 , so it cannot be identically zero.

2.3 Proof of Proposition 2.1

(3) implies (1). By contradiction, assume that there exists a non-trivial Q-linear com-
bination

𝑚∑︁
𝑖=1

𝛽𝑖𝑒
𝛼𝑖 𝑧 = 0.

Let 𝐾 be a Galois number field containing all 𝛼′
𝑖

and 𝛽′
𝑖
𝑠. Then

𝑓 (𝑧) =
∏

𝜎∈Gal(𝐾/Q)

𝑚∑︁
𝑖=0

𝜎(𝛽𝑖)𝑒𝜎 (𝛼𝑖 )𝑧

is a formal power series with rational coefficients. Let us write it as

𝑓 (𝑧) =
𝑡∑︁
𝑖=1

𝑏𝑖𝑒
𝑎𝑖 𝑧 =

∞∑︁
𝑛=0

𝑓𝑛

𝑛!
𝑧𝑛 ∈ Q[[𝑧]],
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where of course 𝑓𝑛 =
∑𝑡
𝑖=1 𝑏𝑖𝑎

𝑛
𝑖
, so that the modified Laplace transform of 𝑓 is the

rational function

𝑓 (𝑦) =
∞∑︁
𝑛=0

( 𝑡∑︁
𝑖=1

𝑏𝑖𝑎
𝑛
𝑖

)
𝑧𝑛 =

𝑡∑︁
𝑖=1

𝑏𝑖

1 − 𝑎𝑖𝑦
.

Since 𝑓 is not identically zero (Lemma 2.1) and 𝑓 (1) = 0, we necessarily have 𝑡 ≥ 2
and at least one 𝑎 𝑗 is non-zero. Let us write 𝑓 (𝑧) = (𝑧 − 1)𝑔(𝑧) and take modified
Laplace transform on both sides of the equality:

𝑓 (𝑦) = 𝑦2𝑔̂′ (𝑦) + (𝑦 − 1)𝑔̂(𝑦).

By (3), the formal power series 𝑔̂ is a rational function. Since 𝑓 has a pole at 1/𝑎 𝑗 , so
does 𝑔̂. But then 1/𝑎 𝑗 is a pole of order ≥ 2 of 𝑓 , in contradiction with the explicit
expression we found that only has simple poles.

2.4 Proofs of the Hermite–Lindemann–Weierstrass theorem

In view of the equivalences from Proposition 2.1, I know of at least four different
proofs of the Hermite–Lindemann–Weierstrass theorem.
• The proof by Bézivin and Robba [6], who rely on the Polya-Bertrandias rationality

criterion for rationality of power series to show that if 𝑢 ∈ Q[[𝑧]] is a formal power
series with non-zero radius of convergence such that

𝑧2𝑢′ (𝑧) + (𝑧 − 1)𝑢(𝑧)

is a rational function, then 𝑢 is itself a rational function.
• A proof by hand that Beukers found shortly after Bézivin and Robba announced

their result [5].
• Two proofs by André [4] based on the structure theorems for differential equations

of 𝐸-functions and 𝐺-functions.
In what follows, I sketch some of those.

Proof by hand. We need to prove that the modified Laplace transform

𝑔̂(𝑦) =
∞∑︁
𝑛=0

𝑔𝑛𝑦
𝑛, 𝑔𝑛 = 𝑛!

𝑛∑︁
𝑘=0

𝑓𝑛

𝑘!
, 𝑓𝑛 =

𝑡∑︁
𝑖=1

𝑏𝑖𝑎
𝑛
𝑖

is a rational function. If this is the case, then the poles of 𝑔̂(𝑦) should be at the algebraic
numbers 1/𝑎𝑖 , so letting

(𝑋 − 1/𝑎1) · · · (𝑋 − 1/𝑎𝑡 ) = 1 − 𝑐1𝑋 − · · · − 𝑐𝑡𝑋 𝑡 ,
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we expect that there exists an integer 𝑘 ≥ 0 such that

(1 − 𝑐1𝑦 − · · · − 𝑐𝑡 𝑦𝑡 )𝑘
∞∑︁
𝑛=0

𝑔𝑛𝑦
𝑛 =

∞∑︁
𝑛=0

𝑔𝑛 (𝑘)𝑦𝑛

is a polynomial, that is, 𝑔𝑛 (𝑘) = 0 for all large enough 𝑛.
Note that the 𝑐′

𝑖
𝑠 are rational numbers, since the set of 𝑎𝑖 is, by definition of 𝑓 ,

stable under the action of the Galois group. Multiplying 𝑓 by a suitable integer, we can
arrange that 𝑓0, . . . , 𝑓𝑡−1 are integers. Let 𝐷 be the common denominator of 𝑐1, . . . , 𝑐𝑡 ,
and set 𝐴 = max(1, |𝑎𝑖 |) and 𝐶 = 1 + |𝑐1 | + · · · + |𝑐𝑡 |. Then using the recurrences

𝑓𝑛+𝑡 = 𝑐1 𝑓𝑛+𝑡−1 + · · · + 𝑐𝑡𝑢𝑛
𝑔𝑛 (𝑘 + 1) = 𝑔𝑛 (𝑘) − 𝑐1𝑔𝑛−1(𝑘) − · · · − 𝑐𝑡𝑔𝑛−𝑡 (𝑘),

one proves the following three properties for all 𝑛 ≥ 𝑘𝑡:
(1) |𝑔𝑛 (𝑘) | ≤ 𝜆𝐴𝑛𝐶𝑘 for some 𝜆 > 0,
(2) 𝐷𝑛𝑔𝑛 (𝑘) is an integer,
(3) 𝑘! divides 𝐷𝑛𝑔𝑛 (𝑘).

If 𝑛 ≥ 𝑘𝑡 and 𝑔𝑛 (𝑘) is non-zero, then 𝑘! ≤ |𝐷𝑛𝑔𝑛 (𝑘) | ≤ 𝜆(𝐴𝐷)𝑛𝐶𝑘 . But the lower
bounds grows faster than the upper bound, so that if 𝑘! > 𝜆(𝐴𝐷)𝑛𝐶𝑘 and 𝑛 ≥ 𝑘𝑡, then
𝑔𝑛 (𝑘) = 0. We then choose 𝑘0 in such a way that 𝑘! > 𝜆(𝐴𝐷)10𝑘𝑡𝐶𝑘 for all 𝑘 ≥ 0, and
deduce 𝑔𝑛 (𝑘) = 0 for all (𝑛, 𝑘) in the blue region in the picture. From the recurrence
relation, we get 𝑔𝑛 (𝑘) = 0 for all (𝑛, 𝑘) in the orange region, and hence 𝑔𝑛 (𝑘) = 0 for
all 𝑛 ≥ 𝑘0𝑡, as we wanted.

Proof by André using the differential equations of 𝐸-functions. To exploit the struc-
ture theorems for differential equations, we will first need:

Lemma 2.2. Let 𝑓 (𝑧) ∈ Q[[𝑧]] be an 𝐸-function with rational coefficients satisfying
𝑓 (1) = 0. Then 𝑓 (𝑧)/(𝑧 − 1) is an 𝐸-function.

Proof. Write 𝑓 (𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛/𝑛! and 𝑔(𝑧) = 𝑓 (𝑧)/(𝑧 − 1), so that

𝑔(𝑧) =
∞∑︁
𝑛=0

𝑏𝑛
𝑧𝑛

𝑛!
with 𝑏𝑛 = 𝑛!

𝑛∑︁
𝑘=0

𝑎𝑘

𝑘!
.

If 𝑓 is annihilated by a differential operator 𝐿, then 𝑔 is annihilated by the differential
operator 𝐿 · (𝑧 − 1). Besides, a common denominator for 𝑎0, . . . , 𝑎𝑛 is also a common
denominator for 𝑏0, . . . , 𝑏𝑛, so it only remains to check the growth of |𝑏𝑛 |. Here is
where we use the vanishing of 𝑓 (1) in order to get 𝑏𝑛 = −𝑛!∑∞

𝑛=𝑘+1 𝑎𝑘/𝑘!, and hence

|𝑏𝑛 | ≤ 𝑛!
∞∑︁

𝑘=𝑛+1

|𝑎𝑘 |
𝑘!

≤ (𝑛 + 1)!
∞∑︁

𝑘=𝑛+1

𝐶𝑘

𝑘!
= 𝑒𝐶𝐶𝑛+1
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Figure 2.1. Proof by Beukers

if |𝑎𝑛 | ≤ 𝐶𝑛 for all 𝑛 ≥ 1. Therefore, |𝑏𝑛 | ≤ 𝐷𝑛 for some real number 𝐷 > 0.

Remark 2.1. The result is still true for 𝐸-functions with algebraic coefficients. The
proof is literally the same if one puts the stronger hypothesis that

∑∞
𝑛=0

𝜎 (𝑎𝑛 )
𝑛! 𝑧𝑛 van-

ishes at 𝑧 = 1 for all 𝜎 ∈ Gal(𝐾/Q). With the weaker hypothesis, it is a bit harder since
𝑓 (1) = 0 does not give a priori any information about the growth of 𝜎(𝑎𝑛).

Let us recall from the overview (Theorem 1.3) that a differential operator of min-
imal order 𝐿 annihilating a non-zero 𝐸-function 𝑓 can only have non-trivial singu-
larities at 0 and ∞. Assume 𝑓 (1) = 0. Then 𝐿 · (𝑧 − 1) is a differential operator of
minimal order annihilating the 𝐸-function 𝑔(𝑧) = 𝑓 (𝑧)/(𝑧 − 1). Therefore, 𝐿 · (𝑧 − 1)
has a basis of solutions in Q[[𝑧 − 1]], which means that 𝐿 has a basis of solutions
in (𝑧 − 1)Q[[𝑧 − 1]]. This means in particular that all solutions of 𝐿 vanish at 𝑧 = 1,
which can only happen if 1 is a singularity of 𝐿.

But now let us return to our situation, where

𝑓 (𝑧) =
𝑡∑︁
𝑖=1

𝑏𝑖𝑒
𝑎𝑖 𝑧 .

In that case, 𝑓 is annihilated by a differential operator of minimal order with constant
coefficients, namely 𝐿 = ( 𝑑

𝑑𝑧
− 𝑎1) · · · ( 𝑑𝑑𝑧 − 𝑎𝑡 ). Since 1 is not a singularity of 𝐿, we

get 𝑓 = 0, and hence all 𝑏𝑖 are zero.



Chapter 3

𝑮-operators and the theorem of Chudnovsky

3.1 Galochkin’s condition and the theorem of Chudnovsky

Let 𝐾 be a number field. Given a linear system of differential equations

𝑑

𝑑𝑧

©­­«
𝑓1
...

𝑓𝜇

ª®®¬ = 𝐴(𝑧)
©­­«
𝑓1
...

𝑓𝜇

ª®®¬ 𝐴(𝑧) ∈ 𝑀𝜇×𝜇 (𝐾 (𝑧)), (3.1)

we define a sequence (𝐴𝑛)𝑛≥0 of matrices in 𝑀𝜇×𝜇 (𝐾 (𝑧)) by the recurrence relation

𝐴0 = 𝐼𝜇, 𝐴𝑛+1 = 𝐴𝑛𝐴 + 𝑑

𝑑𝑧
𝐴𝑛 for 𝑛 ≥ 0,

so that the following identity holds:

( 𝑑
𝑑𝑧

)𝑛 ©­­«
𝑓1
...

𝑓𝜇

ª®®¬ = 𝐴𝑛 (𝑧)
©­­«
𝑓1
...

𝑓𝜇

ª®®¬ .
If 𝑇 (𝑧) ∈ 𝐾 [𝑧] is a common denominator for the entries of 𝐴(𝑧), then all the entries
of the matrix 𝑇 (𝑧)𝑛𝐴𝑛 (𝑧) lie in 𝐾 [𝑧].

Definition 3.1. Let 𝑞𝑛 denote the smallest integer ≥ 1 such that the condition

𝑞𝑛
𝑇 (𝑧)𝑟 𝐴𝑟 (𝑧)

𝑟!
∈ 𝑀𝜇×𝜇 (O𝐾 [𝑧])

holds for all 𝑟 = 1, . . . , 𝑛. We say that the linear system of differential equations (3.1)
satisfies Galochkin’s condition if there exists a real number 𝐶 > 0 such that

𝑞𝑛 ≤ 𝐶𝑛 holds for all 𝑛 ≥ 1.

Definition 3.2. A 𝐺-operator is a differential operator

𝐿 =

𝜇∑︁
𝑖=0

𝑃𝑖 (𝑧)
( 𝑑
𝑑𝑧

) 𝑖 ∈ 𝐾 (𝑧) [ 𝑑
𝑑𝑧

]

such that the associated linear system of differential equations

𝑑

𝑑𝑧

©­­«
𝑓1
...

𝑓𝜇

ª®®¬ =

©­­­­­«
0 1 0 · · ·
0 0 1 · · ·
...

− 𝑃0
𝑃𝜇

− 𝑃1
𝑃𝜇

· · · − 𝑃𝜇−1
𝑃𝜇

ª®®®®®¬
©­­«
𝑓1
...

𝑓𝜇

ª®®¬
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satisfies Galochkin’s condition.

Example 3.1.1.
(1) The operator 𝐿 = 𝑑

𝑑𝑧
− 1 is not a 𝐺-operator. Indeed, it corresponds to the

matrix 𝐴(𝑧) = 1, so that all 𝐴𝑟 (𝑧) are equal to 1 and 𝑞𝑛 = 𝑛!, which does not
grow geometrically.

(2) The operator 𝐿𝑎 = (1 − 𝑧) 𝑑
𝑑𝑧

− 𝑎 is a 𝐺-operator for each 𝑎 ∈ Q. In this case,
𝐴(𝑧) = 𝑎

1−𝑧 and 𝐴𝑟 (𝑧) = (𝑎)𝑟
(1−𝑧)𝑟 , where (𝑎)𝑟 is the Pochhammer symbol. The

result follows from Lemma A.1 according to which the common denominator
of (𝑎)1/1!, . . . , (𝑎)𝑛/𝑛! grows geometrically.

It follows from the theorems of André and Katz stated below that a 𝐺-operator of
order 1 is of the form

𝐿 =
𝑑

𝑑𝑧
−

𝑚∑︁
𝑖=1

𝑐𝑖

𝑧 − 𝛼𝑖

for some integer 𝑚 ≥ 0, rational numbers 𝑐𝑖 ∈ Q and algebraic numbers 𝛼𝑖 ∈ Q. In
particular, if 𝑎 is an algebraic but irrational number, 𝐿𝑎 from Example 3.1.1 is not a
𝐺-operator. The classification of 𝐺-operators of order 2 seems to be out of reach1.

Remark 3.1. The name of 𝐺-operator comes from the fact that, if 𝐿 is a 𝐺-operator,
then for each 𝛼 ∈ Q which is not a singularity of 𝐿, there exists a basis of solutions

𝑓1(𝑧 − 𝛼), . . . , 𝑓𝜇 (𝑧 − 𝛼)

where 𝑓𝑖 ∈ Q[[𝑧]] are 𝐺-functions. It is also true, “with monodromy”, for singular
points but harder to prove.

Remark 3.2. The condition of being a 𝐺-operator can be expressed purely in terms
of 𝐿 as follows. Let 𝐿 = 𝑃𝜇 (𝑧) (𝑑/𝑑𝑧)𝜇 + · · · There exists a unique sequence (𝐿𝑟 )𝑟≥1
of elements of 𝐾 [𝑧, 𝑑

𝑑𝑧
] such that 𝐿𝑟 is a left multiple of 𝐿 and

𝐿𝑟 =
1
𝑟!
𝑃𝜇 (𝑧)𝑟 (

𝑑

𝑑𝑧
)𝜇+𝑟−1 +

𝜇−1∑︁
𝑗=0
𝑄𝑟 , 𝑗 (𝑧) (

𝑑

𝑑𝑧
) 𝑗 .

Then 𝐿 satisfies Galochkin’s condition if there exists a real number𝐶 > 0 such that, for
all 𝑛 ≥ 1, the common denominator of the coefficients of 𝑄𝑟 , 𝑗 (𝑧) for 𝑗 = 0, . . . , 𝜇 − 1
and 𝑚 = 1, . . . , 𝑛 is bounded by 𝐶𝑛.

1The structure of those coming from inhomogeneous differential equations of order 1 is
discussed in [12].
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3.2 The theorem of Chudnovsky

Theorem 3.1 (Chudnovsky brothers). Let 𝑓1, . . . , 𝑓𝜇 be Q(𝑧)-linearly independent
𝐺-functions satisfying a system of linear differential equations

𝑑

𝑑𝑧

©­­«
𝑓1
...

𝑓𝜇

ª®®¬ = 𝐴(𝑧)
©­­«
𝑓1
...

𝑓𝜇

ª®®¬ 𝐴(𝑧) ∈ 𝑀𝜇×𝜇 (Q(𝑧)).

Then 𝐴(𝑧) satisfies Galochkin’s condition.

By definition, if 𝐿 is a differential operator of minimal order 𝜇 annihilating a
𝐺-function 𝑓 , then the 𝐺-functions 𝑓 , 𝑓 ′, . . . , 𝑓 (𝜇−1) are Q(𝑧)-linearly independent.
Hence, an important corollary of Theorem 3.1 is the following.

Corollary 3.1. A differential operator of minimal order annihilating a𝐺-functions is
a 𝐺-operator.

Remark 3.3. In the ring Q(𝑧) [ 𝑑
𝑑𝑧
] there is Euclidean multiplication that makes every

left ideal principal. In particular, given a power series 𝑓 ∈ Q[[𝑧]] which is a solution
of a non-zero differential operator, the annihilator ideal

Ann( 𝑓 ) = {𝐿 ∈ Q(𝑧) [ 𝑑
𝑑𝑧

] | 𝐿 𝑓 = 0}

is of the form Q(𝑧) [ 𝑑
𝑑𝑧
]Θ for some differential operator Θ of minimal order among

those annihilating 𝑓 . In particular, if 𝐿 is irreducible and 𝐿 𝑓 = 0, then 𝐿 is necessarily
of minimal order, but we can have operators of minimal order which are not irreducible,
for example 𝐿 = ( 𝑑

𝑑𝑧
+ 1) ( 𝑑

𝑑𝑧
− 1) for the series 𝑓 = 𝑒𝑧 + 𝑒−𝑧 .

Another proof of the Hermite–Lindemann–Weierstrass theorem. Let 𝑓 ∈ Q[[𝑧]] be an
exponential polynomial satisfying 𝑓 (1) = 0, and write 𝑓 (𝑧) = (𝑧 − 1)𝑔(𝑧). Recall from
Chapter 2 that we want to prove that 𝑔 is an exponential polynomial, which amounts
to proving that its Laplace transform 𝑔̂ is a rational function. This 𝐺-function satisfies
the inhomogeneous differential equation

𝑓 = 𝑦2 𝑑

𝑑𝑦
𝑔̂ + (𝑦 − 1)𝑔̂,

which can be rewritten as the linear system of differential equations

𝑑

𝑑𝑦

(
1
𝑔̂

)
=

(
0 0
𝑓

𝑦2
1−𝑦
𝑦2

) (
1
𝑔̂

)
.

Since 𝑓 is a rational function, the matrix belongs to 𝑀2×2(Q(𝑧)). One then checks that
this matrix does not satisfy Galochkin’s condition, so by Theorem 3.1 the𝐺-functions 1
and 𝑔̂ are not Q(𝑧)-linearly independent, which means that 𝑔̂ is rational.
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3.3 Sketch of proof of Theorem 3.1



Chapter 4

Structure of 𝑮-operators

Let 𝐾 be a number field with ring of integers O𝐾 , and let

𝑑

𝑑𝑧

©­­«
𝑓1
...

𝑓𝜇

ª®®¬ = 𝐴(𝑧)
©­­«
𝑓1
...

𝑓𝜇

ª®®¬ 𝐴(𝑧) ∈ 𝑀𝜇×𝜇 (𝐾 (𝑧)), (4.1)

be a system of linear differential equations. Recall the sequence of matrices (𝐴𝑟 )𝑟≥1
from Chapter 3.

4.1 Generic radius of solvability

For each non-zero prime ideal 𝔭 of O𝐾 above a prime number 𝑝, let

| · |𝔭 : 𝐾 −→ R≥0

be the corresponding non-archimedean norm, normalised so that |𝑝 |𝔭 = 1/𝑝. Consider
the field of rational functions 𝐾 (𝑡) in an indeterminate 𝑡 independent from 𝑧 (a generic
point) and endow it with the Gauss norm���� ∑ 𝑎𝑖𝑡

𝑖∑
𝑏 𝑗 𝑡

𝑗

����
𝐺

=
max |𝑎𝑖 |𝔭
max |𝑏 𝑗 |𝔭

,

which is well defined. Its valuation ring is given by

𝐴 = { 𝑓 ∈ 𝐾 (𝑡) | | 𝑓 |𝐺 ≤ 1} = {𝑃/𝑄 | 𝑃,𝑄 ∈ O𝐾 [𝑡], 𝑄 ∉ 𝔭[𝑧]},

and there is a reduction mod 𝔭 map

𝐴 −→ (O𝐾/𝔭) (𝑡)
𝑃/𝑄 ↦−→ 𝑃/𝑄.

Let Ω be an algebraically closed field of 𝐾 (𝑡), along with a complete norm extending
the Gauss norm. Consider

U(𝑧) =
∞∑︁
𝑟=0

𝐴𝑟 (𝑡)
𝑟!

(𝑧 − 𝑡)𝑟 ∈ GL𝜇 (Ω[[𝑧 − 𝑡]]),

a fundamental matrix solution at the generic point.
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Definition 4.1. The generic radius of solvability at 𝔭 of the system (3.1) is

𝑅𝔭 = sup{𝑅 |
∞∑︁
𝑟=0

𝐴𝑟 (𝑡)
𝑟!

(𝑧 − 𝑡)𝑟 converges in Ω for |𝑧 − 𝑡 | < 𝑅}.

Let us extend the Gauss norm to a matrix 𝐵 = (𝐵𝑖 𝑗) of rational functions by defining

|𝐵|𝐺 = max |𝐵𝑖 𝑗 |𝐺 .

The result is not a norm, but satisfies |𝐵𝐶 |𝐺 ≤ |𝐵|𝐺 |𝐶 |𝐺 .

Lemma 4.1. The generic radius of solvability satisfies the inequality

𝑅𝔭 ≥ 𝑝−1/(𝑝−1)

max(1, |𝐴|𝐺)
.

In particular, 𝑅𝔭 is positive, and 𝑅𝔭 ≥ 𝑝−1/(𝑝−1) if |𝐴|𝐺 = 1.

Proof. The recurrence relation 𝐴𝑟+1 = 𝐴𝑟 𝐴 + 𝐴′
𝑟 implies the inequality

|𝐴𝑟 |𝐺 ≤ max(1, |𝐴|𝐺)𝑟 ,

using that if | 𝑓 |𝐺 ≤ 1, then | 𝑓 ′ |𝐺 ≤ 1. Therefore,���� 𝐴𝑟 (𝑟)𝑟!

����
𝐺

|𝑧 − 𝑡 |𝑟 ≤ max(1, |𝐴|𝐺)𝑟
|𝑟!|𝔭

|𝑧 − 𝑡 |𝑟

≤ max(1, |𝐴|𝐺)𝑟

𝑝−𝑟/(𝑝−1) |𝑧 − 𝑡 |𝑟 ,

where the second inequality comes from 𝑣𝑝 (𝑟!) = 𝑟−𝑆𝑟
𝑝−1 ≤ 𝑟

𝑝−1 (see Appendix A).

Since all radii of solvability are non-zero, we can introduce the quantity

𝜌(𝐴) =
∑︁

𝔭⊂O𝐾

log+
( 1
𝑅𝔭

)
∈ [0, +∞],

where log+(𝑥) = log max(1, 𝑥).

Definition 4.2. The system of linear differential equations given by the matrix 𝐴 sat-
isfies Bombieri’s condition if 𝜌(𝐴) < +∞.

Lemma 4.2. If 𝜌(𝐴) < +∞, then the inequality 𝑅𝔭 > 𝑝−1/(𝑝−1) holds for every prime
ideal 𝔭 above a set of prime numbers 𝑝 with Dirichlet density equal to 1.
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Proof. Indeed, letting 𝑆 denote the set of prime numbers 𝑝 such that 𝑅𝔭 ≤ 𝑝−1/(𝑝−1)

for some prime ideal 𝔭 above 𝑝, we get the lower bound

𝜌(𝐴) ≥
∑︁
𝑝∈𝑆

log+
( 1
𝑅𝔭

)
≥

∑︁
𝑝∈𝑆

log 𝑝
𝑝 − 1

≥
∑︁
𝑝∈𝑆

1
𝑝
.

If 𝜌(𝐴) converges, then so does
∑
𝑝∈𝑆

1
𝑝
, which means that 𝑆 has Dirichlet density

equal to 0.

The set 𝑆 = {𝔭 | |𝐴|𝐺,𝔭 > 1} is finite. Outside this finite set, we can reduce the
system of linear differential equations modulo 𝔭.

Proposition 4.1. Assume |𝐴|𝐺,𝔭 ≤ 1. Then the system

𝑑

𝑑𝑧

©­­«
𝑓1
...

𝑓𝜇

ª®®¬ = 𝐴(𝑧)
©­­«
𝑓1
...

𝑓𝜇

ª®®¬ 𝐴(𝑧) ∈ 𝑀𝜇×𝜇 (F𝑞 (𝑧))

is nilpotent if and only if 𝑅𝔭 > 𝑝−1/(𝑝−1) .

Proof. We prove that 𝑅𝔭 > 𝑝−1/(𝑝−1) implies that the system is nilpotent, the only part
of the proposition that will be used later. For this, we first observe that (𝐴𝑝)𝑛 = 𝐴𝑝𝑛,
so it suffices to prove that 𝐴𝑝𝑛 = 0 for some large enough 𝑛. Let 𝑅𝔭 > 𝑅 > 𝑝−1/(𝑝−1) .
Then ���� 𝐴𝑟𝑟! ����

𝐺

𝑅𝑟 −→ 0 as 𝑟 → +∞.

Writing 𝑅 = 𝛼𝑝−1/(𝑝−1) , we find

𝑅𝑝
𝑗

| (𝑝 𝑗)!| ≥ (𝛼𝑝−1/(𝑝−1) ) 𝑝 𝑗 𝑝
𝑝 𝑗 −1
𝑝−1 = 𝛼𝑝

𝑗

𝑝−1/(𝑝−1) −→ +∞ as 𝑗 → +∞,

since 𝛼 > 1. From this it follows that |𝐴𝑝 𝑗 |𝐺 → 0 as 𝑗 →+∞. In particular, |𝐴𝑝 𝑗 |𝐺 < 1
for big enough 𝑗 , and then 𝐴𝑝 ·𝑝 𝑗−1 = 0.

4.2 The theorem of André–Bombieri

Theorem 4.1. The following inequalities hold:

𝜌(𝐴) ≤ 𝜎(𝐴) ≤ 𝜌(𝐴) + 𝜇 − 1.

In particular, Bombieri’s and Galochkin’s conditions are equivalent.
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4.3 The theorem of Katz

Theorem 4.2 (Katz). Let 𝐾 be a number field, and let 𝐿 ∈ 𝐾 (𝑧) [ 𝑑
𝑑𝑧
] be a differential

operator.
(1) If there exists an infinite set of prime ideals 𝔭 such that 𝐿𝔭 is nilpotent, then 𝐿

has regular singularities.
(2) If there exists a set of prime ideals with Dirichlet density 1 such that 𝐿𝔭 is

nilpotent, then 𝐿 has rational exponents.

Corollary 4.1. A differential operator 𝐿 ∈ 𝐾 [𝑧, 𝑑
𝑑𝑧
] satisfying 𝜌(𝐿) < ∞ has regular

singularities and rational exponents.

Proof. Write 𝐿 = 𝜃𝜇 + 𝐵𝜇−1(𝑧)𝜃𝜇−1 + · · · + 𝐵0(𝑧) and consider the Laurent series
expansions

𝐵 𝑗 =
𝑏 𝑗 ,𝑚

𝑧𝑚
+ · · · +

𝑏 𝑗 ,1

𝑧
+ 𝑐 𝑗 ,0 + 𝑐 𝑗 ,1𝑧 + · · · 𝑏 𝑗 ,𝑠, 𝑐 𝑗 ,𝑠 ∈ 𝐾.

The first goal is to show the vanishing 𝑏 𝑗 ,1 = · · · = 𝑏 𝑗 ,𝑚 = 0 for all 𝑗 .

4.4 Summary

Theorem 4.3. A 𝐺-operator has regular singularities and rational exponents.



Chapter 5

𝑬-operators

5.1 Fourier–Laplace transform and 𝑬-operators

The Fourier–Laplace transform of a differential operator

𝐿 =

𝜇∑︁
𝑖=0

𝑃𝑖 (𝑧) (
𝑑

𝑑𝑧
)𝑖 ∈ 𝐾 [𝑧, 𝑑

𝑑𝑧
]

is the differential operator

FT(𝐿) =
𝜇∑︁
𝑖=0

𝑃𝑖 (−𝑑/𝑑𝑧)𝑧𝑖 ∈ 𝐾 [𝑧, 𝑑
𝑑𝑧

]

obtained by replacing 𝑧 by −𝑑/𝑑𝑧 and 𝑑/𝑑𝑧 by 𝑧 in the expression of 𝐿. It is an auto-
morphism of order 4, with inverse

FT(𝐿) =
𝜇∑︁
𝑖=0

𝑃𝑖 (𝑑/𝑑𝑧) (−𝑧)𝑖

where we replace 𝑧 by 𝑑/𝑑𝑧 and 𝑑/𝑑𝑧 by −𝑧.
This definition is inspired by the properties of the Laplace transform

(L 𝑓 ) (𝑦) =
∫ ∞

0
𝑓 (𝑧)𝑒−𝑦𝑧𝑑𝑧,

namely the following:
(1) 𝑑

𝑑𝑦
(L 𝑓 ) = L(−𝑧 𝑓 ),

(2) 𝑦L 𝑓 = L( 𝑑
𝑑𝑧
𝑓 ) + 𝑓 (0),

(3) 1
𝑦
L 𝑓 = L(

∫ 𝑧
0 𝑓 ),

(4) L 𝑓 (𝑦 − 𝑎) = L(𝑒𝑎𝑧 𝑓 ),
(5) L 𝑓 ( 𝑦

𝑎
) = 𝑎L( 𝑓 (𝑎𝑧)).

If 𝑓 (𝑧) = ∑∞
𝑛=0 𝑎𝑛/𝑛!𝑧𝑛 is an 𝐸-function, then 𝑔(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 is a 𝐺-function,

and
(L 𝑓 ) (𝑦) = 1

𝑦
𝑔( 1
𝑦
).

If 𝑔 is annihilated by 𝜑 ∈ 𝐾 [𝑧, 𝑑/𝑑𝑧] of order 𝜇, then 1
𝑦
𝑔( 1

𝑦
) is also annihilated by

𝜓 ∈ 𝐾 [𝑧, 𝑑/𝑑𝑧] of order 𝜇 by the change of variables 𝑧 ↦→ 1/𝑧. Let 𝜈 = deg𝑧 𝜓. Then

0 = FT
(
( 𝑑
𝑑𝑧

)𝜈𝜓
)
𝑓 = (−𝑧)𝜈FT(𝜓) 𝑓 ,
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and hence 𝑓 is annihilated by the differential operator Θ = FT(𝜓). Conversely, if 𝐿 𝑓 =
0, then

( 𝑑
𝑑𝑧

)𝜇FT(𝐿) (L 𝑓 ) = 0,

which means that FT(𝐿) (L 𝑓 ) is a polynomial of degree < 𝜇.

Definition 5.1. A differential operator 𝐿 ∈ Q[𝑧, 𝑑
𝑑𝑧
] is called an 𝐸-operator if its

Fourier–Laplace transform FT(𝐿) is a 𝐺-operator.

Equivalently, if 𝐿 is a 𝐺-operator, then FT(𝐿) is an 𝐸-operator.
By Chudnovsky’s theorem, every 𝐸-function is annihilated by an 𝐸-operator. In

fact, any differential operator of minimal degree in 𝑧 annihilating an 𝐸-function is an
𝐸-operator.

If 𝐿 is a differential operator of minimal order annihilating 𝑓 , then there exists a
differential operator 𝐿′, an 𝐸-operator Φ, and a polynomial 𝑄(𝑧) satisfying

𝐿′ · 𝐿 = 𝑄(𝑧) · Φ,

so 𝑓 is a solution of Φ as well. But 𝐿 is not necessarily an 𝐸-operator, as the following
example shows.

Example 5.1.1. Consider the 𝐸-function 𝑓 (𝑧) = (𝑧 − 1)𝑒𝑧 . Then 𝐿 = (𝑧 − 1) 𝑑
𝑑𝑧

− 𝑧
is a differential operator of minimal order annihilating 𝑓 . Its Fourier transform

FT(𝐿) = (− 𝑑

𝑑𝑧
− 1)𝑧 + 𝑑

𝑑𝑧
= (1 − 𝑧) 𝑑

𝑑𝑧
− (𝑧 + 1)

is not a 𝐺-operator (for example, because ∞ is an irregular singularity, since in the
usual notation deg 𝑃0 − 0 = 1 but deg 𝑃1 − 1 = 0, so Fuchs’s criterion fails). In this
case, we can take

Φ = ( 𝑑
𝑑𝑧

)2 − 2
𝑑

𝑑𝑧
+ 1

as an 𝐸-operator. It satisfies ( 𝑑
𝑑𝑧

− 1)𝐿 = (𝑧 − 1)Φ. Note that 𝐿 has a trivial singularity
at 𝑧 = 1, whereas Φ has only a singularity at ∞.

5.2 Structure of 𝑬-operators

Lemma 5.1. If 𝐿 has regular singularities at ∞, then the singularities of FT(𝐿) are
contained in {0,∞}.

Proof. Write the differential operator 𝐿 as

𝐿 = (𝑎𝜇,𝑟𝜇 𝑧𝑟𝜇 + · · · ) ( 𝑑
𝑑𝑧

)𝜇 + (𝑎𝜇−1,𝑟𝜇−1 𝑧
𝑟𝜇−1 + · · · ) ( 𝑑

𝑑𝑧
)𝜇−1 + · · ·
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Fuchs’s criterion at infinity gives 𝑟𝜇 > 𝑟𝑖 for all 𝑖 = 0, . . . , 𝜇 − 1. Hence

FT(𝐿) = 𝑎𝜇,𝑟𝜇 (−
𝑑

𝑑𝑧
)−𝑟𝜇 𝑧𝜇 + · · · = (−1)𝑟𝜇𝑎𝜇,𝑟𝜇 (

𝑑

𝑑𝑧
)𝑟𝜇 + · · · ,

so the only possible singularities are 0 and ∞.

Therefore, an 𝐸-operator has singularities contained in {0,∞}.

Theorem 5.1. Let 𝐿 be a differential operator of minimal order annihilating an 𝐸-
function. Then 𝐿 has a basis of holomorphic solutions at every point distinct from 0
and ∞.

Proof. Indeed, 𝐿′𝐿 = 𝑄(𝑧)Φ for an 𝐸-operator Φ, so a non-holomorphic solution of
𝐿 would give rise to a non-holomorphic solution of Φ, which is not possible.





Appendix A

Factorials

The basic formula is that for the 𝑝-adic valuation of the factorial of an integer:

𝑣𝑝 (𝑛!) =
∞∑︁
𝑗=1

[
𝑛

𝑝 𝑗

]
=
𝑛 − 𝑆𝑛
𝑝 − 1

,

where 𝑆𝑛 stands for the sum of the digits of 𝑛 in base 𝑝. That is, if 𝑛 = 𝑎0 + · · · + 𝑎ℓ 𝑝ℓ
with 𝑎𝑖 ∈ {0, . . . , 𝑝 − 1} and 𝑎ℓ ≠ 0, then 𝑆𝑛 = 𝑎0 + · · · + 𝑎ℓ .

Lemma A.1. Let 𝑎 ∈ Q and 𝑏 ∈ Q \ Z≤0. There exists a real number𝐶 > 0 such that,
for all 𝑛 ≥ 1, the following estimate holds:

den
(
(𝑎)1
(𝑏)1

, . . . ,
(𝑎)𝑛
(𝑏)𝑛

)
≤ 𝐶𝑛.





Appendix B

A theorem of Kronecker (by Emmanuel Kowalski)

The theorem in question is:

Theorem B.1. Let 𝛼 be an algebraic number, and let 𝐾 = Q(𝛼). If the set 𝑄 of non-
zero prime ideals 𝑞 of the ring of integers of 𝐾 such that 𝛼 mod 𝑞 belongs to the prime
field of the residue field of 𝑞 has density 1, in the sense that∑︁

𝑞∈𝑄

1
|𝑞 |𝜎 ∼ − log(𝜎 − 1)

as 𝜎 → 1, where |𝑞 | is the norm of 𝑞, then 𝛼 ∈ Q.

This result is discussed in the Bourbaki seminar of Chambert-Loir [8, Th. 2.2]
as an elementary case of algebraicity theorems; the original reference of Kronecker
(where the result is announced) is the paper [1].

In modern terms, this result is viewed as a simple consequence of the Chebotarev
density theorem. For instance, one can argue that the set 𝑄 coincides (up to finitely
many primes maybe) with the set of prime ideals 𝑞 such that the Frobenius conjugacy
class at 𝑞, in the Galois group 𝐺 of a Galois closure of 𝐾 , is conjugate to an element
of the fixer 𝐻 of 𝛼, hence we have∑︁

𝑞∈𝑄

1
|𝑞 |𝜎 ∼ − |𝑋 |

|𝐺 | log(𝜎 − 1),

where 𝑋 ⊂ 𝐺 is the set of elements of 𝐺 conjugate to an element of 𝐻 (or even the
analogue with natural density). The assumption then implies that 𝐻 = 𝐺 by one of
Jordan’s theorems, well-beloved of Serre [15]. But this is only possible if 𝐺 is trivial,
since 𝐺 acts transitively on the conjugates of 𝛼.

We spell out here a proof which doesn’t involve the full Chebotarev theorem.

Lemma B.1. Let 𝐸/Q be a number field with ring of integers Z𝐸 .
(1) We have ∑︁

𝑞⊂Z𝐸

1
|𝑞 |𝜎 = − log(𝜎 − 1) +𝑂 (1)

for 𝜎 > 1, where the sum ranges over non-zero prime ideals in Z𝐸 .
(2) For 𝑝 prime, let 𝜌𝐸 (𝑝) denote the number of prime ideals of norm 𝑝 in Z𝐸 .

We have ∑︁
𝑝

𝜌𝐸 (𝑝)
𝑝𝜎

= − log(𝜎 − 1) +𝑂 (1)

for 𝜎 > 1.
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Proof. (1) This is a consequence of the fact that the Dedekind zeta function of 𝐸 has
a simple pole at 𝑠 = 1, together with its Euler product expansion.

(2) This follows from (1), since∑︁
𝑞⊂Z𝐸

1
|𝑞 |𝜎 =

∑︁
𝑝

𝜌𝐸 (𝑝)
𝑝𝜎

+𝑂
(∑︁
𝑝

1
𝑝2𝜎

)
for 𝜎 > 1.

Proof of Kronecker’s Theorem. We may assume that 𝛼 is an algebraic integer. Let 𝑓 ∈
Z[𝑋] be its minimal monic polynomial, 𝑑 its degree, and let 𝐿 be its splitting field; it
is a Galois extension of Q containing 𝐾 . For 𝑝 prime, let 𝜌(𝑝) be the number of roots
of 𝑓 modulo 𝑝. We have 𝜌(𝑝) ≥ 1 for all but finitely many primes, by the assumption
on 𝛼.

Let
𝐹 (𝑠) =

∑︁
𝑝

𝜌(𝑝)
𝑝𝑠

for Re(𝑠) > 1. Since 𝜌(𝑝) is (for all but finitely many primes) the number of prime
ideals of norm 𝑝 in Z𝑘 , we have

𝐹 (𝜎) = − log(𝜎 − 1) +𝑂 (1) (B.1)

for 𝜎 > 1 by Lemma B.1, (2).
If we denote by 𝑇 the set of primes 𝑝 totally split in 𝐿, then noting that 𝜌(𝑝) = 𝑑

for such primes, we see that the inequality

𝐹 (𝜎) ≥
∑︁
𝑝

1
𝑝𝜎

+
∑︁
𝑝∈𝑇

𝑑 − 1
𝑝𝜎

+𝑂 (1) (B.2)

holds for 𝜎 > 1, where the bounded term 𝑂 (1) accounts again for the finitely many
possible exceptional primes.

By Lemma B.1, (1), applied to Q, we have∑︁
𝑝

1
𝑝𝜎

= − log(𝜎 − 1) +𝑂 (1)

for 𝜎 > 1. But also by the second part of the lemma applied to 𝐿, we have∑︁
𝑝∈𝑇

1
𝑝𝜎

=
1

[𝐿 : Q]
∑︁
𝑞⊂Z𝐿

1
|𝑞 |𝜎 +𝑂 (1)

for 𝜎 > 1, since 𝜌𝐿 (𝑝) = [𝐿 : Q] for 𝑝 ∈ 𝑇 . Combining this with (B.1) and (B.2), we
derive

− log(𝜎 − 1) ≥ −
(
1 + 𝑑

[𝐿 : Q]

)
log(𝜎 − 1) +𝑂 (1)

for 𝜎 > 1, which is only possible if 𝑑 = 1.
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Remark B.1. Instead of the behavior of the series as 𝜎 → 1, one can also use either
natural density or the behavior of the sums∑︁

𝑞∈𝑄
|𝑞 | ≤𝑥

1
|𝑞 |

as 𝑥 → +∞.
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