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Abstract. Following ideas of Katz, Kontsevich, and Nori, we construct a neutral Q-linear tan-

nakian category of exponential motives over a subfield k of the complex numbers. This category

is endowed with Betti and de Rham realisation functors, as well as a comparison isomorphism

between them. When k is algebraic, the coefficients of this comparison isomorphism are called

exponential periods and form a class of complex numbers including the special values of the gamma

and the Bessel functions, the Euler–Mascheroni constant, and other interesting numbers that are

not expected to be periods of usual motives. In particular, we attach to exponential motives a

Galois group that conjecturally governs all algebraic relations among their periods.
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CHAPTER 1

Introduction

What motives are to algebraic varieties, exponential motives are to varieties with a potential,

that is, to pairs (X, f) consisting of an algebraic variety X over some field k and a regular function f

on X. These objects have attracted considerable attention in recent years, especially in connection

with mirror symmetry, where one seeks to associate with a Fano variety Y a Landau-Ginzburg

mirror (X, f) so that certain invariants of Y such as the Hodge numbers are reflected by the

geometry of f , namely its critical locus. Our motivation is somewhat different: exponential motives

provide a framework to deal with many interesting numbers that are not expected to be periods

in the usual sense of algebraic geometry. Following ideas of Katz, Kontsevich, and Nori, we shall

construct a Q-linear neutral tannakian category of exponential motives over a subfield k of the

complex numbers and compute a few examples of Galois groups. Classical results and conjectures of

transcendence theory may then be interpreted—in the spirit of Grothendieck’s period conjecture—

as instances of the statement that the transcendence degree of the field generated by the periods

of an exponential motive agrees with the dimension of its Galois group.

1.1. Exponential periods

1.1.1. — To get in tune, let us introduce two cohomology theories for varieties with a potential.

The first one, rapid decay cohomology, appears implicitly in the classical study of the asymptotic

behaviour of the solutions of differential equations with irregular singularities. To our knowledge, it

was first considered in a 1976 letter from Deligne to Malgrange [25, p. 17]. We learnt the definition

below from Kontsevich, see [59, §4.3] and [58, Def. 4.1].

Let n ⩾ 0 be an integer. For each real number r, we let Sr ⊆ C denote the closed half-plane

{Re(z) ⩾ r}. Given a complex algebraic variety X and a regular function f : X → C, the rapid

decay homology in degree n of the pair (X, f) is defined as the limit

Hrd
n (X, f) = lim

r→+∞
Hn(X(C), f−1(Sr);Q). (1.1.1.1)

On the right-hand side stands the singular homology with rational coefficients of the topological

space X(C) relative to the closed subspace f−1(Sr), and the limit is taken in the category of

vector spaces with respect to the transition maps induced by the inclusions f−1(St) ⊆ f−1(Sr)

for all t ⩾ r. For big enough r, all these maps are in fact isomorphisms and the fibre f−1(r)

7



8 1. INTRODUCTION

is homotopically equivalent to f−1(Sr), so one may as well think of rapid decay homology as the

homology of X(C) relative to a general fibre of the function f . The reason for the name will become

apparent soon. The rapid decay cohomology in degree n of the pair (X, f) is then defined as the

linear dual Hn
rd(X, f) of the rapid decay homology space, that is:

Hn
rd(X, f) = HomQ(H

rd
n (X, f),Q) = colim

r→+∞
Hn(X(C), f−1(Sr);Q). (1.1.1.2)

This cohomology theory for varieties with a potential enjoys many of the usual properties: the vector

space Hn
rd(X, f) has finite dimension, depends functorially on (X, f), satisfies a Künneth formula,

fits into a Mayer-Vietoris long exact sequence, etc. Whenever f is constant, the subspace f−1(Sr)

is empty for big enough r, so Hn
rd(X, f) agrees with the usual Betti cohomology of X.

As for usual cohomology, rapid decay cohomology admits a purely algebraic counterpart. Let X

be a smooth variety over a field k of characteristic zero, f : X → A1 a regular function, and

Ef = (OX , df )

the trivial rank one vector bundle on X together with the integrable connection df : OX → Ω1
X

uniquely determined by df (1) = −df . If k is a subfield of the complex numbers, the local system of

analytic horizontal sections of Ef is the trivial local system on X(C) generated by the exponential

of f , which justifies the notation and our choice of the minus sign. However, the connection Ef is

non-trivial as long as f is non-constant, a reflection of the fact that it has then irregular singularities

at infinity. Let DR(Ef ) be the de Rham complex of Ef , namely the complex of Zariski sheaves

DR(Ef ) : OX
df−→ Ω1

X

df−→ · · ·
df−→ ΩdimX

X ,

where the differential df : Ω
p
X → Ωp+1

X is given by df (ω) = dω − df ∧ ω on local sections ω. By

definition, the de Rham cohomology of the pair (X, f) is the cohomology of this complex:

Hn
dR(X, f) = Hn(X,DR(Ef )). (1.1.1.3)

As we shall see in Section 7.1, using standard techniques in homological algebra, this definition

generalises to singular varieties and yields another cohomology theory for varieties with a potential.

If f is constant, then df is nothing but the exterior derivative, and hence Hn
dR(X, f) agrees with

the usual de Rham cohomology of X.

1.1.2. — Let (X, f) be a smooth variety with a potential defined over a subfield k of C. By

a series of works starting from the aforementioned letter and continuing with Dimca-Saito [28],

Sabbah [68], Hien-Roucairol [45], and Hien [44], there is a canonical comparison isomorphism

Hn
dR(X, f)⊗k C

∼−→ Hn
rd(X, f)⊗Q C,

which we shall most conveniently regard as a perfect pairing

Hn
dR(X, f)⊗Hrd

n (X, f)→ C (1.1.2.1)

between de Rham cohomology and rapid decay homology. Intuitively, elements of Hrd
n (X, f) are

homology classes of topological cycles γ on X(C) which are not necessarily compact, but are only

unbounded in the directions where Re(f) tends to infinity. More precisely, we view them as classes

of compatible systems γ = (γr)r∈R of compact cycles γr in X(C) whose boundary ∂γr is contained
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in f−1(Sr). Besides, when X is affine, de Rham cohomology can be computed using global sections

of the complex DR(Ef ), so that elements of Hn
dR(X, f) are represented by n-forms ω on X. In this

case, the pairing (1.1.2.1) sends [ω]⊗ [γ] to the integral∫
γ
e−fω = lim

r→+∞

∫
γr

e−fω,

which is absolutely convergent since e−f decays rapidly in the directions where γ is unbounded.

The value of the integral is independent of the choice of representatives by Stokes’ theorem: for

example, two cohomologous forms will differ by df (η) for some η ∈ Ωn−1
X (X), and we have∫

γ
e−fdf (η) =

∫
γ
d(e−fη) = lim

r→+∞

∫
∂γr

e−fη = 0

because η is algebraic and e−f goes to zero faster than any polynomial along the boundary of γr.

If the base field k is further assumed to lie inside Q, the algebraic closure of Q in C, one

calls exponential periods the complex numbers arising as values of the pairing (1.1.2.1). Note that,

when f is a non-zero constant function, although we are dealing with usual de Rham and singular

cohomology of X, the comparison isomorphism is twisted by e−f . For this reason, exponentials of

algebraic numbers are exponential periods associated with zero-dimensional varieties, and will play

in what follows a similar role to algebraic numbers in the classical theory of periods.

1.1.3. — We now present two more elaborated examples of exponential periods that appear,

under various guises, in the work of Bloch-Esnault [11, §5], [12, p. 360–361], Kontsevich-Zagier

[59, §4.3], Deligne [25, p. 115–128], Hien-Roucairol [45, p. 529–530], and Bertrand [10, §6].

Example 1.1.4. — Let X = Spec k[x] be the affine line and f = anx
n + . . . + a0 a polynomial

of degree n ⩾ 2. The global de Rham complex of the connection Ef reads:

k[x]
df−→ k[x]dx

g 7−→ (g′ − f ′g)dx.

Since df is injective, the only non-trivial cohomology group is H1
dR(X, f) = coker(df ). A basis

is given by the differentials dx, xdx, . . . , xn−2dx. Indeed, these classes are linearly independent

because the image of df consists of elements of the form hdx with h of degree at least n− 1. That

they generate the whole cohomology can be seen by induction on noting that, for each m ⩾ 0, there

is a polynomial hm of degree at most n+m− 2 with

xn+m−1dx− hmdx = df (
1
nan

xm).

Let us now turn to rapid decay homology. The asymptotics of Re(f) being governed by the

leading term of the polynomial, we may assume without loss of generality that f = anx
n and

write an = ueiα with u > 0 and α ∈ [0, 2π). Given a real number r > 0, the subspace f−1(Sr) ⊆ C
consists of the n disjoint regions

n−1∐
j=0

{
seiθ

∣∣∣∣ −α+(2j− 1
2
)π

n < θ <
−α+(2j+ 1

2
)π

n , s ⩾
(

r
u cos(α+nθ)

) 1
n

}
,
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which are concentrated around the half-lines

σj =
{
seiθ

∣∣∣ θ = −α+2πj
n , s ⩾ 0

}
, j = 0, . . . , n− 1.

We orient each σi from zero to infinity. A basis of Hrd
1 (X, f) is then given by the cycles

γi = σi − σ0, i = 1, . . . , n− 1.

Figure 1.1.1 illustrates the case of a polynomial of degree n = 5 whose leading term an is a positive

real number: the subspace f−1(Sr) is drawn in blue and the half-lines σj in green.

Figure 1.1.1. A basis of the rapid decay homology of a

polynomial of degree 5 with positive leading term

With respect to these bases, the matrix of the period pairing (1.1.2.1) is

P =

(∫
γi

xj−1e−f(x)dx

)
i,j=1,...,n−1

.

Assuming that the base field k is algebraic, the entries of P are exponential periods. Let us see a

few examples of familiar numbers which appear this way:

(i) Given a quadratic polynomial f = ax2 + bx+ c, the cohomology is one-dimensional. In this

case, the cycle −γ1 is the “rotated” real line e−
i arg(a)

2 R, with its usual orientation, and one gets:∫
e−

i arg(a)
2 R

e−ax
2−bx−cdx = e

b2

4a
−c
√
π

a
. (1.1.4.1)

A particular case, for f = x2, is the Gaussian integral∫
R
e−x

2
dx =

√
π, (1.1.4.2)

which is not expected to be a period in the usual sense since, granted a theory of weights for

periods, it would hint at the existence of a one-dimensional pure Hodge structure of weight one.

We will prove in Section 12.2 that, assuming the analogue of the Grothendieck period conjecture

for exponential motives,
√
π is not a period of a usual motive.
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(ii) More generally, consider the polynomial f = xn for n ⩾ 2. Set ξ = e
2πi
n and let Γ be the

classical gamma function. Then the entries of P are the exponential periods∫
γi

xj−1e−x
n
dx =

ξij − 1

n

∫ +∞

0
x
j
n
−1e−xdx =

ξij − 1

n
Γ
(
j
n

)
.

To get the special value of the gamma value alone, i.e. without the cyclotomic factor, it suffices to

observe that the relation
∑n−1

i=1 ξ
ij = −1 yields

Γ
(
j
n

)
=

∫
−γ1−...−γn−1

xj−1e−x
n
dx. (1.1.4.3)

Again, one does not expect single gamma values to be periods in the usual sense. However, we

can obtain periods by taking suitable monomials in them.

Using geometric techniques inspired from the stationary phase formula—which will carry over

to exponential motives—, Bloch and Esnault computed the determinant of the period matrix P in

[11, Prop. 5.4]:

detP ∼k×
√
(−1)

(n−1)(n−2)
2 s · π

n−1
2 · exp(−

∑
f ′(α)=0

f(α)), (1.1.4.4)

where s = 1 if n is odd and s = nan/2 if n is even. The symbol ∼k× means that the left and the

right-hand side agree up to multiplication by an element of k×. Note the particular case (1.1.4.1).

Example 1.1.5. — Consider the torusX = Spec k[x, x−1], together with the Laurent polynomial

f = −λ
2

(
x− 1

x

)
for some λ ∈ k×, which we view for the moment as a fixed parameter. Arguing as before, one sees

that coker(df ) is generated by xpdx, for p ∈ Z, modulo the relations

xpdx+ 2p
λ x

p−1dx+ xp−2dx = 0.

It follows that the de Rham cohomology H1
dR(X, f) is two-dimensional, a basis being given by the

classes of the differentials x−p−1dx and x−pdx for any choice of an integer p.

On the rapid decay side, the subspace f−1(Sr) ⊆ C× consists of two disjoint regions which are

roughly a half-plane where Re(−λx) is large and the inversion with respect to the unit circle of the

half-plane where Re(λx) is large (see Figure 1.1.2 below). By passing to the limit r → +∞ in the

long exact sequence of relative homology

· · · → H1(f
−1(Sr),Q)→ H1(C×,Q)→ H1(C×, f−1(Sr);Q)→ H0(f

−1(Sr),Q)→ H0(C×,Q)→ · · ·

one sees that Hrd
1 (X, f) is two-dimensional and contains H1(C×,Q). Therefore, a loop γ1 winding

once counterclockwise around 0 defines a class in rapid decay homology. To complete it to a basis,

we consider any path joining the two connected components of f−1(Sr), for example the cycle γ2

in C× consisting of the straight line from 0 (not included) to λ, the positive arc from λ to −λ and

the half-line from −λ towards −λ∞, as shown in Figure 1.1.2. Alternatively, we note that, on the
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vertical axis {x = it | t ∈ R}, the real part of f is given by Re(f) = Im(λ)(t+ 1
t ), so, as long as λ

is not real, we can take the path γ2 : R>0 → C× defined by

γ2(t) =

it if Im(λ) > 0,

−it if Im(λ) < 0.

Figure 1.1.2. The subspaces f−1(Sr) and a basis of the rapid decay

homology Hrd
1 (X, f) when λ = 1 + i (left) and λ = 1 (right)

Recall that, given an integer n, the Bessel function of the first kind of order n is defined by

Jn(z) =
1

2πi

∫
γ1

e
z
2(x−

1
x)

dx

xn+1
, z ∈ C,

and the Bessel function of the third kind of order n is defined by

Hn(z) =
1

πi

∫
γ2

e
z
2(x−

1
x)

dx

xn+1
, z ∈ C×.

We adopt the conventions from [88, 6.21]. The function Jn(z) is entire whereas Hn(z) is holomor-

phic on C \ iR if the cycle γ2 is given by the first description. The functions Jn(z) and Hn(z) are

two linearly independent solutions of the second order linear differential equation

d2u

dz2
+

1

z

du

dz
+

(
1− n2

z2

)
u = 0 (1.1.5.1)

for an unknown function u in one variable z. Observe that (1.1.5.1) has a regular singular point at

z = 0 and an irregular singularity at infinity.

The matrix of the period pairing (1.1.2.1) with respect to the basis x−n−1dx and x−ndx of de

Rham cohomology and γ1, γ2 of rapid decay homology reads

P =

(
2πiJn(λ) 2πiJn−1(λ)

πiHn(λ) πiHn−1(λ)

)
. (1.1.5.2)



1.2. EXPONENTIAL MOTIVES 13

1.2. Exponential motives

1.2.1 (An abelian category after Nori). — According to the philosophy of motives, the existence

of two cohomology theories for varieties with potential, as well as a comparison isomorphism be-

tween them, suggests looking for a universal cohomology with values in a tannakian category, from

which any other reasonable cohomology theory would be obtained by composition with realisation

functors. Such a category of exponential motives over a fixed subfield k of C indeed exists, and we

shall construct it using Nori’s formalism [65].

Extending slightly the definition of rapid decay cohomology, we associate with a k-variety X,

a closed subvariety Y ⊆ X, a regular function f on X, and two integers n and i the vector space

ρ([X,Y, f, n, i]) = Hn
rd(X,Y, f)(i)

= colim
r→+∞

Hn(X(C), Y (C) ∪ f−1(Sr);Q)(i), (1.2.1.1)

where the twist (i) means tensoring −i times with the one-dimensional vector space H1(Gm,Q).

Note that we do not require any compatibility between the function and the subvariety.

Let us preliminarily write Qexp(k) for the category with objects the tuples [X,Y, f, n, i] as

above, and morphisms the maps of k-varieties compatible with the subvarieties and the functions

in the obvious way. Then the assignment (1.2.1.1) defines a functor

ρ : Qexp(k)→ VecQ. (1.2.1.2)

The basic idea is to look at the endomorphism algebra of ρ, that is,

End(ρ) = {(eq) ∈
∏

q∈Qexp(k)

End(ρ(q)) | eq ◦ ρ(f) = ρ(f) ◦ ep for all f : p→ q}. (1.2.1.3)

Filtering Qexp(k) by subcategories with a finite number of objects and morphisms, one sees that

End(ρ) has a canonical structure of pro-algebra over Q. Bearing this in mind, we tentatively define

the category of exponential motives as

Mexp(k) =

{
finite-dimensional Q-vector spaces endowed

with a continuous End(ρ)-action

}
. (1.2.1.4)

The category Mexp(k) is abelian, Q-linear, and the functor ρ lifts canonically to a functor

ρ̃ : Qexp(k)→Mexp(k). The images of the objects of Qexp(k) will be denoted by

Hn(X,Y, f)(i) = ρ̃([X,Y, f, n, i])

When Y is empty or i = 0, we will usually drop them from the notation. In general, an exponential

motive is a subquotient of a finite direct sum of objects of the form Hn(X,Y, f)(i).

So far, there are no morphisms between objects of Qexp(k) with different n or i. Yet, given a

closed subvariety Z of Y , there is a canonical morphism of vector spaces

ρ([Y,Z, f |Y , n− 1, i])→ ρ([X,Y, f, n, i]) (1.2.1.5)

which is induced, after passing to the limit, by the connecting morphism in the long exact sequence

for the closed immersions Z ∪ f−1(Sr) ⊆ Y ∪ f−1(Sr) ⊆ X. We would like to lift this morphism to



14 1. INTRODUCTION

the category Mexp(k). To achieve this, we simply add to Qexp(k) an artificial morphism

[X,Y, f, n, i]→ [Y,Z, f |Y , n− 1, i],

and declare its image under ρ to be (1.2.1.5). As we do not specify any composition law for the

new morphisms, Qexp(k) ceases to be a category, and is now only a quiver (or a diagram in Nori’s

terminology). By that, we understand a collection of objects, morphisms with source and target,

and specified identity morphisms (see Section 4.1 for a reminder).

The definitions (1.2.1.3) and (1.2.1.4) are still meaningful, and now the morphisms (1.2.1.5)

obviously lift to Mexp(k). After introducing a second class of extra morphisms to Qexp(k), which

relate objects having different twists, we arrive at our final definition of the quiver Qexp(k) and the

category Mexp(k). We will call Betti realisation the forgetful functor

RB : Mexp(k) −→ VecQ. (1.2.1.6)

Adapted to our context, Nori’s main theorem about the categories associated with quiver repre-

sentations [65, 48] says that Mexp(k) is universal for all cohomology theories which are comparable

to rapid decay cohomology. More precisely, one has the following result:

Theorem 1.2.2 (Nori). — Let F be a field of characteristic zero and A an abelian, F -linear

category together with an exact, F -linear, faithful functor A → VecF . Let h : Qexp(k) → A be a

functor, and suppose that natural isomorphisms of vector spaces

h([X,Y, f, n, i]) ≃ ρ([X,Y, f, n, i])⊗Q F

are given for each object [X,Y, f, n, i]. Then there exists a unique functor, up to isomorphism,

RA : Mexp(k)→ A such that h is the composite of RA and the canonical lift ρ̃ : Qexp(k)→Mexp(k).

This universal property will be used to construct other realisation functors. Important examples

are the period and the perverse realisations, which we now discuss.

1.2.3 (The period realisation). — A period structure over k is a triple (V,W,α) consisting of

a Q-vector space V , a k-vector space W , and an isomorphism α : V ⊗Q C → W ⊗k C of complex

vector spaces. Together with the obvious morphisms, period structures form an abelian Q-linear

category PS(k). There is a forgetful functor PS(k)→ VecQ sending (V,W,α) to V .

Extending the definition of de Rham cohomology and the comparison isomorphism from 1.1.1

and 1.1.2 to the relative setting and singular varieties, one obtains a functor Qexp(k) → PS(k),

whose composition with the forgetful functor is nothing else but ρ. Therefore, Nori’s Theorem 1.2.2

yields an exact and faithful functor

RP : Mexp(k)→ PS(k),

which we call the period realisation. Composing with the functor PS(k)→ Veck sending (V,W,α)

to W , we obtain the de Rham realisation

RdR : Mexp(k) −→ Veck.
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1.2.4 (The perverse realisation). — We now turn to another realisation functor which takes

values in a subcategory of perverse sheaves with rational coefficients on the complex affine line.

Recall that, given two objects A and B of the derived category of constructible sheaves of Q-vector

spaces on A1(C), one defines their additive convolution by

A ∗B = Rsum∗(pr
∗
1A⊗ pr∗2B),

where sum: A2 → A1 is the summation map, and pri : A2 → A1 the projections onto the two

factors. Even if we start with two perverse sheaves, their additive convolution fails to be perverse

in general. To remedy this, we will restrict to the full subcategory Perv0 of Q-perverse sheaves on

A1(C) consisting of those objects C without global cohomology, i.e. such that Rπ∗C = 0 for π the

structure morphism of A1. A typical object of this category is E(0) = j!j
∗Q[1], where j : Gm ↪→ A1

stands for the natural inclusion. Indeed, we shall see that all the objects of Perv0 are of the form

F [1] for some constructible sheaf of Q-vector spaces F satisfying H∗(A1(C), F ) = 0. This enables

us to define the “nearby fibre at infinity” Ψ∞ : Perv0 → VecQ as

Ψ∞(F [1]) = lim
r→+∞

F (Sr).

Besides, the inclusion of Perv0 into Perv admits a left adjoint Π: Perv → Perv0 which is given

by additive convolution with the object E(0), that is, Π(C) = C ∗ E(0).

For a variety X and a closed subvariety Y ⊆ X, let β : X \ Y ↪→ X be the inclusion of

the complement and Q
[X,Y ]

= β!β
∗Q the sheaf computing the relative cohomology of the pair

(X(C), Y (C)). We define a functor Qexp(k) → Perv0 by assigning to [X,Y, f, n, i] the perverse

sheaf

Π(pHn(Rf∗Q[X,Y ]
))(i),

where pHn stands for the cohomology with respect to the t-structure defining Perv inside the

derived category of constructible sheaves. As we shall prove in 3.2, the composition of this functor

with Ψ∞ gives back the rapid decay cohomology. Invoking the universal property again, this yields

the perverse realisation

RPerv : M
exp(k) −→ Perv0.

1.2.5 (The tensor structure). — Given two pairs (X1, f1) and (X2, f2) of varieties with potential,

the cartesian product X1 ×X2 is equipped with the Thom–Sebastiani sum

(f1 ⊞ f2)(x1, x2) = f1(x1) + f2(x2). (1.2.5.1)

There is a cup-product in rapid decay cohomology

Hn1
rd (X1, Y1, f1)⊗Hn2

rd (X2, Y2, f2) −→ Hn1+n2
rd (X1 ×X2, (Y1 ×X2) ∪ (X1 × Y2), f1 ⊞ f2)

which induces an isomorphism of Q-vector spaces (Künneth formula):⊕
a+b=n

Ha
rd(X1, Y1, f1)⊗Hb

rd(X2, Y2, f2) ≃ Hn
rd(X1 ×X2, (Y1 ×X2) ∪ (X1 × Y2), f1 ⊞ f2).

The technical heart of this work is the following theorem:
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Theorem 1.2.6 (cf. Theorem 4.4.1). — There exists a unique monoidal structure on Mexp(k)

which is compatible with the Betti realisation RB : Mexp(k) → VecQ and with cup-products. With

respect to this monoidal structure, Mexp(k) is a neutral tannakian category with RB as fibre functor.

The difficulty of constructing the tensor product stems from the fact that the obvious rule

[X1, Y1, f1, n1, i1]⊗ [X2, Y2, f2, n2, i2] = [X1 ×X2, (Y1 ×X2) ∪ (X1 × Y2), f1 ⊞ f2, n1 + n2, i1 + i2]

is not compatible with the Künneth formula unless the rapid decay cohomology of the triples

(Xi, Yi, fi) is concentrated in a single degree. As for usual Nori motives, the problem is solved

by showing that every object admits a “cellular filtration”. More precisely, the key ingredient is

the following statement, which—thanks to the perverse realisation—follows from Beilinson’s most

general form of the basic lemma.

Theorem 1.2.7 (Exponential basic lemma, cf. Corollary 3.3.3). — Let X be an affine variety

of dimension d, together with a regular function f : X → A, and let Y ⊊ X be a closed subvariety,

There exists a closed subvariety Z ⊆ X of dimension at most d − 1 and containing Y such that

H i(X,Z, f) = 0 for all i ̸= d.

Once we have the tensor product at our disposal, many relations between exponential periods

can be proved to be of motivic origin. For instance, the value (1.1.4.2) of the Gaussian integral

reflects the isomorphism of motives

H1(A1, x2)⊗2 = H1({x2 + y2 = 1})

which will be established in Section 12.2.

1.2.8 (Relation with usual Nori motives). — Nori’s category of (non-effective cohomological)

mixed motives over k is related to our construction as follows. Let Q(k) be the full subquiver of

Qexp(k) consisting of those tuples [X,Y, f, n, i] with f = 0. The restriction of the representation ρ

to this subquiver is nothing other than the usual Betti cohomology of the pair (X(C), Y (C)). Nori’s
category of mixed motives M(k) is the category of finite-dimensional Q-vector spaces equipped with

a continuous End(ρ|Q(k))-action. From the inclusion Q(k) → Qexp(k), one obtains a restriction

homomorphism End(ρ) → End(ρ|Q(k)), and hence a canonical functor ι : M(k) →Mexp(k) which,

by the general formalism, is faithful and exact.

Theorem 1.2.9 (cf. Theorem 5.1.1). — The functor ι : M(k) −→Mexp(k) is full.

This enables us to identify the category of classical Nori motives with a full subcategory of

the category of exponential motives. However, the image of M(k) in Mexp(k) is not stable under

extension. In Chapter 12, we shall construct an extension of Q(−1) by Q(0) whose period matrix

is given by (
1 γ

0 2πi

)
,
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where γ = limn→∞(
∑n

k=1
1
k − log(n)) denotes the Euler–Mascheroni constant.

1.3. The motivic exponential Galois group

By the fundamental theorem of tannakian categories, Mexp(k) is equivalent to the category

of representations of an affine group scheme Gexp(k) over Q, which will be called the motivic

exponential Galois group. A formal consequence of the construction of the tannakian category

Mexp(k) and the realisations functors will be the following:

Proposition 1.3.1 (cf. Proposition 8.3.1). — The scheme of tensor isomorphisms

Isom⊗(RdR, RB)

is a torsor under the motivic exponential Galois group.

Given an exponential motive M , one can look at the smallest tannakian subcategory ⟨M⟩⊗ of

Mexp(k) containing M . Invoking again the general formalism, ⟨M⟩⊗ is equivalent to Rep(GM ) for

a linear algebraic group GM ⊆ GL(RB(M)) which we call the Galois group of M . It follows from

Proposition 1.3.1 that, when k is a number field, the dimension of GM is an upper bound for the

transcendence degree of the field generated by the periods of M . Indeed, one conjectures:

Conjecture 1.3.2 (Exponential period conjecture, cf. Conjecture 8.2.6). — Given an exponen-

tial motive M over a number field, one has

trdegQ(periods of M) = dimGM .

A number of classical results and conjectures in transcendence theory may be seen as instances of

this equality. For example, we will show in Section 12.1 that the Lindemann–Weierstrass theorem

(given Q-linearly independent algebraic numbers α1, . . . , αn, their exponentials eα1 , . . . , eαn are

algebraically independent) is the exponential period conjecture for the motive

M =
n⊕
i=1

H0(Spec k,−αi),

where k denotes the number field generated by α1, . . . , αn.

1.3.3 (Gamma motives and the abelianisation of the exponential Galois group). — For each

integer n ⩾ 2, consider the following exponential motive over Q:

Mn = H1(A1, xn). (1.3.3.1)

By Example 1.1.4, all the values of the gamma function at rational numbers of denominator n are

periods of Mn, so it makes sense to call (1.3.3.1) a gamma motive. Avatars of the Mn already

appeared in the work of Anderson [1] under the name of ulterior motives. The rationale behind his
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choice of terminology was that, whileMn are “not themselves motives, motives may be constructed

from them via the operations of linear algebra” (loc.cit. p.154). As a striking illustration, he showed

that, for all m ⩾ 2, the tensor product M⊗m
n contains a submotive isomorphic to the primitive

motive of Fermat hypersurface X = {xn1 + . . . + xnm = 0} ⊆ Pm−1. We shall recover this fact in a

very natural way in Chapter 13, cf. Proposition 13.3.3.

Conjecture 1.3.4 (Lang). — Let n ⩾ 3 be an integer. The transcendence degree of the field

generated over Q by the gamma values Γ( an), for a = 1, . . . , n− 1, is equal to 1 + φ(n)/2.

At the time of writing, the conjecture is only known for n = 3, 4, 6, as a corollary of Chudnovsky’s

theorem that the transcendence degree of the field of periods of an elliptic curve over Q is at least 2

and the Chowla-Selberg formula [19]. As observed by André [2, 24.6], this conjecture follows from

Grothendieck’s period conjecture, although in a rather indirect way which requires to know that

periods of abelian varieties with complex multiplication by a cyclotomic field can be expressed in

terms of gamma values. We shall prove that the Galois group of the motive Mn fits into an exact

sequence

0→ µn → GMn −→ SQ(µn) → 0,

where SQ(µn) stands for the Serre torus of the cyclotomic field Q(µn). This implies that GMn has

dimension 1 + φ(n)/2 and enables us to see Lang’s conjecture as an instance of Conjecture 1.3.2.

1.4. Outline

Briefly, the text is organised as follows. We refer the reader to the introductions of each chapter

for a more precise description.

Chapter 2 contains some preliminaries about perverse sheaves that will be used in the sequel.

The main result is that the category Perv0 is tannakian with respect to the monoidal structure

given by additive convolution and the nearby fibre at infinity functor. We then discuss another fibre

functor, given by the total vanishing cycles. A careful study of the local monodromies of the additive

convolution allows one to see the compatibility with the tensor structures as a reformulation of the

Thom–Sebastiani theorem.

In Chapter 3, we study the basic properties of rapid decay cohomology. Besides the elementary

definition, we give two alternative descriptions. The first one, as the nearby fibre at infinity of a

perverse sheaf, is used to obtain the exponential basic lemma. The second one, in terms of the

oriented real blow-up, will play a pivotal role in the proof of the comparison isomorphism.

Chapter 4 is the technical core of this work. After some preliminaries about Nori’s formalism,

we define Mexp(k) as an abelian category. We then move to the construction of the tensor product

using the exponential basic lemma from the previous chapter. In the last sections, we show that

the Gysin long exact sequence is motivic and we complete the proof that Mexp(k) is tannakian.
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In Chapter 5, we prove that classical Nori motives form a full subcategory of exponential

motives. We then explain how the categories Mexp(k) behave with respect to base field extension.

We end the chapter with a brief discussion of the conjectural relation with a Voevodsky-like category

of exponential motives and the Grothendieck ring of varieties with exponentials.

Chapter 6 presents the construction of the perverse realisation. The main result of this chapter

is that an exponential motives comes from a classical motive if and only if its perverse realisation

is trivial. We also give a few examples of situations where the knowledge of the fundamental group

of the perverse realisation allows one to compute the whole motivic fundamental group.

Chapter 7 is devoted to the comparison isomorphism between rapid decay and de Rham co-

homology. Revisiting work of Hien and Roucairol, we prove a Poincaré lemma for the moderate

growth twisted de Rham complex and use it to construct the period pairing.

Chapter 8 exploits the results of the previous chapter to obtain the period realisation functor.

We then discuss a number of related topics, especially the notion of motivic exponential period and

the coaction of the motivic Galois group.

In Chapter 9, we introduce a realisation functor with values in the category of D-modules over

the affine line and we explain how to use Fourier transform to obtain the de Rham realisation out

of it. This gives a new interpretation of the fundamental group of the object of Perv0 underlying

an exponential motives as a differential Galois group.

Chapter 10 contains a brief discussion about how to associate an ℓ-adic perverse sheaf with an

exponential motive. Over a number field, one can then reduce modulo a prime ideal this ℓ-adic

sheaf and compute traces of Frobenius.

Chapter 11 deals with exponential Hodge theory. We upgrade the perverse realisation to a

Hodge realisation with values in a subcategory of mixed Hodge modules on the affine line. We then

prove that the weight filtration is motivic and discuss briefly the irregular Hodge filtration.

In Chapter 12, we present a collection of examples of exponential motives and compute their

periods and Galois groups. These include exponentials of algebraic numbers, the motive Q(1/2),

special values of the Bessel functions, and the Euler–Mascheroni constant.

Finally, in Chapter 13 we examine the gamma motives Mn. We compute their Galois groups

and show that their dimensions are in accordance with Lang’s conjecture. From this we obtain a

conjectural description of the abelianisation of the exponential motivic Galois group.

The text is supplemented by an appendix where we gather a few results from the theory of

tannakian categories that are often used in the main text.

1.4.1 (Notation and conventions). — Throughout, k denotes a subfield of C. By a variety

over k we mean a quasi-projective separated scheme of finite type over k. We shall call normal

crossing divisor what is usually called a simple or strict normal crossing divisor, i.e. the irreducible

components are smooth. Although this assumption is not indispensable for all constructions, there

will be no lost in making it. Given a variety X, a closed subvariety Y ⊆ X, and a constructible

sheaf F on X, we set F[X,Y ] = β!β
∗F where β : X \ Y ↪→ X is the inclusion of the complement.
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CHAPTER 2

The category Perv0

In this chapter, we study the category Perv0 of perverse sheaves with vanishing cohomology on

the complex affine line, which was originally introduced by Katz [55, 12.6] and further discussed by

Kontsevich and Soibelman [58, 4.2]. The main result is that Perv0 has the structure of a neutral

tannakian category, with additive convolution as a tensor product and the nearby fibre at infinity

as a fibre functor. This category plays a pivotal role in the description of rapid decay cohomology

and the proof of the exponential lemma in Chapter 3. Later on, it will also be indispensable for

the construction of the Hodge realisation functor.

2.1. Preliminaries on perverse sheaves

In this section, we collect a few basic definitions and facts about perverse sheaves that will be

used in the sequel. Our standard references are [8], [20], [27], [53], [79]. We convene that “sheaf”

means “sheaf of finite-dimensional Q-vector spaces” unless otherwise indicated. We will try to

systematically stick to the following naming convention:

A,B,C, . . . complexes of sheaves (e.g. perverse sheaves),

F,G, . . . sheaves or complexes concentrated in degree zero.

2.1.1 (Constructible sheaves and the six functors formalism). — Given an algebraic variety X

over a subfield k of C, we denote by Sh(X) the abelian category of sheaves on the topological

space X(C), by D(X) the derived category of Sh(X), and by Db(X) the bounded derived category.

A sheaf F in Sh(X) is said to be constructible if there exist closed subvarieties

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xr = X

such that, for each p = 0, . . . , r, the restriction of F to Xp(C) \Xp−1(C) is a local system of finite

rank. If two out of three terms in a short exact sequence of sheaves on X are constructible, then

so is the third one. Constructible sheaves thus form an abelian subcategory of Sh(X), which is

moreover stable under tensor products and internal Hom.

21
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Definition 2.1.2. — The bounded derived category of constructible sheaves Db
c(X) is the full

subcategory of Db(X) consisting of those complexes A whose cohomology sheaves Hq(A) are con-

structible for all integers q. Sometimes we will also call constructible sheaf an object A of Db
c(X)

such that Hq(A) = 0 unless q = 0.

The terminology is not completely abusive. Writing Db(Constr(X)) for the bounded derived

category of the abelian category of constructible sheaves on X, the obvious functor

Db(Constr(X)) −→ Db
c(X)

is an equivalence of categories by a theorem of Nori [66, Theorem 3(b)].

2.1.3. — Associated with each morphism f : X → Y of algebraic varieties, there are functors

f∗ : Sh(Y )→ Sh(X) inverse image

f∗ : Sh(X)→ Sh(Y ) direct image

f! : Sh(X)→ Sh(Y ) direct image with compact support.

The inverse image functor f∗ is exact, whereas the two direct image functors f∗ and f! are only left

exact. Taking their derived functors yields f∗ : D(Y ) → D(X) and Rf∗, Rf! : D(X) → D(Y ). The

functors f∗ and Rf∗ are adjoint to each other, so there is a natural adjunction isomorphism

HomD(Y )(A,Rf∗B) = HomD(X)(f
∗A,B)

for all objects A of D(Y ) and B of D(X). It is a non-trivial result that the functor Rf! admits a

right adjoint f ! : D(Y )→ D(X), so there is a natural adjunction isomorphism

HomD(Y )(Rf!B,A) = HomD(X)(B, f
!A)

for all objects A of D(Y ) and B of D(X). This adjoint f ! only exists on the derived categories; the

functor f! between the abelian categories of sheaves has in general no right adjoint. The situation

is summarised in the following diagram:

X
f−−→ Y ⇝ D(X)

Rf∗
**
D(Y )

f∗

jj

f !

**
D(X),

Rf!

jj

where functors on top are right adjoint to functors below.

The functor sheaf of homomorphisms that associates with sheaves F and G on X the sheaf

Hom(F,G) on X can be derived as a left exact functor in G, giving rise to the functor

RHom : D(X)op ×D(X) −→ D(X).

Since we will only consider sheaves of vector spaces, the functor associating with sheaves F and G

onX the tensor product sheaf F⊗G is exact in both variables and there is no need to derive it. Given

objects A,B,C of D(X), the usual adjunction formula holds: there is a canonical isomorphism

RHom(A⊗B,C) = RHom(A,RHom(B,C))
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in the derived category D(X) which is natural in the three arguments. The functors

Rf∗, f
∗, Rf!, f

!,⊗, RHom

are usually referred to as the six operations.

Theorem 2.1.4 (Verdier’s constructibility theorem). — The six operations preserve the derived

categories of constructible sheaves.

To our knowledge, Verdier never stated this theorem explicitly. The stability under the three

operations f∗, ⊗, and RHom is straightforward. As explained in [8, 2.1.13 and 2.2.1], the statement

that Rf∗, Rf!, and f
! preserve constructibility follows formally from the fact that every stratification

of an algebraic variety can be refined into a Whitney stratification, which is proven by Verdier

in [86, Théorème 2.2]. One can also prove it by induction on the dimension of supports, using the

fact that, for every morphism of complex algebraic varieties f : X → Y , there exists a non-empty

Zariski open subset U ⊆ Y such that f−1(U) → U is a fibre bundle for the complex topology.

This statement is the content of [86, Corollaire 5.1], and can also be proved using resolution

of singularities and Ehresmann’s fibration theorem. A quite different approach is taken by Nori

in [66, Theorem 4], where he shows that Rf∗ can be computed using a resolution by constructible

sheaves. Therefore, in order to show that Rf∗ preserves constructibility it suffices to show that f∗

does so, which is not difficult. A proof of Verdier’s constructibility theorem in a more general

context is given in [79, Chapter 4].

2.1.5. — Let f : X → Y be a morphism of algebraic varieties. In special cases, depending on the

quality of f , direct and inverse image functors between derived categories of constructible sheaves

satisfy useful relations, that we collect here pour mémoire:

(1) If f is proper, then Rf∗ = Rf!.

(2) If f is a smooth morphism of relative dimension d, then f ! = f∗[2d].

(3) If f is a closed immersion, then f∗ is exact.

(4) If f is an open immersion, then f! is exact and f
! = f∗.

2.1.6 (Base change theorems). — Consider a cartesian square of complex algebraic varieties

X ′ X

Y ′ Y,
��

f ′

//gX

��

f

//gY

(2.1.6.1)

which simply means that X ′ is the fibre product of X and Y ′ over Y . For every sheaf F on X, or

more generally for every object A of D(X), there is a canonical and natural morphism

g∗YRf∗A −→ Rf ′∗g
∗
XA (2.1.6.2)
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on the derived category of Y ′ called base change morphism. In general, (2.1.6.2) is not an isomor-

phism. There are, however, two important geometric situations in which it is. The proper base

change theorem states that, if f is a proper morphism, then (2.1.6.2) is an isomorphism for all

objects A of D(X). In particular, there is an isomorphism

g∗YRf!A
∼=−−→ Rf ′! g

∗
XA (2.1.6.3)

without any condition on f . The smooth base change theorem states that, if gY is smooth,

then (2.1.6.2) is an isomorphism for all objects A of Db
c(X). This can be deduced from point (2)

of 2.1.5 and the base change theorem for the exceptional inverse image, which gives a canonical

and natural isomorphism

g!YRf∗A
∼=−−→ Rf ′∗g

!
XA (2.1.6.4)

without any condition on gY . Proofs can be found in [53, Proposition 2.5.11] for proper base

change, and [53, Proposition 3.1.9] for smooth base change.

2.1.7. — Let X be a variety over k and π : X → Spec(k) the structure morphism. The dualising

complex of X (often dualising sheaf, although it is not really a sheaf) is the object

ωX = π!Q

of the category Db
c(X). More generally, the relative dualising complex for a morphism f : X → Y

is defined as ωX/Y = f !QY . One then defines the Verdier dual of an object A of Db
c(X) as

D(A) = RHom(A,ωX),

which is again an object of the derived category of constructible sheaves on X.

Theorem 2.1.8 (Local Verdier duality). — Given a morphism f : X → Y of algebraic varieties

and objects A of Db
c(X) and B of Db

c(Y ), there is a natural isomorphism

RHom(Rf!A,B) ∼= Rf∗RHom(A, f !B) (2.1.8.1)

in the category Db
c(X). In particular, for all objects A of Db

c(X), there are natural isomorphisms

D(Rf!A) ∼= Rf∗D(A) and D(D(A)) ∼= A.

References are [53, Proposition 3.1.10] or [27, Theorem 3.2.3]. Taking global sections on both

sides of (2.1.8.1) yields the global form of Verdier’s duality theorem.

2.1.9. — The dualising complex ωX on X has the following explicit description. For any open

set U ⊆ X(C), let U̇ = U ∪ {·} be the one-point compactification of U , and let

C∗(U̇ , {·}) =
[
· · · −→ C2(U̇ , {·}) −→ C1(U̇ , {·}) −→ C0(U̇ , {·})

]
be the singular chain complex with rational coefficients of the pair (U, {·}). We view this as a

complex concentrated in degrees ⩽ 0. For any inclusion of open sets V ⊆ U , there is a canonical

map U̇ → V̇ contracting the complement U \ V to the point · ∈ V . This map yields a morphism
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of complexes C∗(U̇ , {·}) → C∗(V̇ , {·}). The dualising complex is the complex of sheaves associ-

ated with the presheaves U 7−→ C∗(U̇ , {·}). In particular, Hp(ωX) is the sheaf associated with

the presheaf given by reduced singular homology U 7−→ H̃p(U̇). The easiest example where this

recipe for computing the dualising complex yields a concrete description is the case where X is

smooth of dimension d. In that case, X(C) is locally homeomorphic to an open ball of real dimen-

sion 2d, so every point of X(C) has a fundamental system of open neighbourhoods U for which U̇

is homeomorphic to a sphere of dimension 2d. Hence, the dualising complex is isomorphic to

ωX ∼= QX [2d].

A useful consequence is that the Verdier dual of a local system L on X is given by D(L) = L∨[2d],

where L∨ = Hom(L,QX) denotes the dual local system.

To see what Verdier’s local duality theorem 2.1.8 has to do with more classical duality the-

orems, consider a smooth variety X, and take for f the structure morphism. Choose for A the

constant sheaf QX on X, and for B the sheaf Q on the point. The complex Rf!A computes

the cohomology with compact support Hp
c (X(C),Q) of X, whereas RHom(Rf!A,B) computes its

linear dual Hp
c (X(C),Q)∨. The sheaf RHom(A, f !B) is the dualising sheaf ωX = QX [2d], and

hence Rf∗RHom(A, f !B) computes the homology of X. Bookkeeping the shifting, the canonical

isomorphism in Verdier’s duality theorem boils down to the classical Poincaré duality pairing

Hp
c (X(C),Q)⊗H2d−p(X(C),Q) −→ Q

between cohomology and cohomology with compact support.

Theorem 2.1.10 (Artin’s vanishing theorem). — Let X be an affine variety over k, and let F

be a constructible sheaf on X. Then Hq(X,F ) = 0 for all q > dimX.

The original reference is Artin’s Exposé XIV in SGA 4 [5]. An analytic proof, relying on the

Riemann–Hilbert correspondence, is given by Esnault in [33].

2.1.11 (Perverse sheaves). — Beilinson, Bernstein, Deligne, and Gabber [8] defined an abelian

subcategory Perv(X) of Db
c(X) whose objects are called perverse sheaves. Recall that the support

of a sheaf F on X is the closed subset

suppF = {x ∈ X(C) | Fx ̸= 0}.

Definition 2.1.12. — An object A of Db
c(X) is called semiperverse if the inequality

dim(suppH−q(A)) ⩽ q

holds for all integers q. A perverse sheaf is an object A of Db
c(X) such that both A and its Verdier

dual D(A) are semiperverse.

Example 2.1.13. — Let X be a smooth variety of dimension d. For each local system L on X,

the complex L[d] is a perverse sheaf. Indeed, its only non-trivial cohomology sheaf is H−d(A) = L,
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which has full support. This shows that A is semiperverse. Thanks to the shift by the dimension,

its Verdier dual is of the same shape, namely D(A) = L∨[d], so it is also semiperverse.

2.1.14. — Let pD⩽0c (X) be the full subcategory of Db
c(X) consisting of semiperverse complexes,

and pD⩾0c (X) the full subcategory of complexes A such that D(A) is semiperverse. One of the main

results of [8] is that the pair

(pD⩽0c (X), pD⩾0c (X))

forms a t-structure on the triangulated category Db
c(X). Perverse sheaves are precisely the objects

of the heart pD⩽0c (X) ∩ pD⩾0c (X) and thus form an abelian category. This allows one to define

cohomology functors
pHn : Db

c(X) −→ Perv(X).

Theorem 2.1.15 (Artin’s vanishing theorem for perverse sheaves). — Let X be an affine variety

and A a perverse sheaf on X. Then Hq(X,A) = 0 for all q > 0, and Hq
c (X,A) = 0 for all q < 0.

Theorem 2.1.16 (Artin). — Let f : X → Y be an affine morphism. Then Rf∗ is t-right exact

and Rf! is t-left exact for the perverse t-structure.

Example 2.1.17. — Let X be a smooth variety of dimension d and let β : U → X be the

inclusion of the complement of a divisor D. Then β!QU [d] is a perverse sheaf on X. Indeed, the

morphism β is affine and Rβ! = β! by 2.1.5, so Artin’s vanishing theorem implies that β! sends

perverse sheaves on U to perverse sheaves on X.

2.1.18 (Perverse sheaves on the affine line). — Since we will be mainly dealing with perverse

sheaves on the affine line, we now specialize to this setting. A perverse sheaf on the complex affine

line is a bounded complex A of sheaves of Q-vector spaces on A1(C) with constructible homology

sheaves Hn(A) such that the following three conditions hold:

(a) Hn(A) = 0 for n /∈ {−1, 0},
(b) H−1(A) has no non-zero global sections with finite support,

(c) H0(A) is a skyscraper sheaf.

2.1.19 (Nearby and vanishing cycles). — Let A be an object of the derived category of con-

structible sheaves on the complex affine line. Let S be the set of singularities of A. For every point

z ∈ C, we denote by Φz(A) the complex of vanishing cycles of A at z. It is a complex of vector

spaces given as follows: Let α : {z} → C be the inclusion, let β : D0 → C be the inclusion of a

small punctured disk around z, not containing any of the singularities of A, and let e : U → D0 be

a universal covering. We define the following complexes of vector spaces (sheaves on a point)

Ψz(A) = α∗β∗e∗e
∗β∗A[−1], (2.1.19.1)

Φz(A) = cone
(
α∗A −→ α∗β∗e∗e

∗β∗A
)
[−1], (2.1.19.2)
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where the map in (2.1.19.2) is given by adjunction. We call Ψz(A) the complex of nearby cycles

and Φz(A) the complex of vanishing cycles of A at z. If z /∈ S, the complex of vanishing cycles

is nullhomotopic. Notice that the definition of nearby and vanishing cycles depends on the choice

of a universal covering U → D0. A different choice U ′ → D0 yields different functors Ψ′
z and Φ′

z.

Any isomorphism of covers γ : U → U ′ induces isomorphisms γ∗ : Ψ′
z → Ψz and γ∗ : Φ′

z → Φz. In

particular, the deck transformation U → U coming from the action of the standard generator of

π1(D0) induces an automorphism of vector spaces

γz : Ψz(A) −→ Ψz(A)

called the local monodromy operator.

The following lemma is a special case of the general fact that, whenever A is a perverse sheaf,

the nearby and vanishing cycles are perverse sheaves as well.

Lemma 2.1.20. — Let A be a perverse sheaf on C. The complexes Ψz(A) and Φz(A) are homo-

logically concentrated in degree 0.

Proof. Let z ∈ S. Without loss of generality, we may restrict A to a small disk D around z not

containing any other singularity of A. This means that the sheaves Hn(A) on D are constructible

with respect to the stratification {z} ⊆ D. The complex A fits into the exact truncation triangle

H−1(A)[1] → A → H0(A)[0], and Ψz(A) and Φz(A) are triangulated functors, so it is enough to

prove the lemma in the case where A is a skyscraper sheaf sitting in degree 0, and in the case where

A is a constructible sheaf with no non-zero sections with finite support sitting in degree −1. For

a skyscraper sheaf, Φz(A) is zero and Ψz(A) is the stalk at z sitting in degree 0. In the case of

a constructible sheaf, Φz(A) is the vector space of global sections of the local system e∗β∗A[−1]
on the universal cover of D \ {z}, viewed as a complex of sheaves on {z} concentrated in degree

0. Finally, the kernel of the adjunction map α∗A[−1] −→ α∗β∗e∗e
∗β∗A[−1] is the vector space of

sections of A[−1] supported on {z}, but this space is zero because A is perverse. Therefore, the

adjunction map is injective and its cone Ψz(A) is homologically concentrated in degree 0. □

2.1.21. — Let F be a constructible sheaf on A1 and let z ∈ C. The nearby cycles Ψz(F ) and the

vanishing cycles Φz(F ) can be constructed in a less intrinsic, but more effectively conveying way.

The fibre of F at z is defined as the colimit Fz = colimF (Un), where (Un)
∞
n=1 is a fundamental

system of open neighbourhoods of z. The nearby fibre can be defined as the colimit

Ψz(F ) = colimF (Vn),

where (Vn)
∞
n=1 is the filter of open sets Vn = {u ∈ Un | Re(u) > Re(z)}, or any other filter

equivalent to it. The restriction maps F (Un)→ F (Vn) induce a map Fz → Ψz(F ), which is called

cospecialisation. The two-term complex Φz(F ) = [Fz → Ψz(F )] is the complex of vanishing cycles.
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Figure 2.1.1. Filters (Un)
∞
n=1 and (Vn)

∞
n=1

2.2. Computing the cohomology of constructible sheaves on the affine line

In this section, we describe the cohomology of constructible sheaves on the affine line using

cochains. This is reminiscent of the cochain description of group cohomology, and will be help-

ful for concrete computations, in particular when we want to handle specific cohomology classes.

We will come back to this description in Section 2.6, where cochains are used to compute the

additive convolution of perverse sheaves. Throughout, all vector spaces are understood to be

finite-dimensional vector spaces over Q.

2.2.1. — We first interpret constructible sheaves on the complex plane C in terms of group

representations. Let S ⊆ C be a finite set, X = C \ S its complement, and denote by

S
α−−→ C β←−− X

the inclusions. A constructible sheaf F on C with singularities in S is uniquely described by the

following data:

(1) A local system FX on X.

(2) A sheaf FS on the discrete set S, and a morphism of sheaves FS → α∗β∗FX on S.

Fix a base point x ∈ X, set G = π1(X,x) and denote by V the fibre of F at x. The local

system FX corresponds to a representation ρ : G → GL(V ). The sheaf FS is given by a collection

of vector spaces (Vs)s∈S . For every path p : [0, 1] → C with p(0) = s, p(1) = x and p(t) ∈ X for

all t > 0, the gluing data (2) determines a linear map ρs(p) : Vs → V called cospecialisation. If now

α and β denote the inclusions

{0} α−−→ [0, 1]
β←−− (0, 1],

then ρs(p) is the linear map Vs → α∗β∗(p|(0,1])∗FX composed with the canonical isomorphism

α∗β∗(p|(0,1])∗FX ∼= Γ((τ |(0,1])∗FX) ∼= V.

The linear map ρs(p) only depends on the class of p up to homotopies in X leaving p(0) = s and

p(1) = x fixed. This makes sense despite the fact that s is not in X. Write

Ps = {paths from s to x in X}/≃homotopy.

for the set of these classes. The fundamental group G acts transitively on Ps by concatenation of

paths, and for g ∈ G and p ∈ Ps the relation ρs(gp) = ρ(g)ρs(p) holds. Once a base point x is chosen,

we may thus describe constructible sheaves on C with singularities in S by the following data:
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(1) A vector space V , and a linear representation ρ : G→ GL(V ).

(2) For every s ∈ S, a vector space Vs and, for every path p ∈ Ps, a cospecialisation map

ρs(p) : Vs → V such that ρs(gp) = ρ(g)ρs(p) holds for all p ∈ Ps and all g ∈ G.

For fixed S and x, the tuples (V, ρ, (Vs, ρs)s∈S) form an abelian category in the evident way, which

is equivalent to the category of constructible sheaves on C with singularities contained in S. We

can now forget about the geometric origin of G and the Ps, and are lead to the following definition.

Definition 2.2.2. — Let G be a group, and let PS = (Ps)s∈S be a finite, possibly empty

collection of non-empty G-sets. A representation of (G,PS) consists of a vector space V and vector

spaces (Vs)s∈S , a group homomorphism ρ : G→ GL(V ), and maps ρs : Ps → Hom(Vs, V ) satisfying

the equality ρs(gp) = ρ(g)ρs(p) for all g ∈ G and p ∈ Ps. Morphisms of representations and their

composition are defined in the evident way. We denote the resulting category by Rep(G,PS).

2.2.3. — The category Rep(G,PS) is abelian, and it is indeed the category of sheaves on an

appropriate site. Given a representation V of (G,PS), we call invariants the subspace

V (G,PS) ⊆ V ⊕
⊕
s∈S

Vs

of tuples (v, (vs)s∈S) satisfying gv = v for all g ∈ G and pvs = v for all p ∈ Ps. Here, as we shall

do from now on if no confusion seems possible, we suppressed ρ and ρs from the notation. We can

regard the invariants also as a homomorphism set

V (G,PS) = Hom(G,PS)(Q, V ),

where Q stands for the constant representation, in which all involved vector spaces are Q and all

maps ρ(g) and ρs(p) are the identities. Associating with a representation its space of invariants

defines a left exact functor from Rep(G,PS) to the category of vector spaces. We can thus define

cohomology groups

Hn(G,PS , V )

using the right derived functor of the invariants functor. As for ordinary group cohomology, there

is an explicit, functorial chain complex which computes this cohomology. Namely, define

C0(G,PS , V ) = V ⊕
⊕
s∈S

Vs,

Cn(G,PS , V ) = Maps(Gn, V )⊕
⊕
s∈S

Maps(Gn−1 × Ps, V ), (n ⩾ 1),

and call elements of Cn(G,PS , V ) cochains. Alternatively, we will also think of cochains as V -

valued functions on the disjoint union of Gn and the various Gn−1 × Ps. This can make notation

shorter. Define differentials

C0(G,PS , V )
d0−−→ C1(G,PS , V )

d1−−→ C2(G,PS , V )
d2−−→ · · · (2.2.3.1)

as follows. We set

d0(v, (vs)s∈S)(g) = v − gv and d0(v, (vs)s∈S)(p) = v − pvs
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and, for n ⩾ 1 and c ∈ Cn(G,PS , V ), we define dnc by the usual formula

(dnc)(g1, . . . , gn, y) = g1c(g2, . . . , gn, y)+

+
n−1∑
i=1

(−1)ic(g1, . . . , gigi+1, . . . , gn, y) + (−1)nc(g1, . . . , gny) + (−1)n+1c(g1, . . . , gn),

where y is either an element of G or an element of Ps for some s ∈ S. The verification that the

spaces Cn(G,PS , V ) and the differentials dn form a complex is straightforward. The chain complex

C∗(G,PS , V ) depends functorially on the representation V in the evident way. The kernel of d0 is

the space of invariants, and if S is empty, we get back the standard cochain complex computing

group cohomology.

Lemma 2.2.4. — The chain complex (2.2.3.1) computes the right derived functor of the invariants

functor Hom(G,PS)(Q,−).

Proof. We can compute RHom(G,PS)(Q, (V, (Vs)s∈S)) either by choosing an injective resolu-

tion of V or by choosing a projective resolution of the constant representation Q. Let us construct

a projective resolution as follows. Set

L0 =
(
Q[G]⊕

⊕
s∈S

Q[Ps], (Q)s∈S
)

and let G act on Q[G] ⊕
⊕

s∈S Q[Ps] by left multiplication, and for p ∈ Ps define ρs(p)(1) = 1 · p.
This makes L0 into a (G,PS)-representation. For n ⩾ 1 set

Ln =
(
Q[Gn+1]⊕

⊕
s∈S

Q[Gn × Ps], (0)s∈S
)

and endow Ln with a (G,PS)-action by letting G act via multiplication on the left. Differentials

are given by

dn(g0, . . . , gn−1, y) =

n∑
i=0

(−1)i(g0, . . . , gi−1, gi+1, . . . , gn−1, y) + (−1)n(g0, . . . , gn−1)

for n ⩾ 1 and d0 : L0 → Q by d0(g) = d0(p) = 1 and d0,s(1) = 1. A straightforward computation

shows that · · · → L2 → L1 → L0 → Q → 0 is an exact complex of (G,PS)-representations, and

that there is a natural isomorphism of chain complexes

Hom(G,PS)(L∗, V ) ∼= C∗(G,PS , V )

for every representation V of (G,PS , V ). In particular, the functor Hom(G,PS)(Ln,−) is exact, so

L∗ is a projective resolution of Q. □

2.2.5. — We keep the notation from paragraph 2.2.3, and have a closer look at the first coho-

mology group H1(G,PS , V ). The space of cocycles Z1(G,PS , V ) = ker(d1) is the space of tuples

(c, (cs)s∈S) consisting of maps c : G→ V and cs : Ps → V satisfying the cocycle relations

c(gh) = c(g) + gc(h) and cs(gp) = c(g) + gcs(p)



2.2. COMPUTING THE COHOMOLOGY OF CONSTRUCTIBLE SHEAVES ON THE AFFINE LINE 31

for all g, h ∈ G and ps ∈ Ps, and the space of coboundaries B1(G,PS , V ) = im(d0) is the space of

those tuples of the form

c(g) = v − gv and cs(p) = v − pvs

for some v ∈ V and vs ∈ Vs. For general (G,PS) and V nothing more can be said.

2.2.6. — A particular case is interesting to us: pick for every s ∈ S an element ps ∈ Ps, and
suppose that G acts transitively on the sets Ps, and that the stabilisers Gs = {g ∈ G | gps = ps}
generate G. In that case, the whole cocycle c is determined by the values cs(ps), and in particular,

H1(G,P, V ) is finite-dimensional. Indeed, if c is a cocycle satisfying c(ps) = 0 for all s ∈ S, then

c(gps) = c(g) + gc(ps) = c(g)

for all g ∈ G. In particular we find c(g) = 0 for all g ∈ Gs. Since c : G→ V is an ordinary cocycle

and the stabilisers Gs generate G, we find c(g) = 0 for all g ∈ G. But then, since G acts transitively

on Ps, we find c(p) = 0 for all p ∈ Ps as well, so c = 0. A particular case of this is the situation

where G is the free group on generators {gs | s ∈ S}, and Ps = G/⟨gs⟩ is the quotient of G by the

equivalence relation ggs ∼ g, and ps is the class of the unit element. In that case, the injective map

Z1(G,PS , V )→
⊕
s∈S

V (2.2.6.1)

sending c to c(ps)s∈S is also surjective, and the complex C0(G,PS , V ) → Z1(G,PS , V ) takes the

following shape:

V ⊕
⊕
s∈S

Vs
d−→
⊕
s∈S

V (2.2.6.2)

v, (vs)s∈S 7−→ (v − psvs)s∈S .

This is of course precisely the situation at which we arrived in 2.2.1, where G was the fundamental

group of X = C \ S based at x ∈ X, and Ps the G-set of homotopy classes of paths from s ∈ S to

X. The complex (2.2.6.2) computes thus the cohomology H∗(A1, F ), where F is the constructible

sheaf corresponding to the representation V .

2.2.7. — Let us now come back to the geometric situation described in 2.2.1, where G is the

fundamental group of the complement of a finite set S ⊆ C, and P the G-set of paths from S to

the base point x ∈ C \ S. We can use the cochain complex (2.2.3.1), or the more economic variant

(2.2.6.2) to compute the cohomology of constructible sheaves with singularities in S. Let us now

explain how this computation works in families.

We consider the following setup: Let (γj)j∈J be a finite collection of paths γj : [0, 1]→ C which

are disjoint at all times t ∈ [0, 1], and never meet the base point x ∈ C. We also denote by γj the

set {(γj(t), t) | t ∈ [0, 1]}. The sets γj are the strands of a braid in C × [0, 1] from initial points

S(0) = {γj(0) | j ∈ J} to endpoints S(1) = {γj(1) | j ∈ J}, as illustrated in Figure 2.2.2.

For each t ∈ [0, 1], let G(t) be the fundamental group of C \ S(t) based at x. For each j ∈ J ,
the group G(t) acts on the set P

(t)
j of paths from γj(t) to x. By continuously deforming loops and
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Figure 2.2.2. A general braid

paths as t moves from 0 to 1, we obtain a group isomorphism and bijections

β : G(0) → G(1) and β : P
(0)
j → P

(1)
j

compatible with group actions.

Let F be a sheaf on C× [0, 1] which is constructible with respect to the stratification given by

the strands γj , so F is locally constant on each strand, and on the complement of the strands. For

each time t ∈ [0, 1], the restriction

F (t) = ι∗tF
ιt : C → C× [0, 1]

z 7−→ (z, t)

is a constructible sheaf with singularities contained in S(t) = {γj(t) | j ∈ J}. We write V (t) for

the fibre of F (t) at x, and V
(t)
s for the fibre of F (t) at the singular point s = γj(t) ∈ S(t). By

constructibility of F , there are given parallel transport isomorphisms

τ : V (0) → V (1) and τ : V
(0)
γj(0)

→ V
(1)
γj(1)

for all j ∈ J .
Let π : C× [0, 1]→ [0, 1] be the projection. The sheaf Rnπ∗F on [0, 1] is a local system on [0, 1],

whose fibre at t ∈ [0, 1] is

(Rnπ∗F )t ∼= Hn(C, F (t)) ∼= Hn((G(t), P (t)), V (t)) (2.2.7.1)

by smooth base change. The following lemma expresses parallel transport for the locally constant

sheaf Rnπ∗F in terms of cocycles.
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Lemma 2.2.8. — The parallel transport morphism (Rnπ∗F )0 → (Rnπ∗F )1 is, via the isomor-

phism (2.2.7.1), induced by the morphism of chain complexes

C0((G(0), P (0)), V (0)) C1((G(0), P (0)), V (0)) · · ·

C0((G(1), P (1)), V (1)) C1((G(1), P (1)), V (1)) · · ·
��φ0

//d

��φ1

//

//d //

given in degree zero by parallel transport morphisms

φ0 : V (0) ⊕
⊕
j∈J

V
(0)
j → V (1) ⊕

⊕
j∈J

V
(1)
j φ0(v, (vs)s∈S(0)) = (τv, τvs)s∈S(1)

and in degrees n > 0 by parallel transport and deformation of paths

φn(c)(g1, . . . , gn) = τc(β−1g1, . . . , β
−1gn)

φn(c)(g1, . . . , gn−1, p) = τc(β−1g1, . . . , β
−1gn−1, β

−1
j p)

for all c ∈ Cn((G(0), P (0)), V (0)), and all g1, . . . , gn ∈ G(1) and p ∈ P (1)
j .

Proof. The parallel transport morphism (Rnπ∗F )0 → (Rnπ∗F )1 is obtained in sheaf coho-

mology terms as the composite of base change morphisms

Hn(C, F (0))
∼=←−− Hn(C× [0, 1], F )

∼=−−→ Hn(C, F (1)) (2.2.8.1)

induced by inclusions ιt : C→ C× [0, 1] for t = 0, 1. Let us denote by G be the fundamental group

of the complement of the strands γj in C× [0, 1], with base point the contractible set {x} × [0, 1],

so elements of G are paths starting and ending in {x} × [0, 1] and not meeting the strands γj ,

modulo appropriate homotopies. For j ∈ J , let Pj be the G-set of homotopy classes of paths from

γj to {x} × [0, 1], not meeting strands γi for i ̸= j, modulo appropriate homotopies. The inclusion

ιt : C→ C× [0, 1] induces a group isomorphism and bijections

G(t) → G and P
(t)
j → Pj

compatible with group actions. The category of sheaves on C × [0, 1] which are constructible

with respect to the stratification given by the strands γj is equivalent to the category of (G,P )-

representations, via the equivalence of categories sending the sheaf F to the (G,P ) representation

on the vector spaces

V = H0(x× [0, 1], F ) and Vj = H0(γj , F )

Moreover, the this equivalence is compatible with the equivalence between (G(t), P (t)) representa-

tions and constructible sheaves on C with singularities in S(t). In particular, the chain complex

C∗((G,P ), V ) computes the cohomology H∗(C× [0, 1], F ), and the specialisation maps

Hn(C× [0, 1], F )→ Hn(C× [0, 1], F )t ∼= Hn(C, F (t))

are obtained from the morphism of chain complexes

C0((G,P ), V ) C1((G,P ), V ) · · ·

C0((G(t), P (t)), V (t)) C1((G(t), P (t)), V (t)) · · ·
��φ0

t

//d

��φ1
t

//

//d //
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given by specialisation maps V → V (t) and Vj → V
(t)
j in degree n = 0, and by composition with

isomorphism G(t) → G and P (t) → P and specialisation V → V (t) in degree n ⩾ 1. Together with

the observation the group isomorphism β and the bijections βj all are composites

β : G(0) ∼=−−→ G
∼=←−− G(1) and βj : P

(0)
j

∼=−−→ Pj
∼=←−− P (1)

j

and that the parallel transport maps τ and τj are composites

τ : V (0) ∼=←−− V
∼=−−→ V (1) and τj : V

(0)
j

∼=←−− Vj
∼=−−→ V

(1)
j

this proves the lemma. □

2.2.9. — We shall also need to understand how to express cospecialisation in terms of cocycle

cohomology. We consider the same setup as in 2.2.7, except that now we allow the strands γj to

meet at time t = 0, and allow the sheaf F to be constructible with respect to the finer stratification

given by the strands γj , their startpoints γj(0) and the t = 0 plane. The sheaf Rnπ∗F is then

a constructible sheaf on [0, 1], with respect to the stratification {0} ⊆ [0, 1]. Instead of parallel

transport, we now have a cospecialisation map

Hn(C, F (0)) ∼= Hn(C× [0, 1], F )0 → Hn(C× [0, 1], F )1 ∼= Hn(C, F (1))

which we want to understand in terms of cocycles. The recipe is very similar to the one given by

Lemma 2.2.8. By continuous deformation of paths and loops, we obtain a group homomorphism

and maps

β : G(0) → G(1) and βj : P
(0)
j → P

(1)
j

compatible with group actions. From the sheaf F we obtain vector spaces V (t) and V
(t)
s for s ∈ S(t)

which constitute a representation of (G(t), P (t)). The cospecialisation map translates to a morphism

in the derived category of vector spaces, given explicitly by the roof between chain complexes

C∗
tot

C∗((G(0), P (0)), V (0)) C∗((G(1), P (1)), V (1))

ww ≃ ++
(2.2.9.1)

which we shall describe presently. Elements of Cntot are pairs (c0, c1) consisting of a cocycle c0 ∈
Cn((G(0), P (0)), V (0)) and a cocycle c1 ∈ Cn((G(0), P (0)), V (0)) such that the equalities

c1(βg1, . . . , βgn) = τc0(g1, . . . , gn)

c1(βg1, . . . , βgn−1, βp) = τc0(g1, . . . , gn−1, p)

hold for all g1, . . . , gn ∈ G(0) and p ∈ P (0)
j . The differential in Cntot is given by d(c0, c1) = (dc0, dc1),

and the morphisms in (2.2.9.1) are given by projections (c0, c1) 7−→ c0 and (c0, c1) 7−→ c1. One can

check that the leftward morphism in (2.2.9.1) is indeed a quasi-isomorphism. The complex Cntot
computes the cohomology H∗(C× [0, 1], F ), and the morphism

Hn((G(0), P (0)), V (0))→ Hn((G(1), P (1)), V (1))

induced by the roof (2.2.9.1) identifies with the cospecialisation map.



2.2. COMPUTING THE COHOMOLOGY OF CONSTRUCTIBLE SHEAVES ON THE AFFINE LINE 35

2.2.10. — For concrete calculations, it is useful to have a standard ordered set of generators of

the free group G = π1(C \ S, x) at our disposal. Here it is. Let S ⊆ C be finite, and let x ∈ R be a

real number, larger than the real part of any s ∈ S, serving as a base point. Let us enumerate the

set S in western reading order (left-to-right, top-to-bottom), so that we have S = {s1, s2, . . . , sn}
with

Im(si) ⩾ Im(si+1) and Im(si) = Im(si+1) =⇒ Re(si) < Re(si+1).

We declare standard paths pi from si ∈ S to x to be paths in C \ S such that

Re(pi(t1)) = Re(pj(t2)) =⇒ Im(pi(t1)) > Im(pj(t2))

holds for all 1 ⩽ i < j ⩽ n and t1, t2 ∈ [0, 1). In other words, for i < j it is required that the path pi

lies strictly above the path pj in the complex plane. Up to homotopy, the paths pi are uniquely

determined by this requirement. We declare standard loops around si to be the loops composed in

the accustomed way by the paths pi and their inverses, and a small, positively oriented simple loop

around si.

Figure 2.2.3. Standard paths and and standard loops

With this convention for standard paths, a constructible sheaf on A1 can be described by the

following data:

(1) A finite set S = {s1, . . . , sn} ⊆ C, ordered in western reading order.

(2) Vector spaces V and V1, V2, . . . , Vn

(3) Automorphisms gi ∈ GL(V ) and homomorphisms pi : Vi → V satisfying gipi = pi for all

i = 1, 2, . . . , n.

Given the ordered set S, this data can be described effectively by a finite list of matrices with

rational coefficients. If for some i the map pi : Vi → V is an isomorphism, then gi is the identity,

and si ∈ C is not a singular point of the constructible sheaf. In that case, deleting si from S leads

to a shorter description of the same sheaf. On the other hand, we may add an additional point si

to S, and set Vi = V and pi = gi = id.

2.2.11. — We are particularly interested in constructible sheaves F on C satisfyingH∗(A, F ) = 0,

that is, Rπ∗F = 0 for the map π from C to a point. Let again S ⊆ C be a finite set containing

the singularities of F , and regard F as a representation V of (G,PS) as in 2.2.1. The cohomology
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Hn(A1, F ) ∼= Hn(G,PS , V ) is zero for n ⩾ 2. Therefore, Rπ∗F = 0 holds if and only if the differ-

ential d : C0(G,PS , V )→ Z1(G,PS , V ) is an isomorphism. Explicitly, this means that for all s ∈ S
the map ps : Vs → V is injective, and that⋂

s∈S
psVs = {0} and

∑
s∈S

dim(V/psVs) = dim(V )

holds. It follows from this description that, given constructible sheaves F1 and F2 on C such that

Rπ∗F1 = Rπ∗F2 = 0, a morphism φ : F1 → F2 which induces an isomorphism between the fibres

over x is an isomorphism. More generally, the functor
Constructible sheaves F

on C with singularities

in S and Rπ∗F = 0

→ VecQ (2.2.11.1)

sending F to its fibre V = Fx is exact and faithful.

Lemma 2.2.12. — Let F and G be constructible sheaves on C. Suppose that F has no non-zero

global sections, and that G has no non-zero global sections with finite support. Then F ⊗G has no

non-zero global sections.

Proof. Choose a sufficiently large finite set S ⊆ C containing the singularities of both F

and G. In the notation of 2.2.1, the sheaves F and G correspond to representations V and W

of (G,PS). Fix elements ps ∈ Ps, that is, paths from s ∈ S to the base point x avoiding S along

the way. We get complexes

V ⊕
⊕
s∈S

Vs
dV−−−→

⊕
s∈S

V and W ⊕
⊕
s∈S

Ws
dW−−−→

⊕
s∈S

W

with dV (v, (vs)s∈S) = (v − psvs)s∈S and dW (w, (ws)s∈S) = (w − psws)s∈S . The representation of

(G,PS) given by the vector spaces V ⊗W and (Vs ⊗Ws)s∈SS with the diagonal actions

g(v ⊗ w) = gv ⊗ gw and ps(vs ⊗ ws) = psvs ⊗ psws

corresponds to the sheaf F ⊗G. That F and G have no non-zero sections with finite support means

that the maps ps : Vs → V and ps : Ws → W are injective, and that F has no non-zero sections

means that moreover the intersection of the psVs in V is zero. It follows that ps : Vs⊗Ws → V ⊗W
is injective for every s ∈ S, and hence F ⊗G has no non-zero sections with finite support. We also

have ⋂
s∈S

ps(Vs ⊗Ws) ⊆
⋂
s∈S

(psVs ⊗W ) =
( ⋂
s∈S

psVs

)
⊗W = {0} ⊗W = {0},

so F ⊗G has no non-zero global sections at all. □

Lemma 2.2.13. — Let F and G be constructible sheaves on C with disjoint sets of singularities.

The Euler characteristics of F , G, and F ⊗G are related by

χ(F ⊗G) + rk(F ⊗G) = rk(G)χ(F ) + rk(F )χ(G),

where rk(F ) and rk(G) are the dimensions of the local systems underlying F and G.
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Proof. Let S and T be the sets of singularities of F and G respectively. Fix a base point

x ∈ C \ (S ∪ T ) and choose a path from each element of S ∪ T to x. The cohomology of F and G

is then computed by the complexes

V ⊕
⊕
s∈S

Vs
dV−−−→

⊕
s∈S

V and W ⊕
⊕
t∈T

Ws
dW−−−→

⊕
t∈T

W

and the Euler characteristics of F and G are the Euler characteristics of these complexes. Explicitly,

these are

χ(F ) = (1−#S)n+
∑
s∈S

ns and χ(G) = (1−#T )m+
∑
t∈T

mt

where we set n = dimV = rk(F ) and ns = dimVs, and similarly m = dimW = rk(G) and

mt = dimWt. The constructible sheaf F ⊗ G has singularities in S ∪ T , and its cohomology is

computed by the complex

(V ⊗W )⊕
⊕
s∈S

(Vs ⊗W )⊕
⊕
t∈T

(V ⊗Wt)
dV⊗W−−−−−→

⊕
s∈S

(V ⊗W )⊕
⊕
t∈T

(V ⊗W ),

whose Euler characteristic is that of F ⊗G. An elementary computation shows the equality

χ(F ⊗G) = (−#S −#T + 1)nm+m
∑
s∈S

ns + n
∑
t∈T

mt

= mχ(F ) + nχ(G)− nm

which is what we wanted to prove. □

2.3. The category Perv0

In this section, we introduce the category Perv0 and derive some of its basic properties.

Throughout, we let π : A1
C → Spec(C) denote the structure morphism and

Perv = Perv(A1(C),Q)

the abelian category of perverse sheaves with rational coefficients on the complex affine line. Recall

that its objects are bounded complexes C of sheaves of Q-vector spaces on A1(C) with constructible

cohomology and satisfying the conditions from 2.1.18.

Definition 2.3.1. — The category Perv0 is the full subcategory of Perv consisting of those

objects A with no global cohomology, that is, Rπ∗A = H∗(A1(C), A) = 0.

2.3.2. — Here are some premonitions of what is to become of the category Perv0. As we

shall show in Proposition 2.3.7, it is an abelian category. It will turn out in Proposition 2.4.3 that

the inclusion Perv0 → Perv has a left adjoint Π: Perv→ Perv0. Once we understand the basic
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structure of objects of Perv0, we will be able to define functors nearby fibre at infinity and total

vanishing cycles

Ψ∞ : Perv0 → VecQ and Φ: Perv0 → VecQ

which are exact and faithful. As a consequence, Perv0 is artinian and noetherian, and we can

associate a dimension with every object A of Perv0 by declaring that it is the dimension of the

vector space Ψ∞(A). In Section 2.4 we will introduce a tannakian structure on Perv0, for which we

will verify later in Section 2.8 that Ψ∞ as well as Φ are fibre functors. In Section 3.2 we will relate

objects of Perv0 with rapid decay cohomology (1.1.1.2) by establishing a canonical and natural

isomorphism

Hn
rd(X, f)

∼= Ψ∞(Π( pRnf∗QX
)),

where Q
X

is the constant sheaf with value Q on X. This isomorphism can be seen as an enrichment

of the vector space Hn
rd(X, f) with an additional structure, namely that of an object of Perv0.

Lemma 2.3.3 ([57], proof of Theorem 2.29). — An object C of the derived category of constructible

sheaves on A1(C) belongs to Perv0 if and only if it is of the form C = F [1] for some constructible

sheaf F satisfying Rπ∗F = 0.

Proof. If F is a constructible sheaf on A1, then Hn(F [1]) = 0 for n ̸= −1 and H−1(F [1]) = F ,

so to ensure that F [1] is perverse one only needs to check that the condition Rπ∗F = 0 implies

that F has no non-zero global sections with finite support. This is clear since F has no non-zero

global sections at all. Conversely, let C be a perverse sheaf on A1. Invoking the exact triangle

H−1(C)[1]→ C → H0(C)[0],

it suffices to prove that both H0(C) and Rπ∗H−1(C) vanish under the assumption Rπ∗C = 0. This

will follow from the spectral sequence

Ep,q2 = Hp(A1,Hq(C)) =⇒ Hp+q(A1, C).

Combining the facts that Hn(C) = 0 for n /∈ {−1, 0} and H0(C) is a skyscraper sheaf with Artin’s

vanishing theorem 2.1.10, the spectral sequence degenerates at E2 and we have:

H−1(A1, C) = H0(A1,H−1(C)),

H0(A1, C) = H1(A1,H−1(C))⊕H0(A1,H0(C)).

Therefore, the condition Rπ∗C = 0 implies H0(A1,H0(C)) = 0 and Rπ∗H−1(C) = 0. Since H0(C)

is a skyscraper sheaf, we necessarily have H0(C) = 0. □

Example 2.3.4. — Let s ∈ C be a point, and denote by j(s) : C \ {s} ↪→ C the inclusion. The

constructible sheaf j(s)!j(s)
∗Q has trivial cohomology. Therefore,

E(s) = j(s)!j(s)
∗Q[1] (2.3.4.1)

defines an object of the category Perv0. More generally, for every local system L on C \ {s}, the
object j(s)!L[1] belongs to Perv0. Conversely, if a constructible sheaf F has trivial cohomology
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and only one singular fibre, located at the point s ∈ C, then F is of the form j(s)!L for the local

system L = j(s)∗F on C \ {s}.

Definition 2.3.5. — We call nearby fibre at infinity the functor

Ψ∞ : Perv0 −→ VecQ

F [1] 7−→ colim
r→+∞

F (Sr)

defined in the evident way on morphisms. Recall that Sr is the closed half-plane {z ∈ C|Re(z) ⩾ r}.

Remark 2.3.6. — The nearby fibre at infinity functor is related to the nearby cycles functor

from 2.1.19 as follows: writing j : Gm → A1 for the inclusion and i : Gm → Gm for the inversion

i(z) = z−1, there is a natural isomorphism

Ψ∞(F [1]) = Ψ0(j!i
∗j∗F [1]),

where nearby cycles at z = 0 on the right-hand side are computed as in 2.1.21, using the filter of

contractible sets i(Sr)r>0.

Proposition 2.3.7. — The category Perv0 is a Q-linear abelian category and the functor nearby

fibre at infinity Ψ∞ : Perv0 → VecQ is faithful and exact.

Proof. The category Perv0 is a full additive subcategory of the abelian Q-linear category

of rational perverse sheaves on A1(C), so Perv0 is itself a Q-linear category. If f : F → G is

a morphism between constructible sheaves on C satisfying Rπ∗F = Rπ∗G = 0, then one has

Rπ∗(ker f) = 0 and Rπ∗(coker f) = 0, as one can read off the long exact sequences associated with

the exact triangles

[0→ G]→ [F → G]→ [F → 0] and [ker f → 0]→ [F → G]→ [0→ coker f ],

noting that [0 → coker f ] is quasi-isomorphic to [F/ ker f → G]. Thus, kernels and cokernels of a

morphism in Perv0 are its kernel and cokernel in Perv, and if any two objects in an exact sequence

in Perv belong to Perv0, then so does the third, again because Rπ∗ is a triangulated functor.

The functor Ψ∞ is exact: indeed, pick any exact sequence 0 → F → G → H → 0 of con-

structible sheaves on A1(C). For every sufficiently big r, the restrictions of these sheaves to Sr are

local systems, and hence constant sheaves since Sr is simply connected. Thus, for every sufficiently

big r, the sequence 0 → F (Sr) → G(Sr) → H(Sr) → 0 is exact. Finally, we prove that Ψ∞ is

faithful. Let f : F → G be a morphism of constructible sheaves with vanishing global cohomology

such that the induced map F (Sr)→ G(Sr) is the zero map for some r. We need to show that f = 0,

that is, fz : Fz → Gz for any z ∈ C. The choice of a path starting at z, ending in Sr and avoiding

the singularities of F and G induces functorial cospecialisation maps Fz → F (Sr) and Gz → G(Sr).

By 2.2.11, these maps are injective by the assumption on the vanishing of cohomology, and therefore

fz = 0. □
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2.3.8. — Let A = F [1] be an object of Perv0. We can describe the constructible sheaf F on

A1 in terms of representations as follows. The sheaf F corresponds to data

(1) A finite set S = {s1, . . . , sn} of complex numbers.

(2) A vector space V and subspaces V1, V2, . . . , Vn of V , such that the linear map

V ⊕
n⊕
i=1

Vi
d−−−−→

n⊕
i=1

V

given by d(v, (vi)
n
i=1) = (v − vi)ni=1 is an isomorphism.

(3) Automorphisms g1, . . . , gn of V satisfying Vi ⊆ V ⟨gi⟩.

Here, we think of V as the fibre of F near infinity and of Vi as the fibre of F at the point si. The

inclusion Vi → V is the cospecialisation map along the standard path pi from si to +∞, and the

automorphisms gi are the corresponding monodromy operators.

Lemma 2.3.9. — Let V be a finite-dimensional vector space, and let V1, . . . , Vn be subspaces of V

such that the linear map

V ⊕
n⊕
i=1

Vi →
n⊕
i=1

V (v, (vi)
n
i=1) 7−→ (v − vi)ni=1 (2.3.9.1)

is an isomorphism. For i ∈ {1, 2, . . . , n}, define V ′
i =

⋂
j ̸=i Vj. For every subset I ⊆ {1, 2, . . . , n},

the equality ⊕
i/∈I

V ′
i =

⋂
i∈I

Vi (2.3.9.2)

holds. In particular, V is the direct sum of its subspaces V ′
i .

Proof. Write d for the dimension of V , write di for the dimension of Vi and d
′
i for the dimension

of V ′
i . For every subset I ⊆ {1, 2, . . . , n}, define

VI =
⋂
i∈I

Vi

and dI = dimVI . For every i, the subspace of V generated by the V ′
j with j ̸= i is contained in Vi,

hence the inclusion

V ′
i ∩

∑
j ̸=i

V ′
j ⊆ V ′

i ∩ Vi =

n⋂
i=1

Vi = {0},

where the last equality follows from the injectivity of the map (2.3.9.1). It follows that the canonical

map
n⊕
i=1

V ′
i → V (2.3.9.3)

is injective. The codimension of an intersection of subspaces is at most the sum of the codimension

of the subspaces, so the inequality

d− d′i ⩽
∑
j ̸=i

(d− dj)

holds. Summing over all i and combining the equality d+
∑n

i=1 di = nd, which holds since (2.3.9.1)

is an isomorphism, we find d =
∑n

i=1 d
′
i. Hence, (2.3.9.3) is indeed an isomorphism. This shows
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the desired equality (2.3.9.2) in the essential case I = ∅. The general case is shown similarly by

counting dimensions. □

2.3.10. — Let A = F [1] be an object of Perv0. With the help of Lemma 2.3.9, we can describe

the constructible sheaf F on A1 in the following equivalent way: the sheaf F corresponds to data

(1) a finite set S = {s1, . . . , sn} of complex numbers,

(2) a vector space V together with an endomorphism g ∈ V and a decomposition

V =

n⊕
i=1

V ′
i

such that the linear maps V ′
i

incl.−−−−→ V
g−−→ V

proj.−−−−→ V ′
i are invertible for all i = 1, 2, . . . , n.

This presentation of objects of Perv0 is related to the presentation given in 2.3.8 as follows: the

subspaces Vi ⊆ V are given by

Vi =
⊕
j ̸=i

V ′
j

and the monodromy operators are given by gi = gπ′i + πi, where π
′
i : V → V is the projection onto

the factor V ′
i , and πi = 1− π′i is the projection onto the complement Vi of V

′
i .

Example 2.3.11 (The perverse realisation of a polynomial). — Let n ⩾ 2 be an integer and

let f ∈ C[x] be a polynomial of degree n. We shall view f as a finite morphism f : A1 → A1.

The constructible sheaf f∗Q contains the constant sheaf Q as the image of the adjunction map

Q→ f∗Q = f∗f
∗Q, and we are interested in the quotient F = f∗Q/Q. Since f is a finite morphism,

the higher direct images Rqf∗Q vanish for all q ⩾ 1, and it then follows from the Leray spectral

sequence that the cohomology H∗(A1, F ) vanishes. Hence, F [1] belongs to Perv0.

Let us describe the singularities and the local system underlying F . First, it is a general fact

that the singularities of a constructible sheaf with no punctual sections are the points at which the

fibre has dimension strictly smaller than the generic rank. The singularities of F , which are the

same as those of f∗Q, are thus given by the set

S = {f(a) | a ∈ C, f ′(a) = 0} = {s ∈ C |#f−1(s) < n}

of critical values of f . Fix a base point x ∈ X = C \ S with large real part. The restriction of f to

f−1(X) is a connected covering f−1(X)→ X, corresponding to a transitive action

ρ : π1(X,x)→ Perm(f−1(x)).

The local system underlying f∗Q corresponds to the permutation representation Map(f−1(x),Q) of

π1(X,x), which contains a one-dimensional trivial subrepresentation given by constant functions.

The quotient V = Map(f−1(x),Q)/Q is the (n− 1)-dimensional representation associated with the

underlying local system of F .

For every element s ∈ S, let gs : [0, 1] → X be a standard loop around s based at x, as

described in 2.2.10. The cycle type of the permutation ρ(gs) can be read from the factorisation of
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the polynomial f(x)− s. Indeed, if

f(x)− s =
∏

t∈f−1(s)

(x− t)et ,

then the cycle type of ρ(gs) is the partition n =
∑
et. The Riemann-Hurwitz Formula for the

ramified covering f : P1 → P1 gives the equality

−2 = −2n+
∑
s∈S

∑
t∈f−1(s)

(et − 1) + (e∞ − 1) = −n− 1 +
∑
s∈S

(n−#f−1(s)), (2.3.11.1)

where the ramification index at infinity is e∞ = n since f−1(∞) = {∞}. We can express the

dimensions of the special fibres of F and the vanishing cycles in terms of these invariants, namely:

dimVs = #f−1(s)− 1, dimΦs(F ) = n−#f−1(s).

Then the equality (2.3.11.1) becomes1∑
s∈S

dimΦs(F ) = n− 1,

which is the content of the vanishing H1(A1, F ) = 0 according to the discussion in 2.2.11.

2.3.12 (Simple objects of Perv0). — We end this section with a description of the simple objects

of the category Perv0 and of certain extension groups.

Lemma 2.3.13. — Let F [1] be a simple object of Perv0. Let S ⊆ C be the set of singular points

of F and denote by j : C \ S → C the inclusion. Then either S consists of a single point and

F = j!j
∗Q, or the local system j∗F on C \ S is simple and F = j∗j

∗F .

Proof. Suppose first that there exists some s ∈ S such that F has a non-zero section over

C \ {s}, or in other words, that there exists a non-zero morphism j(s)∗Q → j(s)∗F . In that case,

we obtain a non-zero morphism

j(s)!j(s)
∗Q[1]→ F [1]

in the category Perv0, which must be an isomorphism since F is simple. Let us now suppose that

H0(C \ {s}, j(s)∗F ) = 0 for all s ∈ S. For every s ∈ S, the adjunction morphism F → j(s)∗j(s)
∗F

is injective, and in the short exact sequence

0→ F → j(s)∗j(s)
∗F → G→ 0

the sheaf G is a skyscraper sheaf supported at s. In the associated long exact sequence

0→ H0(C, F )→ H0(C, j(s)∗j(s)∗F )→ H0(C, G)→ H1(C, F )→ · · ·

the map H0(C, j∗(s)j(s)∗F ) → H0(C, G) is an isomorphism and all other terms vanish, because

F [1] belongs to Perv0. Since j(s)∗F has no non-zero sections also H0(C, j(s)∗j(s)∗F ) and hence

H0(C, G) is zero, so G = 0 because it is a skyscraper sheaf. It follows that the adjunction morphism

F → j(s)∗j(s)
∗F is an isomorphism for all s ∈ S. But then, also the adjunction morphism

F → j∗j
∗F is an isomorphism because locally around any s ∈ S it is. Finally, if j∗F was not

1TODO: introduce vanishing cycles in the discussion about conditions to belong to Perv0
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simple, say j∗F = F1 ⊕ F2, then we could write F as j∗F1 ⊕ j∗F2. If a direct sum of constructible

sheaves has trivial cohomology, then both summands have trivial cohomology, and therefore both

j∗F1[1] and j∗F2[1] are objects of Perv0, which conflicts our hypothesis that F was simple. □

Remark 2.3.14. — For every finite set S ⊆ C containing at least two elements, there exist

local systems on C \ S which do not come from objects in Perv0. For example, let L be a local

system of rank r > 0 on C \ S with the property that, for each s ∈ S, the local monodromy

operator around s, acting on the fibre of L near s, has no non-zero fixed points. Then j∗L = j!L

has non-trivial cohomology; in fact, H1(C, j!L) is a vector space of dimension (#S − 1)r.

Example 2.3.15. — Let us go back to the perverse sheaf associated with a polynomial f ∈ C[x]
of degree n ⩾ 2 as in Example 2.3.11. The local system underlying f∗Q is obtained by linearising

the permutation representation

ρ : π1(C \ S, x)→ Perm(f−1(x)) ≃ Sn

corresponding to the covering of C \ S defined by f . The image G ⊆ Sn of ρ is a transitive sub-

group containing an n-cycle, which we can assume to be (1, 2, . . . , n). The standard n-dimensional

permutation representation of G splits canonically as Q⊕ V , where G acts trivially on Q, and the

local system underlying F = f∗Q/Q corresponds to the representation V of G, or of π1(C \ S, x).
If this representation is simple, then the object A = F [1] of Perv0 is simple and vice versa. Thus,

in order to decide whether A is simple, we only need to compute the finite group G as a subgroup

of Sn and understand its action on V . For instance, A is simple in the following two cases:

(1) if n is a prime number

(2) if f has n− 1 distinct critical values

Indeed, if the degree n of f is prime, then V contains no non-trivial subspace invariant under

the n-cycle. If f has n− 1 distinct critical values, then G ⊆ Sn is a transitive subgroup generated

by n− 1 transpositions, and hence is equal to Sn.

2.3.16 (Extensions by E(0)). — We can also compute extension groups in Perv0. For the time

being, we restrict our attention to Extn(E(0), A), where E(0) = j!j
∗Q[1] is as in Example 2.3.4

with j = j(0) the inclusion A1 \ {0} → A1. We will see later that Perv0 is a tannakian category

with E(0) as neutral object for the tensor product. This allows then for the computation of general

extension groups. Let A = F [1] be an arbitrary object of Perv0. We have

Hom(E(0), A) = Hom(j!j
∗Q, F ) = Hom(j∗Q, j∗F ),

hence the equality

Extn(E(0), A) = Hn(A1 \ {0}, j∗F )

for all n ⩾ 0. This shows that Extn(E(0), A) = 0 for n ⩾ 2. Let S ⊆ C be a finite set containing

0 and all singularities of F , pick a base point x ∈ C \ S. For every s ∈ S, choose a path ps from

s to x (in C \ S except for the starting point), and denote by gs ∈ π1(C \ S, x) the corresponding

generator. The sheaf F corresponds to the following data:
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(1) a vector space V , the fibre of F at x;

(2) vector spaces (Vs)s∈S , the fibres of F at s ∈ S;
(3) a linear action of G = π1(C \ S, x) on V , the global monodromy;

(4) for every s ∈ S a map ps : Vs → V , the cospecialisation along the chosen path.

Since A = F [1] belongs to Perv0, the map

V ⊕
⊕
s∈S

Vs
d−−−−→

⊕
s∈S

V d
(
v, (vs)s∈S

)
= (v − psvs)s∈S

is an isomorphism. Let us write S× = S \ {0}, and g0 ∈ G for the class of the simple loop around

0 determined by the path p0. The two term complex

V ⊕
⊕
s∈S×

Vs
d−−−−→ V ⊕

⊕
s∈S×

V d
(
v, (vs)s∈S×

)
=
(
v − g0v, (v − psvs)s∈S×

)
computes the cohomology H∗(A1 \ {0}, j∗F ). This makes it easy to compute the dimension of

Ext1(E(0), A). Set h0 = dimHom(E(0), A) and h1 = dimExt1(E(0), A). We find

h1 = dimV +
∑
s∈S×

dimV −

dimV +
∑
s∈S×

dimVs

+ h0

=
∑
s∈S

(dimV − dimVs)− (dimV − dimV0) + h0

= dimV − (dimV − dimV0) + h0

= dimV0 + h0.

In particular, if A = F [1] is simple and different from E(0), then we have h0 = 0 and hence

h1 = dimV0.

Example 2.3.17. — In the case A = E(0) we find V0 = 0 and h0 = 1, so Ext1(E(0), E(0))

is one-dimensional. A nontrivial extension of E(0) by E(0) is the perverse sheaf with only one

singularity S = {0}, corresponding to the vector space V = Q2 and monodromy operator g0
(
1 1
0 1

)
.

In the case A = E(s), where s is some nonzero complex number, we find V0 = 1 and h0 = 0, so

Ext1(E(0), E(s)) is one-dimensional. A nontrivial extension of E(0) by E(s) is the perverse sheaf

with two singularities S = {0, s}, corresponding to the vector space V = Q⊕Q, its two subspaces

V0 = Q⊕ 0 and Vs = 0⊕Q, together with monodromy operators

g0 =
(
1 1
0 1

)
gs =

(
1 0
0 1

)
for the chosen loops around 0 and s. The subobject E(s) corresponds to the subspace Q⊕ 0 of V .

Example 2.3.18. — Let N > 0 be an integer, and let A be the object of Perv0 whose only

singularity is zero,
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2.4. Additive convolution

In this section, we introduce the additive convolution of perverse sheaves on the affine line,

and prove that Perv0 is stable under additive convolution. We verify that Perv0 is a Q-linear

tannakian category with respect to the tensor product given by additive convolution, with the

exception of the existence of a fibre functor. The discussion of fibre functors will be postponed to

Section 2.8. It will turn out that the nearby fibre at infinity Ψ∞ as well as the total vanishing

cycles functor Φ are Q-linear fibre functors.

Definition 2.4.1. — Let A and B be objects of Db
c(A1), the bounded derived category of

constructible sheaves on A1. We define the additive convolution of A and B as

A ∗B = Rsum∗(pr
∗
1A⊗ pr∗2B)

where sum: A2 → A1 is the summation map, and pr1,pr2 : A2 → A1 are the projection maps. We

define the functor Π: Db
c(A1)→ Db

c(A1) as

Π(A) = A ∗ j!j∗Q[1], (2.4.1.1)

where j : A1 \ {0} → A1 is the inclusion.

Lemma 2.4.2. — Let A and B be objects of Db
c(A1). For every z ∈ C, there is a natural

isomorphism

(A ∗B)z
∼−→ Rπ∗(A⊗ τ∗zB)

in the derived category of vector spaces, where τz : A1 → A1 is the reflection map τz(x) = z − x.

Proof. We first suppose that A and B are constructible sheaves F and G concentrated in

degree zero. Let S and T be finite sets containing the singular points of F and G respectively, and

set Y = S × C ∪ C× T → C. The following holds:

(1) The summation map sum: C2 → C is a fibre bundle.

(2) The morphism sum: Y → C is proper.

(3) Outside Y , the sheaf pr∗1 F ⊗ pr∗2G is a local system.

It was observed by Nori [65, Lemma 2.7] or [66, Proposition 1.3A] that (1), (2) and (3) imply via

a combination of proper base change and the Künneth formula that the base change morphisms

(Rsum∗(pr
∗
1 F ⊗ pr∗2G))z → Rπ∗((pr

∗
1 F ⊗ pr∗2G)|sum−1(z)) (2.4.2.1)

are isomorphisms in the derived category of vector spaces. The base change morphism (2.4.2.1)

is a natural morphism for arbitrary sheaves or complexes of sheaves, and hence it follows from a

dévissage argument that (2.4.2.1) is an isomorphism also when F and G are replaced by objects A

and B of the bounded derived category of constructible sheaves. The fibre

sum−1(z) = {(x, τz(x)) | x ∈ C}

is an affine line, and with respect to the coordinate x the restriction of pr∗1A⊗ pr∗2B to this line is

the sheaf A⊗ τ∗zB. Hence we obtain a natural isomorphism as claimed. □
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Proposition 2.4.3. — Let A and B be objects of Db
c(A1).

(1) There is a natural isomorphism Rπ∗(A ∗ B) ∼= Rπ∗(A) ⊗ Rπ∗(B) in the derived category

of vector spaces.

(2) If A is perverse and B is an object of Perv0, then A ∗ B is an object of Perv0. In

particular, the endofunctor A 7−→ A ∗ B on the derived category of constructible sheaves

is exact for the perverse t-structure.

(3) The functor Π from (2.4.1.1) sends Perv to Perv0 and is left adjoint to the inclusion

Perv0 → Perv.

(4) If A is an object of Perv0, then the canonical morphism A→ Π(A) is an isomorphism.

Proof. Denote by π2 : C2 → Spec(C) the structure morphism and set A⊠B = pr∗1A⊗ pr∗2B.

The composite isomorphism

Rπ∗(A ∗B) ∼= Rπ2∗(pr
∗
1A⊗ pr∗2B) ∼= Rπ2∗(pr

∗
1A)⊗Rπ2∗(pr∗2B) ∼= Rπ∗(A)⊗Rπ∗(B)

yields (1). The second isomorphism is explained by the fact that a tensor product of flasque sheaves

is flasque, and that for arbitrary sheaves F and G we have π2∗(F ⊠G) ∼= π∗F ⊗ π∗G (the presheaf

tensor product is already a sheaf).

Now suppose that the objects A and B are perverse, and that Rπ∗B = 0 holds. By (1) we

have Rπ∗(A ∗B) = 0, so it will be enough to convince ourselves that A ∗B is a constructible sheaf

placed in degree −1. According to Lemma 2.3.3, the complex A ⊠ B of constructible sheaves on

C2 sits in degrees −2 and −1, and hence A ∗B is supported in cohomological degrees −2, −1, and
0. We must show that H−2(A ∗B) = H0(A ∗B) = 0. For any z ∈ C, there is according to Lemma

2.4.2 a canonical isomorphism of rational vector spaces

Hq(A ∗B)z ∼= Rqπ∗(A⊗ τ∗zB).

The complex of sheaves C = A⊗ τ∗zB is cohomologically supported in degrees −2 and −1 and

H−2(C) = H−1(A)⊗H−1(τ∗zB), H−1(C) = H0(A)⊗H−1(τ∗zB).

Using the spectral sequence Rpπ∗(A1,Hq(C))⇒ Rp+qπ∗C, we compute

H−2(A ∗B)z = R−2π∗C = H0(H−1(A)⊗H−1(B)),

H0(A ∗B)z = π∗C = H1(H0(A)⊗H−1(B)).

Since A is perverse and B belongs to Perv0, the sheaf H−1(A) has no non-zero sections with finite

support and H−1(B) has no global sections, Lemma 2.2.12 implies that H−2(A ∗B)z = 0. Since A

is perverse, H0(A) is a skyscraper sheaf, and hence so is H0(A)⊗H−1(B), thus H0(A ∗B)z = 0.

We have already seen in Example 2.3.4 that j!j
∗Q[1] has trivial cohomology, so it is an object

of Perv0. We need to find a natural isomorphism

Hom(Π(A), B) ∼= Hom(A,B) (2.4.3.1)

for all perverse sheaves A and B with Rπ∗B = 0. Let i : {0} → C be the inclusion. The canonical

exact sequence 0 → j!j
∗Q → Q → i∗i

∗Q → 0 induces for any object A in Db
c(A1) the following
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exact triangle:

Rsum∗(A⊠ j!j
∗Q)→ Rsum∗(A⊠Q)→ Rsum∗(A⊠ i∗i

∗Q)→ Rsum∗(A⊠ j!j
∗Q)[1].

The complex Rsum∗(A ⊠ i∗i∗Q) is just A, and Rsum∗(A ⊠ Q) is the complex of constant sheaves

π∗Rπ∗A, so we may rewrite the triangle as follows:

Π(A)[−1]→ π∗Rπ∗A→ A→ Π(A). (2.4.3.2)

The triangle is functorial in A, and hence produces a natural map A → Π(A) which is an iso-

morphism if Rπ∗A = 0. The adjunction (2.4.3.1) sends a morphism Π(A) → B to the composite

A→ Π(A)→ B, and in the opposite direction a morphism A → B to the induced morphism

Π(A)→ Π(B) composed with the isomorphism B ∼= Π(B). This shows (3) and (4). □

Corollary 2.4.4. — An object A of Db
c(A1) satisfies Π(A) = 0 if and only if A is constant.

Proof. It follows from (2.4.3.2). □

Example 2.4.5. — Let L be a local system on A1 \ S for some finite set S, and consider the

perverse sheaf j!L[1] on A1, where j : A1 \ S → A1 is the inclusion. We have seen that Π(j!L[1]) is

of the form F [1] for some constructible sheaf F , and we want to understand F . The fibre of F at

a point z ∈ C is the cohomology group

Fz = H1(C, j(z)!j(z)∗j!L),

where j(z) is the inclusion of C \ {z} into C. The sheaf j(z)!j(z)
∗j!L is given by the local system

L outside S ∪ {z} and has trivial fibres at each point of S ∪ {z}. We see that F is given by a local

system of rank #S · rank(L) on C \ S, and that its fibre at s ∈ S is a vector space of dimension

(#S−1) ·rank(L). Later we will see how to effectively calculate the monodromy of the local system

given by F on C \ S.

2.4.6 (Additive convolution with support). — There is a variant of additive convolution defined

using direct image with compact support, namely

A ∗! B = Rsum!(A⊠B).

Verdier duality exchanges the two convolutions, in the sense that

D(A ∗B) = D(A) ∗! D(B).

In general, the object A∗!B of Db
c(A1) is not a perverse sheaf, even if A and B belong to Perv0.

One has however the following, which was already proved in [58, Lemma 4.1]:

Lemma 2.4.7. — Let A be a perverse sheaf and let B be an object in Perv0. Then the forget

supports map A ∗! B → A ∗B induces an isomorphism Π(A ∗! B) ∼= A ∗B.
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Proof. Let λ : A2 → A1 × P1 be the open immersion sending (x, y) to (x + y, [1 : x − y]) and
let κ : A1 → A1 × P1 be the complementary closed immersion. The composition of λ with the

projection p to the first coordinate is the summation map sum: A2 → A1 and λ is indeed a relative

compactification. Therefore, A ∗! B = Rp∗λ!(A⊠B). Let L = Rλ∗(A⊠B) and consider the exact

triangle λ!λ
∗L −→ L −→ κ∗κ

∗L. Applying Rp∗ to it, we find

Rp∗κ∗κ
∗L[−1] Rp∗λ!λ

∗L Rp∗L Rp∗κ∗κ
∗L.

A ∗! B A ∗B

// // //

//

In view of Corollary 2.4.4, it suffices to show that Rp∗κ∗κ
∗L is a constant sheaf on A1. Indeed,

κ∗L is already a constant sheaf on A1 because the singularities of A⊠B are horizontal and vertical

lines in A2 which do not meet the line at infinity. □

Lemma 2.4.8. — For every object A of Db
c(A1), the canonical morphism A→ Π(A) induces an

isomorphism Π(D(Π(A)))→ Π(D(A)).

Proof. The perverse sheaf D(E(0)) = RHom(E(0),Q[2]) is an extension of the skyscraper

sheaf δ0 with fibre Q at 0 by the constant sheaf Q on A1, and hence Π(D(E(0))) = Π(δ0) = E(0).

Using this and Lemma 2.4.7, we obtain a string of natural isomorphisms

Π(D(Π(A))) = Π(D(A ∗ E(0))) = Π(D(A) ∗! D(E(0)) = Π(D(A) ∗ D(E(0))

= D(A) ∗ D(E(0)) ∗ E(0) = D(A) ∗Π(D(E(0))) = D(A) ∗ E(0) = Π(D(A)).

whose composite is indeed the morphism obtained by applying Π ◦ D to A→ Π(A). □

Proposition 2.4.9. — Let [−1] : A1 → A1 be the involution sending x to −x. Given an object

A of Perv0, define

A∨ = Π(D([−1]∗A)) = D([−1]∗A) ∗ E(0). (2.4.9.1)

There is a canonical bijection Hom(A ∗ B,C) ∼= Hom(A,C ∗ B∨), natural in A,B, and C. In

particular, A∨ is a dual of A.

Proof. The statement follows from the conjunction of

(a) Hom(E(0), X∨ ∗ Y ) = Hom(X,Y ),

(b) (X ∗ Y )∨ = X∨ ∗ Y ∨.

Indeed, taking these properties for granted, one has:

Hom(X ∗ C, Y ) = Hom(E(0), (X ∗ C)∨ ∗ Y ) = Hom(E(0), X∨ ∗ C∨ ∗ Y ) = Hom(X,Y ∗ C∨).

To prove (a), recall that the inclusion of Perv0 into Perv has a right adjoint functor Π =

−∗E(0), and notice that E(0) = Π(δ0) for δ0 the skyscraper sheaf with fibre Q at 0. Let ι : {x+y =
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0} ↪→ A2 denote the inclusion of the antidiagonal. Then:

Hom(E(0),M∨ ∗N) = Hom(δ0,M
∨ ∗N) (adjunction)

= Hom(δ0,Π(D([−1]∗M)) ∗N) (definition of M∨)

= Hom(δ0,D([−1]∗M) ∗N) (Prop. 2.4.3 (2))

= Hom(δ0, Rsum∗(D([−1]∗M)⊠N)) (definition of ∗)
= Hom(sum∗δ0,D([−1]∗M ⊠N) (adjunction)

= Hom(ι!Q,D([−1]∗M ⊠N) (inspection)

= Hom(Q, ι!(D([−1]∗M ⊠N)) (adjunction)

= Hom(Q,∆!(D(M)⊠N)) (∆ = ι ◦ ([−1], id)).

To conclude, we use: Let ∆: A1 ↪→ A2 be the diagonal embedding. Then, for each pair of objects

A and B of Db
c(A1), the following holds:

HomDbc(A1)(A,B) = HomDbc(A1)(Q,∆!(D(A)⊠B)).

Using the basic properties of D, we find:

Hom(A,B) = Hom(A,D(D(B))) = Hom(A,RHom(D(B),Q[2]) = Hom(A⊗ D(B),Q[2])

= Hom(Q, RHom(A⊗ D(B), ωX)) = Hom(Q,D(A⊗ D(B))).

Therefore, we are reduced to show that ∆!(D(A) ⊠ B) = D(A ⊗ D(B)), which follows from the

relation A⊗B = ∆∗(A⊠B) and Verdier duality.

We now turn to property (b).

(A ∗B)∨ = Π(D[−1]∗Rsum∗(A⊠B))

= Π(DRsum∗([−1]∗A⊠ [−1]∗B))

= Π(Rsum!(D([−1]∗A)⊠ D([−1]∗B))) (Verdier duality)

= Π(A∨ ∗! B∨)

= A∨ ∗B∨ (Lemma 2.4.7)

We are done. □

2.4.10. — We have already shown in Proposition 2.3.7 that Perv0 is a Q-linear abelian category.

Moreover, by Proposition 2.4.3, the category Perv0 is stable under additive convolution. The

functor

∗ : Perv0 ×Perv0 → Perv0

is additive in both variables. It is even exact in both variables: Given an exact sequence 0→ A→
A′ → A′′ → 0 and an object B in Perv0, we get an exact sequence

0→ A⊠B → A′ ⊠B → A′′ ⊠B → 0

of perverse sheaves on C2. Applying Rsum∗ yields a long exact sequence of perverse sheaves on C,
of which only the part

0→ A ∗B → A′ ∗B → A′′ ∗B → 0
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is non-zero. As already mentioned, we regard additive convolution as a tensor product on Perv0.

Our next task is to choose unit, associativity and commutativity constraints. The unit object is

E(0) = j!Q[1], and as the unit constraint

A ∗ E(0) ∼= A ∼= E(0) ∗A (2.4.10.1)

we choose the canonical isomorphism of Proposition 2.4.3 part (4) when the unit E(0) stands on the

right, and the analogous isomorphism when E(0) stands on the left. The associativity constraint

(we choose it)

(A ∗B) ∗ C = Rsum3
∗(A⊠B ⊠ C) ∼= A ∗ (B ∗ C) (2.4.10.2)

is given by the associativity constraint for complexes of sheaves on C3 and associativity of the sum

of complex numbers. The commutativity constraint

A ∗B = Rsum∗(A⊠B) ∼= Rsum∗(B ⊠A) = B ∗A (2.4.10.3)

is given by the commutativity constraint for complexes of sheaves on C2 and commutativity of

the sum of complex numbers. Be careful and don’t make the same mistakes as the authors: the

commutativity constraint for the tensor product of complexes of sheaves is given by the Koszul rule,

and objects A, B of Perv0 are concentrated in degree −1. The present discussion and Proposition

2.4.9 are summarised in the following theorem.

Theorem 2.4.11. — Additive convolution defines a tensor product on the Q-linear abelian cate-

gory Perv0 with respect to which it is a symmetric monoidal closed category. Constraints are given

by (2.4.10.1) for units, (2.4.10.2) for associativity, and (2.4.10.3) for commutativity.

In different terminology (we explain conventions in Section A.1), Theorem 2.4.11 states that

Perv0, equipped with additive convolution is a tensor category which is ACU and rigid, and

End(E(0)) = Q holds. What remains to show in order to prove that Perv0 is a tannakian category,

is to find a fibre functor. The nearby fibre at infinity Ψ∞ : Perv0 → VecQ is an obvious candidate,

but to show that it is indeed a fibre functor is more difficult than it seems, and will keep us busy

for a while.

2.5. A braid group action

In the previous section, we introduced and studied additive convolution using the six-functors

formalism. Given objects A and B of Perv0, we would now also like to describe the monodromy

representation and the singular fibres of the convolution A ∗B in terms of those of A and B. This

is feasible, but not straightforward, and will only be achieved in Theorem 2.6.2. At the heart of the

description is the action of a braid group on fundamental groups, which is what we aim to describe

in the present section.
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2.5.1. — We write C for the compactification of C by a circle at infinity, so C = C ⊔ S1, where

a system of open neighbourhoods of z ∈ S1 = {z ∈ C | |z| = 1} is given by the sets

{w ∈ C | |w| > R, | arg(w)− arg(z)| < ε} ⊔ {z′ ∈ S1 | | arg(z′)− arg(z)| < ε}

for large R and small ε, as illustrated in Figure 2.5.4. The space C is called the oriented real

blow-up of P1(C) at infinity. For a non-zero complex number z, we write z∞ for the element of the

boundary S1 of C with argument arg(z).

Figure 2.5.4. A neighbourhood of z∞

2.5.2. — Let S and T be finite, not necessarily disjoint sets of points in the complex plane C,
and define S+T = {s+ t | s ∈ S, t ∈ T}. A point u ∈ C does not belong to S+T if and only if the

sets S and u− T = {u− t | t ∈ T} are disjoint. For each u ∈ C \ (S + T ), let us denote by G(u) the

fundamental group of the space C \ (S ∪ (u− T )) relative to the base point 1∞. It is the same as

the fundamental group of C \ (S ∪ (u− T )) with respect to a large real number as base point. The

groups G(u) form a local system on C \ (S + T ), and we may consider its monodromy. Concretely,

pick a base point u0 ∈ C \ (S + T ) and define a group homomorphism

β : π1(C \ (S + T ), u0)→ Aut(G(u0)) (2.5.2.1)

as follows: given a loop γ : [0, 1]→ C \ (S+T ) based at u0 and a loop g : [0, 1]→ C \ (S ∪ (u0−T ))
based at 1∞, we define β(γ)(g) to be the homotopy class of any loop g′ in C \ (S ∪ (u0 − T )) such
that g′ × 1 is homotopic to τ(g × 0)τ−1 in the space

(C× [0, 1]) \ {(z, t) | z ∈ S ∪ (γ(t)− T )}

where τ is the path t 7−→ (1∞, t).

2.5.3. — In a similar fashion, the group π1(C \ (S + T ), u0) acts on homotopy classes of paths.

Pick a point x ∈ S ∪ (u0 − T ), and let us denote by Px(u0) the set of homotopy classes of paths in

C \ (S ∪ (u0 − T )) which start tangentially at x and end in 1∞. The group G(u0) acts on the set
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Px(u0) by composition of paths. Similarly to the action β given in (2.5.2.1), there is a canonical

action

βx : π1(C \ (S + T ), u0)→ Aut(Px(u0)) (2.5.3.1)

of π1(C \ (S + T ), u0) on the G(u0)-set Px(u0). It is defined by βx(γ)(p) = p′, where p′ is a path

from x to 1∞ in C \ (S ∪ (u0 − T )) such that p′ × 1 is homotopic to τ−1(p× 0)τx, where τx is the

path t 7−→ (x, t) if x ∈ S, and t 7−→ (γ(t)− u0 − x, t) if x ∈ u0 − T . Figure 2.5.5 illustrates this for

x ∈ u0 − T .

Figure 2.5.5. The homotopy (p′ × 1) ≃ τ−1(p× 0)τx

The two actions β and βx are compatible in the sense that the equality

βx(γ)(gp) = β(γ)(g)βx(γ)(p)

holds for all γ ∈ π1(C \ (S+T ), u0), all g ∈ G(u0) and all p ∈ Px(u0). Since G(u0) acts transitively
on the set Px(u0) the map βx(γ) is described by its value on a single element.

Definition 2.5.4. — We call braid-actions the actions

β : π1(C \ (S + T ), u0)→ Aut(G(u0)) and βx : π1(C \ (S + T ), u0)→ Aut(Px(u0))

defined in (2.5.2.1) and (2.5.3.1) respectively.

2.5.5. — We can give a visually more appealing description of the action (2.5.2.1) by regarding

braids as isotopy classes. Start with a loop g based at 1∞ in C avoiding the points S ∪ (u0 − T ).
Then, as t moves from 0 to 1, the set γ(t)− T moves and never touches S, and we can deform the

ambient space along with this motion, leaving the circle at infinity fixed. In particular the loop g

deforms together with the ambient space, at all times avoiding points in S∪(γ(t)−T ). As t reaches
1, we obtain a new loop in C avoiding the points S∪ (u0−T ), which we declare to be β(γ)(g). This

works exactly in the same way also for paths. As a concrete example, take S = {0, 1}, T = {0, i}
and u0 = 2, so S + T = {0, 1, i, 1 + i} and S ∪ (u0 − T ) consists of the four elements {0, 1, 2, 2− i}.
Now pick a loop γ based at u0 avoiding S + T and for each x ∈ S ∪ (u0 − T ) a simple loop around
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x based at 1∞ avoiding S ∪ (u0− T ), named as as in Figure 2.5.6. We will systematise this way of

choosing and naming loops later.

Figure 2.5.6. The loops γ (left) and g1, g2, h1, h2 (right)

The fundamental group G(u0) is the free group generated by the g1, g2, h1, h2. On the right

hand picture, we now move the elements {2, 2− i} of u0 − T along γ(t)− T , and deform the four

loops accordingly. In the left part Figure 2.5.7 we have drawn g2 and the trajectory of γ(t)− T as

t moves from 0 to 1. Deforming g2 results in a new path β(γ)(g2), which is drawn on the right in

Figure 2.5.7. This path is β(γ)(g2) = g−1
2 h−1

1 g2h1g2.

Figure 2.5.7. The loop g2 (left) and β(γ)(g2) (right)

We determine the effect of γ on g1, h1, h2 in a similar way, and find β(γ) to be the following

automorphism of G(u0).

g1 7−→ g1

g2 7−→ g−1
2 h−1

1 g2h1g2

h1 7−→ g−1
2 h1g2

h2 7−→ h2

(2.5.5.1)

Notice that we have β(γ)(gi) = aigia
−1
i and similarly β(γ)(hi) = bigib

−1
i for some ai, bi depending

on γ. The elements a1 and b2 are trivial, because only 1 ∈ S and 2− i ∈ 2−T are entangled by the

action of γ. The description works as well for the braid action on paths. Let us call p1, p2, q1, q2
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the paths corresponding to the chosen simple loops, as indicated on the left hand part of Figure

2.5.8. The paths β(γ)(p1), . . . , β(γ)(q2) are the ones on the right.

Figure 2.5.8. The paths p0, p1, q1, q2 (left) and their image under β(γ) (right)

The action of γ on path spaces Px(u0) is uniquely determined by (2.5.3.1) and the following

values

p0 7−→ p1

p1 7−→ g−1
2 h−1

1 p2

q1 7−→ g−1
2 q1

q2 7−→ q2

(2.5.5.2)

Notice that we have indeed β(γ)(pi) = aipi and β(γ)(qi) = bipi for the same ai and bi we found in

(2.5.5.1). This is so because the simple loops gi and hi are obtained from the paths pi and qi and

small loops around the corresponding starting points. This shows that if we understand the braid

action on loops, then we understand it also on paths, and vice versa.

2.5.6. — We devote the rest of this section to a systematic combinatorial description of the

braid actions, which will be helpful for explicit computations. The idea is to produce in a more or

less systematic way the group elements ai and bi which appeared in (2.5.5.1) and (2.5.5.2). This in

turn has to do much with the choice of generators of the of the involved fundamental groups. We

now come back to the standard paths and loops introduced in Paragraph 2.2.10.

Consider two finite sets of points S = {s1, . . . , sn} and T = {t1, . . . , tm} in the complex plane,

listed in western reading order. Choose a large real number r ≫ 0, greater than the norm of all

s ∈ S and all t ∈ T , and set τ2r(z) = 2r − z. We write

G = π1(C \ S, r) ∼= π1(C \ S, 1∞) and H = π1(C \ T, r) ∼= π1(C \ T, 1∞)

and choose standard paths pi from si ∈ S to r giving rise to generators gi ∈ G, as well as standard
paths qi from ti ∈ T to r giving rise to generators hj ∈ H. Let ω be the path t 7−→ r(2 − e−πit)
from r to 3r in C, and extend it along the real half-line [3r,∞]. Using the Seifert–van-Kampen

theorem and the path τ2r ◦ ω, we identify

G ∗H ∼= π1(C \ (S ∪ τ2r(T )), 1∞) (2.5.6.1)
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Explicitly, the isomorphism (2.5.6.1) sends gi ∈ G ∗H to the concatenation ω · gi, and hj ∈ G ∗H
to the concatenation ω · (τ2r ◦hj). Similarly, the paths pi and qj yield a paths ω ·pi and ω · (τ2r ◦qj).
The situation is illustrated in Figure 2.5.9.

Figure 2.5.9. The set S ∪ (2r − T ) and the path ω

Definition 2.5.7. — Let S = {s1, . . . , sn} and T = {t1, . . . , tm} be finite sets of complex

numbers, ordered in western reading order, and let u ∈ S + T . We call entanglement list of u the

list of pairs of integers

TL(u) = {(i1, j1), (i2, j2), . . . , (id, jd)}

which contains all pairs of integers (i, j) such that si + tj = u, and which is ordered so that

i1 < i2 < · · · < id, and hence j1 > j2 > · · · > jd, holds.

Proposition 2.5.8. — Pick u ∈ S + T , and let γu ∈ π1(C \ (S + T ), 2r) be the standard simple

loop around u. For every 1 ⩽ i ⩽ n, define an element ai ∈ G ∗H by

ai =

(g−1
i1
h−1
j1
gi1hj1)(g

−1
i2
h−1
j2
gi2hj2) · · · (g−1

il
h−1
jl
gilhjl) if il < i

(g−1
i1
h−1
j1
gi1hj1)(g

−1
i2
h−1
j2
gi2hj2) · · · (g−1

il
h−1
jl

) if il = i

where il is the largest integer ⩽ i appearing in the entanglement list TL(u) of u and, for every

1 ⩽ j ⩽ m, define an element bj ∈ G ∗H by

bj =

(g−1
i1
h−1
j1
gi1hj1)(g

−1
i2
h−1
j2
gi2hj2) · · · (g−1

il
h−1
jl
gilhjl) if jl > j

(g−1
i1
h−1
j1
gi1hj1)(g

−1
i2
h−1
j2
gi2hj2) · · · (g−1

il
) if jl = j

where jl is the smallest integer ⩾ j appearing in the entanglement list of u. Via the isomorphism

(2.5.6.1), the braid action of the standard path γu on G ∗H is given by

β(γu)(gi) = aigia
−1
i and β(γu)(pi) = aipi
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β(γu)(hj) = bjhjb
−1
j and β(γu)(qj) = bjqj .

Proof. We can deform the sets S and T without changing the presentation of the fundamental

groups and the braid action of γu, as long as we ensure that orderings of S and T as well as

the entanglement list TL(u) remain the same. We can arrange that u = 0 and that S and T

consist of purely imaginary numbers. Thus, the imaginary parts of s1, s2, . . . , sn as well as those

of t1, t2 . . . , tm are strictly decreasing, and (i, j) is in the entanglement list of u = 0 if and only if

im(2r+tj) = im(si). Figure 2.5.10 shows this configuration of points in the complex plane, together

with the trajectory of γu−T . The formula of the proposition can now be shown by examining how

Figure 2.5.10. Entanglement list TL(u) = {(2, 6), (4, 3), (8, 1)}, with the path p5

shown. As T moves, p5 will pick up a factor g−1
2 h−1

6 g2h6 from the entanglement (2, 6)

and a factor g−1
4 h−1

3 g4h3 from the entanglement (4, 3). The entanglement (8, 1) has

no influence.

in this configuration the paths pi and qj deform. This can be done explicitly with a drawing. There

are essentially three cases to consider: a pair (i, j) in the entanglement list affects those paths p

that start below the horizontal line through si and 2r − tj , and it affects the path pi and the path

qj . These three cases are illustrated in Figure 2.5.11 As the point 2r − tj moves around si along

Figure 2.5.11. Paths before deformation

γu − tj , the paths p, pi and qj deform continuously to the paths displayed in Figure 2.5.12, which

represent β(γu)(p), β(γu)(pi) and β(γu)(qj). The path p has changed by a factor g−1
i h−1

j gihj , and

there will be one such factor for every entangled pair p crosses in forward order. After deformation,

the path pi ends in g
−1
i h−1

j pi, and finally, after deformation, qj ends in g
−1
i qj . □
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Figure 2.5.12. Paths after deformation

2.5.9. — It will be also useful to describe the braid action of γ−1
u . It is given as follows: In the

setup of Proposition 2.5.8, define ãi ∈ G by

ãi =

(hj1gi1h
−1
j1
g−1
i1

)(hj2gi2h
−1
j2
g−1
i2

) · · · (hjlgilh
−1
jl
g−1
il

) if il < i

(hj1gi1h
−1
j1
g−1
i1

)(hj2gi2h
−1
j2
g−1
i2

) · · · (hjl) if il = i

where il is the largest integer ⩽ i appearing in the entanglement list of u and, for every 1 ⩽ j ⩽ m,

define b̃j ∈ G by

b̃j =

(hj1gi1h
−1
j1
g−1
i1

)(hj2gi2h
−1
j2
g−1
i2

) · · · (hjlgilh
−1
jl
g−1
il

) if jl > j

(hj1gi1h
−1
j1
g−1
i1

)(hj2gi2h
−1
j2
g−1
i2

) · · · (hjlgil) if jl = j

where jl is the smallest integer ⩾ j appearing in the entanglement list of u. The braid action of

γ−1
u ∈ π1(C \ (S + T ), 2r) is then given by

β(γ−1
u )(gi) = ãigiã

−1
i and β(γ−1

u )(pi) = ãipi

β(γ−1
u )(hj) = b̃jhj b̃

−1
j and β(γ−1

u )(qj) = b̃jqj .

This can be shown with the same geometric arguments as Proposition 2.5.8.

Example 2.5.10. — Here is a numerical example illustrating Proposition 2.5.8. We consider the

set S = {4i,−4, 4,−4i} = {s1, s2, s3, s4}, already appropriately ordered, and T = S = {t1, t2, t3, t4}.
In a later example we will come back to this set and regard it as the set of critical values of the

polynomial f(x) = x5 − 5x, but for the moment we do not care about that. The fundamental

groups G and H are free groups

G = ⟨g1, g2, g3, g4⟩ and H = ⟨h1, h2, h3, h4⟩

and the set S + T is S + T = {8i, 4i − 4, 4i + 4,−8, 0, 8,−4i − 4,−4i + 4,−8i}. The fundamental

group π1(C \ S + T, 1∞) is thus free on 9 generators, one of which is the standard loop γu around

the point u = −4− 4i. The element u ∈ S + T can be written in two different ways as a sum of an

element of S and an element of T , namely u = s2 + t4 = s4 + t2. Its entanglement list is thus

TL(−4− 4i) = {(2, 4), (4, 2)}.
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The elements a1, . . . , a4, b1, . . . , b4 of G ∗H described in Proposition 2.5.8 are

a1 = 1 b1 = (g−1
2 h−1

4 g2h4)(g
−1
4 h−1

2 g4h2)

a2 = g−1
2 h−1

4 b2 = (g−1
2 h−1

4 g2h4)g
−1
4

a3 = (g−1
2 h−1

4 g2h4) b3 = (g−1
2 h−1

4 g2h4)

a4 = (g−1
2 h−1

4 g2h4)g
−1
4 h−1

2 b4 = g−1
2 .

The action of γ−4−4i on G ∗H can be written down using these strings, as stated in Proposition

2.5.8. The element 8 ∈ S + T can be written on only one way as a sum of an element of S and an

element of T , namely 8 = 4+4 = s3+ t3. The entanglement list for u = 8 has hence just one entry,

namely TL(8) = {(3, 3)}. The elements a1, . . . , a4, b1, . . . , b4 for u = 8 are accordingly simpler. The

entanglement list of u = 0 is TL(0) = {(1, 4), (2, 3), (3, 2), (4, 1)}, and the ai and bj are accordingly

more complicated.

2.5.11. — In 2.2.9 we have explained how to express cospecialisation for the cohomology of

constructibe sheaves in families in terms of cocycle cohomology. We will describe now in terms

of the standard loops gi and hj , and paths pi and qj the involved cospecialisation map for the

fundamental group π1(C \ (S ∪ τz(T )), 1∞) and the corresponding path spaces, as z runs along

the standard path from u ∈ S + T to 2r. Pick an element u ∈ S + T . After moving S and T to

a configuration as in the proof of Proposition 2.5.8, we can consider the paths from S + (u − T )
to 1∞ as illustrated in on the left-hand side in Figure 2.5.13. This path, starting at an element

Figure 2.5.13. Cospecialisation of paths. On the right, p′8 = h6h3p8 is shown.
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of S ∪ (u− T ), runs upwards while passing unentagled elements of u− T to the left and elements

of S to the right. If this path starts at an element si ∈ S, then we can deform it to a path p′i in

C \ (S ∪ τ2rT ) starting at si. The path p′i is related to the standard path pi by

p′i = hj1hj2 · · ·hjlpi (2.5.11.1)

where hj1 , hj2 , . . . are the usual standard paths, and l ist the largest integer such that jl appears

in the entanglement list TL(u) = {(i1, j1)(i2, j2), . . . , } of u, and such that il < i holds. In case of

a path starting at an element u− tj of u− T , we can deform it to a path q′j starting at 2r− tj . In
terms of standard paths, the path q′j is given by

q′j = hj1hj2 · · ·hjlqj (2.5.11.2)

where l is the largest integer such that jl appears in TL(u) and such that jl > j holds. From

the formulas (2.5.11.1) and (2.5.11.2), one can derive formulas for the cospecialisation of loops

associated with paths.

2.6. Computation of the global monodromy of a convolution

In this section, we give an explicit description of the additive convolution of perverse sheaves in

terms of group representations. We are interested in the particular case of convolution of perverse

sheaves which belong to Perv0, since additive convolution is the tensor product in the tannakian

category Perv0.

2.6.1. — For us, the most convenient presentation of objects of Perv0 is the one given in 2.3.10,

which we briefly recall. An object A of Perv0 is thus described by the following data: A finite set

of singularities {s1, s2, . . . , sn} ⊆ C listed in western reading order, a vector space V = Ψ∞(A), an

endomorphism g ∈ End(V ) and a vanishing cycles decomposition

V =

n⊕
i=1

V ′
i .

The complement Vi ⊆ V of V ′
i in this decomposition is to be interpreted as the fibre of A at the

singularity si, identified with a subspace of V via cospecialisation along the standard path pi, and

V ′
i = Φsi(A) is the corresponding space of vanishing cycles. Writing π′i and πi = id−π′i for the

projections onto the subspaces V ′
i and Vi, the linear map gi : V → V defined by giv = gπ′i(v)+πi(v)

is the monodromy action on V of the standard loop around si.

Theorem 2.6.2. — Let A and B be objects of Perv0 and set V = Ψ∞(A) and W = Ψ∞(B). Let

S = {s1, . . . , sn} be the set of singularities of A and let T = {t1, . . . , tm} be the set of singularities

of T in western reading order. With respect to standard paths, let

V =

n⊕
i=1

V ′
i , g ∈ End(V ) and W =

m⊕
j=1

W ′
j , h ∈ End(W )
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be the vanishing cycles decompositions and endomorphisms encoding the global monodromy of A

and B. Write π′i : V → V ′
i ⊆ V and π′j : W →W ′

j ⊆W for the projections, and set gca = π′c ◦ g ◦ π′a
and hdb = π′d ◦ h ◦ π′b. The additive convolution A ∗B has the following description in these terms:

(1) The set of singularities is S + T = {s+ t | s ∈ S, t ∈ T} = {u1, . . . , ul}.
(2) The nearby fibre at infinity is Ψ∞(A ∗B) = V ⊗W .

(3) The vanishing cycles decomposition is given by

V ⊗W =
l⊕

k=1

 ⊕
(i,j)∈TL(uk)

(V ′
i ⊗W ′

j)

 .

(4) The endomorphism e ∈ End(V ⊗W ) describing the global monodromy of the local system

underlying A ∗B is uniquely determined by ecdab = (π′c ⊗ π′d) ◦ e ◦ (π′a ⊗ π′b) given as follows

(i) ecdab = −gca ⊗ hdb if a < c and b < d,

(ii) ecdab = gca ⊗ id if a < c and b = d,

(iii) ecdab = 0 if a < c and b > d,

(iv) ecdab = id⊗hdb if a = c and b < d,

(v) ecdab = gaa ⊗ hbb if a = c and b = d,

(vi) ecdab = gaa ⊗ hdb if a = c and b > d,

(vii) ecdab = 0 if a > c and b < d,

(viii) ecdab = gca ⊗ hbb if a > c and b = d,

(ix) ecdab = gca ⊗ hdb if a > c and b > d.

2.6.3. — Here is an overview on the proof of Theorem 2.6.2. For a complex number u, let

τu : C → C be the reflection given by τu(z) = u − z. According to Lemma 2.4.2, the fibre of

(A ∗B)[−1] at the point u ∈ C is the cohomology group

H1(A1, A[−1]⊗ τ∗uB[−1]).

If u /∈ S + T , then the singularities of A and τ∗uB are disjoint, and assertion (1) follows from this.

Next, let r be a real number, larger than the absolute value of any s ∈ S and t ∈ T . Then 2r is

larger than the real part of any element of S + T , and hence Ψ∞(A ∗B) is canonically isomorphic

to the cohomology group H1(A1, A[−1] ⊗ τ∗2rB[−1]) which we will compute in terms of cocycles.

Set

G2r = π1(C \ (S ∪ (2r − T )), 1∞)

and write P2r for the set of homotopy classes of paths from elements of S ∪ (2r − T ) to 1∞. The

constructible sheaf A[−1]⊗ τ∗2rB[−1] corresponds to a representation (G2r, P2r) whose underlying

vector space we identify with V ⊗W , and there is a canonical and natural isomorphism

(A ∗B)[−1]2r ∼= H1(A1, A[−1]⊗ τ∗2rB[−1]) ∼= H1((G2r, P2r), V ⊗W ). (2.6.3.1)

The fundamental group π1(C \ (S + T ), 2r) acts on the left-hand side by monodromy—this is the

action we want to understand. The fundamental group π1(C \ (S + T ), 2r) also acts on G2r and

P2r via the braid action β introduced in Definition 2.5.4, and hence it acts by precomposition

on cochains, and hence on cohomology. Proposition 2.6.5 below states that these two actions are



2.6. COMPUTATION OF THE GLOBAL MONODROMY OF A CONVOLUTION 61

compatible via (2.6.3.1). After explaining this in some more detail, the next step is to construct a

natural isomorphism of vector spaces

αA,B : Ψ∞(A)⊗Ψ∞(B)→ Ψ∞(A ∗B)

which justifies statement (2) of the theorem. To do so, we will produce a linear map

V ⊗W → Z1((G2r, P2r), V ⊗W )

associating with every x ∈ V ⊗W a cocycle cx. The isomorphism αA,B is natural in A and B,

and it will turn out later that it is compatible with constraints for tensor products, and hence

that Ψ∞ defines a fibre functor on the category Perv0. The isomorphim αA,B is however not a

canonical isomorphism, since it depends on our choice of standard paths. Statements (3) and most

importantly (4) are then somewhat unspectacular computations, for which we use the explicit braid

group actions computed in the previous section.

2.6.4. — The sheaf A[−1]⊗ τ∗2rB[−1] is constructible. Its fibre at a point u ∈ C is

(A[−1]⊗ τ∗2rB[−1])u = A[−1]u ⊗B[−1]2r−u

and hence its singularities are contained in the set S ∪ (2r− T ). In particular, the fibre of A[−1]⊗
τ∗2rB[−1] at the point r ∈ C is A[−1]r ⊗ B[−1]r ∼= V ⊗W . We identify this fibre with the nearby

fibre at infinity

Ψ∞((A⊗ τ∗2rB)[−1]) ∼= Ψ∞(A)⊗Ψ∞(B) = V ⊗W

using the path ω : t 7−→ r(2 − e−πit). Note that this is the same path we already used for the

identification (2.5.6.1) (see Figure 2.5.9), which was

G ∗H ∼= G2r

with G = π1(C\S, 1∞) and H = π1(C\T, 1∞). The monodromy action of π1(C\(S∪(2r−T )), 2r)
on the fibre near infinity Ψ∞((A⊗ τ∗2rB)[−1]) corresponds to the action

G ∗H → GL(V ⊗W )

where g ∈ G acts as g⊗idW via the monodromy representation G→ GL(V ) from A, and h ∈ H acts

as idV ⊗h via the monodromy representation H → GL(W ) from B. The fibre of A[−1]⊗ τ∗2rB[−1]
at the singular point si ∈ S is Vi ⊗W , via cospecialisation along the path pi ∈ P2r obtained by

concatenating the standard path from si to r and ω. Similarly, the fibre at the singular point

2r − tj ∈ 2r − T is V ⊗Wj , via cospecialisation along the path qj ∈ P2r obtained by composing

the standard path from tj to r with τ2r and concatenating with ω. These paths are illustrated in

Figure 2.5.9. We have now described the constructible sheaf A[−1]⊗ τ∗2rB[−1] as a representation

of (G2r, P2r). We denote this representation simply by V ⊗W .

Proposition 2.6.5. — The monodromy action of π1(C \ (S + T ), 2r) on the fibre (A ∗ B)[1]2r

corresponds, via the isomorphisms (2.6.3.1), to the action

π1(C \ (S + T ), 2r)→ GL(H1((G2r, P2r), V ⊗W ))
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sending γ ∈ π1(C \ (S + T ), 2r) to the linear map defined by c 7−→ c ◦ β(γ−1) on cocycles, where β

is the braid action of π1(C \ (S + T ), 2r) on G2r and P2r.

Proof. This is a straightforward application of Lemma 2.2.8. Fix an path γ : [0, 1]→ C\(S+T )
representing an element of π1(C \ (S + T ), 2r). We consider the map µ : C× [0, 1]→ C2

defined by

µ(z, t) =

(z, γ(t)− z) for z ∈ C

µ(z, t) = (z,−z) for z ∈ ∂C
,

and the sheaf F = µ∗(A[−1]⊠B[−1]) on C× [0, 1]. The fibre of F at (z, t) is A[−1]z⊗B[−1]γ(t)−z,
and the fibre of F at (1∞, t) is A[−1]∞⊗B[−1]−∞ for all t ∈ [0, 1]. The sheaf F is constructible with

respect to the stratification given by the braid with strands γi(t) = si for si ∈ S and γj(t) = γ(t)−tj
for tj ∈ T . The parallel transport isomorphism (2.2.8.1) specialises to the monodromy action, and

the braid action

β(γ)−1 : (G2r, P2r)→ (G2r, P2r)

is in the setup of Lemma 2.2.8 the isomorphism denoted β : (G(0), P (0)) → (G(1), P (1)), obtained

by continuous deformation of loops and paths. □

2.6.6. — The next step towards the proof of Theorem 2.6.2 consists in identifying the nearby

fibre at infinity of A ∗ B with V ⊗W = Ψ∞(A)⊗Ψ∞(B). To do so, we shall construct a natural

isomorphism

V ⊗W → H1((G2r, P2r), V ⊗W ) ∼= Ψ∞(A ∗B).

by defining for every element x ∈ V ⊗W a cocycle cx ∈ Z1((G2r, P2r), V ⊗W ). As we discussed in

2.2.6, a 1-cocycle c ∈ Z1((G2r, P2r), V ⊗W ) is uniquely determined by the values it takes on the

particular paths p1, . . . , pn, q1, . . . , qm from elements of S∪ (2r−T ) to 1∞, and any choice of values

c(pi) ∈ V ⊗W and c(qj) ∈ V ⊗W determine a cocycle. More precisely, the two-term complex

(V ⊗W )⊕
n⊕
i=1

(Vi ⊗W )⊕
m⊕
j=1

(V ⊗Wj)
d−−−−→

n⊕
i=1

(V ⊗W )⊕
m⊕
j=1

(V ⊗W ) (2.6.6.1)

computes the cohomology H∗((G2r, P2r), V ⊗W ), the class of a cocycle c ∈ Z1((G2r, P2r), V ⊗W )

corresponding to the element (c(pi)
n
i=1, c(qj)

m
j=1) in degree 1 of (2.6.6.1). The differential d is

injective, hence the equality

dim(V ⊗W ) = nm = dimH1((G2r, P2r), V ⊗W ). (2.6.6.2)

Lemma 2.6.7. — Let c : (G2r, P2r) → V ⊗ W be a cocycle. There exists a unique element

x ∈ V ⊗W such that c is cohomologous to the cocycle cx determined by

cx(p1) = · · · = cx(pn) = x and cx(q1) = · · · = cx(qm) = 0.

This element x ∈ V ⊗W is given by

x = κ(c) =

n∑
i=1

(π′i ⊗ id)(c(pi))−
m∑
j=1

(id⊗π′j)(c(qj)).
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Proof. Taking the equality of dimensions (2.6.6.2) into account, the first statement will follow

from the fact that the map x 7−→ [cx] from V ⊗ W to H1((G2r, P2r), V ⊗ W ) is injective. For

this, we will prove that the map [c] 7−→ κ(c) is a well-defined retraction. Indeed, the identities

π′1 + · · · + π′n = idV in End(V ) and π′1 + · · ·π′m = idW in End(W ) show that κ(cx) = x − 0 = x

holds for all x ∈ V ⊗W , and it suffices thus to show that κ(b) = 0 holds for every coboundary

b : (G,P )→ V ⊗W . By inspection of the complex (2.6.6.1), one sees that coboundaries are linearly

spanned by three kinds of elements. First, for every y ∈ V ⊗W the cocycle by determined by

by(p1) = · · · = by(pn) = by(q1) = · · · = by(qm) = y

is a coboundary, and the same identities show that κ(by) = y − y = 0 holds. Secondly, for every

y ∈ Vi ⊗W , the cocycle biy determined by

biy(pi) = y and biy(pl) = 0 for l ̸= i and by(q1) = · · · = by(qm) = 0

is a coboundary. The equality κ(biy) = 0 holds since Vi is the kernel of the projector π′i ∈ End(V ).

Lastly, for every y ∈ V ⊗Wj , the cocycle bjy determined by

by(p1) = · · · = by(pn) = 0 and biy(qj) = y and bjy(ql) = 0 for l ̸= j

is a coboundary, and κ(bjy) = 0 holds since Wj is the kernel of the projector π′j ∈ End(W ). Hence,

we have indeed κ(b) = 0 for every coboundary b. □

Definition 2.6.8. — For any objects A and B of Perv0, we denote by

αA,B : Ψ∞(A)⊗Ψ∞(B)
∼=−−→ Ψ∞(A ∗B)

the isomorphism which sends an element x ∈ V ⊗W = Ψ∞(A)⊗Ψ∞(B) to the class of the cocycle

cx given in Lemma 2.6.7.

2.6.9. — The construction of αA,B is slightly asymmetric in A and B. On two occasions we

treated A and B differently. First, in the choice of the parametrisation z 7−→ (z, 2r − z) of the

affine line {(x, y) ∈ A2 | x+ y = 2r} = sum−1(2r), and secondly in the definition of the cocycle cx.

Interchanging the role of A and B in the construction of cx leads to the isomorphism −αA,B.
In the course of the proof of Theorem 2.6.2, we will need to make the braid action on the

cocycles cx◦ explicit. This is the content of the next lemma.

Lemma 2.6.10. — Pick u ∈ S + T , with entanglement list TL(u) = {(i1, j1), . . . , (id, jd)}, and
pick x ∈ V ⊗W . The values of the cocycle cx ◦ β(γ−1

u ) at the paths p1, . . . , pn, q1, . . . , qm are given

as follows:

cx(β(γ
−1
u )(pi)) = −

∑
il<i

(gil − 1)(hjl − 1)x+

x if i does not occur in TL(u)

hjlx if i = il occurs in TL(u)

cx(β(γ
−1
u )(qj)) = −

∑
jl>j

(gil − 1)(hjl − 1)x+

0 if j does not occur in TL(u)

hjl(1− gil)x if j = jl occurs in TL(u)
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Proof. Before proving the two formulas, we make the following useful observation: The group

G acts on V , and the group H acts on W , and hence the free product G ∗ H acts on V ⊗ W .

Commutators ghg−1h−1 act trivially on V ⊗W . Thus, if c ∈ Z1(G2r, P2r, V ⊗W ) is a 1-cocycle,

then the relation

c(ghg−1h−1y) = c(g) + gc(h) + ghc(g−1) + hc(h−1) + c(y)

holds. Suppose now that c = cx for some element x ∈ V ⊗W . Then we find

x = c(pi) = c(gipi) = c(gi) + gic(pi) = c(gi) + gix,

and hence c(gi) = (1− gi)x, and similarly c(g−1
i ) = (1− g−1

i )x and c(hj) = c(h−1
j ) = 0. This yields

in particular the relation

c(gihjg
−1
i h−1

j y) = c(gi) + gihjc(g
−1) + c(y) = −(gi − 1)(hj − 1)x+ c(y).

The two formulas in the lemma follow from this relation and the formulas given in 2.5.9 for the

inverse braid action. □

Proof of Theorem 2.6.2. Statement (1) is clear from the discussion in 2.6.3, and we have

defined an isomorphism Ψ∞(A ∗ B) ∼= V ⊗ W in Definition 2.6.8, settling statement (2). We

proceed to proving (4). Fix an element u ∈ S + T , and denote by γu the standard loop around u.

As a monodromy operator, γu acts on V ⊗W by sending an element x ∈ V ⊗W to the unique

element y = γux ∈ V ⊗W such that the cocycle cx ◦ β(γ−1
u ) is cohomologous to cy. This element

is y = κ(cx ◦ β(γ−1
u )), where κ is the map given in Lemma 2.6.7. Set x = v ⊗ w. We calculate

γu(v ⊗ w) using the formulas from Lemma 2.6.7 and Lemma 2.6.10. That is,

γu(v ⊗ w) =
n∑
i=1

(π′i ⊗ 1)(cx(β(γ
−1
u )(pi)))−

m∑
j=1

(1⊗ π′j)(cx(β(γ−1
u (qj)))

=
n∑
i=1

−∑
il<i

(π′i ⊗ 1)(v ⊗ w − gilv ⊗ w − v ⊗ hjlw + gilv ⊗ hjlw) +


π′iv ⊗ w

or

π′iv ⊗ hjw


−

m∑
j=1

−∑
jl>j

(1⊗π′i)(v⊗w − gilv⊗w − v⊗hjlw + gilv⊗hjlw) +


0

or

v ⊗ π′jhjw − giv ⊗ π′jhjw


The case distinctions in the first sum are as follows: add π′iv ⊗w if (i, j) does not occur in TL(u),

and add π′iv ⊗ hjw if (i, j) occurs in TL(u). Similarly for the second sum, add 0 if (i, j) does not

occur in the entanglement list of u, and add the given summand if (i, j) occurs.

Now assume that we have v ∈ V ′
a and w ∈ W ′

b for some (a, b) ∈ TL(u), so we have π′iv = δiav

and π′jw = δjbw. The space V ′
a is contained in the invariants of gi for all i ̸= a and similarly W ′

b is

contained in the invariants of hj for all j ̸= b. We find:

∑
il<i

(π′i ⊗ 1)(v⊗w − gilv⊗w − v⊗hjlw + gilv⊗hjlw︸ ︷︷ ︸
= 0 if il ̸= a

) =

0 if a ⩾ i

−π′igav⊗w + π′igav⊗hbw if a < i
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for all 1 ⩽ i ⩽ n, and similarly

∑
jl>j

(1⊗ π′j)(v⊗w − gilv⊗w − v⊗hjlw + gilv⊗hjlw︸ ︷︷ ︸
= 0 if jl ̸= b

) =

0 if b ⩽ j

−v⊗π′jhbw + gav⊗π′jhbw if b > j

for all i ⩽ j ⩽ m. We substitute this in the above expression for γu(v⊗w) and observe that among

the summands where we have case distinctions, only the terms with il = a and jl = b contribute.

The expression for γu(v ⊗ w) becomes thus after some elementary simplifications

γu(v ⊗ w) = v ⊗ hbw +

n∑
i=a+1

π′igav⊗(w − hbw)−
b∑

j=1

(v − gav)⊗π′jhbw. (2.6.10.1)

Interestingly enough, the entanglement list is not involved anymore in this formula. In order

to isolate the piece ecdab of the endomorphism e, we have to apply the projector π′c ⊗ π′d to this

expression, since we already assume (v ⊗ w) = (π′a ⊗ π′b)(v ⊗ w). We distinguish nine cases, as in

the statement of the theorem:

(i) If a < c and b < d, only the term i = c from in the expression (2.6.10.1) contributes, and

we get ecdab(v ⊗ w) = −π′cgaπ′av ⊗ π′dhbπ′bw = −gcav ⊗ hdbw.
(ii) If a < c and b = d, the two terms i = c and j = b = d in (2.6.10.1) contribute, and we get

ecdab(v ⊗ w) = π′cgav ⊗ π′d(w − hbw)− π′c(v − gav)⊗ π′dπ′bhbw = π′cgaπ
′
av ⊗ w = gcav ⊗ w.

(iii) If a < c and b > d, the two terms i = c and j = d in (2.6.10.1) contribute, and we get

ecdab(v ⊗ w) = π′cgav ⊗ π′d(w − hbw)− π′c(v − gav)⊗ π′dhbw = 0.

(iv) If a = c and b < d, only the first term in the expression (2.6.10.1) contributes, and we get

ecdab(v ⊗ w) = v ⊗ π′dhbπ′bw = v ⊗ hdbw.
(v) If a = c and b = d, the first term and the term j = b = d in (2.6.10.1) contribute, so

ecdab(v ⊗ w) = v ⊗ π′bhbw − π′a(v − gav)⊗ π′bhbw = π′agaπ
′
av ⊗ π′bhbπ′bw = gaav ⊗ hbbw.

(vi) If a = c and b > d, the first term and the term j = d in the expression (2.6.10.1) contribute,

so ecdab(v ⊗ w) = v ⊗ π′dhbw − π′a(v − gav)⊗ π′dhbw = π′agaπ
′
av ⊗ π′dhbπ′bw = gaav ⊗ hdbw.

(vii) If a > c and b < d, none of the terms in (2.6.10.1) contributes, so ecdab(v ⊗ w) = 0.

(viii) If a > c and b = d, only the term j = b = d in the expression (2.6.10.1) contributes, and

we find ecdab(v ⊗ w) = −π′c(v − gav)⊗π′dhbw = π′cgav⊗π′bhbπ′bw = gcav ⊗ hbbw.
(ix) If a > c and b > d, only the term j = d in the expression (2.6.10.1) contributes, and we

find ecdab(v ⊗ w) = −π′c(v − gav)⊗π′dhbw = π′cgav⊗π′dhbw = gcav ⊗ hdbw.

It remains to show statement (3) of the theorem. First, let us check (for safety reasons only)

that if (a, b) does not occur in TL(u), then v ⊗ w ∈ V ′
a ⊗W ′

b is fixed under γu. There are cases

to discuss: The index a may occur in TL(u), but if so, then in a pair (a, d) with b ̸= d. Similarly,

b may or may not occur in TL(u), but if so, then in a pair (c, b) with a ̸= c. The expression for
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γu(v ⊗ w) simplifies to

γu(v ⊗ w) =


v ⊗ w if a not in TL(u)
n∑

i=a+1

(π′igav ⊗ w − π′igav ⊗ hdw) + v ⊗ hdw if (a, d) ∈ TL(u)

+


0 if b not in TL(u)
b−1∑
j=1

(−v⊗π′jhbw + gav⊗π′jhbw) + v ⊗ π′bhbw − gcv ⊗ π′bhbw if (c, b) ∈ TL(u)

But as d ̸= b, the vector w ∈W ′
b is invariant under hd, and as c ̸= a, the vector v ∈ V ′

a is invariant

under gc. Hence we find γu(v ⊗ w) = v ⊗ w in all cases, as we wanted. This shows that the space⊕
(a,b)/∈TL(u)

V ′
a ⊗W ′

b ⊆ V ⊗W (2.6.10.2)

is contained in the invariants of γu acting on V ⊗W , as implied by statement (3). If the monodromy

operators gca and hdb are sufficiently generic, then the subspace (2.6.10.2) is exactly the space of

invariants, and hence statement (3) follows by a dimension count.

We now give a direct argument for statement (3). We have to show that the subspace of V ⊗W
defined by (2.6.10.2) is contained in the image of the cospecialisation map

H1(A1, A[−1]⊗ τuB[−1])→ H1(A1, A[−1]⊗ τ2rB[−1]) ∼= V ⊗W (2.6.10.3)

along the standard path γu from u ∈ S + T to 2r. To check this, pick an element

x =
∑

(a,b)/∈TL(u)

va ⊗ wb

and define a cocycle c : (G2r, P2r)→ V ⊗W by setting

c(pi) = (π′i ⊗ id)(x) and c(qj) =

(π′i ⊗ id)(x) if (i, j) ∈ TL(u)

0 otherwise

for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The class of c in H1(A1, A[−1]⊗ τ2rB[−1]) corresponds via
the isomorphism given in Definition 2.6.8 to the element x of V ⊗W as the computation

κ(c) =

n∑
i=1

(π′i ⊗ id)(c(pi))−
m∑
j=1

(id⊗π′j)(c(qj)) =
n∑
i=1

(π′i ⊗ id)(x)−
∑

(i,j)∈TL(u)

(π′i ⊗ π′j)(x) = x− 0

confirms. In other words, c is cohomologous to the standard cocycle cx. It remains to check that

the cocycle c is in the image of the cospecialisation map (2.6.10.3). As in 2.5.11 define paths

p′i = hj1hj2 · · ·hjlpi and q′j = hj1hj2 · · ·hjkqj

where l is the largest integer such that jl occurs in TL(u) and il < i, and where k is the largest

integer such that jl occurs in TL(u) and jl > j. According to the discussions in 2.2.9 and 2.5.11,

if we manage to show that for all (i, j) ∈ TL(u) the equality

c(p′i) = c(q′j)



2.6. COMPUTATION OF THE GLOBAL MONODROMY OF A CONVOLUTION 67

holds, then the class of c is in the image of the cospecialisation map. Indeed, for a pair (i, j) ∈ TL(u)

we have p′i = hj1hj2 · · ·hjlpi and q′j = hj1hj2 · · ·hjlqj for the same integer l. Therefore, setting

h = hj1hj2 · · ·hjl , we find

c(p′i) = c(hpi) = c(h) + hc(pi) = c(h) + hc(qj) = c(hqj) = c(q′j)

as we wanted to show. This finishes the proof of the theorem. □

2.6.11. — Theorem 2.6.2 allows us to explicitly compute convolution powers of an object A of

Perv0, and thus it allows us in principle to determine the type and multiplicity of subobjects of any

convolution power A∗A∗· · ·∗A. This is of course crucial in determining the tannakian fundamental

group of A in the tannakian category Perv0, but to do so we also need to understand the dual

A∨ = ΠD([−1]∗A) of A. There are now two ways to compute the dual explicitly, in the spirit of

Theorem 2.6.2. One way is similar to what was used in the proof of 2.6.2, that is, understanding

how Π, D and [−1]]ast act on standard loops and paths and then expressing the global monodromy

of A∨ in terms of an action on cocycles. A second possibility is to guess the form of A∨, and to

verify that the guess is correct by writing down the evaluation pairing A∨ ∗A→ E(0). We choose

the latter.

Theorem 2.6.12. — Let A be an object of Perv0 and set V = Ψ∞(A). Let S = {s1, . . . , sn} be
the set of singularities of A in western reading order. With respect to standard paths, let

V =

n⊕
i=1

V ′
i , g ∈ End(V )

be the vanishing cycles decomposition and endomorphism encoding the global monodromy of A.

Write π′i : V → V ′
i ⊆ V , and set gca = π′c ◦ g ◦ π′a. The dual object A∨ = ΠD([−1]∗A) has the

following description in these terms:

(1) The set of singularities is −S = T = {t1, . . . , tn} with ti = −sn+1−i.

(2) The nearby fibre at infinity is Ψ∞(A∨) =W = Hom(V,Q), the vector space dual to V .

(3) The vanishing cycles decomposition is given by

W =

n⊕
i=1

W ′
i , W ′

i = Hom(V ′
n+1−i,Q).

(4) The endomorphism h ∈ End(W ) describing the global monodromy of the local system

underlying A∨ is uniquely determined by hca = π′c ◦ h ◦ π′a given as follows

hca =

The evaluation map A ∗ A∨ → E(0) and coevaluation map E(0) → A ∗ A∨ correspond to the

evaluation map V ⊗W → Q, respectively coevaluation map Q→ V ⊗W .

Proof. Let us write B for the object of Perv0 described in the statement of the theorem. We

may calculate A ∗B using Theorem 2.6.2, and all we have to do to prove that B is dual to A is to

verify that the evaluation map ε : V ⊗W → Q comes from a morphism in Perv0, meaning that ε

is compatible with the vanishing cycle decomposition and with monodromy. □
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Example 2.6.13. — We end this section with a concrete example in which we compute an

additive convolution, illustrating Theorem 2.6.2. Consider the polynomial

f(x) = x5 − 5x ∈ C[x]

of degree 5, and regard f as a potential on the variety X = A1. As we have seen in Example 2.3.11,

the object

A = (f∗Q/Q)[1] = Π(f∗Q)

belongs to Perv0. Its singularities are the set S of critical values of f . We aim to describe the

monodromy representation and vanishing cycles decomposition of A and compute the convolution

A ∗A in these terms. We order S in western reading order, that is:

S = {4i,−4, 4,−4i} = {s1, s2, s3, s4}.

Standard loops g1, g2, g3, g4 around these points, generating G = π1(C \ S, 1∞) are illustrated in

Figure 2.6.14. Notice that g2 stays above g3, as per convention of standard paths laid out in 2.5.6.

The monodromy representation associated with f∗Q is the permutation representation associated

Figure 2.6.14. Standard paths gi around si

with the topological covering of degree 5

f : C \ {1, i,−1,−i} → C \ S.

The fibre at a point z ∈ C of this covering is the set of roots of the polynomial f(x)− z. The fibre

at 1∞ is the set −µ5∞, where µ5 stands for fifth roots of unity. If we enumerate fifth roots of unity

in the standard way by exp(2πik/5) for k = 1, 2, 3, 4, 5, the permutation representation ρ : G→ S5

is given by ρ(g1) = (34), ρ(g2) = (35), ρ(g3) = (23) and ρ(g4) = (12). This can be seen by tracing

the roots of f(x)− pi(t) as t runs from 0 to 1.

Figure 2.6.15. Trajectories of the roots of f(x)− pi(t) as t runs from 0 to 1
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That ρ(gi) is a transposition stems from the fact that at the critical value si = pi(0), the

polynomial f(x) − si has one double root, and three simple roots. Let e1, e2, . . . , e5 denote the

canonical basis of Q[−µ5∞] = Q5. The vector e1 + e2 + · · ·+ e5 generates the global invariants of

the representation of G on Q5. With respect to the basis

v1 = e4, v2 = e5, v3 = e1 + e2, v4 = e1

of V = Q5/⟨e1 + · · · + e5⟩, the monodromy representation G → GL4(Q) associated with the

constructible sheaf A[−1] = f∗Q/Q is given by

g1 7−→
(−1 0 0 0

0 1 0 0
−1 0 1 0
0 0 0 1

)
, g2 7−→

( 1 −1 0 0
0 −1 0 0
0 −1 1 0
0 0 0 1

)
, g3 7−→

( 1 0 −1 0
0 1 −1 0
0 0 −1 0
0 0 1 1

)
, g4 7−→

(
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 −1

)
.

The vanishing cycles decomposition of V = Ψ∞(A) is given by V ′
i = ⟨vi⟩, and the endomorphism

g ∈ End(V ) is given by the matrix

g =


−1 −1 −1 0

−1 −1 −1 0

−1 −1 −1 1

0 0 1 −1

 =


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44


made from the relevant columns of gi. We now want to compute the convolution A ∗ A with the

help of Theorem 2.6.2. The set of singularities of A ∗A is the set

S + S = {8i,−4 + 4i, 4 + 4i,−8, 0, 8,−4− 4i, 4− 4i,−8i}

which we already considered in Example 2.5.10. The endomorphism e ∈ End(V ⊗ V ) is, with

respect to the lexicographically ordered basis v1 ⊗ v1, v1 ⊗ v2, . . . , v4 ⊗ v4 is

e =


e1111 e1112 e1113 · · · e1144
e1211 e1212 e1213 · · · e1244
e1311 e1312 e1313 · · · e1344
...

...
...

...

e4411 e1112 e1113 · · · e4444

 =



1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0
−1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0
−1 −1 1 −1 0 0 1 −1 0 0 1 −1 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0
−1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0
−1 −1 0 0 −1 1 1 0 0 1 1 0 0 0 0 0
−1 −1 −1 0 −1 −1 1 −1 0 0 1 −1 0 0 0 0
0 0 1 −1 0 0 1 1 0 0 0 1 0 0 0 0
−1 0 0 0 −1 0 0 0 1 1 1 0 −1 −1 −1 0
−1 −1 0 0 −1 −1 0 0 −1 1 1 0 0 −1 −1 0
−1 −1 −1 0 −1 −1 −1 0 −1 −1 1 −1 0 0 −1 1
0 0 1 −1 0 0 1 −1 0 0 1 1 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 1 1 0 0 −1 1 1 0
0 0 0 0 0 0 0 0 1 1 1 0 −1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 1 1


.

As TL(0) = {(1, 4), (2, 3), (3, 2), (4, 1)}, the vanishing cycles at 0 correspond to the subspace of

V ⊗ V generated by the vectors v1 ⊗ v4, v2 ⊗ v3, v3 ⊗ v2 and v4 ⊗ v1. The matrix e0 of the

monodromy of A ∗A around the standard loop around 0 ∈ S+S can thus be read from the matrix

e as follows: Replace all columns (e∗∗ab) of e with (a, b) /∈ TL(0) with the corresponding columns of
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the identity matrix - et voilà

e0 =



1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 −1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 −1 1 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(e0 − id)|Φ0(A∗A) =



0 1 1 0
0 1 1 0
−1 1 0 0
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0
−1 1 0 0
0 0 1 −1
0 0 0 0
0 −1 −1 0
−1 1 0 0
0 0 0 0
0 0 1 −1
0 0 1 −1
0 0 0 0


.

stands the monodromy operator acting on V ⊗ V = Ψ∞(A ∗ A). Substracting the identity from

e and deleting all columns (e∗∗ab) with (a, b) /∈ TL(0) yields the matrix (e0 − id)|Φ0(A∗A) displayed

above. Its kernel corresponds to the largest trivial subobject of A ∗ A, that is to say, the image of

the canonical map Hom(E(0), A ∗A)→ A ∗A given by evaluation. This matrix has rank three, in

fact, the vector

(v1 ⊗ v4 + v2 ⊗ v3)− (v3 ⊗ v2 + v4 ⊗ v1)

is annihilated by it. In tannakian terms, once introduced, this means that the tannakian funda-

mental group GA ⊆ GL4 of A fixed a nondegenerate alternating bilinear form. This is no surprise:

the dual of the exponential motive M of the form M = H1(A1, f) is given by M∨ = H1(A1,−f).
The polynomial f(x) = x5 − 5x is odd, thus M is isomorphic to its dual via the automorphism

x 7−→ −x of A1, and the perverse sheaf A we considered here is the perverse realisation of M .

2.7. Monodromic vector spaces

In this section, we introduce a local variant of the category Perv0, which we call the category

of monodromic vector spaces. In essence, a monodromic vector space is just a vector space with

an automorphism, but viewed as a perverse sheaf with vanishing cohomology on a small disk.

The tensor product of monodromic vector spaces is given by additive convolution. We will show

that this category is a tannakian category, equivalent to the category of vector spaces with an

automorphism. There are two isomorphic neutral fibre functors for it, the nearby fibre at infinity

functor Ψ∞, and the vanishing cycles functor Φ0. Among all things to check, the main issue is to

show that Ψ∞ and Φ0 are compatible with associativity and commutativity constraints.

Definition 2.7.1. — We call category of monodromic vector spaces and denote by Vecµ the

full tannakian subcategory of Perv0 consisting of those objects whose only singularity is 0 ∈ C.

2.7.2. — There are several interesting enrichments of the category Vecµ, which we will examine

in detail in due time. For instance, one may consider monodromic ℓ-adic Galois representations,

which are defined as lisse, tamely ramified ℓ-adic sheaves on a formal punctured neighbourhood of

0 ∈ A1. That these can be extended to lisse ℓ-adic sheaves on Gm was shown by Katz in [54]. We
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can also enrich local systems to variations of Hodge structures on a punctured disk, so to obtain the

category of monodromic Hodge structures. These structures made their first appearance in [76].

In light of the existence of these enrichments, we try to separate as much as possible topological

arguments as in the previous section from arguments that can be formulated in terms of the six

functors formalism.

2.7.3. — Consider a perverse sheaf A on a disk D = {z ∈ C | |z| < ε}, and suppose that 0 is

the only singularity of A. There is a unique way of extending A to a perverse sheaf on C whose

only singularity is 0 ∈ C. In this section, the distinction between such a sheaf A on D and its

extension to the whole complex plane is irrelevant. In particular, we shall think of monodromic

vector spaces as being perverse sheaves A defined on some disk of unspecified but ideally small size,

locally constant outside 0 and with trivial fibre at 0.

As an abelian category, Vecµ is equivalent to the category of local systems on a punctured disk,

or alternatively, to the category Rep(Z) of vector spaces with an automorphism. Equivalences of

categories inverse to each other are the functors

Φ0 : Vecµ → Rep(Z) and (−)![1] : Rep(Z)→ Vecµ

sending an object of Vecµ to its vanishing cycles near 0, respectively sending a representation of Z
corresponding to a local system L on C\{0} to the perverse sheaf j!L[1], where j : C\{0} → C is the

inclusion, see example 2.3.4. Notice that, when restricted to Vecµ, the functor of vanishing cycles

Φ0 agrees with the functor of nearby cycles Ψ0, and the functor Ψ∞ is obtained as the composite

of Φ0 with the functor Rep(Z) → Rep(Z) sending a vector space with automorphism (V, ρ) to

(V, ρ−1).

Theorem 2.7.4. — The functor of vanishing cycles Φ0 : Vecµ → Rep(Z) and its inverse

(−)![1] : Rep(Z)→ Vecµ are equivalences of tannakian categories.

2.7.5. — Let us spell out in detail what the statement of Theorem 2.7.4 is, and at the same

time outline its proof. First of all, for any two objects A and B of Vecµ, there is a canonical

isomorphism of vector spaces

αA,B : Φ0(A)⊗ Φ0(B)
∼=−−→ Φ0(A ∗B) (2.7.5.1)

which is functorial in A and B. We have already constructed such an isomorphism in 2.6.8. Next,

we have to check that αA,B is compatible with the monodromy automorphisms on both sides of

(2.7.5.1), which is an easy consequence of Theorem 2.6.2. Finally, we have to check that the

construction of αA,B is compatible with associativity and commutativity constraints, which turns

out to be a non-trivial issue. For any two objects A and B of Vecµ, the diagram

Φ0(A)⊗ Φ0(B) Φ0(A ∗B)

Φ0(B)⊗ Φ0(A) Φ0(B ∗A)
��

x

//
αA,B

��
Φ0(x)

//
αB,A

(2.7.5.2)
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has to commute, where x are commutativity constraints, and for any three objects A, B and C of

Vecµ, the diagram

Φ0(A)⊗ Φ0(B)⊗ Φ0(C) Φ0(A ∗B)⊗ Φ0(C)

Φ0(A)⊗ Φ0(B ∗ C) Φ0(A ∗B ∗ C)
��

id⊗αB,C

//
αA,B⊗id

��

αA∗B,C

//
αA,B∗C

(2.7.5.3)

has to commute. In the upper left and lower right corner of (2.7.5.3), the associativity constraints

for the usual tensor product of vector spaces, respectively for the additive convolution are hidden.

The devil made these diagrams! In order to deal with them, we shall study for n = 1, 2, 3 the

categories C(n) of sheaves on An which are zero on the coordinate planes and local systems outside

the coordinate planes, and describe explicitly the following functors between them:

C(3)
R(sum×id)∗

//
R(id×sum)∗ // C(2)

Rsum∗ // C(1) .

Proposition 2.7.6. — For any two objects A and B of Vecµ, the isomorphism αA,B is com-

patible with monodromy operators.

Proof. Set A = j!L[1] and B = j!M [1] for local systems L and M on C \ {0}. The only

singularity of A ∗ B is 0, and hence its fibre at 0 vanishes and A ∗ B is uniquely determined by a

local system on C\{0}. We have to show that this local system is L⊗M . This is a simple instance

of Theorem 2.6.2 where only the case (v) occurs. For convenience, we give a direct proof.

Fix r > 0, and let p and q be standard paths in C from 0 to 1∞ and from 2r to 1∞ respectively,

and let g and h be the corresponding positively oriented generators of G = π1(C\{0, 2r}, 1∞). Let

γ be the positively oriented generator of π1(C \ {0}, 2r). The braid action on path spaces is given

Figure 2.7.16. Loops g and h (left) and γ−1 (right)

by β(γ−1)(p) = hp and β(γ−1)(q) = hgq. Let us denote by V and W the fibres of L and M at r.

The fibre at r of L⊗ τ∗2rM is then V ⊗W . We can identify the fibre

(A ∗B)[−1]2r ∼= H1(A1,⊗τ∗2rj!M)
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with V ⊗ W via the map sending v ⊗ w to the class of the unique cocycle cv⊗w = c satisfying

c(p) = v⊗w and c(q) = 0. This identification is the one we used to produce the isomorphism αA,B in

Definition 2.6.8. According to Proposition 2.6.5, the monodromy action of γ onH1(A1, j!L⊗τ∗2rj!M)

sends the class of the cocycle c to the cocycle c′ = c ◦ β(γ−1), whose values at p and q are

c′(p) = c(β(γ−1)(p)) = c(hp) = c(h) + hc(p)

and

c′(q) = c(β(γ−1)(q)) = c(hgq) = c(h) + hc(g) + hgc(q).

We have v ⊗ w = c(p) = c(gp) = c(g) + gc(p), and hence c(g) = v ⊗ w − gv ⊗ w and by the same

reasoning c(h) = 0, and hence

c′(p) = v ⊗ hw and c′(q) = v ⊗ hw − gv ⊗ hw.

Adding to c′ the coboundary b defined by b(p) = b(q) = −v⊗hw+gv⊗hw we find that the cocycle

c′′ = c′ + b with values

c′′(p) = gv ⊗ hw and c′′(q) = 0

represents the same cohomology class as c′. Hence the equality [cv⊗w ◦ β(γ−1)] = [cgv⊗hw] in

cohomology, which is what we wanted to show. □

Remark 2.7.7. — The reader with a fondness for stars and shrieks might wonder at this point

whether there is a six operations proof of Proposition 2.7.6. As it turns out, such a proof cannot

exist. The reason for that is that the statement of the proposition is false in other contexts with

six functor formalism, for example in the framework of mixed Hodge modules.

2.7.8. — For each integer n ⩾ 1, let C(n) be the category of sheaves on An which are con-

structible with respect to the stratification given by coordinate planes. We give a combinatorial

description of C(n). We equip the set {0, 1}n with its natural partial order, and let I(n) be the

category whose objects are the elements of {0, 1}n, and whose morphisms from α to β are

Mor(β, α) =

(β · Zn)pβα if β ⩽ α

∅ otherwise

where pβα is just a symbol for recovering the source and the target of a morphism. The identity of

α is 0pαα, and the composition law is given by

vpβα ◦ upγβ = γ · (u+ v)pγα

for γ ⩽ β ⩽ α. To give a functor from I(n) to the category of vector spaces is to give for every

α ∈ {0, 1}n a vector space Vα, maps Vβ → Vα for β ⩽ α corresponding to the morphisms 0pβα, and

for each non-zero coordinate of α an automorphism of Vα. These automorphisms are required to

commute with each other and be compatible with the maps Vβ → Vα in the appropriate way. The

category C(n) is canonically equivalent to the category of functors from I(n) to finite-dimensional

vector spaces. With a sheaf F , we associate the functor I(n) → VecQ given by the collection of

vector spaces Vα, where Vα is the fibre of F at α ∈ {0, 1}n ⊆ Cn, the cospecialisation maps Vβ → Vα
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for straight paths from β to α, and the monodromy operators on Vα. In particular for n = 1, 2, 3,

an object of C(n) is a commutative diagram of vector spaces of the following shape:

V0

V1

��

V00

V10 V01

V11

�� ��

�� ��

V000

V100 V010 V001

V110 V101 V011

V111

�� �� ��

�� ���� ���� ��

�� �� ��

(2.7.8.1)

These vector spaces Vα come equipped with commuting automorphisms, one for every non-zero

coordinate of α. For example, on V110 we are given commuting automorphisms g•10 and g1•0. For

the given map p1•0 : V100 → V110, the relations

p1•0g•00 = g•10p1•0 and p1•0 = g1•0p1•0

are satisfied. There is a canonical action of the symmetric group Sn on I(n), and hence on C(n).

In terms of diagrams (2.7.8.1) this action permutes indices; in terms of sheaves this same action is

given by push-forward along the corresponding permutation action on An.

2.7.9. — We shall now describe the functor Rsum∗ : D
b
c(A2) → Db

c(A1) on objects of C(2)

in the combinatorial terms introduced in 2.7.8. Let F be an object of C(2), corresponding to a

commutative diagram of vector spaces

V00

V10 V01

V11

��

p•0

��

p0•

��p1• �� p•1

(2.7.9.1)

and automorphisms g•0 ∈ GL(V10), g0• ∈ GL(V01), and g•1, g1• ∈ GL(V11) satisfying appropriate

compatibilities. Set g•• = g1•g•1 and p•• = p•1p0•. We associate with F the two-term complex

S(F ) = [S0(F )→ S1(F )]

in C(1), in degrees 0 and 1, where S0(F ) and S1(F ) correspond to the columns in the diagram

V00 0

V10 ⊕ V01 ⊕ V11 V11 ⊕ V11
��

p•

//

��
//d
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with cospecialisation map p•(v00) = (p•0(v00), p0•(v00), p••(v00)) together with the monodromy

automorphisms (g•0, g0•, g••) of V10 ⊕ V01 ⊕ V11 and (g••, g••) of V11 ⊕ V11. The differential d is

given by

d(v10, v01, v11) = (v11 − p1•(v10), v11 − p•1(v01))

which makes the whole diagram commute, and is compatible with the automorphisms. As we have

already noticed, the transposition σ ∈ S2 acts on C(2) by permuting indices or coordinates. This

action induces a natural isomorphism S(F ) ∼= S(σ∗F ) given by

0 0

V00 V00

V11⊕V11 V11 ⊕ V11

V10⊕V01⊕V11 V01⊕V10⊕V11

//

��

55

//id

��

��

��

55

s1 //
55d

//s0

55
d

(2.7.9.2)

with s0(v10, v01, v11) = (v01, v10, v11) and s1(v, v
′) = (v′, v).

Lemma 2.7.10. — There is a canonical and natural isomorphism Rsum∗(F ) ∼= S(F ) in the

derived category of constructible sheaves on A1.

Proof. There is an obvious natural isomorphism sum∗F ∼= H0(S(F )). In order to prove the

lemma, we need to show that for any object F of C(2) given in terms of data (2.7.9.1), there is a

natural isomorphism

(Rsum∗(F ))1 ∼= [V10 ⊕ V01 ⊕ V11
d−−→ V11 ⊕ V11]

in the derived category of vector spaces. The fibre (Rsum∗(F ))1 is the complex computing the

cohomology of F restricted to the affine line A1 ≃ sum−1(1), and hence Lemma 2.2.4 and the

particular presentation of the cochain complex (2.2.6.2) provide the canonical isomorphism. □

2.7.11. — We can now reinterpret the isomorphism αA,B from Proposition ?? and reprove

Proposition 2.7.6 using Lemma 2.7.10. Given objects A and B of Vecµ, the constructible sheaves

A[−1], B[−1], and A[−1]⊠B[−1] correspond to objects

0

V
��

and

0

W
��

and

0

0 0

V ⊗W

�� ��

�� ��

in C(1) and C(2) respectively, with V = Φ0(A) and W = Φ0(B). On V and W we are given mon-

odromy automorphisms gV and gW , and on V ⊗W we are given the two commuting automorphisms
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g•1 = gV ⊗ idW and g1• = idV ⊗gW . According to Lemma 2.7.10, A ∗B is the complex

0 0

V ⊗W (V ⊗W )⊕ (V ⊗W )
��

p•

//

��
//d

(2.7.11.1)

in C(1), in degrees −2 and −1, where d is the diagonal map, and the monodromy automorphism

on V ⊗W is g•• = gV ⊗ gW . The isomorphism αA,B is in these terms the map sending the element

v ⊗ w of V ⊗W = Φ0(A)⊗ Φ0(B) to the class of (v ⊗ w, 0⊗ 0) in Φ0(A ∗B) = coker d.

Proposition 2.7.12. — The diagram 2.7.5.2 commutes.

Proof. Pick objects A and B of Vecµ and set V = Φ0(A) andW = Φ0(B). Recall from 2.4.10

that the commutativity constraint in Perv0 is the isomorphism x : A ∗ B → B ∗ A given by the

following composition of natural isomorphisms:

A ∗B = Rsum∗(pr
∗
1A⊗ pr∗2B) definition

= Rsum∗(pr
∗
2B ⊗ pr∗1A) a⊗ b 7−→ −b⊗ a

= Rsum∗σ∗(pr
∗
1B ⊗ pr∗2A)

= B ∗A sum ◦ σ = sum

The catch here is the minus sign, coming from the commutativity constraint in Db
c(A2) and the

fact that A and B sit in degree −1. Rephrased in combinatorial terms, this string of isomorphisms

corresponds to the following isomorphism of complexes in C(1):

A ∗B = [V ⊗W d−−→ (V ⊗W )⊕ (V ⊗W )] definition

= [W ⊗ V d−−→ (W ⊗ V )⊕ (W ⊗ V )] v ⊗ w 7−→ −w ⊗ v
= [W ⊗ V d−−→ (W ⊗ V )⊕ (W ⊗ V )] (s0, s1) from (2.7.9.2)

= B ∗A

Here, each of the two term complexes is in fact a complex of the shape (2.7.11.1), we omitted the

zeroes. The diagram (2.7.5.2) takes the following shape:

V ⊗W coker(V ⊗W → (V ⊗W )⊕ (V ⊗W ))

W ⊗ V coker(W ⊗ V → (W ⊗ V )⊕ (W ⊗ V ))

//
αA,B

��
v⊗w 7−→w⊗v

��
//

αB,A

where the right-hand vertical map is induced by (v ⊗ w, v′ ⊗ w′) 7−→ (−w′ ⊗ v′,−w ⊗ v). The

map αA,B sends v ⊗ w to the class of (v ⊗ w, 0⊗ 0) and the map αB,A sends w ⊗ v to the class of

(w ⊗ v, 0⊗ 0). Commutativity of the diagram now follows from the equality

(0⊗ 0,−w ⊗ v) = (w ⊗ v, 0⊗ 0)

in coker(W ⊗ V → (W ⊗ V )⊕ (W ⊗ V )). □
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2.7.13. — Our next task is to describe the functors R(id×sum)∗ : D
b
c(A3) → Db

c(A2) and also

R(sum3)∗ : D
b
c(A3)→ Db

c(A) on objects of C(3) in similar terms. Fix an object F of C(3) given by

a diagram as on the far right of (2.7.8.1). We associate with it two-term complexes S1,2(F ) and

S2,1(F ) in C(2), and a three-term complex S3(F ) in C(1). Analogously to Lemma 2.7.10, there

will be natural isomorphisms

S1,2(F ) ∼= R(id×sum)∗(F ) (2.7.13.1)

S2,1(F ) ∼= R(sum× id)∗(F ) (2.7.13.2)

S3(F ) ∼= Rsum3
∗(F ) (2.7.13.3)

inDb
c(A2) andDb

c(A1) respectively, where sum3 : A3 → A1 is the summation of all three coordinates.

We define S1,2(F ) to be the two-term complex

V000 0

V100 0

V010⊕V001⊕V011 V011 ⊕ V011

V110⊕V101⊕V111 V111 ⊕ V111

tt

//

tt

��

//

��

��

��tt

//

tt
//d

in C(2), where the differential from left to right is given by

d(v110, v101, v111) = (v111 − p11•(v110), v111 − p1•1(v101))

on V110 ⊕ V101 ⊕ V111. The two monodromy operators on the source of d are (g•10, g•01, g•11)

and (g1•0, g10•, g1••), and the two monodromy operators on the target of d are (g•11, g•11) and

(g1••, g1••), where g1•• = g11• ◦ g1•1. There is only one sensible way of defining the rest of the data

in the complex defining S1,2(F ) in order to have a natural isomorphism (2.7.13.1). Later, we will

use the complex S1,2(F ) only in the special case where all spaces Vα, except possibly V111 are zero,

so in good conscience we leave the remaining details to the reader. The definition of S1,2(F ) is

similar. Applying the construction S(−) from 2.7.9 to the complex [S0
1,2(F ) → S1

1,2(F )] yields a

double complex in C(1) whose associated total complex is the three-term complex in C(1) which

we call S3(F ). Explicitly, this complex is

V000 //

��

0 //

��

0

��
V100

⊕(V010 ⊕ V001 ⊕ V011)
⊕(V110 ⊕ V101 ⊕ V111)

d0 //

(V110 ⊕ V101 ⊕ V111)
⊕(V110 ⊕ V101 ⊕ V111)
⊕(V011 ⊕ V011)
⊕(V111 ⊕ V111)

d1 // (V111 ⊕ V111)
⊕(V111 ⊕ V111)
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with differentials

d0

 v100

v010, v001, v011

v110, v101, v111

 =


v110 − p••0(v000), v101 − p•0•(v000), v111 − p•••(v000)
v110 − p•10(v010), v101 − p•01(v001), v111 − p•11(v011)

v011 − p01•(v010), v011 − p0•1(v001)
v111 − p11•(v110), v111 − p1•1(v101)


and

d1


v110, v101, v111

v′110, v
′
101, v

′
111

v′′011, v
′′′
011

v′′111, v
′′′
111

 =

(
v111 − p11•(v110), v111 − p1•1(v101)
v′111 − p11•(v′110), v′111 − p1•1(v′101)

)

−

(
v′′111, v

′′′
111

v′′111 − p•11(v′′011), v′′′111 − p•11(v′′′011)

)
.

We could as well have defined S3(F ) as the total complex associated with the double complex that

one obtains by applying S(−) to the complex [S0
2,1(F )→ S1

2,1(F )] in C(2), the outcome is the same.

Proposition 2.7.14. — The diagram (2.7.5.3) commutes.

Proof. Let A,B, and C be objects of Perv0 and set U = Φ0(A), V = Φ0(B), andW = Φ0(C).

The constructible sheaf (A⊠B⊠C)[−3] on A3 is the object of C(3) corresponding to the diagram

0

0 0 0

0 0 0

U ⊗ V ⊗W

zz �� $$

�� $$zz $$zz ��

$$ �� zz

with monodromy operators g•11 = gU⊗idV ⊗ idW , g1•1 = idU ⊗gV⊗idW , and g11• = idU ⊗ idV ⊗gW .

The convolution A ∗B is given by the two term complex

0 0

U ⊗ V (U ⊗ V )⊕ (U ⊗ V )
��

//

��
//

dU,V

in C(1) placed in degrees −2 and −1, with differential the diagonal map. The triple convolution

A ∗B ∗ C = Rsum3
∗(A⊠B ⊠ C) is the three term complex S3(A⊠B ⊠ C)

0 0 0

U ⊗ V ⊗W (U ⊗ V ⊗W )⊕4 (U ⊗ V ⊗W )⊕4
��

//

��

//

��
//

d0U,V,W //
d1U,V,W



2.8. THE NEARBY FIBRE AT INFINITY AND VANISHING CYCLES AS FIBRE FUNCTORS 79

in C(1), placed in degrees −3,−2 and −1, where d0U,V,W is the diagonal map and

d1U,V,W (x1, x2, x3, x4) = (x3 − x1, x4 − x1, x3 − x2, x4 − x2).

In these terms, the diagram (2.7.5.3) whose commutativity we are about to check takes the following

shape.

U ⊗ V ⊗W coker(dU,V )⊗W

U ⊗ coker(dV,W ) coker(d1U,V,W )
��

id⊗αB,C

//
αA,B⊗id

��

αA∗B,C

//
αA,B∗C

The map αA,B ⊗ id is u ⊗ v ⊗ w 7−→ [u ⊗ v, 0 ⊗ 0] ⊗ w, and id⊗αB,C is given by the analogous

formula u⊗ v ⊗ w 7−→ u⊗ [v ⊗ w, 0⊗ 0]. The isomorphisms αA∗B,C and αA,B∗C are

αA∗B,C : [u⊗ v, u′ ⊗ v′]⊗ w 7−→ [u⊗ v ⊗ w, u′ ⊗ v′ ⊗ w, 0, 0]

αA,B∗C : u⊗ [v ⊗ w, v′ ⊗ w′] 7−→ [u⊗ v ⊗ w, 0, u⊗ v′ ⊗ w′, 0]

and hence both compositions in the square send u⊗ v ⊗ w to the class [u⊗ v ⊗ w, 0, 0, 0]. □

2.8. The nearby fibre at infinity and vanishing cycles as fibre functors

In this section, we prove that the nearby fibre at infinity functor Ψ∞ : Perv0 → Vec is a fibre

functor on the tannakian category Perv0. We already know from Proposition 2.3.7 that Ψ∞ is

faithful and exact, and it remains to show that Ψ∞ is compatible with tensor products. Besides

the fibre functor Ψ∞, there is another interesting and useful fibre functor

Φ: Perv0 → VecQ

which sends an object of Perv0 to the sum over z ∈ C of its vanishing cycles at z. We obtain

from Φ not just a vector space, but a C-graded vector space, where each graded piece is equipped

with an automorphism given by the local monodromy operator as was recalled in 2.1.19. That the

functor Φ is compatible with the additive convolution, even if we enrich it to a functor

Φ: Perv0 → {C-graded representations of Z}

is essentially the statement of the Thom–Sebastiani theorem for functions in one variable, except

that we deal here with a global version of it.

Theorem 2.8.1. — The nearby fibre at infinity Ψ∞ : Perv0 → Vec is a fibre functor.

Proof. Given an object F [1] of Perv0, let us call monodromic nearby fibre at infinity the

monodromic vector space

Ψµ
∞(F [1]) = j!u

∗F [1]
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where j : C \ {0} → C is the inclusion and u : C \ {0} → C is the function u(ceiθ) = max(r, c−1)e−iθ

for some real r, larger than the absolute value of each singularity of F . The functor Ψ∞ factors as

Perv0
Ψµ∞−−−→ Vecµ

Φ0−−−→ Vec

and by Theorem 2.7.4, the vanishing fibre functor Φ0 is a fibre functor on the tannakian category

of monodromic vector spaces Vecµ. It suffices thus to show that the monodromic nearby fibre at

infinity functor Ψµ
∞ is compatible with tensor products. This is a six-operations exercise.

C× C C× × C× C× C

C C× C
��

sum

//j×joo u×u

��

sum

//joo u

We have to show that for a sheaf F ⊠G on C×C in the upper left corner of the diagram, we have

a natural isomorphism of sheaves

Rsum∗(j × j)!(u× u)∗(F ⊠G) ∼= j!u
∗Rsum∗(F ⊠G)

on the copy of C sitting on the lower left corner in the diagram. □

Definition 2.8.2. — We call total vanishing cycles functor the functor

Φ: Perv0 −→ {C-graded representations of Z}

A 7−→
⊕
z∈C

Φz(A)

where the Z-action on the vanishing cycles Φz(A) is induced by the local monodromy on the fibre

of A near z, as explained in 2.1.19.

Theorem 2.8.3 (Thom–Sebastiani). — The total vanishing cycles functor is exact, faithful and

monoidal: for all objects A and B of Perv0, there exist functorial isomorphisms

Φ(A ∗B) ∼= Φ(A)⊗ Φ(B) (2.8.3.1)

Φ(A∨) ∼= Φ(A)∨ (2.8.3.2)

in the category of C-graded representations of Z, which are compatible with associativity, commu-

tativity, and unit constraints.

Corollary 2.8.4. — The composite of Φ with the forgetful functor to vector spaces is a fibre

functor on the tannakian category Perv0.

2.8.5. — Before we start with the proof, let us summarise what we have to show and how we

will show it. First of all, we need to check that the functor Φ is faithful and exact. This is not

difficult, and part of Proposition 2.8.6 where we show that Ψ∞ and Φ are isomorphic as additive

functors Perv0 → VecQ. The essential part of Theorem 2.8.3 is of course the existence of the

isomorphisms (2.8.3.1) and (2.8.3.2). We produce them in two steps. First, we interpret vanishing
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cycles as objects in the tannakian category VecµQ of local systems on a small punctured disk with

additive convolution as tensor product. The latter is equivalent to the full tannakian subcategory

of Perv0 consisting of those objects whose only singularity is at 0 ∈ C. If vanishing cycles are

interpreted this way, it is quite straightforward to check that the total vanishing cycles functor is

monoidal. The second step consists in the use of Theorem 2.7.4, which states that the category

VecµQ is equivalent as a tannakian category to the category of representations of Z for the usual

tensor product.

Proposition 2.8.6. — There exists an isomorphism of additive functors between the nearby

fibre at infinity Ψ∞ : Perv0 → VecQ and the total vanishing cycles functor Φ: Perv0 → VecQ. In

particular, Φ is faithful and exact.

Proof. By virtue of Lemma 2.1.20, the vanishing cycles functor Φz : Perv → VecQ is exact

for every z ∈ C, and the inclusion Perv0 → Perv is exact, and hence Φ is exact. Fix a finite

set of singularities S ⊆ C, and denote by Perv0(S) the full subcategory of Perv0 consisting of

those objects whose singularities are contained in S. We can regard Perv0(S) as the category of

representations of (G,PS), where G is the fundamental group of C \ S based at 1∞, and Ps is the

G-set of paths from s to 1∞. Let F [1] be an object of Perv0(S) corresponding to a representation

V = (V, (Vs)s∈S , ρ, (ρs)s∈S). By choosing for each s ∈ S a path p0s ∈ Ps from s to 1∞ we can

identify the nearby cycles of F at s with the fibres at 1∞, that is, with the vector space V . In

particular, vanishing cycles are in these terms identified with

Φs(F ) ∼= coker(p0s : Vs → V )

functorially for morphisms in Perv0(S). Since the cohomology H∗(A1, F ) vanishes, the diagonal

morphism

Ψ∞(F [1]) = V
diag−−−−→

⊕
s∈S

coker(p0s : Vs → V ) = Φ(F [1])

is an isomorphism, functorial for F [1] in Perv0(S). We have thus far constructed an isomorphism

of functors

Ψ∞|Perv0(S) → Φ|Perv0(S) (2.8.6.1)

from Perv0(S) to VecQ depending on the choice of a path p0s ∈ Ps for each s ∈ S. Consider

now a finite set S′ ⊆ C containing S, and the corresponding fundamental group G′ and G′-sets of

paths P ′
s for s ∈ S′. The canonical group homomorphism G′ → G is surjective, and also the maps

P ′
s → Ps are surjective for each s ∈ S. This implies that the isomorphism of functors (2.8.6.1) can

be extended to the larger subcategory Perv0(S
′). The choice of an element

p0s ∈ lim
s∈S

Ps

for each s ∈ C, where the limit runs over all finite subsets S ⊆ C containing s, yields an isomorphism

of additive functors Ψ∞ ≃ Φ as claimed. □
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We define monodromic vanishing cycles at z ∈ C as the functor

Φµz : Perv0 → VecµQ

F [1] 7−→ Π0(δ
∗
zF [1])

where δz is the translation map sending a small D disk around 0 to a small disk around z containing

no singularities of F except possibly z, and Π0 is the functor sending a perverse sheaf A on D to

Π0(A) = coker(π∗π∗A→ A)

where π is the map from D to a point. The total vanishing fibres functor as introduced in Definition

2.8.2 is thus the composite of the functor

Perv0
Φµ−−−→ {C-graded monodromic vector spaces}

F [1] 7−→
⊕
z∈C

Φµz (F [1])

and the functor Φ0.

Proposition 2.8.7. — The total monodromic vanishing cycles functor is exact, faithful and

monoidal: for all objects F [1] and G[1] of Perv0, there exist functorial isomorphisms

Φµ(F [1] ∗G[1]) ∼= Φµ(F [1])⊗ Φµ(G[1]) (2.8.7.1)

Φµ(F [1]∨) ∼= Φµ(G[1])∨ (2.8.7.2)

in the category of C-graded monodromic vector spaces which are compatible with associativity, com-

mutativity and unit constraints.

Proof. Constructing a functorial isomorphism of graded monodromic vector spaces (2.8.3.1)

for objects F [1] and G[1] of Perv0 amounts to constructing, for any fixed t ∈ SF + SG, an isomor-

phism of monodromic vector spaces

Φµt (F [1] ∗G[1])
∼=−−→

⊕
r+s=t

Φµr (F [1])⊗ Φµs (G[1]) (2.8.7.3)

where the direct sum ranges over all pairs or singularities (r, s) ∈ SF × SG with r + s = t. Fix a

pair (r, s) ∈ SF × SG with r + s = t and disks δr : Dr → C, δs : Ds → C, and δt : Dt → C centered

at r, s, and t. By choosing Dr and Ds small enough, we may suppose that the box Dr,s = Dr×Ds

is contained in U = sum−1(Dt), as pictured in Figure 2.8.17.

The tensor products on the right-hand side of (2.8.7.3) are tensor products of monodromic

vector spaces, so in fact additive convolutions, namely

Φµr (F [1])⊗ Φµs (G[1]) = Rsum∗(Π0δ
∗
rF [1]⊠Π0δsG[1])

= R1sum∗(δ
∗
r,s(F ⊠G))[1]

= δ∗tR
1sum∗((F ⊠G)|Dr,s)[1] .

On the other hand, the monodromic vanishing cycles of F [1] ∗G[1] near t are by definition

Φµt (F [1] ∗G[1]) = Π0δ
∗
tRsum∗(F ⊠G)

= δ∗tR
1sum∗((F ⊠G)|U )[1]
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Figure 2.8.17. Boxes and disks

so there is a natural morphism of monodromic vector spaces

pr,s : Φ
µ
t (F [1] ∗G[1])→ Φµr (F [1])⊗ Φµs (G[1])

induced by the inclusion of Dr,s into U . By collecting these morphisms for all (r, s) ∈ SF ×SG with

r + s = t we obtain a morphism as displayed in (2.8.7.3), and hence a morphism

Φµ(F [1] ∗G[1]) −−−→ Φµ(F [1])⊗ Φµ(G[1]) (2.8.7.4)

of C-graded monodromic vector spaces. This morphism is functorial in A and B, and compatible

with commutativity, associativity and unit constraints. Duals in Perv0 are given by

F [1]∨ = Π([−1]∗D(F [1]))

as we saw in Proposition 2.4.9, and duals in VecµQ are similarly defined using Π0 instead of Π. We

find a functorial isomorphism

Φµ(F [1]∨) −−−→ Φµ(F [1])∨ (2.8.7.5)

and it remains to show that (2.8.7.4) is an isomorphism. This follows by general tannakian nonsense

from (2.8.7.5) and compatibility of (2.8.7.4) with the constraints. Indeed, an inverse to (2.8.7.5) is

the composite morphism

Φµ(F [1])⊗ Φµ(G[1]) → Φµ(F [1] ∗G[1] ∗G[1]∨)⊗ Φµ(G[1])

→ Φµ(F [1] ∗G[1])⊗ Φµ(G[1])∨ ⊗ Φµ(G[1])

→ Φµ(F [1] ∗G[1])

where at first we use coevaluation in Perv0, then we use (2.8.7.4) and (2.8.7.5), and at last we use

evaluation in VecµQ. □

Proof of Theorem 2.8.3. All the work is done, we just have to summarise. □
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2.9. The structure of the fundamental group of Perv0

In this section, we explore structural properties of the tannakian fundamental group of the

category Perv0, such as connected components, characters, abelianisation, etc. This will of course

always have to be done through categorical properties of Perv0.

2.9.1 (Connected components). — We first show that the group of connected components of

the fundamental group of Perv0 is isomorphic to Ẑ, viewed as a constant group scheme over Q.

Lemma 2.9.2. — Denote by j : A1 \ {0} → A1 the inclusion. If the tannakian fundamental

group of an object A = F [1] of Perv0 is finite, then j∗F is a local system with finite monodromy

on A1 \ {0} and F = j!j
∗F holds. Conversely, for any local system V on A1 \ {0} with finite

monodromy, j!V [1] is an object of Perv0 with finite tannakian fundamental group.

Proof. Recall that a tannakian category has a finite fundamental group if and only if it is

generated as an abelian linear category by finitely many objects, as explained in A.2.1 from the

appendix. Thus, if the tannakian fundamental group of A is finite, there exists a finite set S ⊆ C
containing the singularities of A and of all tensor constructions of A. But, if s ∈ C is a singularity

of A, then 2s is a singularity of the tensor square of A, and hence 2S ⊆ S. This forces S = {0} as
required, and in particular j∗F is a local system.

For any object A = F [1] of Perv0 whose only singularity is 0, the equality A = j!j
∗F [1] holds,

and for any local system V on A1 \{0} the perverse sheaf j!V [1] belongs to Perv0. To complete the

proof, it remains to show that the tannakian fundamental group of A is the same as the monodromy

group of the local system j∗F . Indeed, the functor

j!(−)[1] : {Local systems on A1 \ {0}} → Perv0

is fully faithful and compatible with tensor products and duals for the usual tensor structure on

local systems by Theorem 2.7.4. □

Theorem 2.9.3. — Let G be the tannakian fundamental group of the category Perv0, and denote

by G0 ⊆ G the connected component of the unity. There is a canonical short exact sequence

1→ G0 → G→ Ẑ→ 0,

where Ẑ = limZ/nZ is the profinite completion of Z, viewed as a constant group scheme over Q.

Proof. This follows from Lemma 2.9.2 and the general tannakian formalism. Indeed, it suffices

to observe that in any tannakian category T with fundamental group G, the full subcategory

T0 consisting of those objects that have finite fundamental groups is a tannakian subcategory,

corresponding to representations of the group of connected components G/G0. Lemma 2.9.2 states

that objects of Perv0 with finite tannakian fundamental group are local systems on A1 \ {0} with
finite monodromy, or equivalently, Q-linear representations of Z with finite image. The tannakian

fundamental group of the category of Q-linear representations of Z with finite image is Ẑ. □
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2.9.4 (The torus of singularities). — In studying the fundamental group of an object in a

tannakian category, it is often useful to look for tori contained in it. In the case of Perv0, there is

a remarkable one: from Theorem 2.8.3 we obtain a morphism of affine group schemes

Φ∗ : π1(CRep(Z)) −−→ π1(Perv0,Φ),

which will turn out to be a closed immersion. We want to understand its image. If we forget the

Z-action on the right-hand side, the corresponding fundamental group becomes a protorus with

character group the additive group C, viewed as the union of its finitely generated subgroups. We

obtain thus a split subtorus of π1(Perv0,Φ). We call it torus of singularities.

2.9.5. — The tannakian category of C-graded, Q-linear representations of Z is easy to under-

stand. It comes with a forgetful functor to the category of vector spaces which we take as a fibre

functor. We can of course also just forget the C-grading and keep the Z-action, or vice versa. The

fundamental group of the category of C-graded representations of Z is indeed a product

π1
(
CRep(Z)

)
= T ×G,

where T is the fundamental group of the tannakian category of C-graded vector spaces, and G is

the fundamental group of the tannakian category of vector spaces with an automorphism. The

groups T and G can be described explicitly as follows, though this description is not particularly

useful. The group T is the protorus defined by

T = lim
Γ⊆C

Hom(Γ,Gm),

where the limit runs over all finitely generated subgroups Γ of C ordered by inclusion, and transition

maps Hom(Γ,Gm)→ Hom(Γ′,Gm) are given by restriction for Γ′ ⊆ Γ. Alternatively, we can define

T = SpecA, where A is the Hopf algebra over Q generated by a set of variables {Xz | z ∈ C},
modulo the relations XwXz = Xw+z. These relations imply in particular X0 = 1 and Xn

z = Xnz.

The comultiplication is defined by Xz 7−→ Xz ⊗Xz and the antipode by Xz 7−→ X−z. The group

G is the proalgebraic completion of Z. It can be given as a limit

G = lim
(φ,Gφ)

Gφ

running over all pairs (φ,Gφ) consisting of an algebraic group Gφ over Q and a group homomor-

phism φ : Z → Gφ(Q) with Zariski dense image. Transition maps are the evident ones. Notice

that, while T is connected, the group of connected components of G is canonically isomorphic to

the profinite completion of Z, seen as a constant affine group scheme over Q.

Proposition 2.9.6. — The morphism Φ∗ is a closed immersion. Moreover, Φ∗ induces an

isomorphism on the groups of connected components.

Proof. By Lemma A.3.2, the morphism Φ∗ is a closed immersion if and only if every C-graded
representation of Z is a subquotient of Φ(A) for some A ∈ Perv0. Let V be a C-graded represen-

tation of Z, and let us prove that there exists an object A of Perv0 such that Φ(A) is isomorphic
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to V as C-graded representation of Z. We assume without loss of generality that V is indecom-

posable, and hence pure of some degree z ∈ C for the C-grading. In other words, we are given a

complex number z, a vector space V and an automorphism µ : V → V , and it suffices to construct

an object A of Perv0 whose space of vanishing cycles at z is isomorphic to V , as a vector space

with automorphism. There is indeed a canonical choice for A, namely

A = (jz)!L[1]

where jz : C \ {z} → C is the inclusion, and L is the local system on C \ {z} with general fibre

V and monodromy µ around z. To say that Φ∗ induces an isomorphism on groups of connected

components is to say that the functor Φ restricts to an equivalence Φf between the respective

tannakian subcategories of objects with finite fundamental group, as shown in the diagram

Perv0 Pervf0

CRep(Z) CRep(Z)f .
��

Φ

oo ⊇

��

Φf

oo ⊇

This is obvious from the characterisation of objects with finite fundamental group in Perv0 and

the fact that an object of CRep(Z)f has a finite fundamental group if and only if it is pure of

degree 0 ∈ C and 1 ∈ Z acts through an automorphism of finite order. An inverse to the functor Φf

is given by regarding a representation of Z as a local system V on A1 \ {0} and associating with it

the object j!V [1] of Perv0. □

2.9.7. — Let A be an object of Perv0 with fundamental group G. By Proposition 2.9.6, we can

identify the tannakian fundamental group of Φ(A) with a closed subgroup H of G. It is not true

in general that this inclusion induces an isomorphism on the groups of connected components, but

the homomorphism of finite groups

H/H◦ −→ G/G◦

is surjective. According to Lemma A.3.2, this amounts to say that the functor Φ′ : ⟨A⟩f → ⟨Φ(A)⟩f

induced by Φ is fully faithful and that its essential image is stable under taking subquotients.

Indeed, Φ′ is fully faithful because it is also the restriction of the equivalence of categories Φf .

Being the category of representations of a finite group, ⟨ΦA⟩f is semisimple. Each subobject of

an object Φ′(B) in the essential image of Φ′ is therefore the kernel of a projector which lifts to a

projector of B. Hence, the essential image of Φ′ is stable under taking subobjects, and similarly

for quotients.

Example 2.9.8. — Let A be an object of Perv0 whose set of singularities S has as many

elements as the dimension of A. Denote by G the fundamental group of A and by H ⊆ G the

fundamental group of Φ(A). The C-graded representation Φ(A) of Z can be written as

Φ(A) =
⊕
s∈S

Q(s, λs),
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where Q(s, λ) denotes the one-dimensional object of CRep(Z)f with degree s and where 1 ∈ Z acts

as multiplication by λ ∈ Q×. Every object of the category ⟨Φ(A)⟩ is a finite sum of one-dimensional

objects of the form Q(t, α) with t =
∑

s ass and α =
∏
s λ

as
s for some integers (as)s∈S . Objects

with finite fundamental group are sums of those Q(t, α) where t = 0 and α ∈ {1,−1}. Thus, the

group H/H◦ of connected components of Φ(A) is equal to Z/2Z if there exist integers (as)s∈S with

the property ∑
s∈S

ass = 0 and
∏
s∈S

λass = −1

and H is connected otherwise. In the former case, G/G◦ is either trivial or Z/2Z, and in the latter

case also G is connected.

Let us examine the particular case where A = (f∗Q/Q)[1] for some polynomial f ∈ C[x] of
degree n with n−1 distinct critical values S. Since the fibre f−1(s) at each s ∈ S consists of exactly

n − 1 points, the local monodromy around s of the ramified cover defined by f is a transposition

according to Example 2.3.11, and hence λs = −1 for all s. From the general discussion, we thus

deduce that the tannakian fundamental group of the object A ⊗ Q(−1/2) of Perv0 is connected.

Therefore, the fundamental group G of A is either connected or has two connected components.

Definition 2.9.9. — Let M be an object of a neutral tannakian category with fibre functor ω,

and let G be the tannakian fundamental group ofM acting on the vector space V = ω(M). We say

that M is Lie-irreducible or Lie-simple if the corresponding Lie algebra representation of Lie(G)

on V is irreducible.

2.9.10. — Let G be an algebraic group with Lie algebra g. If a representation of G is Lie-

irreducible, then it is irreducible, but there may exist irreducible representations of G which are

not Lie-irreducible (e.g. any irreducible representation of dimension ⩾ 2 of a finite group). For

connected groups, the notions of irreducibility and Lie-irreducibility coincide. This follows from

the fact that the faithful exact functor

{Representations of G} → {Representations of g}

is full if G is connected. Indeed, if G is connected, then the equality V G = V g holds for any

representation V of G [84, Cor. 24.3.3], and hence the equality

HomG(V,W ) = (V ∨ ⊗W )G = (V ∨ ⊗W )g = Homg(V,W )

holds for any two G-representations V andW . A representation of a group G is thus Lie-irreducible

if and only if its restriction to the connected component of the unity is irreducible. We have already

classified the simple objects of Perv0 in Lemma 2.3.13, and now want to understand which among

them are Lie-irreducible. This requires some understanding of the group of connected components

of the tannakian fundamental group of Perv0.

2.9.11 (Extensions). —
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Theorem 2.9.12. — Let G be the tannakian fundamental group of the category Perv0 and let

V be a finite-dimensional representation of G. Then Hn(G,V ) = 0 for all n ⩾ 2. In other words,

the cohomological dimension of G is 1.

Proof. Let F [1] be an object of Perv0, corresponding to a representation V of G. The sub-

space of fixed vectors V G ⊆ V then corresponds via tannakian duality to the subobject π∗π∗j∗j
∗F [1]

of F [1], where

π : A1 → Spec k and j : A1 \ {0} → A1

are the structure morphism and the inclusion. Therefore, since π∗ and j∗ are exact, the cohomolog-

ical dimension of the functor V 7−→ V G is the same as the cohomological dimension of the functor

(π ◦ j)∗, which is equal to 1 by Artin’s vanishing theorem 2.1.10 and because A1 \ {0} is an affine

variety of dimension 1. □

2.9.13 (Characters). —

Definition 2.9.14. — We call an object of a neutral tannakian category abelian if its tannakian

fundamental group is commutative.

Proposition 2.9.15. — An object of Perv0 is abelian if and only if it is isomorphic to a direct

sum of objects with only one singularity.

Proof. An object of Perv0 which has only one singularity is of the form E(z) ⊗ A where A

is an object whose only singularity is at 0 ∈ C. In other words, A is a monodromic vector space,

corresponding to a representation Z→ GLn(Q). The fundamental group of A is the Zariski closure

of the image of this representation, and hence A is abelian. The fundamental group of E(z) is

trivial if z = 0 and Gm otherwise, and hence E(z) is abelian. One implication of the proposition

follows thus from the general observation that in whatever neutral tannakian category, any tensor

construction of abelian objects is abelian. Conversely, let A be an abelian object in Perv0, so the

fundamental group G = GA of A is a commutative algebraic group over Q. Write S for the set of

singularities of A, and TS for the split torus dual to the group ZS generated by the set of complex

numbers S. The object A corresponds to a finite-dimensional, faithful representation V of GA. We

can decompose the vector space V into eigenspaces

V =
⊕
s∈S

Vs

for the action of the torus TS . The eigenspace corresponding to an element in ZS is zero unless

it belongs to S. Since GA is commutative, and hence in particular TS is central in GA, this

decomposition is compatible with the action of GA on V . In other words, the above eigenspace

decomposition is a decomposition

A =
⊕
s∈S

As

of A into a direct sum, where each summand As has only one singularity s ∈ S. □
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Corollary 2.9.16. — A one-dimensional object of Perv0 is isomorphic to (jz)!Fλ[1] where Fλ

is the local system with monodromy λ ∈ Q× on A1 \ {z}.

Proof. A one-dimensional object of Perv0 is abelian, irreducible and non-zero, and hence has

exactly one singularity, say z, with trivial fibre at z. □





CHAPTER 3

Three points of view on rapid decay cohomology

In this chapter, we present three different constructions of rapid decay cohomology. We first

repeat the elementary definition from the introduction and give a few examples. Next, we associate

with a tuple [X,Y, f, n] an object of the category Perv0 whose nearby fibre at infinity is the rapid

decay cohomology group Hn
rd(X,Y, f). This enables us to derive the statement analogous to Nori’s

basic lemma for rapid decay cohomology from Beilinson’s basic lemma for perverse sheaves, which

will be a key ingredient in the definition of a tensor product for exponential motives in Chapter 4.

In the case where X is a smooth variety and Y a normal crossing divisor, we express rapid decay

cohomology as usual relative cohomology, without any limiting process, on the real blow-up of a

good compactification, a point of view that will be useful to prove the comparison isomorphism

between rapid decay and de Rham cohomology in Chapter 7. Finally, we introduce cup products,

the Künneth formula, and Poincaré-Verdier duality for rapid decay cohomology.

3.1. Elementary construction

For each real number r, let Sr be the closed complex half-plane Sr = {z ∈ C | Re(z) ⩾ r}.
Throughout this section, all homology and cohomology groups are understood to be singular ho-

mology and cohomology with rational coefficients.

Definition 3.1.1. — Let X be a complex variety, Y ⊆ X a closed subvariety, and f a regular

function on X. For each integer n ⩾ 0, the rapid decay homology group in degree n of the

triple [X,Y, f ] is defined as the limit

Hrd
n (X,Y, f) = lim

r→+∞
Hn(X,Y ∪ f−1(Sr)). (3.1.1.1)

The limit is taken in the category of Q-vector spaces, with respect to the transition maps on relative

singular homology induced by the inclusions f−1(St) ⊆ f−1(Sr) for t ⩾ r. Dually, the rapid decay

cohomology group in degree n of the triple [X,Y, f ] is the colimit

Hn
rd(X,Y, f) = colim

r→+∞
Hn(X,Y ∪ f−1(Sr)) (3.1.1.2)

with respect to the transition maps on relative singular cohomology induced by the same inclusions.

Whenever the subvariety Y is empty, we shall drop it from the notation.

91
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3.1.2. — Given X, Y , and f as in 3.1.1, there exists a real number r0 such that, for all r ⩾ r0

and all z ∈ Sr, the inclusions

Y ∪ f−1(z) ⊆ Y ∪ f−1(Sr) ⊆ Y ∪ f−1(Sr0) (3.1.2.1)

are homotopy equivalences, and hence the transition maps in (3.1.1.1) and (3.1.1.2) are eventu-

ally isomorphisms. Indeed, it follows from resolution of singularities and Ehresmann’s fibration

theorem (see e.g. [87, Prop. 9.3]) that, given any morphism of complex algebraic varieties, in our

case f : X → A1, there exists a non-empty Zariski open subset U of the target space, in our case

the complement of a finite subset of A1, such that f−1(U) → U is a fibre bundle for the complex

topology (see also [86, Cor. 5.1]). Together with the well-known fact that complex algebraic vari-

eties admit a finite triangulation, this implies that rapid decay homology and cohomology groups

are finite-dimensional vector spaces dual to each other. They depend naturally on [X,Y, f ] for the

obvious notion of morphisms of such triples, that is, morphisms h : X → X ′ such that h(Y ) ⊆ Y ′

and f ′ ◦ h = f . If f is constant, we recover the usual singular homology of the pair [X,Y ], since in

that case the set f−1(Sr) is empty for big r. For sufficiently large r, we obtain isomorphisms

Hn
rd(X,Y, f)

∼= Hn(X,Y ∪ f−1(z)) (3.1.2.2)

for any z ∈ C with Re(z) ⩾ r. These isomorphisms (3.1.2.2) are natural in the sense that, if a

finite family of triples [Xα, Yα, fα] and morphisms between them are given, then for any z ∈ C with

sufficiently large real part the isomorphism (3.1.2.2) is natural with respect to the given morphisms.

Example 3.1.3. — Let X = A2 = SpecC[x, y], together with the regular function f(x, y) = xayb

for two integers a, b ⩾ 1. If a and b are coprime, the curve f−1(r) ⊆ X is isomorphic to Gm as long

as r ̸= 0. In general, if d denotes the greatest common divisor of a and b, the subvariety f−1(r) is

a finite disjoint union of copies of Gm indexed by the group of roots of unity µd(C). From the long

exact sequence of relative cohomology

0→ H0(A2)→ H0(f−1(r))→ H1(A2, f−1(r))→ H1(A2)→ H1(f−1(r))→ H2(A2, f−1(r))→ 0,

it follows that dimH1
rd(X, f) = d− 1 and dimH2

rd(X, f) = d.

Example 3.1.4. — Set X = G2
m = SpecC[u±1, v±1], and f(u, v) = u+ v + (uv)−1. In order to

compute the rapid decay homology of (X, f), we need to understand the topology of the hypersur-

face f(u, v) = r for large real r. Let us look at X as the zero locus of xyz−1 in A3 = SpecC[x, y, z]
via (u, y) 7−→ (u, v, (uv)−1) and extend f to the function f(x, y, z) = x+y+z on A3. The equation

f(x, y, z) = r describes a hypersurface in A3 which has the homotopy type of a honest sphere S2,

while xyz = 1 has the homotopy type of a torus S1 × S1. Finish this

3.1.5. — Let X be a complex variety, Z ⊆ Y ⊆ X closed subvarieties, and f a regular function

on X. As for ordinary singular cohomology, there is a long exact sequence

· · · −→ Hn−1
rd (Y, Z, f|Y ) −→ Hn

rd(X,Y, f) −→ Hn
rd(X,Z, f) −→ · · · (3.1.5.1)
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which is functorial in [X,Y, Z, f ]. It is obtained as follows: for each real number r, there is a natural

long exact sequence of cohomology groups

· · · −→ Hn−1(Y ∪ f−1(Sr), Z ∪ f−1(Sr)) −→ Hn(X,Y ∪ f−1(Sr)) −→ Hn(X,Z ∪ f−1(Sr)) −→ · · ·

associated with the triple of topological spaces Z ∪ f−1(Sr) ⊆ Y ∪ f−1(Sr) ⊆ X. The inclusion of

pairs [Y, f |−1
Y (Sr)]→ [Y ∪ f−1(Sr), Z ∪ f−1(Sr)] induces an isomorphism in relative cohomology by

excision. We may hence identify the previous long exact sequence with

· · · −→ Hn−1(Y,Z ∪ f |−1
Y (Sr)) −→ Hn(X,Y ∪ f−1(Sr)) −→ Hn(X,Z ∪ f−1(Sr)) −→ · · ·

and obtain (3.1.5.1) by taking colimits.

Example 3.1.6. — Let X be a variety, Y ⊆ X a closed subvariety, and f : X × A1 → A1 the

projection onto the second factor. All the rapid decay cohomology groups vanish:

Hn
rd(X × A1, Y × A1, f) = 0.

Indeed, for each real number r, the inclusion f−1(Sr) = X×Sr ⊆ X×C is a homotopy equivalence,

hence the vanishing Hn
rd(X × A1, f) = 0 for all n. Similarly, Hn

rd(Y × A1, f |Y ) = 0, and the claim

follows from the long exact sequence (3.1.5.1) applied to the triple ∅ ⊆ Y ⊆ X.

3.2. Rapid decay cohomology in terms of perverse sheaves

In this section, we present a less elementary construction of rapid decay cohomology in terms of

perverse sheaves. It has the advantage of automatically endowing Hn
rd(X,Y, f) with rich additional

structure and also of being purely based on the six-functors formalism, and hence portable to other

contexts. Ultimately, we wish to equip Hn
rd(X,Y, f) with the data of an exponential mixed Hodge

structure, which is a special kind of mixed Hodge module on the complex affine line.

Definition 3.2.1. — Let X be a complex algebraic variety, Y ⊆ X a closed subvariety,

and f : X → A1 a regular function on X. We call the object

Hn
perv(X,Y, f) = Π(pHn(Rf∗Q[X,Y ]

))

of Perv0 the perverse cohomology in degree n of the triple [X,Y, f ]. Here, pHn means homology

in degree n with respect to the perverse t-structure, and Q[X,Y ] stands for the sheaf β!β
∗QX on X,

where β : X \ Y → X is the inclusion.

Proposition 3.2.2. — Let X be a complex algebraic variety, let Y ⊆ X be a closed subvariety,

and let f : X → A1 be a regular function on X. Let Γ ⊆ X × A1 be the graph of f , and let

p : X × A1 → A1 be the projection. There is a canonical and natural isomorphism in the derived

category of constructible sheaves on A1 :

Π(Rf∗Q[X,Y ]
)

∼=−−→ Rp∗Q[X×A1,(Y×A1)∪Γ][1]. (3.2.2.1)
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Proof. Let s : X → (Y × A1) ∪ Γ be the morphism of algebraic varieties given by s(x) =

(x, f(x)). It sends Y to Y ×A1 and satisfies p◦s = f , and hence induces a morphism in the derived

category of constructible sheaves

Rp∗Q[(Y×A1)∪Γ,Y×A1]
−−−→ Rf∗Q[X,Y ]

(3.2.2.2)

which is natural in [X,Y, f ]. This morphism is an isomorphism. Indeed, the map s is an isomor-

phism of [X,Y ] onto its image [Γ, (Y × A1) ∩ Γ], and the cohomology of this pair over any open

subset of A1(C) is isomorphic to that of [(Y × A1) ∪ Γ, Y × A1] by excision: cut out the open

subspace {(y, t) ∈ Y × A1 | f(y) ̸= t}. From the triple of spaces Y × A1 ⊆ (Y × A1) ∪ Γ ⊆ X × A1

we obtain the following natural exact triangle.

Rp∗Q[X×A1,(Y×A1)∪Γ] → Rp∗Q[X×A1,Y×A1]
→ Rp∗Q[(Y×A1)∪Γ,Y×A1]

→ Rp∗Q[X×A1,(Y×A1)∪Γ][1].

The object Rp∗Q[X×A1,Y×A1]
is the same as π∗Rπ∗Q[X,Y ]

, and hence applying Π to it returns the

zero object. We find therefore a natural isomorphism

Π(Rf∗Q[X,Y ]
)

∼=−−→ Π(Rp∗Q[X×A1,(Y×A1)∪Γ][1])

and it remains to show that the adjunction Rp∗Q[X×A1,(Y×A1)∪Γ] → Π(Rp∗Q[X×A1,(Y×A1)∪Γ]) is an

isomorphism. The triangle (2.4.3.2) reads

π∗Rπ∗Rp∗Q[X×A1,(Y×A1)∪Γ] → Rp∗Q[X×A1,(Y×A1)∪Γ] → Π(Rp∗Q[X×A1,(Y×A1)∪Γ])

and hence we must show that R(π ◦ p)∗Q[X×A1,(Y×A1)∪Γ] is zero. This is just a complicated way of

saying that the cohomology groups Hn(X × A1, (Y × A1) ∪ Γ) vanish. The cohomology groups of

the pair [X × A1,Γ] are zero, because this pair is homotopic to [X,X]. The long exact sequence

of the triple Γ ⊆ (Y × A1) ∪ Γ ⊆ X × A1 shows that it is enough to prove that the cohomology

groups of the pair [(Y × A1) ∪ Γ,Γ] vanish. The excision isomorphism shows that the cohomology

of [(Y ×A1)∪Γ,Γ] is the same as the cohomology of [Y ×A1,Γ∩ (Y ×A1)], and since Γ∩ (Y ×A1)

is just the graph of the restriction of f to Y , this cohomology vanishes as we wanted to show. □

Corollary 3.2.3. — Let X be a complex variety, Y ⊆ X a closed subvariety, and f a regular

function on X. There is a canonical and natural isomorphism of Q-vector spaces

Ψ∞(Hn
perv(X,Y, f))

∼= Hn
rd(X,Y, f).

Proof. By Lemma 2.3.3 and part (2) of Proposition 2.4.3, given any object C of the derived

category of constructible sheaves, we have canonical and natural isomorphisms in Perv0

Π(pHn(C)) ∼= pHn(Π(C)) ∼= Hn−1(Π(C))[1].

Proposition 3.2.2 yields therefore an isomorphism

Π(pHn(Rf∗Q[X,Y ]
)) ∼= Hn−1(Π(Rf∗Q[X,Y ]

))[1]
∼=−−→ Hn(Rp∗Q[X×A1,(Y×A1)∪Γ])[1]

in the category Perv0. The fibre of the constructible sheaf Hn(Rp∗Q[X×A1,(Y×A1)∪Γ]) over a large

real number r is the cohomology of the pair [X×{r}, (Y ×{r})∪ (f−1(r)×{r})] in degree n, which

is the rapid decay cohomology Hn
rd(X,Y, f) as r tends to infinity. □
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3.2.4. — Corollary 3.2.3 suggests a way of defining rapid decay cohomology with coefficients in

a constructible sheaf. Given a bounded complex of constructible sheaves A on X, we consider the

object

Ψ∞(Π(Rf∗A)) (3.2.4.1)

of Db(VecQ). Taking for A the complex Q
[X,Y ]

concentrated in degree 0, for some closed subvariety

Y ⊆ X, we find

Hn(Ψ∞(Π(Rf∗Q[X,Y ]
))) = Ψ∞

pHn(Π(Rf∗Q[X,Y ]
)) = Ψ∞(Hn

perv(X,Y, f)) = Hn
rd(X,Y, f)

by Corollary 3.2.3 and exactness of Ψ∞ and Π for the perverse t-structure. Hence the complex

(3.2.4.1) computes the rapid decay cohomology of (X,Y, f). For general complexes A, we write

Hn
rd(X, f ;A) = Hn(Ψ∞(Π(Rf∗A)))

and refer to these vector spaces as rapid decay cohomology of X with coefficients in A.

3.2.5. — The definition of rapid decay cohomology with coefficients allows for the introduction

of a Leray spectral sequence. Given an algebraic variety S with potential f : S → A1, a morphism

π : X → S of algebraic varieties, and a complex of constructible sheaves A on X, there is a first

quadrant spectral sequence

Ep,q2 = Hp
rd(S, f ;R

qπ∗A) =⇒ Hp+q
rd (X, f ◦ π;A)

It is obtained, as is the classical Leray spectral sequence, as the Grothendieck spectral sequence of

a composite of derived functors

Rf∗Rπ∗ = R(f ◦ π)∗ : Db(X)→ Db(A1).

Using the standard t-structure to filter Rf∗ and the perverse t-structure to filter Rπ∗, the spectral

sequence reads
pRpf∗(R

qπ∗(A)) =⇒ pRp+q(f ◦ π)∗(A).

This is a spectral sequence of perverse sheaves on A1. Applying the exact functors Π and Ψ∞ yields

the desired spectral sequence of vector spaces.

3.3. Cell decomposition and the exponential basic lemma

In this section, we prove the analogue of Nori’s basic lemma for rapid decay cohomology. Using

its description in terms of perverse sheaves, it will be a more or less straightforward consequence

of the most general version of the basic lemma, obtained by Beilinson in [7, Lemma 3.3]. We recall

the argument for the convenience of the reader.

Theorem 3.3.1 (Beilinson’s basic lemma). — Let f : X → S be a morphism of quasi-projective

varieties over k and let F be a perverse sheaf on X. There exists a dense open subvariety j : U ↪→ X

such that the perverse sheaves pHn(Rf∗j!j∗F ) on S vanish for all n < 0.
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Proof. We will show that the complement in X of a general hyperplane section has the desired

property. To alleviate notation, we agree that for the duration of this proof all direct and inverse

image functors are between derived categories of sheaves, and write them just as f∗ and f! instead

of Rf∗ and Rf!. Consider a commutative diagram

X S

X S,

//f

��
iX

��
iS

//f

where iS and iX are open immersions and S and X are projective. Choose an embedding of X into

some projective space P = PNk . Let P′ ≃ PNk be the dual projective space parametrising hyperplanes

in P. The family of all hyperplane sections of X is the closed subvariety of X × P′ defined as

H = {(x, L) ∈ X × P′ | x ∈ L}.

Setting H = H ∩ (X × P′), we obtain the following commutative diagram of varieties:

H X × P′ S × P′

H X × P′ S × P′.

//κ

��
iH

//f×id

��
iX×id

��
iS×id

//κ //f×id

(3.3.1.1)

In this diagram, all vertical maps are open immersions, whereas the horizontal maps κ and κ are

closed immersions. Let p : X × P′ → X and p : X × P′ → X be the projections, and set G = p∗F

for the given perverse sheaf F on X. The composite morphism

p ◦ κ : H → X × P′ → X

is a projective bundle, in particular is smooth. It follows from the smooth base change theorem,

which we recalled in 2.1.6, that the canonical morphism

κ∗(iX × id)∗G = (p ◦ κ)∗iX∗F → iH∗(κ ◦ p)∗F = iH∗κ
∗G (3.3.1.2)

is an isomorphism. Pick a point of P′ corresponding to a hyperplane L ⊆ P. The fibre of the

diagram (3.3.1.1) over this point is the diagram

HL X S

HL X S,

//κL

��
iHL

//f

��
iX

��
iS

//κL //f×id

(3.3.1.3)

where HL = X ∩ L and HL = X ∩ L are the hyperplane sections given by L. By the smooth base

change theorem, there exists a Zariski dense open subvariety of P′ such that, for all points L in this

open subvariety, the base change morphisms(
κ∗(iX × id)∗G

)
|HL → κ∗LiX∗F and

(
iH∗κ

∗G
)
|HL → iHL∗κ

∗
LF (3.3.1.4)

are isomorphisms. Indeed, any point L around which the map H(C) → P′(C) is smooth, or just

a topological fibration will do. Fix now an L such that the base change morphisms (3.3.1.4) are
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isomorphisms and such that the hyperplane section HL ⊂ X has codimension ⩾ 1, so that its

complement is dense. Since (3.3.1.2) and (3.3.1.4) are isomorphisms, the canonical morphism

κ∗LiX∗F → iHL∗κ
∗
LF (3.3.1.5)

obtained from (3.3.1.2) by base change is an isomorphism as well. Let U be the complement of HL

in X, set U = U ∩X = X \HL, and consider the diagram

U X S

U X S,

//j

��
iU

//f

��
iX

��
iS

//j //f

where j and j are the inclusions. The canonical morphism

j!iU ∗(j
∗F )→ (iX)∗j!(j

∗F ) (3.3.1.6)

is an isomorphism. This is indeed a consequence of (3.3.1.5) and the five lemma applied to the

commutative diagram with exact rows

j!iU ∗(j
∗F ) iX∗F κL∗κL

∗iX∗F

(iX)∗j!(j
∗F ) iX∗F iX∗κL∗κL

∗F
��

// //

��

∼=

//+1

// // //+1

where the rightmost isomorphism is obtained by applying κL∗ to the isomorphism (3.3.1.5). Finally,

we obtain from (3.3.1.6) an isomorphism

pHn(f∗j!j∗F ) = i∗S
pHn(f∗iX∗j!j

∗F )
(3.3.1.6)∼= i∗S

pHn(f∗j!iU ∗j
∗F ) = i∗S

pHn((f ◦ j)!iU ∗j
∗F )

where we used f ! = f∗ in the last equality. The morphism f ◦ j : U → S is affine, and hence the

functor R(f ◦ j)! is t-left exact for the perverse t-structure by Artin’s theorem 2.1.16. It follows

that the last term above vanishes for n < 0, thus concluding the proof. □

3.3.2 (Exponential basic lemma). — We now deduce the basic lemma for rapid decay cohomology.

Below, we say that a variety has dimension ⩽ d if all its irreducible components do.

Corollary 3.3.3 (Exponential basic lemma). — Let X be an affine variety of dimension ⩽ d,

together with a regular function f , and let (Yi → Xi → X)i∈I be a finite family of closed immersions.

There exists a closed subvariety Z ⊆ X of dimension ⩽ d− 1 such that, for all n ̸= d,

Hn
rd(Xi, Yi ∪ (Xi ∩ Z), f) = 0.

Proof. LetW ⊆ X be a closed subvariety of dimension ⩽ d−1 such that, for each i, the variety

Xi \ (W ∪ Yi) is either empty or smooth and equidimensional of dimension d. Set Wi = Xi ∩W .
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The complex of constructible sheaves Q
[Xi,Wi∪Yi]

[d] is a perverse sheaf on X as we have seen in

Example 2.1.17. Set

F =
⊕
i∈I

Q
[Xi,Wi∪Yi]

[d]

and let us apply Beilinson’s Theorem 3.3.1: there exists a dense open subvariety j : U ↪→ X such

that pHn(Rf∗j!j∗F ) = 0 for n < 0, in particular

pHn(Rf∗j!j∗Q[Xi,Wi∪Yi]
[d]) = 0

for each i. Let Z be the union of the complement of U and W . Since U is dense, Z has dimension

⩽ d− 1 and since Z contains W , we have j!j
∗Q

[Xi,Wi∪Yi]
= Q

[Xi,Yi∪(Xi∩Z)]
. Hence, Corollary 3.2.3

yields the vanishing

Hn+d
rd (Xi, Yi ∪ (Xi ∩ Z), f) ∼= ψ∞(Π(pHn(Rf∗Q[Xi,Yi∪(Xi∩Z)]

[d]))) = 0

for all n < 0, and hence Hn
rd(Xi, Yi ∪ (Xi ∩ Z), f) = 0 for n < d. On the other hand, since Xi is

affine of dimension ⩽ d, Artin’s vanishing theorem shows that Hn
rd(Xi, Yi ∪ (Xi ∩ Z), f) = 0 for

n > d. □

3.4. Preliminaries on the oriented real blow-up

The two previous descriptions of rapid decay cohomology involve passing to the limit when the

real part of the function goes to infinity. We reinterpret these constructions as the cohomology of

a manifold with boundary, where the boundary might not be smooth but have corners. In a sense,

the limit is now taken over the ambient space itself.

3.4.1 (The oriented real blow-up of P1 at infinity). — We write P̃1 for the compactification of C
by a circle at infinity, that is, the disjoint union P̃1 = C ⊔ S1. A system of open neighbourhoods

of z ∈ S1 = {w ∈ C | |w| = 1} is given by the sets

{w ∈ C | |w| > R and | arg(w)− arg(z)| < ε} ⊔ {z′ ∈ S1 | | arg(z′)− arg(z)| < ε}

for large R and small ε (see Figure 3.4.1). Given a complex number z of norm 1, we will write z∞
for the element of the boundary ∂P̃1 = S1 of P̃1 with argument arg(z). There is a canonical

map π : P̃1 → P1 sending the circle at infinity to ∞ ∈ P1, which we call the oriented real blow-up

of P1 at infinity. For a real number r, we let S̃r denote the union of the closed half-plane Sr and

the closed half-circle at infinity {z∞ ∈ ∂P̃1 | Re(z) ⩾ 0}, as displayed in Figure 3.4.1.

3.4.2. — Let us recapitulate how the oriented real blow-up of a complex variety X along a

subvariety is constructed. We follow the exposition in [39]. Let π : L → X be a complex line

bundle on X, and let s be a section of L. We consider the subspace B∗
L,s of L whose elements

in a fibre Lx = π−1(x) are those non-zero l ∈ Lx satisfying r · l = s(x) for some non-negative

real number r. The fibre of B∗
L,s over x ∈ X is thus the set of positive real multiples R>0 · s(x)
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Figure 3.4.1. A neighbourhood of z∞ (left) and the closed region S̃r of P̃1 for a

sufficiently large real number r (right)

whenever s(x) is non-zero, and the set Lx \ {0} in case s(x) = 0. Therefore, the action of R>0 on L

by fibrewise multiplication leaves B∗
L,s stable. The quotient topological space

BloL,sX = B∗
L,s/R>0

is called the oriented real blow-up of X along (L, s). It is a closed, real semialgebraic subspace of

the oriented circle bundle S1L = L∗/R>0 = BloL,0X. Two sections of L that differ by a nowhere

vanishing function define the same oriented real blow-up, and hence it makes sense to define the

oriented real blow-up of X along an effective Cartier divisor D as

BloDX = BloO(D),sX,

where s is a section of O(D) with D as zero locus. Finally, if Z ⊆ X is an arbitrary closed

subvariety, we define the oriented real blow-up of X along Z as

BloZX = BloE(BlZX)

where E ⊆ BlZX is the exceptional divisor in the ordinary blow-up of X along Z. The real blow-up

comes with a map π : BloZX → X, and we call

∂BloZX = π−1(Z)

the boundary of BloZX. If X is smooth and Z a smooth subvariety, then BloZX has canonically

the structure of a real manifold with boundary ∂BloZX.

Example 3.4.3. — Viewing {∞} ⊆ P1 as an effective Cartier divisor, the above definition

agrees with the ad-hoc construction of the oriented real blow-up of P1 at {∞} from 3.4.1. A bit

more generally, consider the effective Cartier divisor D = n · [0] on A1 for some integer n ⩾ 1,

which is the zero locus of the section z 7−→ zn of the trivial line bundle on A1. The oriented real

blow-up map π : BloDA1 → A1 is an isomorphism above A1 \ {0}, and the fibre over {0} is the

circle S1 = C×/R>0
∼= {z ∈ C× | |z| = 1}. In order to understand the topology of BloDA1 we need

to describe neighbourhoods of points in the boundary. By definition, BloDA1 is the quotient of

B∗
C,zn = {(z, w) ∈ C× C× | znw−1 ∈ R⩾0}
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by the action of R>0 by multiplication on the second coordinate. Equivalently, we can and will

regard BloDA1 as the subspace

BloDA1 = {(z, w) ∈ C× S1 | znw−1 ∈ R⩾0}

of the trivial circle bundle on A1. Elements of the boundary are of the form (0, w0) with w0 a

complex number of norm 1. A fundamental system of neighbourhoods of (0, w0) is then given by

Uε = {(z, w) ∈ C× S1 | znw−1 ∈ R⩾0, |z| < ε, arg(ww−1
0 ) < ε}

for small ε > 0. The intersection of Uε with the boundary is a small arc of circle around w0 ∈ S1.

On the other hand, the intersection of Uε with A \ {0} consists of the n small sectors

{z ∈ C | 0 < |z| < ε, | arg(znw−1
0 )| < ε}

around the missing origin in A\{0}. We might thus topologically describe the oriented real blow-up

of P1 along D = n · [0] as the result of gluing a disk to a circle via the n-fold covering map of the

circle by itself. In particular, the topological space BloDA1 does not admit the structure of a real

manifold with boundary unless n = 1.

3.4.4. — Let X be a complex variety, and let Z1, Z2, . . . , Zm be closed subvarieties of X. We

define the oriented real blow-up of X along the centres (Z1, Z2, . . . , Zm) to be

Blo(Z1,...,Zm)X = BloZ1X ×X BloZ2X ×X · · · ×X BloZmX,

where the fibre products are taken in the category of topological spaces. We will work with oriented

real blow-ups along multiple centres in the particular case where X is a smooth complex variety

and the Zi are the irreducible components of a normal crossing divisor. In such a situation, we

may describe the oriented real blow-up in terms of local coordinates as follows. Suppose X = Ad,
with coordinates x1, . . . , xd, and let Dp ⊆ X be the effective Cartier divisor given by xp = 0. As in

Example 3.4.3, the oriented real blow-up of X along (D1, . . . , Dm) is identified with the subspace

Blo(D1,...,Dm)Ad = {(z1, . . . , zd, w1, . . . , wm) ∈ Cd × (S1)m | zpw−1
p ∈ R⩾0 for 1 ⩽ p ⩽ m}

of the trivial torus bundle Cd × (S1)m → Cd. The fibre over a point (z1, . . . zd) ∈ Ad is a torus

whose dimension is the number of zeroes in the tuple (z1, . . . , zm). A standard neighbourhood of a

point (z1, . . . , zd, w1, . . . , wm) is given by

m∏
p=1

{
(z, w) ∈ C× S1

∣∣∣ zw ∈ R⩾0, |z − zp| < ε, arg(ww−1
p ) < ε

}
×

d∏
p=m+1

{
z ∈ C

∣∣∣ |z − zp| < ε
}

where in the first product, for sufficiently small ε, each factor is either an open disk if zp ̸= 0, or

a half-disk with boundary if zp = 0. From this description, we see that in general, Blo(D1,...,Dm)Ad

does not admit the structure of a real manifold with boundary, at least not in a straightforward way.

However, we have seen that for a general d-dimensional smooth complex variety X and a normal

crossing divisor with irreducible components D1, . . . , Dm, the oriented real blow-up Blo(D1,...,Dm)X

is locally diffeomorphic to a product [0, 1)a×(0, 1)b with a+b = 2d, the diffeomorphisms depending
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on the choice of local coordinates. Such a beast is called a manifold with corners1. Notice that in

Example 3.4.3, the real oriented blow-up of P1 at n · [0] is not a manifold with corners for n > 1.

3.4.5 (Manifolds with corners and the collar neighbourhood theorem). — The classical collar

neighbourhood theorem for a manifold with boundary M states that the boundary ∂M admits a

neighbourhood in M which is diffeomorphic to ∂M × [0, 1), see e.g. [46, §4.6]. For manifolds with

corners a similar statement is true, except that one can of course not ask for a diffeomorphism.

Theorem 3.4.6 (Collar neighbourhood theorem). — Let B be a real manifold with corners.

The boundary ∂B of B admits an open neighbourhood which is homeomorphic to ∂B × [0, 1). In

particular, if C is any subset of ∂B, then the inclusion B \ C ↪→ B is a homotopy equivalence.

We do not know of a reference for this proposition as it is stated. There is an ad-hoc construc-

tion of rounding corners: a manifold with corners is homeomorphic to a manifold with boundary

via a homeomorphism respecting the boundaries. This procedure is described in the appendix Ar-

rondissement des variétés à coins by Douady and Herault to [15]. Having rounded off the corners,

one can apply the classical collar neighbourhood theorem [46, §4.6]. Alternatively, we can avoid the

rounding of corners by generalising one of the proofs of the classical collar neighbourhood theorem

to manifolds with corners. Let us suppose for simplicity that the boundary ∂B is compact. In a

first step we construct an inward pointing vector field F on B. Locally, on a chart [0, 1)a × (0, 1)b

one can make an explicit choice of such a vector field, and using a partition of unity these vector

fields can be glued together to a global one. Consider the associated flow φ : ∂B×R→ B, restricted

to the boundary. By definition, this means that φ(b, 0) = b and ∂φ
∂t φ(b, t) = F (φ(b, t)). Locally,

this flow exists and is unique for small times 0 ⩽ t < ε, and since ∂B is compact, we may assume

that φ is globally well defined for small times. The flow φ : ∂B × [0, ε) → B is then locally a

homeomorphism. Again using compactness of the boundary we see that we may choose a smaller ε

is necessary so that φ is injective and a homeomorphism onto its image, and thus yields the collar

neighbourhood.

3.5. Rapid decay cohomology as the cohomology of a real blow-up

3.5.1. — Let X be a smooth compact complex manifold of dimension d. Let f : X → P1 be

a meromorphic function with pole divisor P = f−1(∞), and let H (for “horizontal”) be another

divisor on X. Suppose that the union D = P ∪H is a normal crossing divisor and set X = X \D.

Denote by π : B → X the oriented real blow-up of X along the irreducible components of D, and

by P̃1 the oriented real blow-up of P1 at∞. The function f lifts uniquely to a function fB : B → P̃1

1It appears that several, inequivalent definitions of manifolds with corners are in use. Our example fits all of

them as far as we know. We use Douady’s definition in [30, §I.4], which seems to be the one most adapted to our

situation.
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making the diagram

B P̃1

X P1
��

π

//fB

��
//f

commutative. The local description of fB is as follows: around a given point 0 ∈ X, we can choose

local coordinates x1, . . . , xd in which the divisor D is given by x1 · · ·xm = 0, for some 0 ⩽ m ⩽ d,

and the function f by

f(x1, . . . , xd) =
f1(x1, . . . , xd)

xe11 x
e2
2 · · ·x

em
m

for a holomorphic function f1 that does not vanishing at 0 and exponents ep ⩾ 0. Locally around

this point, Pred (resp. H) is the zero locus of the product of those xi with ei > 0 (resp. ei = 0). As

described in 3.4.4, the map π : B → X is locally given by the projection of

{(x1, . . . , xd, w1, . . . , wm) ∈ Cd × (S1)m | xpw−1
p ∈ R⩾0 for 1 ⩽ p ⩽ m}

onto the coordinates (x1, . . . , xd). The map fB : B → P̃1 is given by

fB(x1, . . . , xd, w1, . . . , wm) =

(xe11 x
e2
2 · · ·xemm )−1 if xe11 x

e2
2 · · ·xemm ̸= 0,

(we11 w
e2
2 · · ·wemm )−1 if xe11 x

e2
2 · · ·xemm = 0,

so that fB maps the pole divisor P to the circle at infinity in P̃1. Outside P , where the function f

is regular, fB is the composite of f : X \ P → C with the inclusion C ⊆ P̃1. Let us set

∂+P̃1 = {z∞ ∈ ∂P̃1 | Re(z) ⩾ 0} and ∂+B = f−1
B (∂+P̃1),

and denote by B◦ ⊆ B the subset

B◦ = B \ {b ∈ ∂B | π(b) ∈ H or Re(fB(b)) ⩽ 0}.

The boundary ∂B◦ of B◦ is the set of those b ∈ ∂B such that f has a pole at π(b) and fB(b) has

strictly positive real part.

Proposition 3.5.2. — In the situation of 3.5.1, the linear maps

Hn(X, f−1(Sr))
∼=←−− Hn(B, f−1

B (S̃r))
∼=−−→ Hn(B, ∂+B)

∼=←−− Hn(B◦, ∂B◦)

induced by inclusions of pairs of topological spaces are isomorphisms for large enough real r ≫ 0.

Proof. The inclusions X = X \ D ⊆ B and f−1(Sr) ⊆ f−1
B (S̃r) are homotopy equivalences

by the collar neighbourhood theorem, whence the leftmost isomorphism, with no constraint on r.

That the middle morphism is an isomorphism for large r is essentially a consequence of the proper

base change theorem. Indeed, let [0,∞] be the real half-line completed by a point at infinity and

consider the subspace

C = {(b, r) ∈ B × [0,∞] | fB(b) ∈ S̃r}
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of B × [0,∞]. The projection map pr: B × [0,∞] → [0,∞] is proper because X, and hence B, is

compact. Therefore, by the proper base change theorem, the canonical morphism

Rnpr∗(Q[B×[0,∞],C]
)∞ −→ Hn(B, ∂+B)

is an isomorphism. On the left-hand side stands the stalk at ∞ of the sheaf on [0,∞] associated

with the presheaf U 7−→ Hn(B×U, (B×U)∩C). The sets [r,∞] for 0 ⩽ r <∞ form a fundamental

system of closed neighbourhoods of ∞ ∈ [0,∞], and hence this stalk is by definition the colimit

colim
r<∞

Hn(B × [r,∞], (B × [r,∞]) ∩ C)

as r goes to ∞. The pair (B, f−1
B (S̃r)) is a deformation retract of B× [r,∞], (B× [r,∞])∩C), and

hence this colimit is the same as

colim
r<∞

Hn(B, f−1
B (S̃r)),

which eventually stabilises. Finally, the inclusion of pairs (B◦, ∂B◦) → (B, ∂+B) is a homotopy

equivalence, again by the collar neighbourhood theorem. □

From Proposition 3.5.2, we immediately derive:

Corollary 3.5.3. — In the situation of 3.5.1, there is a canonical isomorphism of vector spaces

Hn
rd(X, f)

∼= Hn(B, ∂+B) ∼= Hn(B◦, ∂B◦).

3.5.4. — Let us again consider the situation of 3.5.1: Proposition 3.5.2 states that the rapid

decay cohomology of (X \D, f) is canonically isomorphic to the cohomology of the pair (B, ∂+B).

Let us denote by κ : (B\∂+B)→ B the inclusion, and write Q[B,∂+B] = κ!κ
∗Q

B
. The cohomology of

the pair (B, ∂+B) is the cohomology of B with coefficients in the sheaf Q[B,∂+B], hence a canonical

isomorphism

Hn(X \D, f) ∼= Hn(B,Q[B,∂+B]) ∼= Hn(X,Rπ∗Q[B,∂+B])

where π : B → X is the blow-up map. Let us examine the object Rπ∗Q[B,∂+B] in the derived

category of sheaves on X.

3.5.5. — Here is a topological preparation which will eventually help us to get a better grasp

on Rπ∗Q[B,∂+B]
. Let m ⩾ 1 be an integer, and let T ⊆ Rm/Zm be the subset defined by

T = {(x1, . . . , xm) | de1x1 + · · ·+ demxm ≡ 0 mod 1}

for some integer d ⩾ 1 and primitive vector e = (e1, . . . , em) ∈ Zm. Here, primitive means not

divisible in Zm by an integer ⩾ 2, and in particular non-zero. We propose ourselves to find an

explicit description of the homology groups Hp(Rm/Zm, T ). The subspace T has d connected

components, namely, T is the disjoint union of the subtorus

T0 = {(x1, . . . , xm) | e1x1 + · · ·+ emxm ≡ 0 mod 1}
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and its translates Tk = T0 + (0, . . . , 0, kd ). The pair of spaces (Rm/Zm, T ) is homeomorphic to the

product of T0, which is a torus of dimension m−1, and the circle R/Z marked in the d points 1
dZ/Z.

The pair (R/Z, 1dZ/Z) has homology in degree 1 only, and therefore the cross-product morphism

Hp−1(T0)×H1(R/Z, 1dZ/Z)→ Hp(Rm/Zm, T )

is an isomorphism. Fix a Z-basis a1, . . . , am−1 of the orthogonal complement of e in Zm. For any

non-decreasing injective map f : {1, 2, . . . , p− 1} → {1, 2, . . . ,m− 1}, and any k ∈ {0, 1, . . . , d− 1},
the continuous map

cf,k : [0, 1]
p → Rm/Zm cf,k(t1, . . . , tp) =

k
d tp +

p−1∑
i=1

af(i)ti

represents an element in Hp(Rm/Zm, T ), once we decompose the cube [0, 1]p appropriately into

a sum of simplicies. Together, these elements form a basis of Hp(Rm/Zm, T ). The dimension of

Hp(Rm/Zm, T ) is d(m−1
p−1 ).

Proposition 3.5.6. — Set n = dimX. The homology sheaves Rpπ∗Q[B,∂+B] are constructible

and vanish for p > n. Therefore, Rπ∗Q[B,∂+B] is an object of the derived category of constructible

sheaves on X. The sheaf

Rπ∗Q[B,∂+B][n]

is a perverse sheaf on X. Its Verdier dual is the sheaf Rπ∗Q[B,∂0B][n] where ∂
0B ⊆ ∂B is the

closure of the subset ∂B \ ∂+B of the boundary.

Proof. The blow-up map π : B → X is proper, and hence for every x ∈ X the stalk at x of

the sheaf Rpπ∗Q[B,∂+B] is identical to Hp(π−1(x), π−1(x) ∩ ∂+B). This shows that Rpπ∗Q[B,∂+B]

is constructible with respect to the stratification given by intersections of the components of D.

Precisely, if we denote by D(m) ⊆ X the smooth subvariety of codimension m given by the union

of all intersections of m distinct components of D, then

∅ ⊆ D(n) ⊆ D(n−1) ⊆ · · · ⊆ D(2) ⊆ D ⊆ X

is a stratification for Rpπ∗Q[B,∂+B], for all p. The fibre π−1(x) is a real torus of real dimension

m, where m ⩽ n is the number of components of D meeting at x, and π−1(x) ∩ ∂+B is either

empty or a finite union of real tori of dimension m − 1. In view of 3.5.5 we can be more explicit:

If x is in the intersection of components D1, D2, . . . , Dm of D, and f has a pole of order ei ⩾ 0

on Di, then the stalk of Rpπ∗Q(B,∂+B) at x has dimension gcd(e1, . . . , em)(
m−1
p−1 ) if f has a pole at

x, i.e. at least one of the ei is non-zero, and dimension (mp ) if f is regular at x. In either case,

Hp(π−1(x), π−1(x) ∩ ∂+B) = 0 if p > m, and hence the inclusion

supp
(
Rpπ∗Q[B,∂+B]

)
⊆ D(p) (3.5.6.1)

holds. Next, we compute the dual of Rpπ∗Q[B,∂+B]. Let us denote by ωB/X = π!QX the relative

dualising sheaf of π : B → X. Local Verdier duality reads

RHom(Rπ∗Q[B,∂+B],Q) ∼= Rπ∗RHom(Q[B,∂+B], ωB/X)
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and hence it suffices to produce a canonical isomorphism

RHom(Q[B,∂+B], ωB/X) = Q[B,∂0B]

in the derived category of sheaves on B. Let us name the inclusions

α : B \ ∂B → B κ : B \ ∂+B → B λ : B \ ∂0B → B

so that Q(B,∂+B) = κ!κ
∗QB and Q(B,∂0B) = λ!λ

∗QB. Since X is smooth of real dimension 2n, the

dualising sheaf on X is ωX = QX [2n], and hence we can compute the relative dualising sheaf ωB/X
as ωB[−2n]. We find ωB/X = α!α

∗QB, as we would for any C0-manifold with boundary. Notice

that for any sheaf F on B there is a natural isomorphism Hom(κ!κ
∗QB, F ) = κ∗κ

∗F , and hence

we find in particular an isomorphism

RHom(κ!κ
∗QB, ωB/X) = Rκ∗κ

∗α!α
∗QB = κ∗κ

∗α!α
∗QB

in the derived category of sheaves on B. The functor κ∗ is exact, hence the equality on the right.

Inspecting sections, we find κ∗κ
∗α!α

∗QB = λ!λ
∗QB as we wanted to show. For any p ⩾ 0, the

direct image Rpπ∗Q(B,∂0B) is a constructible sheaf on X, and since π is proper, we can compute

its stalks using proper base change: the stalk at x is isomorphic to Hp(π−1(x), π−1(x) ∩ ∂0B).

The fibre π−1(x) is still a real torus of real dimension equal to the number m of components

of D meeting at x, and π−1(x) ∩ ∂0B is either all of π−1(x) in case f is regular on one of the

components of D meeting at x, or else, a finite union of real tori of dimension m − 1. In either

case, Hp(π−1(x), π−1(x) ∩ ∂0B) = 0 if p > m, and hence the inclusion

supp
(
Rpπ∗Q[B,∂0B]

)
⊆ D(p) (3.5.6.2)

holds. Together, the inclusions (3.5.6.1) and (3.5.6.2) show that Q[B,∂+B][n] is perverse. □

3.5.7 (Good compactifications). — In 3.5.1 and Proposition 3.5.2 we started with a smooth

and compact complex manifold X and a function X → P1, restricting to X \ D → A1 for some

normal crossing divisor D. In practice, we usually start with a smooth variety X and a function

f : X → A1, and seek to compactify X by a normal crossing divisor in such a way that f extends

to a function with values in P1 on the compactification.

Definition 3.5.8. — Let X be a smooth variety over k, let Y ⊆ X be a normal crossing divisor,

and let f : X → A1 be a regular function. A good compactification of (X,Y, f) is a triple (X,Y , f)

consisting of a smooth projective variety X over k containing X as the complement of a normal

crossing divisor D, a divisor Y ⊆ X such that Y = Y ∩X and that Y +D has normal crossings,

and a morphism f̄ : X → P1 extending f .

3.5.9. — The situation of Definition 3.5.8 one has a commutative diagram

X X D

A1 P1 {∞}
��

f

//

��
f

oo

��
// oo
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where all horizontal maps are inclusions. A good compactification of (X,Y, f) always exists. Indeed,

let X0 be any smooth compactification of X by a normal crossing divisor D, such that also Y 0+D

is a normal crossing divisor, where Y 0 is the closure of Y in X0. Such a compactification can be

“found” using resolutions of singularities. The function f extends to a rational map X0 99K P1.

By resolution of indeterminacies, there exists a finite tower of blow-ups X → Xm−1 → · · · → X0

at smooth centers of D such that f extends to a morphism f̄ : X → P1. Define Y to be the strict

transform of Y 0 in X.

Example 3.5.10. — Let X = A2 = SpecQ[x, y], together with the function f = x2 + y2. We

start with the compactification X0 = P1 × P1 and the rational map

P1 × P1 99K P1

[x : a], [y : b] 799K [b2x2 + a2y2 : a2b2],

whose only indeterminacy is (∞,∞). Let X be the blow-up of this point, i.e. the closed subvariety

of P1×P1×P1 given by the equation av = bu, where [u : v] are the coordinates of the last P1. Then

f extends to the morphism

X
f̄−→ P1

[x : a], [y : b], [u : v] 7−→ [v2x2 + u2y2 : u2v2].

The pole divisor has irreducible components P1 = ∞× P1 × [0 : 1] and P2 = P1 ×∞× [1 : 0], and

each of them appears with multiplicity two. The horizontal component is the exceptional divisor.

Corollary 3.5.11. — Let X be a smooth complex algebraic variety with potential f : X → A1

and let Y ⊆ X be a normal crossing divisor. Let (X,Y , f) be a good compactification of (X,Y, f).

Let π : B → X be the real blow-up of X along the components of D = X \X, let BY ⊆ B be the

real blow-up of Y along the components of Y ∩D, and let fB : B → P̃1 be the lift of f to B. There

is a canonical isomorphism

Hn
rd(X,Y, f)

∼= Hn(B,BY ∪ ∂+B).

Proof. If Y is empty, this is the statement of Corollary 3.5.3. If Y has only one (smooth)

irreducible component, there is a commutative diagram

· · · // Hn−1
rd (Y, f)

��

// Hn
rd(X,Y, f)

//

��

Hn
rd(X, f)

//

��

· · ·

· // Hn(BY , ∂
+BY ) // Hn(B,BY ∪ ∂+B) // Hn(B, ∂+B) // · · ·

we can also apply Proposition 3.5.2 to Y and deduce the statement of the corollary by dévissage.

The general case is by induction on the number of irreducible components of Y . □
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3.6. The Künneth formula

The classical Künneth formula relates the singular cohomology of reasonable topological spaces

X1 and X2 to the cohomology of the product space X1 ×X2. In the case of rational coefficients,

or indeed coefficients in any field, the Künneth formula simply states that the map

H∗(X1,Q)⊗H∗(X2,Q) −→ H∗(X1 ×X2,Q)

induced by the cup-product is an isomorphism of graded vector spaces. This works equally well

for pairs of spaces: given closed subspaces Y1 ⊆ X1 and Y2 ⊆ X2, the cup-product induces an

isomorphism of graded vector spaces

H∗(X1, Y1;Q)⊗H∗(X2, Y1;Q) −→ H∗(X1 ×X2, (X1 × Y2) ∪ (Y1 ×X2);Q).

In this section, we introduce the cup-product for rapid decay cohomology and establish a Künneth

formula in this context.

Definition 3.6.1. — Given sets (schemes, topological spaces, . . . ) X1 and X2, a commutative

group (scheme, . . . ) C and maps f1 : X1 → C and f2 : X2 → C, the Thom–Sebastiani sum f1 ⊞ f2
is the map X1 ×X2 → C defined by the formula

(f1 ⊞ f2)(x1, x2) = f1(x1) + f2(x2).

3.6.2 (Elementary construction of the cup-product). — Let (X1, Y1) and (X2, Y2) be pairs

consisting of a complex variety and a closed subvariety, and let f1 : X1 → A1 and f2 : X2 → A1 be

regular functions. The cup product

H i(X1, Y1, f1)⊗Hj(X2, Y2, f2) −→ H i+j(X1 ×X2, (Y1 ×X2) ∪ (X1 × Y2), f1 ⊞ f2) (3.6.2.1)

is the linear map obtained, by passing to the limit r → +∞, from the composition

H i(X1, Y1 ∪ f−1
1 (Sr))⊗Hj(X2, Y2 ∪ f−1

2 (Sr))

−→ H i+j(X1 ×X2, (Y1 ×X2) ∪ (X1 × Y2) ∪ (f−1
1 (Sr)×X2) ∪ (X1 × f−1

2 (Sr)))

−→ H i+j(X1 ×X2, (Y1 ×X2) ∪ (X1 × Y2) ∪ (f1 ⊞ f2)
−1(S2r)),

where the first map is the usual cup product of relative cohomology, and the second one is induced

by the inclusion of closed subsets (f1 ⊞ f2)−1(S2r) ⊂ (f−1
1 (Sr)×X2) ∪ (X1 × f−1

2 (Sr)).

Proposition 3.6.3 (Künneth formula). — Let (X1, f1) and (X2, f2) be complex varieties with

potentials and let Y1 ⊆ X1 and Y2 ⊆ X2 be closed varieties. The cup product (3.6.2.1) induces an

isomorphism of graded vector spaces

H∗(X1, Y1, f1)⊗H∗(X2, Y2, f2)
∼=−−→ H∗(X1 ×X2, (Y1 ×X2) ∪ (X1 × Y2), f1 ⊞ f2).

Proof. The Künneth formula for relative topological spaces yields an isomorphism of graded

vector spaces

H∗(X1, f
−1
1 (Sr))⊗H∗(X2, f

−1
2 (Sr))

∼=−−→ H∗(X1 ×X2, (f
−1
1 (Sr)×X2) ∪ (X1 × f−1

2 (Sr)))
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induced by cup products. To ease the notation, we left out Y1 and Y2 from the notation. We need

to show that the linear map

Hn((f−1
1 (Sr)×X2) ∪ (X1 × f−1

2 (Sr)))→ Hn((f1 ⊞ f2)
−1(S2r)) (3.6.3.1)

induced by the inclusion (f1 ⊞ f2)−1(S2r) ⊂ (f−1
1 (Sr) × X2) ∪ (X1 × f−1

2 (Sr)) is an isomorphism

for sufficiently large real r. In terms of constructible sheaves, this amounts to the following: let Fi

be a constructible sheaf on Xi, say for example Fi = Q
[Xi,Yi]

, and consider the open sets

U = {(z1, z2) = Re(z1) ⩾ r or Re(z1) ⩾ r and V = {(z1, z2) | Re(z1 + z2) ⩾ 2r}.

We must show that the map

Hn(U, (Rf1∗F1 ⊠Rf1∗F2)|U )→ Hn(V, (Rf1∗F1 ⊠Rf1∗F2)|V )

induced by the inclusion V ⊆ U is an isomorphism. The homology sheaves of Rf1∗F1 ⊠ Rf1∗F2

are constructible with respect to a stratification consisting of finitely many horizontal and vertical

lines. Let G be any such constructible sheaf, that is, G is a sheaf on C2 constructible with respect

to the stratification given by lines C×{s} or {s}×C and their intersection points, where s belongs

to a finite set of complex numbers S. Fix a real r such that r > Re(s) for all s ∈ S, and let us show

that the inclusion V ⊆ U induces an isomorphism Hn(V,G|V ) ∼= Hn(U,G|U ). To this end, define

B = {(z1, z2, t) ∈ C2 × [0, 1] | Re(z1 + tz2) ⩾ r + tr or Re(tz1 + z2) ⩾ r + tr}

and consider the sheaf GB = (pr∗G)|B on B. The projection p : B → [0, 1] is a topological fibre

bundle, its fibre over 0 is U and its fibre over 1 is V . The sheaf GB is constructible with respect to

a stratification of B by subvarieties, each of which also is a fibre bundle over [0, 1], and hence the

sheaf Rnp∗GB is a local system on [0, 1]. Parallel transport from the fibre over 0 to the fibre over

1 is the isomorphism we sought. □

3.6.4. — Here is an illustration in the real plane of the various sets considered in the proof of

the Künneth formula. In this picture the horizontal and vertical lines represent the stratification

Figure 3.6.2. The sets V ⊆ p−1(t) ⊆ U
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for G, so G is a local system outside these lines, and also when restricted to each of the lines except

at the intersection points. The whole coloured region is U , and the blue region is V . The green

and blue parts together form p−1(t).

3.6.5. — We defined the cup product for rapid decay cohomology in 3.6.2 in elementary terms.

We can also give a construction in terms of sheaf cohomology.

3.7. Rapid decay cohomology with support

In this section, we define the rapid decay cohomology with support on some closed subvariety.

As one is accustomed, this cohomology with support will fit into a long exact sequence relating it

with the rapid decay cohomology of the ambient variety and the rapid decay cohomology of the

open complement. We will also define a Gysin map for rapid decay cohomology, and construct the

corresponding long exact Gysin sequence.

3.7.1. — Let X be a variety equipped with a potential f : X → A1, and let Y ⊆ X be a closed

subvariety. Let α : Z → X be the inclusion of a closed subvariety with complement β : U → X. We

call

Hn
rd,Z(X,Y, f) = Ψ∞Π(pHn(Rf∗Rα!α

!Q[X,Y ])) (3.7.1.1)

the rapid decay cohomology in degree n of (X,Y, f) with support on Z. There is an exact triangle

Rα!α
!Q[X,Y ] → Q[X,Y ] → Rβ∗β

∗Q[X,Y ] → Rα!α
!Q[X,Y ][1]

in the derived category of constructible sheaves on X. The sheaf β∗Q[X,Y ] on U is the same as

Q[U,Y ∩U ], and the functors Ψ∞ and Π are exact. Hence we obtain a long exact sequence

· · · → Hn
rd,Z(X,Y, f)→ Hn

rd(X,Y, f)→ Hn
rd(U, Y ∩ U, f |U )→ Hn+1

rd,Z(X,Y, f)→ · · · (3.7.1.2)

of vector spaces. We call the morphism Hn
rd,Z(X,Y, f) → Hn

rd(X,Y, f) the forget supports map.

The morphism following it is the usual restriction morphism, that is, the morphism in rapid decay

cohomology induced by the inclusion U → X.

3.7.2. — Let X be a smooth variety, together with a regular function f . Let i : Z ↪→ X be a

smooth closed subvariety of pure codimension c with complementary immersion j : U ↪→ X. Recall

from 2.1.5 that i! = i∗ and i! = i∗[−2c], so in particular i!i
!Q = i∗i

∗Q[−2c]. The adjunction

morphism for i! sits in a triangle

i∗i
∗Q[−2c] −→ Q −→ Rj∗j

∗Q.

Upon application of Rf∗, this triangle induces a long exact sequence of perverse sheaves

· · · −→ pHn−2c(Rf∗i∗i
∗Q) −→ pHn(Rf∗Q) −→ pHn(Rf∗Rj∗j∗Q) −→ · · ·
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Taking the projector Π and the nearby fibre at infinity we find a long exact sequence

· · · −→ Hn−2c
rd (Z, f|Z) −→ Hn

rd(X, f) −→ Hn
rd(U, f|U ) −→ · · · (3.7.2.1)

of rational vector spaces which is called the Gysin long exact sequence. The morphism

Hn−2c
rd (Z, f|Z) −→ Hn

rd(X, f) (3.7.2.2)

is call the Gysin map for rapid decay cohomology.

3.8. Poincaré–Verdier duality

The goal of this section is to establish a Poincaré–Verdier duality pairing for rapid decay

cohomology. To construct a natural duality pairing such as displayed in (3.8.2.1) below out of

local Verdier duality is an exercise in the six functors formalism. However, since later we want

to show that the resulting pairing is motivic, in a sense yet to be made precise, a sheaf-theoretic

construction is not enough for us. We will rather construct a specific pairing by geometric means,

not involving local Verdier duality. Then, we will have to check that the pairing we constructed

geometrically is indeed a perfect pairing, by comparing it to the sheaf-theoretic construction.

3.8.1. — To say that a finite-dimensional vector space V is dual to another space W usually

means that there is some particular linear map p : V ⊗ W → Q called pairing . This pairing

has to be perfect, meaning that the induced maps V → Hom(W,Q) and W → Hom(V,Q) are

isomorphisms. Less usual, but better suited to our later needs, is the point of view that to exhibit

W as the dual of V is to give a linear map c : Q→ W ⊗ V called copairing . Again, this copairing

has to be perfect, that is, the induced map Hom(W,Q) → V sending φ to (φ ⊗ idV )(c(1)) and

its companion Hom(V,Q) → W are both isomorphisms. Given vector spaces V and W , there

is a canonical bijection between the set of perfect pairings p : V ⊗W → Q and the set of perfect

copairings c : Q→W ⊗V , as both sets are also in canonical bijection with the set of isomorphisms

between V and Hom(W,Q). A pairing p and a copairing c correspond to each other via this bijection

if the composite linear map

V = V ⊗Q idV ⊗c−−−−−→ V ⊗W ⊗ V p⊗idV−−−−−→ Q⊗ V = V (3.8.1.1)

is the identity on V .

3.8.2. — Let X be a smooth connected complex variety of dimension d, let Y ⊆ X be a normal

crossing divisor, and let f be a regular function on X. We choose a good compactification (X,Y , f)

as in Definition 3.5.8, we let P be the reduced pole divisor of f , and we decompose the divisor at

infinity D = X \X as a sum D = P +H. We set

X ′ = X \ (Y ∩ P ), Y ′ = H \ (H ∩ P )
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and denote by f ′ the restriction of f to X ′. Our aim is to construct a canonical duality pairing

Hn
rd(X,Y, f)⊗H2d−n

rd (X ′, Y ′,−f ′) −→ Q(−d). (3.8.2.1)

Observe that in the special case where f = 0 and Y is empty, the space X ′ is just a smooth

compactification of X and H2d−n
rd (X ′, Y ′,−f ′) is the cohomology with compact support H2d−n

c (X).

We want to recover from (3.8.2.1) the classical Poincaré–Verdier duality pairing. For non-empty Y

but f still zero, the resulting pairing is sometimes called “red-green duality”. What we will actually

construct is not directly a pairing (3.8.2.1), but rather a copairing. Set U = X ∩ X ′ and let

∆U ⊆ X ×X ′ be the diagonal embedding of U . We call Poincaré–Verdier copairing the following

composite linear map:

Q(−d) = H0(∆U )(−d) H2d
rd (X ×X ′, Y ×X ′ ∪X × Y ′, f ⊞−f ′)

Hn
rd(X,Y, f)⊗H2d−n

rd (X ′, Y ′,−f ′).

//Gysin

��
Künneth (3.8.2.2)

We can recognise this copairing as the fibre at infinity of the similarly defined copairing for perverse

cohomology.

Theorem 3.8.3. — The Poincaré–Verdier copairing (3.8.2.2) is perfect.

3.8.4. — Let us explain how the global Verdier duality theorem can be formulated in terms of

copairings. Fix an object F in the derived category of constructible sheaves on a complex algebraic

variety X. We write ∆: X → X × X for the inclusion of the diagonal, and π for the map from

X to a point, so the dualising sheaf on X is the complex ω = π!Q. The dual of the evaluation

morphism ε : ∆∗(F ⊠DF ) = F ⊗DF → ω is a morphism Dε : Q→ ∆!(DF ⊠F ). Writing π∗ as the

composition of ∆ and π2 = π × π, we obtain the sequence of morphisms

Rπ∗Q Rπ2∗∆∗∆
!(DF ⊠ F ) Rπ2∗(DF ⊠ F )

Rπ∗DF ⊗Rπ∗F

//Dε //adjunction

��
Künneth (3.8.4.1)

in the derived category of vector spaces. We have used here the fact that ∆ is proper, and hence

∆∗ = ∆!. Taking homology in degree 0 and projecting onto some component in the Künneth

formula yields a copairing

Q = H0(X)→ H−n(X,DF )⊗Hn(X,F )

which is perfect, and corresponds via the linear algebra operations outlined in 3.8.1 to the usual

Verdier duality pairing Hn(X,F )⊗H−n(X,DF )→ Q. To verify this fact, which we are not going

to do here, one has to check that the composite as in (3.8.1.1) of the pairing and the copairing is
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equal to the identity, which amounts to prove that the following diagram commutes:

Rπ∗F ⊗Q = Rπ∗F Rπ∗F = Q⊗Rπ∗F

Rπ∗F ⊗Rπ∗Q DRπ!ω ⊗Rπ∗F

Rπ∗F ⊗Rπ∗∆!(DF ⊠ F ) DRπ!∆∗(DF ⊠ F )⊗Rπ∗F

Rπ∗F ⊗Rπ2∗(DF ⊠ F ) DRπ2! (DF ⊠ F )⊗Rπ∗F

Rπ∗F ⊗Rπ∗DF ⊗Rπ∗F DRπ!DF ⊗ DRπ!F ⊗Rπ∗F

��

id⊗adj.

��

id⊗Dε

OO

adj.⊗id

��

id⊗adj.

OO

ε⊗id

��

Künneth

OO

adj.⊗id

OO

Künneth

Our next task is to compare the recipe for the Poincaré–Verdier copairing (3.8.2.2) with the sheaf-

theoretic description of the Verdier duality copairing (3.8.4.1).

Lemma 3.8.5. — Let Z be a smooth complex manifold and D,D′ ⊂ Z closed subvarieties which

have no common irreducible component and such that D∪D′ is a normal crossing divisor. Consider

the diagram of inclusions

Z \ (D ∪D′) Z \D

Z \D′ Z

//β

��

β′

��

λ

//λ′

(3.8.5.1)

There is a canonical isomorphism

λ!Rβ∗QZ\(D∪D′)
∼= Rλ′∗β

′
!QZ\(D∪D′) (3.8.5.2)

in the derived category of constructible sheaves on Z.

Proof. A proof can be found e.g. in [13, Lemma 6.1.1]. We recall the argument for the

convenience of the reader. Noting that Rβ∗QZ\(D∪D′) = λ∗Rλ′∗β
′
!QZ\(D∪D′), adjunction yields a

canonical morphism in the derived category of constructible sheaves on Z,

λ!Rβ∗QZ\(D∪D′) −→ Rλ′∗β
′
!QZ\(D∪D′), (3.8.5.3)

extending the identity on QZ\(D∪D′). It suffices to prove that (3.8.5.3) induces an isomorphism on

stalks at each z ∈ D ∪D′. Since D and D′ have no common component, both sides are zero unless

z ∈ D∩D′ so we may assume that this is the case. Since D∪D′ has normal crossings, there exists

a polydisk B centered at z, a decomposition B = BD ×BD′ into a product of smaller-dimensional

polydisks, and analytic subvarieties P ⊂ BD and P ′ ⊂ BD′ such that D ∩ B = P × BD′ and



3.8. POINCARÉ–VERDIER DUALITY 113

D′ ∩ B = BD × P ′. Therefore, locally around z for the analytic topology, diagram (3.8.5.1) looks

like

(BD \ P )× (BD′ \ P ′) (BD \ P )×BD′

BD × (BD′ \ P ′) BD ×BD′ ,

//
id×jD′

��
jD×id

��

jD×id

//
id×jD′

where jD : BD\P ↪→ BD and jD′ : BD′\P ′ ↪→ BD′ stand for the inclusions. WritingQ(BD\P )×(BD′\P ′)

as QBD\P ⊠QBD′\P ′ , both sides of (3.8.5.3) are canonically isomorphic to

(jD)!QBD\P ⊠R(jD′)∗QBD′\P ′

by a variant of the Künneth formula, thus finishing the proof. □

Proposition 3.8.6. — Let (X,Y, f) and (X ′, Y ′, f ′) be as in 3.8.2. The objects

Π(pHnRf∗Q[X,Y ]) and Π(pH2d−nR(−f)∗Q[X′,Y ′])

of Perv0 are dual to each other.

Proof. We apply Lemma 3.8.5 to Z = X \ P , D = H \ (H ∩ P ) and D′ = Y \ (Y ∩ P ). Then
the diagram of inclusions in loc.cit. becomes

X \ Y = X ′ \ Y ′ X

X ′ X \ P

//β

��

β′

��

λ

//λ′

and there are canonical isomorphisms

D(Rλ∗Q[X,Y ]) = D(Rλ∗β!β∗Q)
Verdier duality

= λ!Rβ∗β
∗Q[2d]

(3.8.5.2)
= Rλ′∗β

′
!(β

′)∗Q[2d]. (3.8.6.1)

And now begins the fun:

Π(pHnRf∗Q[X,Y ])
∨ = Π([−1]∗D(Π(pHnRf∗Q[X,Y ])))

= Π([−1]∗D(pHnRf∗Q[X,Y ])) Lemma 2.4.8

= Π(pH−n[−1]∗D(Rf∗Q[X,Y ])) D ◦ pHn = pH−n ◦ D
= Π(pH−nD(R(−f)∗Q[X,Y ]))

= Π(pH−nD(R(−f)∗Rλ∗Q[X,Y ])) f = f ◦ λ
= Π(pH−n(R(−f)∗D(Rλ∗Q[X,Y ]))) f proper

= Π(pH−n(R(−f)∗Rλ′∗β′!(β′)∗Q[2d])) (3.8.6.1)

= Π(pH2d−n(R(−f ′)∗β′!(β′)∗Q)) f ′ = f ◦ λ′

= Π(pH2d−n(R(−f ′)∗Q[X′,Y ′])).

This is what we wanted to show. □

Proposition 3.8.7. — There is a non-degenerate duality pairing

Hn
rd(X,Y, f)⊗H2d−n

rd (X ′, Y ′,−f) −→ Q(−d). (3.8.7.1)
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Proof. We take the real blow-up point of view on rapid decay cohomology. Let B be the real

blow-up of X along the components of D. By Corollary 3.5.11

Hn
rd(X,Y, f)

∼= Hn(X,Rπ∗Q[B,BY ∪ ∂+B])

H2d−n
rd (X ′, Y ′,−f) ∼= H−n(X,Rπ∗Q[B,BY ′∪ ∂−B][2d])

We compute the Verdier dual: since π is proper, by local Verdier duality (Theorem 2.1.8), one has

D(Rπ∗Q[B,BY ∪ ∂+B]) = Rπ∗RHom(Q[B,BY ∪ ∂+B], ωB/X)

□

3.8.8 (Real blow-up point of view). —

Lemma 3.8.9. — Let B be a topological manifold with boundary, of real dimension n, and let

α : B \ ∂B ↪→ B be the inclusion of the complement of the boundary. The dualising sheaf ωB on B

is isomorphic to α!α
∗Q[n].

Proof. The dualising sheaf on a general topological space is not a sheaf properly, but an object

in the derived category of sheaves. We have to show that H−n(ωB) = α!α
∗Q and H−p(ωB) = 0

holds for p ̸= n. The sheaf H−p(ωB) is the sheafification of the presheaf

U 7−→ Hp(U̇ , {·},Q)

where U̇ is the one point compactification of U . For opens V ⊆ U , the restriction morphism

Hp(U̇ , {·},Q) → Hp(V̇ , {·},Q) in this presheaf is given by the morphism in homology induced by

the map U̇ → V̇ contracting U \ V to the special point · ∈ V̇ . A point b ∈ B which is not in the

boundary has a fundamental system of neighbourhoods U which are homeomorphic to an open ball

of dimension n. The one point compactification of such a ball is a sphere of dimension n. We find

that Hp(U̇ , {·},Q) is zero for p ̸= n and equal to Q for p = n. A point b ∈ ∂B has a fundamental

system of neighbourhoods U which are homeomorphic to a half-ball

{x = (x1 . . . xn) ∈ Rn | ∥x∥ < 1 and x1 ⩾ 0}

whose one point compactification is a closed ball of dimension n. We find that Hp(U̇ , {·},Q) is zero

for all p. □

Lemma 3.8.10. — Let B a topological manifold with boundary, of real dimension n. Assume

that the boundary ∂B is the union of two closed subsets Z1 and Z2 such that Z1 ∩ Z2 has dense

complement in ∂B. Then the Verdier dual of Q[B,Z1] is Q[B,Z2][n].

Proof. Let λi : B \ Zi ↪→ B denote the inclusions. By the previous lemma:

D(Q[B,Z1]) = RHom((λ1)|λ
∗
1Q, α!α

∗Q[n]).

□



3.8. POINCARÉ–VERDIER DUALITY 115

Example 3.8.11. — Let us describe the Poincaré–Verdier duality pairing (3.8.2.1) in the case

where X = A1 = Spec k[t] is the affine line, Y is empty, and f ∈ k[t] is a unitary polynomial of

degree d ⩾ 2. We start with the linear dual of the copairing (3.8.2.2). This is a pairing

⟨−,−⟩ : Hrd
1 (A1, f)⊗Hrd

1 (A1,−f)→ Q(1) (3.8.11.1)

which we seek to describe in terms of the usual explicit bases for rapid decay homology of a poly-

nomial on the affine line. Here, Q(1) should be read as Q(1) = H1(S1) ≃ Q. The following picture

shows a basis γ1, γ2, . . . of the rapid decay homology group Hrd
1 (A1, f) in green, and superposed

in red a basis γ′1, γ
′
2, . . . for the rapid decay homology group Hrd

1 (A1,−f), here in the case of a

polynomial of degree d = 7. Importantly, we have chosen the paths γi and γ
′
i in such a way that

Figure 3.8.3. Paths γi and γ
′
i

they intersect at most once, and if so, transversally. The pairing (3.8.11.1) is defined in elementary

terms as follows: Choose a sufficiently large real number r > 0, and an open tubular neighbourhood

N∆ of the diagonal ∆ ⊆ A2, sufficiently thin so that N∆ and (f ⊞−f)−1(Sr) do not meet. Write

U ⊆ A2 for the complement of the diagonal, and set S∆ = N∆ ∩ U . The rapid decay homology

Hrd
2 (A2, f ⊞−f) contains the cross-product cycles

γij = γi ∪ γ′j : [0, 1]2 → A2

defined by γij(s, t) = (γi(s), γ
′
j(t)), which in fact form a basis. The sought pairing (3.8.11.1) sends

γi ⊗ γ′j to the image of γi ∪ γ′j under the connecting morphism

∂ : Hrd
2 (A2, f ⊠−f)→ H1(S∆) ∼= H1(∆× S1) ∼= Q(1)
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in the Mayer–Vietoris sequence for the covering A2 = N∆∪U . Recall how this connecting morphism

is made: Using Lebesgue’s lemma, we can write γij up to a boundary in the form

γij = α+ β,

where α is a cycle in N∆ and β a cycle in U . Then we declare ∂γij to be the homology class

of dα. This already shows that, if the paths γi and γ
′
j do not cross, then ⟨γi, γ′j⟩ = 0, since in that

case we can choose α = 0. If γi and γ
′
j do cross, then we subdivide [0, 1] in rectangles, sufficiently

small so that the only rectangle containing the point γ−1
ij (∆) in its interior is sent to N∆. We

may take for α the restriction of γij to this small rectangle, and see that the image of γij in

H1(S∆) ∼= H1(S
1) = Q(1) is +1 if dα winds in the positive direction around the diagonal, and −1

in the opposite case. This in turn depends on whether γi and γ
′
j intersect positively or negatively.

In summary, we find

⟨γi, γ′j⟩ = Intersection number(γi, γ
′
j)

and we can easily compile a table of these intersection numbers. Here it is.

γ′1 γ′2 γ′3 γ′4 γ′5 γ′6
γ1 0 0 0 −1 0 0

γ2 0 0 0 −1 −1 0

γ3 0 0 0 −1 −1 −1
γ4 1 1 1 0 0 0

γ5 0 1 1 0 0 0

γ6 0 0 1 0 0 0

Example 3.8.12. — Let us continue the previous example, but suppose from now on that f is

an odd polynomial, so f(−x) = −f(x), of degree d = 2e+ 1. In that case, the object H1
perv(A1, f)

is self-dual via the isomorphism φ : H1
perv(A1, f) → H1

perv(A1,−f) induced by the multiplication-

by-(−1) map A1 → A1. The Poincaré–Verdier duality pairing becomes via this isomorphism a

pairing

H1
perv(A1, f)⊗H1

perv(A1, f)→ Q(−1) (3.8.12.1)

which will put some constraints on the tannakian fundamental group G of H1
perv(A1, f). Let us

make this constraint explicit. The basis for rapid decay homology we have considered above consists

of the usual and somewhat arbitrary choice γ1, . . . , γ2e for Hrd
1 (A1, f). However, we have chosen

the basis γ′i = −γi of Hrd
1 (A1,−f) in such a way that the isomorphism

Hrd
1 (A1,−f)→ Hrd

1 (A1, f)

dual to φ sends the γ′i to γi. The pairing (3.8.11.1) can be seen via this isomorphism as an alternating

bilinear form on Hrd
1 (A1, f), which in the basis γ1, . . . , γ2e is given by the skew-symmetric matrix

A =

(
0 −tT
T 0

)
,

where T ∈ GLe is the upper triangular matrix with 1’s on and above the diagonal. Its coefficients

are just the entries of the table of intersection numbers above. The same matrix A also characterises
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the bilinear form in rapid decay cohomology

H1
rd(A1, f)⊗H1

rd(A1,−f)→ Q(−1)

with respect to the dual bases. This pairing is the fibre at infinity of (3.8.12.1), and hence the

tannakian fundamental group G ⊆ GLd−1 of H1
perv(A1, f) must consist of matrices g satisfying

tg ·A · g = A

or in other words, G must be contained in the symplectic group SpA ⊆ GL2e.

3.9. Hard Lefschetz theorem

3.9.1. — Let f : X → A be a regular function. Unlike the classical case, the total cohomology

H∗
rd(X, f) does not have a ring structure, because the map obtained from the cup product (3.6.2.1)

and pullback by the diagonal

Hm
rd(X, f)⊗Hn

rd(X, f)→ Hm+n
rd (X, 2f)

lands in the cohomology of the pair (X, 2f) rather than in the cohomology of (X, f). However, the

total cohomology H∗
rd(X, f) has the structure of a graded module over the graded cohomology ring

H∗(X). This module structure is given degreewise by

Hm(X)⊗Hn(X, f)
cup−−−→ Hm+n(X ×X, 0⊞ f) ∆∗

−−−→ Hm+n(X, f) (3.9.1.1)

where ∆: X → X × X is the diagonal. We refer to the morphism (3.9.1.1) just as cup product .

The following statement is a simple application of a Hard Lefschez theorem for perverse sheaves.

Theorem 3.9.2 (Hard Lefschetz). — Let X be a smooth variety of dimension d and f : X → A1 a

proper morphism. Let η ∈ H2(X,Q) be the class of a hyperplane section. For every i = 0, 1, 2, . . . , d,

the cup product by ηi ∈ H2i(X)

ηi : Hd−i
rd (X, f)→ Hd+i

rd (X, f)

is an isomorphism.

Proof. The proof relies on Theorem 1.6.3 [20] stating the following: Let f : X → Y be a

proper morphism, and let η be the first Chern class of a hyperplane section of X. Then, the i-fold

cup-product with η

ηi : pH−i(Rf∗ICX)→ pH+i(Rf∗ICX)

is an isomorphism of perverse sheaves on Y . Here, ICX stands for the so-called intersection complex

on X, which is a certain perverse sheaf on X. In the case where X is smooth of dimension d, the

intersection complex ICX is the constant sheaf Q
X
[d]. We deduce that in our situation, the i-fold

cup-product with η induces an isomorphism

ηi : pHd−i(Rf∗QX
)→ pHd+i(Rf∗QX

)
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of perverse sheaves on A1. Applying the projector Π: Perv(A1) → Perv0 yields an isomorphism

in Perv0, and taking nearby fibres at infinity proves the theorem. □

3.9.3. — Let X be a smooth variety of dimension d and let f : X → A1 be a proper morphism.

Let n be an integer between 0 and d. The primitive part of Hn
rd(X, f) is the subspace

Pn(X, f) = ker(ηd−n+1 : Hn
rd(X, f)→ H2d−n+2

rd (X, f))

of Hn
rd(X, f). This subspace has a canonical complement, namely the image of the injective map

η : Hn−2
rd (X, f) → Hn

rd(X, f). From this decomposition results inductively the Lefschetz decompo-

sition:

Hn
rd(X, f) =

n/2⊕
i=0

ηiPn−i(X, f). (3.9.3.1)



CHAPTER 4

Exponential motives

This chapter contains the technical core of our work, namely the construction of the Q-linear

neutral tannakian category Mexp(k) of exponential motives over a subfield k of C. To this end, we

first recall in Section 4.1 the basics of Nori’s formalism, which attaches to a quiver representation

ρ : Q → VecQ a Q-linear abelian category ⟨Q, ρ⟩. We then apply this construction to a quiver

consisting of tuples [X,Y, f, n, i] and to the representation given by rapid decay cohomology.

4.1. Reminder and complements to Nori’s formalism

In this section, we recall the notions of quivers and quiver representations. For us, this will just

be a handy terminology to speak about categories without composition law.

Definition 4.1.1. — A quiver is the data Q = (Ob(Q),Mor(Q), s, t, i) of two classes Ob(Q)

and Mor(Q), together with maps

Mor(Q)

t

44

s
**
Ob(Q)

ioo

such that s ◦ i and s ◦ t are the identity on Ob(Q) and that, for each pair of elements p, q ∈ Ob(C),

the class {f ∈ Mor(Q) | s(f) = p, t(f) = q} is a set. We say that a quiver Q is finite if Ob(C) and

Mor(Q) are both finite sets.

As the notation suggests, one thinks of Ob(Q) as a class of objects and of Mor(Q) as morphisms

between them. The maps s and t associate with a morphism its source and target, and each object

is equipped with an identity morphism. From this point of view, a quiver is a category, except that

there is no composition law specified. We will freely adopt the terminology from category theory;

for example, we will call functor from Q to a category C the assignment of an object of C to each

object of Q and, to each morphism in Q, of a morphism between the corresponding objects in C

in such a way that identities are mapped to identities.

119
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Definition 4.1.2. — A representation of a quiver Q in a category C is a morphism of quivers

ρ from Q to C. A morphism of quiver representations (Q
ρ−→ C) → (Q′ ρ′−→ C) consists of a

quiver morphism φ : Q→ Q′ and an isomorphism (a natural transformation) of quiver morphisms

ρ′ ◦ ψ ∼= ρ.

4.1.3. — Let Q be a finite quiver, and let ρ : Q → C be a quiver representation of Q in a

monoidal closed abelian category C. The endomorphism ring End(ρ) is the algebra object in C

given by

End(ρ) = equaliser

(∏
q∈Q

End(ρ(q)) −−−−−−−→−−−−−−−→
∏
p→q

Hom(ρ(p), ρ(q))

)
(4.1.3.1)

where End(ρ(q)) and Hom(ρ(p), ρ(q)) are the internal homomorphism objects in C. Typically, the

category C at the receiving end of a quiver representation is the category of finite-dimensional

rational vector spaces VecQ. In that case, the Q-algebra End(ρ) consists of tuples (eq)q∈Q of

Q-linear endomorphisms eq : ρ(q)→ ρ(q) such that the squares

ρ(p) ρ(q)

ρ(p) ρ(q)
��ep

//ρ(f)

�� eq

//ρ(f)

commute for all morphisms f : p → q in Q. We may recognise (4.1.3.1) as part of a certain

Hochschild simplicial complex. In particular, if Q has only one object, we recognise a part of

the Hochschild complex of the free R–algebra generated by the morphisms of Q acting on the

bimodule End(ρ(q)). The Hochschild cohomology vanishes from H2 on, and the first Hochschild

cohomology group, whose elements have the interpretation of derivations modulo inner derivations,

is the coequaliser of (4.1.3.1).

Given an arbitrary quiver Q, a representation ρ : Q→ C in a closed monoidal category C and

a finite subquiver Q0 ⊆ Q, we can consider the algebra of endomorphisms E0 = EndQ(ρ|Q0) as

before. It is an algebra object in C. The endomorphism algebra End(ρ) is the formal limit of

algebra objects

End(ρ) = lim
Q0⊆Q

End(ρ|Q0)

as Q0 runs over the finite subquivers of Q and transition maps are restrictions. Thus, End(ρ) is

a pro-object in the category of algebra objects in C. The following lemma tells us that in the

case C = VecQ case we don’t have to worry about the distinction between formal pro-objects the

category of finite-dimensional algebras and infinite-dimensional algebras equipped with a topology.

Lemma 4.1.4. — Let I be a partially ordered set (where for every two elements i, j ∈ I there

exists k ∈ I with k ⩾ i and k ⩾ j), and let (Ei)i∈I be a collection of finite-dimensional Q-algebras,

together with algebra morphisms rji : Ej → Ei for j ⩾ i satisfying rji ◦ rkj = rki for k ⩾ j ⩾ i. Set

E = lim
i∈I

Ei =
{
(ei)i∈I ∈

∏
i∈I

Ei

∣∣∣ rij(ej) = ei for all j > i
}
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and denote by pi : E → Ei the canonical projections. For every finite-dimensional Q-algebra F , the

canonical map

colim
i∈I

HomQ−alg(Ei, F )
(∗)−−−→ colim

i∈I
HomQ−alg(E/ ker(pi), F )

is bijective.

Proof. Any element of the left hand set is represented by an algebra morphism h : Ei → F

for some i ∈ I, and the map labelled (∗) sends this element to the class of the composite of h with

the canonical injection ui : E/ ker(pi)→ Ei.

Injectivity. Any two elements of the left hand set can be represented by algebra morphisms

g : Ei → F and h : Ei → F for some large enough i ∈ I. To say that h and g are mapped to the

same element by (∗) is to say that there exists an element j ⩾ i such that the two composite maps

E/ ker(pj)→ E/ ker(pi)
ui−−→ Ei

g, h−−−→ F

coincide. Here E/ ker(pj)→ E/ ker(pi) is the canonical projection obtained from ker(pj) ⊆ ker(pi).

These maps are the same as the composite maps

E/ ker(pj)
ui−−→ Ej

rji−−−→ Ei
g, h−−−→ F

which means that g ◦ rji coincides with g ◦ rji on the image of the projection E → Ej . Since Ej is

finite-dimensional as a Q-vector space, the image of the projection E → Ej is equal to the image

of rkj : Ek → Ej for some k ⩾ j. Hence the maps g ◦ rki and h ◦ rki from Ek to F are equal, which

means that g and h represent the same element.

Surjectivity. Pick an algebra homomorphism h : E/ ker(pi)→ F representing an element of the

right hand set. Since Ei is finite-dimensional as a Q-vector space, there exists j ⩾ i such that the

image of pi : E → Ei is equal to the image of rji : Ej → Ei. The composite

Ej → Ej/ ker(rji) ∼= E/ ker(pi)
h−−→ F

represents a preimage by (∗) of the class of h. □

4.1.5. — Let us keep the notation from Lemma 4.1.4. The collection of the algebras Ei and

morphisms rji describes a pro-object in the category of finite-dimensional algebras. Elements of

the set colimHomQ−alg(Ei, F ) are morphisms of pro-objects from (Ei, rji) to F . On the other

hand, we can define a topology on E by declaring the ideals ker(pi) to be a fundamental system

of open neighbourhoods of 0. Elements of the set colimHomQ−alg(E/ ker(pi), F ) are then the

same as continuous algebra morphisms E → F for the discrete topology on F . A consequence of

the lemma is that the category of finite-dimensional (Ei, rji)-modules is the same as the category

of finite-dimensional continuous E-modules. The statement of the lemma, as well as the latter

consequence of it, are false if instead of finite-dimensional algebras over a field one takes finite

R-algebras over a coherent ring R, even for R = Z.

Definition 4.1.6. — Let Q be a quiver and ρ : Q → VecQ a quiver representation. We call

linear hull of (Q, ρ) the category ⟨Q, ρ⟩ defined as follows:
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(1) Objects of ⟨Q, ρ⟩ are triples (M,Q0, α) consisting of a finite-dimensional Q-vector space

M , a finite subquiver Q0 of Q, and a Q-linear action α of the algebra End(ρ|Q0) on M .

(2) Morphisms (M1, Q1, α1) → (M2, Q2, α2) in ⟨Q, ρ⟩ are linear maps f : M1 → M2 with the

property that there exists a finite subquiver Q3 of Q containing Q1 and Q2 such that f

is End(ρ|Q3)-linear. The action of End(ρ|Q3) on Mi is obtained via αi and the restriction

End(ρ|Q3)→ End(ρ|Qi).
(3) Composition of morphisms in ⟨Q, ρ⟩ is composition of linear maps.

Equivalently, in light of Lemma 4.1.4, the linear hull ⟨Q, ρ⟩ is the category of continuous End(ρ)-

modules which are finite-dimensional as vector spaces. It is therefore a Q-linear abelian category.

We call canonical lift the representation

ρ̃ : Q→ ⟨Q, ρ⟩

sending an object q ∈ Q to the triple ρ̃(q) = (ρ(q), {q}, id) and a morphism p → q to the linear

map ρ(f) : ρ(p)→ ρ(q).

Proposition 4.1.7. — Let ρ : Q→ VecQ be a quiver representation. Every object of the abelian

category ⟨Q, ρ⟩ is isomorphic to a subquotient of a finite sum of objects of the form ρ̃(q) for q in Q.

Proof. Let M be an object of ⟨Q, ρ⟩, that is, a finite-dimensional vector space together with

an E0-module structure for some finite subquiver Q0 ⊆ Q and E0 = End(ρ|Q0). We can regard E0

with its left E0-module structure as an object of ⟨Q, ρ⟩ too. Since M is finite-dimensional, there

is a surjection of E0-modules En0 → M for some integer n ⩾ 0, and hence it suffices to prove the

proposition in the case M = E0. There is an exact sequence of E0-modules

0 −−→ E0 −−→
∏
q∈Q0

End(ρ(q)) −−−→
∏
p→q

Hom(ρ(p), ρ(q)) (4.1.7.1)

which shows that E0, seen as a left E0-module, is indeed isomorphic to a subobject of a product

of modules of the form ρ(q). Notice that End(ρ(q)) is isomorphic as an E0-module to ρ(q)d for

d = dimQ(ρ(q)). □

Example 4.1.8. — Let G be a finite (or profinite) group, and let Q be the category of finite

G-sets, viewed as a quiver. Let ρ : Q→ VecQ be the quiver representation sending a finite G-set X

to the vector space ρ(X) = QX generated by X, and morphisms of G-sets X → Y to the induced

Q-linear map QX → QY . We can consider G as a (pro) G-set, and hence obtain a morphism

End(ρ) → EndQ(QG) whose image must commute with all maps QG → QG induced by right

multiplication by an element of G. This morphism is thus a morphism

End(ρ)→ Q[G]

where Q[G] stands for the group algebra of G. It is not hard to check that this morphism is indeed

an isomorphism, and hence the linear hull ⟨Q, ρ⟩ is the category of finite-dimensional Q-linear

representations of G.
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4.1.9. — An important feature of linear hulls of quiver representations is that they are functorial

in the following sense: Given a morphism of quiver representations, that is, a triangle of quiver

morphisms together with a natural transform

Q Q′

VecQ

��ρ

//φ

�� ρ′

s : ρ′ ◦ φ
∼=−−→ ρ

sq : ρ′(φ(q))
∼=−−→ ρ(q)

we obtain a functor Φ : ⟨Q, ρ⟩ → ⟨Q′, ρ′⟩ by setting Φ(M,Q0, α) = (M,φ(Q0), α ◦ σ), where φ(Q0)

is the image of the finite subquiver Q0 ⊆ Q in Q′ under φ, and σ the morphism of algebras

End(ρ′|φ(Q0)) → End(ρ|Q0) obtained from s. In terms of 4.1.3, the morphism σ sends the tuple

(eq′)q′∈φ(Q0) to the tuple (sq ◦ eφ(q) ◦ s−1
q )q∈Q0 . We notice that the functor Φ is faithful and exact,

and that it commutes with the forgetful functors and up to natural isomorphisms with the canonical

lifts.

4.1.10. — The induced functor Φ in the previous paragraph depends naturally on the morphism

of quiver representations (φ, s) in the following sense. Let ρ : Q → VecQ and ρ′ : Q′ → VecQ be

quiver representations, and let

Q Q′

VecQ

φ
//

ψ
//

ρ �� ρ′��

s : ρ′ ◦ φ→ ρ

t : ρ′ ◦ ψ → ρ

be two morphisms of quiver representations. Denote by Φ and Ψ the induced functors between

linear hulls ⟨Q, ρ⟩ → ⟨Q′, ρ′⟩. We call 2–morphism from (φ, s) to (ψ, t) every natural transform

η : ρ̃′ ◦ φ→ ρ̃′ ◦ ψ with the property that for every q ∈ Q the diagram of R–modules

ρ′(φ(q)) ρ′(ψ(q))

ρ(q) ρ(q)
��

sq

//
ηq

��

tq (4.1.10.1)

commutes. Such a 2-morphism η indeed induces a morphism of functors E : Φ → Ψ, namely, for

every object X = (M,F, α) in ⟨Q, ρ⟩, the morphism

EX : Φ(X) = (M,φ(F ), α ◦ σ)→ Ψ(X) = (M,ψ(F ), α ◦ τ)

in ⟨Q′, ρ′⟩ given by the identity idM . Let us check that idM : Φ(X)→ Ψ(X) is indeed a morphism

in ⟨Q′, ρ′⟩. We can without loss of generality suppose that Q and Q′ are finite quivers. What has

to be shown is that the two actions of End(ρ′) on M , one induced by s and the other by t, agree.

Indeed, already the two algebra morphisms

σ, τ : End(ρ′)→ End(ρ)
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are the same: given an element (eq′)q′∈Q′ of End(ρ′) and q ∈ Q, the diagram

ρ(q) ρ′(φ(q)) ρ′(φ(q)) ρ(q)

ρ(q) ρ′(ψ(q)) ρ′(ψ(q)) ρ(q)

//
s−1
q

��
ηq

//
eφ(q)

��
ηq

//
sq

//
t−1
q //

eψ(q) //
tq

commutes because ηq is not just an arbitrary morphism of modules, but comes from a morphism

ρ̃′(φ(q))→ ρ̃′(ψ(q)) in ⟨Q′, ρ′⟩ and hence is End(ρ′)-linear.

Theorem 4.1.11. — Let A be an abelian, Q–linear category, and let h : A→ VecQ be a faithful,

linear and exact functor. Regard h as a quiver representation. The canonical lift h̃ : A→ ⟨A, h⟩ is
an equivalence of categories.

References. In a slightly different form, the statement goes back to Freyd and Mitchell,

who proved their embedding theorem for abelian categories in 1964. In the form presented here,

Theorem 4.1.11 was originally shown by Nori in [65]. There are accounts by Bruguières, Levine,

and Huber and Müller-Stach ([17, 61, 47]). Ivorra deduces in [49] the result from a more general

construction. □

Theorem 4.1.12 (Nori’s universal property). — Let A be a Q-linear abelian category, together

with a functor σ : Q → A, and let h : A → VecQ be an exact, Q-linear, and faithful functor such

that the following diagram of solid arrows commutes:

A

⟨Q, ρ⟩

Q VecQ

��

h

��

OO

77

ρ̃

??

σ

//ρ

Then the above dashed arrow, rendering the whole diagram commutative, exists and is unique up

to a unique isomorphism.

Proof. We can then regard σ as a morphism of quiver representations from ρ : Q→ VecQ to

h : A→ VecQ. By naturality of the linear hull construction it gives a functor ⟨Q, ρ⟩ → ⟨A, h⟩, or,
in view of theorem 4.1.11, a functor ⟨Q, ρ⟩ → A which renders the whole diagram commutative up

to natural isomorphisms. □

Lemma 4.1.13. — Let ψ : (Q
ρ−−→ VecQ) → (Q′ ρ′−−→ VecQ) be a morphism of quiver represen-

tations. The induced functor Ψ : ⟨Q, ρ⟩ → ⟨Q′, ρ′⟩ is an equivalence of categories if and only if
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there exists a quiver representation λ : Q′ → ⟨Q, ρ⟩ such that the following diagram commutes up

to natural isomorphisms:

Q ⟨Q, ρ⟩

Q′ ⟨Q′, ρ′⟩
��

ψ

//ρ̃

�� Ψ
77

λ

//
ρ̃′

(4.1.13.1)

Proof. If Ψ is an equivalence of categories, then there exists a functor Φ: ⟨Q′, ρ′⟩ → ⟨Q, ρ⟩
and isomorphisms Φ ◦ Ψ ∼= id and Ψ ◦ Φ ∼= id. A possible choice for λ is then λ = Φ ◦ ρ̃′, indeed,
since the outer square in (4.1.13.1) commutes up to an isomorphism, we have isomorphisms

Ψ ◦ λ ∼= Ψ ◦ Φ ◦ ρ̃′ ∼= ρ̃′ and λ ◦ ψ = Φ ◦ ρ̃′ ◦ ψ ∼= Φ ◦Ψ ◦ ρ̃ ∼= ρ̃

as required.

On the other hand, suppose that a representation λ as in the statement of the lemma exists.

We extend the diagram (4.1.13.1) to a diagram

Q ⟨Q, ρ⟩

Q′ ⟨Q′, ρ′⟩

⟨Q, ρ⟩ ⟨⟨Q, ρ⟩, f⟩

��
ψ

//ρ̃

�� Ψ

��λ

77
λ

//ρ̃′

�� Λ
77

Ψ

//
P

(4.1.13.2)

with arrows as follows: let f : ⟨Q, ρ⟩ → VecQ and f ′ : ⟨Q′, ρ′⟩ → VecQ be the forgetful functors. We

have an isomorphism f ′ ◦Ψ ∼= f , and hence an isomorphism ρ′ = f ′ ◦ ρ̃′ ∼= f ′ ◦Ψ◦λ ∼= f ◦λ, and can

thus view λ as a morphism of quiver representations from ρ′ to f . The arrow Λ is the corresponding

functor. The functor P is the canonical lift of ρ̃ regarded as a morphism of quiver representations

from ρ to f ; by Theorem 4.1.11 it is an equivalence of categories. Let ι be a quasi–inverse to P .

We claim that the functor Φ = ι ◦ Λ is a quasi–inverse to Ψ.

To get an isomorphism Φ ◦ Ψ ∼= id it suffices to get an isomorphism Λ ◦ Ψ ∼= P . Let us apply

4.1.10 to the representations

Q ⟨Q, ρ⟩

VecQ

λ◦ψ
//

ρ̃
//

ρ �� f��

f ◦ λ ◦ ψ ∼= f ◦ ρ̃ = ρ

f ◦ ρ̃ = ρ

where we use an isomorphism λ ◦ ψ ∼= ρ̃ which makes (4.1.13.1) commute. This isomorphism

induces an isomorphism η : f̃ ◦ λ ◦ψ ∼= f̃ ◦ ρ̃ which makes the diagrams corresponding to (4.1.10.1)

commute, and hence we obtain an isomorphism of functors Λ ◦Ψ ∼= P . It remains to construct an

isomorphism Ψ ◦ Φ ∼= id. This is done by replacing the diagram (4.1.13.1) in the statement of the

Lemma with the bottom half of (4.1.13.2), and the same application of 4.1.10. □
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4.1.14 (Caveat). — In the situation of Lemma 4.1.13, it will not do to just produce a represen-

tation λ as in diagram (4.1.13.1) and natural isomorphisms of R–modules ρ(q) ∼= f(λ(q)) in order

to show that Ψ is an equivalence. Such a λ will produce some functor Φ : ⟨Q′, ρ′⟩ → ⟨Q, ρ⟩ which,
in general, is not a quasi-inverse to Ψ. Each time we apply 4.1.13, the hard part is not to define λ,

but to check commutativity of the diagram. The point seems to have been overlooked at several

places1. Consider for example a homomorphism of finite groups G′ → G, the quivers Q and Q′ of

finite G-sets, respectively G′-sets, and the quiver representations ρ and ρ′ which associate with a

set X the vector space generated by X. The linear hulls identify with the categories of Q-linear

group representations, and the restriction functor Q→ Q′ is a morphism of quiver representations

which induces the restriction functor between representation categories. For any G′-set X ′ write

λ(X) for the trivial G-representation on the vector space generated by the set X. We obtain a

diagram

G Set RepQ(G)

G′ Set RepQ(G
′)

��
ψ=res

//free

�� Ψ=res
77

λ

//
free

which does in not commute except in trivial cases, but commutes after forgetting the group actions.

The functor Ψ is not an equivalence, trivial cases excepted, and the functor induced by λ sends a

G′–representation V to the constant G–representation with underlying module V .

Definition 4.1.15. — Let ρ : Q → VecQ and ρ′ : Q′ → VecQ be quiver representations. We

denote by

ρ⊠ ρ′ : Q⊠Q′ → VecQ

the following quiver representation. Objects of the quiver Q⊠Q′ are pairs (q, q′) consisting of an

object q of Q and an object q′ of Q′, and morphisms are either of the form (idq, f
′) : (q, q′)→ (p, p′)

for some morphism f ′ : q′ → p′ in Q′, or of the form (f, idq′) : (q, q
′) → (p, q′) for some morphism

f : p→ q in Q. The representation ρ⊠ ρ′ is defined by

(ρ⊠ ρ′)(q, q′) = ρ(q)⊗R ρ′(q′)

on objects, and by (ρ⊠ρ′)(idq, f ′) = idρ(q)⊗ρ(f ′) and (ρ⊠ρ′)(f, idq′) = ρ(f)⊗idρ′(q′) on morphisms.

4.1.16. — Our next proposition relates the linear hull of a quiver representation ρ ⊠ ρ′ with

the tensor product of the linear hulls of ρ and ρ′. A tensor product A ⊗ B of abelian Q–linear

categories A and B, as introduced in [23], is a Q-linear category characterised up to equivalence

by a universal property. It does not exist in general as is shown in [62], however, it exists and

has good properties as soon as one works in an appropriate enriched setting, as is shown in [41].

We only need to know the following fact: If A is the category of continuous, finite-dimensional

1In [47], the proof of Corollary 1.7 is incomplete because of this problem, as is Arapura’s [4] proof of Theorem

4.4.2. Levine [61] cites Nori’s [65], where Nori draws the right diagram but does not show that it commutes.
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A-modules and B the category of continuous, finite-dimensional B-modules for some Q-profinite

algebras

A = lim
i
Ai and B = lim

j
Bj

then A⊗B exists and is given by the category of continuous A⊗̂B–modules, where

A⊗̂B = lim
i,j
Ai ⊗Bj

stands for the completed tensor product. This follows from §5.1 and Proposition 5.3 of [23].

Proposition 4.1.17. — There is a canonical faithful and exact functor

⟨Q⊠Q′, ρ⊠ ρ′⟩ → ⟨Q, ρ⟩ ⊗ ⟨Q′, ρ′⟩

which commutes with the forgetful functors to VecQ, and is natural in ρ and ρ′ for morphisms of

quiver representations. This functor is an equivalence of categories.

Proof. It suffices to construct a functor in the case where Q and Q′ are finite quivers. Set

V =
⊕
q∈Q

ρ(q)

and write X ⊆ EndR(V ) for the finite set of compositions of the form V
pr−−→ ρ(p)

ρ(f)−−−→ ρ(q)
⊆−→ V

for some morphism f in Q, and write EX = End(ρ) ⊆ End(V ) for the commutator of X. Define

EX′ ⊆ End(V ′) and EX⊠X′ ⊆ End(V ⊗V ′) similarly. We want to show that the canonical, natural

morphism of Q–algebras EX ⊗Q EX′ → EX⊠X′ given in the diagram

EX ⊗Q EX′ EX⊠X′

End(V )⊗Q End(V ′) End(V ⊗ V ′)

��

//

��

⊆

//α

α(f ⊗ f ′)(v ⊗ v′) = f(v)⊗ f ′(v′) (4.1.17.1)

is an isomorphism. All morphisms in this diagram are injective, and α is an isomorphism. We

want to show that the top horizontal map is surjective. Let f ∈ End(V ⊗V ′) be an endomorphism

that commutes with X ⊠X ′. We write f as f = α(f1 ⊗ f ′1 + · · ·+ fn ⊗ f ′n) with fi ∈ End(V ) and

linearly independent f ′i ∈ End(V ′). For all x ∈ X we have (x⊗ 1) ◦ f = f ◦ (x⊗ 1), that is,

n∑
i=1

(x ◦ fi − fi ◦ x)⊗ f ′i = 0

and hence fi ∈ EX . In other words, f comes via α from an element of EX ⊗ End(V ′), and

symmetrically, f comes from an element of End(V ) ⊗ EX′ . Finally, again since EX and EX′ are

direct factors of End(V ) and End(V ′), we have(
EX ⊗ End(V ′)

)
∩
(
End(V )⊗ EX′

)
= EX ⊗R EX′

so α−1(f) is indeed an element of EX ⊗R EX′ as we wanted to show. □
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4.1.18. — All statements presented in this section hold verbatim for R-linear quiver represen-

tations when R is a field. With the exception of Lemma 4.1.4 and Proposition 4.1.17 one can even

take for R a commutative coherent ring, and replace categories of finite-dimensional vector spaces

by categories of finitely presented modules. If in Proposition 4.1.17 we choose to work with a

coherent ring of coefficients R, the exact and faithful functor still exists, but it is in general not an

equivalence of categories. A sufficient condition for this functor to be an equivalence of categories

is that R is a hereditary ring, and ρ(q) and ρ′(q′) are projective R-modules for all q ∈ Q and

q′ ∈ Q′. Hereditary means that every ideal of R is projective, or equivalently, every submodule of

a projective module is projective. Fields, finite products of fields, Dedekind rings and finite rings

are examples. A commutative, coherent and hereditary ring which has no zero divisors is either a

field or a Dedekind ring.

One might be tempted to replace the category VecQ in Definition 4.1.6 by an arbitrary abelian

monoidal closed category. However, this will not result in a useful definition, since Theorem

4.1.11 and the universal property described in 4.1.12 do not hold in this generality. The point

is the following: Let ρ : Q → VecQ be a quiver representation, and regard the forgetful functor

f : ⟨Q, ρ⟩ → VecQ as a quiver representation. The the key turn in the proof of 4.1.11 is to show

that the canonical lift f̃ of f , and the functor P induced by ρ̃ : Q→ ⟨Q, ρ⟩ viewed as a morphism

of quiver representations

f̃ , P : ⟨Q, ρ⟩ −−−−−−−→−−−−−−−→ ⟨⟨Q, ρ⟩, f⟩

are isomorphic functors. This relies on the fact that the neutral object for the tensor product in

VecQ is a projective generator, which is particular to categories of modules. In the case where

we replace VecQ by a tannakian category, a correct abelian hull which satisfies Ivorra’s universal

property (it is the initial object in a certain strict 2–category, see [49], Definition 2.2) is given by

the equaliser category of f̃ and P .

4.2. Exponential motives

We fix for this section a field k endowed with a complex embedding σ : k ↪→ C. All varieties and
morphisms of varieties are understood to be defined over k. Given a variety X, a closed subvariety

Y of X, and a regular function f on X, when there is no risk of confusion, we will still denote

by X,Y, f the associated complex analytic varieties X(C), Y (C), and the holomorphic function

fC : X(C)→ C. We set Sr = {z ∈ C | Re(z) ⩾ r} and write

Hn(X,Y, f) = colim
r→∞

Hn(X,Y ∪ f−1(Sr),Q)

for rapid decay cohomology with rational coefficients.

Definition 4.2.1. — The quiver of exponential relative varieties over k is the quiver Qexp(k)

consisting of the following objects and morphisms:
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(1) Objects are tuples [X,Y, f, n, i], where X is a variety over k, Y ⊆ X is a closed subvariety,

f is a regular function on X, and n and i are integers.

(2) Morphisms with target [X,Y, f, n, i] are given by either (a), (b) or (c) as follows:

(a) for each morphism of varieties h : X → X ′ satisfying h(Y ) ⊆ Y ′ and f ′ ◦ h = f , a

morphism

h∗ : [X ′, Y ′, f ′, n, i] −→ [X,Y, f, n, i];

(b) for each pair of closed immersions Z ⊆ Y ⊆ X, a morphism

∂ : [Y,Z, f |Y , n− 1, i] −→ [X,Y, f, n, i];

(c) a morphism

[X ×Gm, (Y ×Gm) ∪ (X × {1}), f ⊞ 0, n+ 1, i+ 1] −→ [X,Y, f, n, i].

We refer to the integer n as cohomological degree of just degree, and to the integer i as twist .

Definition 4.2.2. — The Betti representation of the quiver of exponential relative varieties over

k is the functor ρ : Qexp(k)→ VecQ defined on objects by

ρ([X,Y, f, n, i]) = Hn(X,Y, f)(i),

where (i) denotes the tensor product with the (−i)–fold tensor power of the one-dimensional vector

space H1(Gm,Q), and as follows on morphisms:

(a) a morphism of type (a) given by a morphism of varieties h : X → X ′ is sent to the linear

map

Hn(X ′, Y ′, f ′)(i)→ Hn(X,Y, f)(i)

obtained by functoriality of rapid decay cohomology;

(b) a morphism of type (b) is sent to the map

Hn−1
rd (Y, Z, f|Y )(i)→ Hn

rd(X,Y, f)(i)

induced, by passing to the limit r → +∞, from the composition

Hn−1(Y, Z ∪ f−1
|Y (Sr))

Hn−1(Y ∪ f−1(Sr), Z ∪ f−1(Sr)) Hn(X,Y ∪ f−1(Sr))

��

∼

//

where the horizontal map is the connecting morphism in the long exact sequence associated

with the triple Z∪f−1(Sr) ⊆ Y ∪f−1(Sr) ⊆ X, and the vertical morphism is the inverse of

the map induced by the obvious morphism of pairs, which is an isomorphism by excision;
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(c) a morphism of type (c) is sent to the map

Hn+1(X ×Gm, (Y ×Gm) ∪ (X × {1}), f ⊞ 0)(i+ 1)→ Hn(X,Y, f)(i)

induced by the Künneth isomorphism (Proposition 3.1.1)

Hn+1(X ×Gm,(Y ×Gm) ∪ (X × {1}), f ⊞ 0)

∼−→ Hn(X,Y, f)⊗H1(Gm, {1}) = Hn(X,Y, f)(−1).

Definition 4.2.3. — The category of exponential motives over k is the linear hull

Mexp(k) = ⟨Qexp(k), ρ⟩,

that is, the category whose objects are triples (M,Q,α), where M is a finite-dimensional rational

vector space, Q ⊆ Qexp(k) a finite subquiver, and α a linear action of End(ρ|Q) on M . We write

RB : Mexp(k) −→ VecQ

for the forgetful functor, and call it Betti realisation. Given an object [X,Y, f, n, i] of the quiver

Qexp(k), we denote by Hn(X,Y, f)(i) the exponential motive ρ̃([X,Y, f, n, i]). Whenever Y = ∅ or

i = 0, we shall usually omit them from the notation.

4.2.4. — Let us list for future reference a few conspicuous properties of the category Mexp(k).

First of all, Mexp(k) is an abelian and Q-linear category, and there is by definition a commutative

diagram

Mexp(k)

Qexp(k) VecQ

$$

RB =Betti realisation
44

ρ̃=motive of

//ρ= rapid decay coho.

where ρ and its canonical lift ρ̃ are quiver representations, and where RB is a faithful, exact and

conservative functor. Conservative means that a morphism f in Mexp(k) is an isomorphism if and

only if its Betti realisation RB(f) is an isomorphism of vector spaces. From Proposition 4.1.7 we

know that every object in Mexp(k) is isomorphic to a subquotient of a sum of objects of the form

Hn(X,Y, f)(i). Morphisms in the quiver Qexp(k) lift to morphisms in Mexp(k). In particular we

have morphisms of motives

h∗ : Hn(X ′, Y ′, f ′)(i)→ Hn(X,Y, f)(i) (4.2.4.1)

induced by morphisms of varieties h′ : X → X ′ compatible with subvarieties and potentials. The

Betti realisation of this morphism is the corresponding morphisms of rapid decay cohomology

groups. Let Z ⊆ Y ⊆ X be a pair of closed immersions and f a regular function on X. There is a

long exact sequence of exponential motives

· · · −→ Hn(X,Y, f) −→ Hn(X,Z, f) −→ Hn(Y,Z, f |Y ) −→ Hn+1(X,Y, f) −→ · · · (4.2.4.2)

realising to the corresponding long exact sequence in rapid decay cohomology. Indeed, all mor-

phisms in the sequence (4.2.4.2) are morphisms of motives because they come from morphisms in
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the quiver Qexp(k), and the sequence is also exact because the corresponding sequence of vector

spaces is so. Finally, there are isomorphisms

Hn+1(X ×Gm, (Y ×Gm) ∪ (X × {1}), f ⊞ 0)(i+ 1)→ Hn(X,Y, f)(i) (4.2.4.3)

in Mexp(k) realising to the Künneth isomorphisms. Of course, the above are not all morphisms

in the category Mexp(k). Taking compositions and Q-linear combinations produces many other

morphisms which are not of the elementary shapes (4.2.4.1), (4.2.4.2) or (4.2.4.3). It is not clear

whether by any means all morphisms in Mexp(k) are obtained from those elementary ones.

Lemma 4.2.5. — For every pair of varieties Y ⊆ X and every regular function f : X → A1,

there is a canonical isomorphism of motives

Hn(X,Y, f)
∼=−−→ Hn+1(X × A1, (Y × A1) ∪ Γ, p)

where Γ ⊆ X × A1 is the graph of f and p : X × A1 → A1 is the projection.

Proof. This follows essentially from the previous remarks and elements of the proof of Propo-

sition 3.2.2. Associated with the triple (Y ×A1) ⊆ (Y ×A1)∪Γ ⊆ (X×A1) is a long exact sequence

in Mexp(k). The motives Hn(X × A1, Y × A1, p) appearing in this sequence are zero for all n, so

the sequence breaks down to isomorphisms

Hn((Y × A1) ∪ Γ, Y × A1, p)
∼=−−→ Hn+1(X × A1, (Y × A1) ∪ Γ, p). (4.2.5.1)

The inclusion h : X → (Y ×A1)∪Γ given by h(x) = (x, f(x)) sends Y ⊆ X to Y ×A1 and satisfies

p ◦ h = f , hence a morphism

h∗ : Hn((Y × A1) ∪ Γ, Y × A1, p)→ Hn(X,Y, f) (4.2.5.2)

in Mexp(k). By excision, this morphism induces an isomorphism in rapid decay cohomology, and

hence is an isomorphism of motives. The composite of (4.2.5.1) and (4.2.5.2) is what we sought. □

4.2.6. — Let us now show how Nori’s universal property is used to construct realisation functors.

Let A be an abelian Q-linear category equipped with a faithful exact functor h : A → VecQ, and

suppose that we are given a cohomology theory for triples (X,Y, f) with values in A which is

comparable to rapid decay cohomology. Precisely, that means we have a quiver representation

σ : Qexp(k)→ A [X,Y, f, n, i] 7−→ Hn
A(X,Y )(i) (4.2.6.1)

and an isomorphism between h ◦ σ and the Betti representation ρ. Nori’s universal property as

stated in Theorem 4.1.12 applies, yielding a faithful and exact functor

RA : Mexp(k)→ A (4.2.6.2)

which we call realisation functor. A typical examples of such a cohomology theory is the represen-

tation associating with [X,Y, f, n, i] the object Hn
perv(X,Y )(i) of Perv0, in which case we choose

for A the category Perv0 and for h the nearby fibre at infinity. It can and will happen that we

want to study cohomology theories and realisation functors with values in a category which is not

Q-linear but F -linear for some field of characteristic zero, typically F = k or F = Qℓ or F = C.
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In that case we can not use Theorem 4.1.12 directly, but have to use the following trick. Suppose

we have a cohomology theory such as (4.2.6.1) where now A is F -linear with a faithful and exact

functor A→ VecF and a natural isomorphism

Hn
A(X,Y )(i)⊗F B ∼= Hn(X,Y )(i)⊗Q B (4.2.6.3)

of B-vector spaces for some large field B containing F . Let A+ be the category whose objects are

triples (A, V, α) consisting of an object A of A, a rational vector space V , and an isomorphism of

B-vector spaces h(A) ⊗F B ∼= V ⊗Q B. The category A+ is Q-linear, with a faithful and exact

functor h : A→ VecQ sending (A, V, α) to V . Combining the given representation σ : Qexp(k)→ A

with (4.2.6.3), we obtain a representation σ+ : Qexp(k) → A+ such that the equality h ◦ σ+ = ρ

holds, and hence from Nori’s universal property a realisation functor RA+ : Mexp(k) → A+. We

obtain a functor (4.2.6.2) by composing RA+ with the forgetful functor A+ → A.

4.2.7. — Much of the strength of Nori’s theories of motives, among which we count our category

of exponential motives, stems from the fact that there are many variants of the Betti representation

ρ : Qexp(k)→ VecQ which produce the same category of exponential motives.

Proposition 4.2.8. — Let Qexp
aff (k) be the full subquiver of Qexp(k) whose objects are those tuples

[X,Y, f, n, i] where X is an affine variety. The functor

⟨Qexp
aff (k), ρ⟩ → ⟨Qexp(k), ρ⟩ = Mexp(k)

induced by the inclusion Qexp
aff (k)→ Qexp(k) is an equivalence of categories.

4.3. The derived category of exponential motives

In a wide range of contexts, spectral sequences associated with simplicial or filtered spaces

are a powerful tool to compute cohomology. We would like to use these techniques to compute

exponential motives as well. The difficulty in doing so stems from the fact that Hn(X,Y, f) is not

defined as the homology in degree n of a complex, as it is the case for most familiar cohomology

theories. Our goal in this section is to fabricate adequately functorial complexes which compute

exponential motives, as it is done for usual motives in [65].

Definition 4.3.1. — A triple [X,Y, f ] consisting of a variety X over k, a closed subvariety Y

of X, and a regular function f is said to be cellular in degree n if Hp(X,Y, f) = 0 for all p ̸= n.

We write Qexp
c (k) for the full subquiver of Qexp(k) of those objects [X,Y, f, n, i] such that X is

affine of dimension ⩽ n and [X,Y, f ] is cellular in degree n.

We equip Qexp
c (k) with the restriction of the Betti representation ρ from 4.2.2, so that the

inclusion Qexp
c (k) ⊆ Qexp(k) can be seen as a morphism of quiver representations. We setMexp

c (k) =
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⟨Qexp
c (k), ρ⟩ and call canonical the functor

Mexp
c (k) −→Mexp(k) (4.3.1.1)

induced by the inclusion Qexp
c (k)→ Qexp(k).

Theorem 4.3.2. — There exists a quiver representation λ : Qexp(k) → Db(Mexp
c (k)) with the

following three properties:

(1) The following diagram commutes up to natural isomorphisms:

Qexp
c (k) Mexp

c (k)

Qexp(k) Mexp(k)
��

⊆

//can.lift

��
can.

//can.lift

77
H0◦λ

(2) The equalities λ([X,Y, f, n, i]) = λ([X,Y, f, 0, 0])[−n](i) hold.
(3) For all tuples [X,Y, Z, f ], the triangles

λ([X,Y, f, n, i])→ λ([X,Z, f, n, i])→ λ([Y,Z, f |Y , n, i])→ λ([X,Y, f, n+ 1, i])

are exact, where morphisms are the images under λ of the corresponding morphisms of

type (a) for inclusions and of type (b) for the triple.

In particular, the canonical functor (4.3.1.1) is an equivalence of categories.

4.3.3. — The construction of the representation λ that we present below shows that it is

characterised by the three properties of the statement essentially in a unique way. In view of

property (2), the construction of λ amounts to the construction of complexes

C•(X,Y, f) = λ([X,Y, f, 0, 0])

in the category Mexp
c (k), which uses two essential ingredients: One is the Basic Lemma 3.3.3

which we use to define a complex for every object [X,Y, f, n, i] where X is affine, and the other is

Jouanolou’s trick, which permits us to replace a general variety with an affine one which is homo-

topic to it. Having done so, we obtain a complex inMexp
c which is our candidate for λ([X,Y, f, n, i]),

but depends on several choices. Once we look at the complex as an object in the derived category

Db(Mexp
c ), we get rid of all dependence on these choices.

4.3.4. — Let us recall the following observation from [51, Lemme 1.5], which is commonly

referred to as Jouanolou’s trick :

Lemma 4.3.5. — For every quasi-projective variety X over k, there exists an affine variety X̃ and

a morphism p : X̃ → X such that each fibre p−1(x) is isomorphic to Ad for some d ⩾ 0 (but there is

no such thing as a zero-section X → X̃). In particular, the induced continuous map X̃(C)→ X(C)
is a homotopy equivalence.
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The proof is simple: For X = Pn take for X̃ the variety of (n + 1) × (n + 1) matrices of rank

1 up to scalars with its obvious map to Pn, and for general X choose a projective embedding and

do a pullback. Let us call such a morphism p : X̃ → X an affine homotopy replacement.

Jouanoulou’s trick does not give a functorial homotopy replacement of varieties X by affine

X̃, but nearly so. Given a morphism of varieties Y → X, we can replace first X with an affine

X̃ → X, and then Y with an affine homotopy replacement Ỹ of the fibre product Y ×X X̃. The

map Ỹ → Y is an affine homotopy replacement, and we obtain a morphism Ỹ → X̃ which lifts the

given morphism Y → X. This procedure can be generalised to the case of several morphisms from

Y → X, but not to arbitrary diagrams of varieties.

Definition 4.3.6. — LetX be an affine variety over k, let Z ⊆ Y ⊆ X be closed subvarieties and

let f be a regular function on X. A cellular filtration of [X,Y, Z, f ] is a chain of closed immersions

∅ ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xp−1 ⊆ Xp ⊆ · · · ⊆ Xd = X (4.3.6.1)

where each Xp is of dimension ⩽ p, such that the triples

[Xp, Xp−1, f |Xp ], [Yp, Yp−1, f |Yp ], [Zp, Zp−1, f |Zp ], [Xp, Yp ∪Xp−1, f |Xp ], [Yp, Zp ∪ Yp−1, f |Yp ]

are cellular in degree p, for Yp = Xp ∩ Y and Zp = Xp ∩ Z. By a cellular filtration of [X,Y, f ] we

understand a cellular filtration of [X,Y,∅, f ].

Proposition 4.3.7. — Let X be an affine variety over k, let Z ⊆ Y ⊆ X be closed subvarieties

and let f be a regular function on X. There exist cellular filtrations of [X,Y, Z, f ], and every

filtration of X by closed subvarieties Xp of dimension ⩽ p is contained in a cellular filtration.

Proof. This is a direct consequence of the basic lemma 3.3.3: Suppose we are given a filtration

of the form (4.3.6.1), which satisfies the cellularity condition for j ⩾ p+ 1. By 3.3.3 there exists a

closed subvariety Z of dimension ⩽ p− 1 of Xp such that the triples

[Xp, Xp−1 ∪ Z, f |Xp ], [Yp, Yp−1 ∪ (Yp ∩ Z), f |Yp ], [Zp, Zp−1 ∪ (Zp ∩ Z), f |Zp ]

[Xp, (Yp ∪Xp−1) ∪ Z, f |Xp ], [Yp, (Zp ∪ Yp−1) ∪ (Z ∩ Yp), f |Yp ]

are cellular in degree p. Replace then Xp−1 with Xp−1 ∪ Z and continue by induction on p. □

4.3.8. — Let X be an affine variety over k, together with a regular function f , and let Y ⊆ X

be a closed subvariety. Choose a cellular filtration X∗ of [X,Y, f ] and set Yp = Xp ∩ Y . We will

consider the complex

C∗(X∗, Y∗, f) =
[
· · · → Hp(Xp, Yp ∪Xp−1, f |Xp)

dp−−→ Hp+1(Xp+1, Yp+1 ∪Xp, f |Xp+1)→ · · ·
]

(4.3.8.1)

in the category Mexp
c (k), where the differential dp is the connecting morphism in the long exact

sequence associated with the triple Xp−1 ⊆ Xp ⊆ Xp+1 and the sheaf on X which computes the

cohomology of the pair [X,Y ]. By this we mean the following: For every constructible sheaf F on
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X and every triple Xp−1 ⊆ Xp ⊆ Xp+1 there is a short exact sequence of sheaves on X

0→ F[Xp+1,Xp−1] → F[Xp,Xp−1] → F[Xp+1,Xp] → 0

and hence a long exact sequence

· · · → pHn(Rf∗F[Xp+1,Xp−1])→
pHn(Rf∗F[Xp,Xp−1])

∂−−→ pHn+1(Rf∗F[Xp+1,Xp])→ · · ·

of perverse sheaves on the affine line. Applying the functor Π and taking fibres at infinity, this

yields the exact sequence of vector spaces

· · · → Hn
rd(Xp+1, Xp−1, f ;F )→ Hn

rd(Xp, Xp−1, f ;F )
∂−−→ Hn+1

rd (Xp+1, Xp, f ;F )→ · · · (4.3.8.2)

by definition of rapid decay cohomology with coefficients in a constructible sheaf. We consider

(4.3.8.2) for the terms of the standard short exact sequence of sheaves on X

0→ Q
[X,Y ]

→ Q
X
→ Q

Y
→ 0.

Taking into account that

Hn
rd(Xp, Xp−1, f ;Q[X,Y ]

) = Hn
rd(Xp, Yp ∪Xp−1, f |Xp)

Hn
rd(Xp, Xp−1, f ;QX

) = Hn
rd(Xp, Xp−1, f |Xp)

Hn
rd(Xp, Xp−1, f ;QY

) = Hn
rd(Yp, Yp−1, f |Yp),

the long exact sequence (4.3.8.2) and the cellularity assumptions yield a morphism of short exact

sequences of vector spaces

0→ Hp
rd(Xp, Yp ∪Xp−1, f|Xp) Hp

rd(Xp, Xp−1, f|Xp) Hp
rd(Yp, Yp−1, f|Yp)→ 0

0→ Hp+1
rd (Xp+1, Yp+1∪Xp, f|Xp+1

) Hp+1
rd (Xp+1, Xp, f|Xp+1

) Hp+1
rd (Yp+1, Yp, f|Yp+1

)→ 0

��
dp

//

��∂

//

��∂

// //

in which the differential of (4.3.8.1) appears. All vector spaces in this diagram underlie objects

of Mexp
c (k). This diagram shows as well that dp is a morphism in Mexp

c (k) rather than just a

morphism of vector spaces, indeed, all other morphisms in the diagram are morphisms in Mexp
c (k)

since they either are given by inclusions of pairs or by connecting morphisms of triples, and hence

come from morphisms in Qexp
c (k). That the composite dp−1 ◦ dp is zero follows from the fact that

for any chain of closed subvarieties Xp−2 ⊆ Xp−1 ⊆ Xp ⊆ Xp+1 of X and any sheaf F on X, the

composite

Hp−1
rd ([Xp−1, Xp−2], F )→ Hp

rd([Xp, Xp−1], F )→ Hp+1
rd ([Xp+1, Xp], F )

is zero. The complex C∗(X∗, Y∗, f) is functorial in the obvious way for morphisms of filtered pairs:

let h : X ′ → X be a morphism of affine varieties over k, restricting to a morphism Y ′ → Y between

closed subvarieties, set f ′ = f ◦ h, and let X∗ and X ′
∗ be cellular filtrations for [X,Y, f ] and

[X ′, Y ′, f ′] such that h(X ′
p) is contained in Xp and h(Y ′

p) in Yp for all p ⩾ 0. The morphism

C∗(h) : C∗(X∗, Y∗, f)→ C∗(X ′
∗, Y

′
∗ , f

′) (4.3.8.3)

shall be the one induced by the morphism Hp(Xp, Yp ∪ Xp−1, f |Xp) → Hp(X ′
p, Y

′
p ∪ X ′

p−1, f
′|X′

p
)

given by the restriction of h to X ′
p.
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4.3.9. — We now turn to the proof that the cohomology of the complex C∗(X∗, Y∗, f) computes

the exponential motives Hn(X,Y, f). Recall from (??) that Γf : Sh(X) → VecQ is the left exact

functor obtained by composing in that order: the direct image functor f∗, taking the tensor product

−⊠ j!QGm
on A2, the direct image functor sum∗ and the fibre functor Ψ∞.

Lemma 4.3.10. — Let X be an affine variety over k, together with a regular function f , and

let Y ⊆ X be a closed subvariety. Choose a cellular filtration X∗ of [X,Y, f ]. There is a natural

isomorphism in the derived category of vector spaces

C∗(X∗, Y∗, f) ∼= RΓf (Q[X,Y ]
). (4.3.10.1)

Proof. That the complex RΓf (Q[X,Y ]
) computes rapid decay cohomology was explained in

Proposition ??. The complex on the right hand is calculated by choosing an injective resolution

I∗ = [I0 → I1 → I2 → · · · ]

of the sheaf Q
[X,Y ]

and applying to this resolution the functor Γf . On the left-hand side we have a

complex of motives, which has an underlying complex of vector spaces. It is given in degree p by

the vector space Hp(Xp, Xp−1 ∪ Yp, f) which is the same as RΓf (Q[Xp,Xp−1∪Yp]
) by Proposition ??.

Thus, the claim of the Lemma is the following:

Claim: Let F be a sheaf on X, and let X∗ be a finite exhaustive filtration of X by closed

subspaces Xp such that Hn(Xp, Xp−1, f |Xp , F ) is zero for n ̸= p. Then the complex of vector

spaces

· · · → Hp−1(Xp−1, Xp−2, f, F )→ Hp(Xp, Xp−1, f, F )→ Hp+1(Xp+1, Xp, f, F )→ · · · (4.3.10.2)

is isomorphic to RΓf (F ) in the derived category of vector spaces.

To see this, choose an injective resolution F → I∗ of F . The long exact sequence (4.3.10.2) is

natural in F , so if we apply it to I∗ we obtain a double complex, and hence a spectral sequence

Ep,q1 = Hp+q(Xp, Xp−1, f ;F ) =⇒ Hp+q(X, f, F ).

By the assumption that the filtration is cellular, the term Ep,q1 vanishes for q ̸= 0, and hence

the spectral sequence degenerates at the second page, yielding the desired quasi-isomorphism of

complexes.

Naturality of the isomorphism (4.3.10.1) for morphisms of filtered pairs follows from naturality

of (4.3.10.2) in X∗ and F . □

Proposition 4.3.11. — Let X be an affine variety over k, together with a regular function f ,

and let Y ⊆ X be a closed subvariety. Choose a cellular filtration X∗ of [X,Y, f ]. There is a

canonical isomorphism in Mexp(k)

Hp(C∗(X∗, Y∗, f)) ∼= Hp(X,Y, f)

which is natural for morphisms of filtered pairs. If X is of dimension ⩽ n and [X,Y, f ] is cellular

in degree n, then this isomorphism is an isomorphism in Mexp
c (k).
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Proof. The cohomology of C∗(X∗, Y∗, f) in degree p is the object

Hp(C∗(X∗, Y∗, f)) =
ker
(
Hp(Xp, Yp ∪Xp−1, fp)→ Hp+1(Xp+1, Yp+1 ∪Xp, fp+1)

)
im
(
Hp−1(Xp−1, Yp−1 ∪Xp−2, fp−1)→ Hp(Xp, Yp ∪Xp−1, fp)

) (4.3.11.1)

in Mexp
c (k) and we wish to show that this object is naturally isomorphic to Hp(X,Y, f) in Mexp(k),

and even inM
exp(k)
c whenever [X,Y, f ] is cellular. To treat cases uniformly, pick any finite subquiver

Q of Qexp(k) or of Qexp
c (k) which contains at least [X,Y, f, p, 0], the [Xp, Yp ∪ Xp−1, fp, p, 0], the

morphisms coming from inclusions, and the connecting morphisms of triples, subject to future

enlargement. Set E = End(ρ|Q). For all integers q < p and n, we have Hn(Xp, Yp ∪ Xq, fp) = 0

unless q < n ⩽ p. Indeed, this is true by definition if q = p− 1, and follows in general by induction

on p− q using the long exact sequence associated with the triple Xq ⊆ Xp−1 ⊆ Xp. This explains

why the morphisms

Hp(X,Y, f)→ Hp(Xp+1, Yp+1, fp+1)←− Hp(Xp+1, Yp+1 ∪Xp−2, fp+1) (4.3.11.2)

are isomorphisms of vector spaces, and also explains the surjections and injections in the following

diagram, whose exact rows and columns are pieces of the long exact sequences associated with

triples out of the quadruple Xp−2 ⊆ · · · ⊆ Xp+1.

Hp−1(Xp−1, Yp−1∪Xp−2, fp−1) Hp(Xp+1, Yp+1∪Xp−1, fp+1) Hp(Xp+1, Yp+1∪Xp−2, fp+1)

Hp−1(Xp−1, Yp−1∪Xp−2, fp−1) Hp(Xp, Yp ∪Xp−1, fp) Hp(Xp, Yp ∪Xp−2, fp)

Hp+1(Xp+1, Yp+1∪Xp, fp+1) Hp+1(Xp+1, Yp+1∪Xp, fp+1)

∗

//∂
� _

��

// //
� _

��
//∂

∗

��
∗ ∂

// //

��
∂

∗

This diagram is a diagram of vector spaces where all morphisms labelled with a ∗ are morphisms

of E-modules between E-modules. But then the whole diagram is a diagram of E-modules, in only

one possible way. Now we have an E-module structure on Hp(X,Y, f) and on Hp(Xp+1, Yp+1 ∪
Xp−2, fp+1), and we need to show that the isomorphisms (4.3.11.2) are isomorphisms of E-modules

after possibly enlarging Q. In the case where we work with subquivers of Q(k) we add to Q the

two morphisms of pairs needed to define (4.3.11.2) and are done. If we work with cellular pairs

only, then X has dimension ⩽ p and [X,Y ] is cellular in degree p, and we enlarge Q as follows: By

the Basic Lemma 3.3.3, there exists a closed Z ⊆ X of dimension ⩽ p − 1 such that Hp(X,Y ′, f)

is cellular in degree p for Y ′ = Y ∪ Xp−1 ∪ Z. Add the morphism [X,Y ′, f, n, 0] → [X,Y, f, n, 0]

to Q so that Hp(X,Y ′, f) → Hp(X,Y, f) is an E-linear morphism. It is surjective for dimension

reasons, and the diagram of E-modules and linear maps

Hp(X,Y ′, f) Hp(X,Y, f)

Hp(Xp, Yp ∪Xp−1, fp) Hp(Xp, Yp ∪Xp−2, fp)
��

∗

// //∗

��
∼= u

// //
∗

commutes, where the isomorphism u is induced by (4.3.11.2). All morphisms labelled ∗ are E-linear

and hence so is u. Altogether, we conclude that the homology in the middle of

Hp−1(Xp−1, Yp−1 ∪Xp−2, fp−1)→ Hp(Xp, Yp ∪Xp−1, fp)→ Hp+1(Xp+1, Yp+1 ∪Xp, fp+1)
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is indeed canonically isomorphic to Hp(X,Y, f) as an E-module, which is what we had to show.

Naturality of the isomorphism for morphisms of filtered pairs follows from functoriality of (4.3.11.2).

□

Corollary 4.3.12. — Let X and X ′ be affine varieties and h : [X,Y, f ]→ [X ′, Y ′, f ′] be a mor-

phism in Qexp(k). Let X∗ and X ′
∗ be cellular filtrations of [X1, Y

′, f ′] and [X ′, Y ′, f ′]. If h induces

an isomorphism in rapid decay cohomology, then the morphism of complexes C∗([X∗, Y∗, f ]) →
C∗([X ′

∗, Y
′
∗ , f ]) defined in (4.3.8.3) is a quasi-isomorphism.

Proof. This follows from the conservativity of the forgetful functor Mexp(k) → VecQ and

Proposition 4.3.11. □

Proposition 4.3.13. — Let X be an affine variety over k, let f be a regular function on X and

let Z ⊆ Y ⊆ X and Z ⊆ Y be closed subvarieties. Let X∗ be a cellular filtration of [X,Y, Z, f ]. The

sequence of complexes with morphisms given by (4.3.8.3) for inclusions

0→ C∗([X∗, Y∗])→ C∗([X∗, Z∗])→ C∗([Y∗, Z∗])→ 0 (4.3.13.1)

is degreewise exact.

Proof. The sequences in question are sequences in Mexp
c (k), but in order to show that they

are exact it suffices to show that the underlying sequence in Vec are exact. But that immediately

follows from the definition of cellular filtrations and a diagram chase. □

We have now all the ingredients needed for the proof of the main result of this section.

Proof of Theorem 4.3.2. For each object [X,Y, f, n, i] of the quiver Qexp(k) and each cellu-

lar filtration X∗ of [X,Y, f ], we consider the complex C∗(X∗, Y∗, f)[−n](i) obtained from (4.3.8.1)

by shifting and twisting degree by degree. Let us define λ as follows:

λ([X,Y, f, n, i]) = colim
X̃→X

lim
X̃∗

C∗(X̃∗, Ỹ∗, f̃)[−n](i)

on objects [X,Y, f, n, i] of Qexp(k), where the limit runs over all cellular filtrations of the triple

[X̃, Ỹ , f ] and the colimit over all affine homotopy replacements Π: X̃ → X, setting Ỹ = X̃×XY and

f̃ = f◦p. These colimits and limits exist in the derived categoryDb(Mexp
c (k)). Indeed, all transition

maps are isomorphisms by Corollary 4.3.12. From the practical point of view, λ([X,Y, f, n, i]) is iso-

morphic to any of the complexes C∗(X̃∗, Ỹ∗, f̃)[−n](i) up to a unique isomorphism in Db(Mexp
c (k)),

and the use of the limiting processes is only an artifact to get rid of choices2. We define λ on

morphisms as follows:

Type (a): Let h : [X,Y, f, n, i]→ [X ′, Y ′, f ′, n, i] be given by a morphism of varieties h : X ′ → X

such that h(Y ′) ⊆ Y and f ′ = f ◦ h. From (4.3.8.3) we obtain a morphism

C•(h) : C•(X̃ ′
∗, Ỹ

′
∗ , f

′) −→ C•(X̃∗, Ỹ∗, f)

for suitable affine homotopy replacements and cellular filtrations, and set λ(f) = C•(f)[−n](i).

2provided a concrete construction of limits in Db(Mexp
c (k)) is at disposal.
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Type (b): Let d : [Y,Z, n, i] → [X,Y, n + 1, i] be given by closed immersions Z ⊆ Y ⊆ X

between affine varieties. Choose an affine homotopy replacement X̃ → X, set Ỹ = X̃ ×X Y and

Z̃ = X̃ ×X Z and cellular filtration of the triple [X̃, Ỹ , Z̃]. From Proposition 4.3.13 we obtain an

degreewise exact sequence of complexes

0→ C∗([X̃∗, Ỹ∗])
r−−→ C∗([X̃∗, Z̃∗])

s−−→ C∗([Ỹ∗, Z̃∗]→ 0 (4.3.13.2)

where r and s induced by inclusions, and hence a morphism in Db(Mc) given by the hat

Cone(r)

C∗([Y, Z]) C∗([X,Y ])[−1]
zz

≃ induced by s

**
//∂

and define λ(d) = ∂[−n](i).
Type (c): If X̃ → X is an affine homotopy replacement, then so is X̃ × Gm → X × Gm.

If X̃∗ a cellular filtration of [X̃, Ỹ ], then the X̃p × Gm ⊆ X̃ × Gm form a cellular filtration of

[X̃ ×Gm, Ỹ ×Gm ∪ X̃ × {1}]. Hence there is a canonical isomorphism of complexes

C∗([X̃∗ ×Gm, Ỹ∗ ×Gm ∪ X̃∗ × {1}])(1)→ C∗([X̃∗, Ỹ∗]) (4.3.13.3)

obtained from the corresponding isomorphisms degree-by-degree, and we declare this morphism

shifted and twisted by [−n](i) to be the image under λ of the morphism of type (c) with target

[X,Y, n, i].

Now that we have defined λ, it remains to show that the diagram in the statement of Theo-

rem 4.3.2 indeed commutes up to natural isomorphisms. All other statement hold by construction.

The isomorphisms we seek

λ([X,Y, n, i]) ∼= Hn([X,Y ])(i)

are those of Proposition 4.3.11 with a twist. Naturality of these isomorphisms for morphisms in

Q(k) is a question on the level of modules, and follows from the fact that the isomorphisms in

Proposition 4.3.11 are induced, as morphisms of modules, by the isomorphisms of complexes of

Lemma 4.3.10. □

Corollary 4.3.14. — Each object of the category Mexp(k) is a subquotient of a sum of objects

of the form Hn(X,Y, f)(i), where X = X\Y∞ and Y = Y0\(Y0∩Y∞) for a smooth projective variety

X of dimension n and two normal crossing divisors Y0 and Y∞ without common components, such

that the union Y0 ∪ Y∞ has normal crossings as well.

Proof. The combination of Theorem 4.3.2 and Proposition 4.1.7 shows that every object M

of the category Mexp(k) is a subquotient of a sum of exponential motives

M �
� // M ′

⊕
α

Hnα(Xα, Yα, fα)(iα)oooo

where each variety Xα is affine of dimension nα and Yα ⊆ Xα is a closed subvariety of dimension

⩽ n−1, such that the triple [Xα, Yα, fα] is cellular in degree nα. Let Y
′
α ⊆ Xα be a closed subvariety
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of dimension ⩽ nα − 1 containing Yα and the singular locus of Xα. Since Hnα(Y ′
α, Yα, fα) = 0 by

Artin vanishing, the long exact sequence (4.2.4.2) shows that the morphism

Hnα(Xα, Y
′
α, fα)→ Hnα(Xα, Yα, fα)

is surjective. Up to replacing Yα with Y ′
α, we may therefore assume that the open complement

Xα \ Yα is smooth. We claim that he motive Hnα(Xα, Y
′
α, fα) is isomorphic to a motive of the

desired shape. Indeed, by resolution of singularities there exists a smooth projective variety X with

normal crossing divisors Y0 and Y∞ as claimed, together with a morphism π : X → Xα inducing an

isomorphism X \ Y → Xα \ Yα on open complements. Here, X = X \ Y∞ and Y = Y0 \ (Y0 ∩ Y∞)

as in the statement. Thus, Y is equal to π−1(Yα) and the morphism of motives

Hnα(Xα, Yα, fα)→ Hn(X,Y, f)

induced by π is an isomorphism for n = nα and f = fα ◦ π. □

4.4. Tensor products

In this section, we introduce a tensor product on the category of exponential motives, following

Nori’s ideas. We shall prove later that this tensor product endows Mexp(k) with the structure of a

neutral tannakian category, with RB as fibre functor.

Theorem 4.4.1. — The category Mexp(k) admits a unique Q-linear monoidal structure that

satisfies the following properties.

(1) The forgetful functor RB : M
exp(k)→ VecQ is strictly monoidal.

(2) Künneth morphisms are morphisms of motives.

With respect to this monoidal structure and RB as fibre functor, Mexp(k) is a neutral tannakian

category.

By a symmetric monoidal structure on Mexp we understand a functor

⊗ : Mexp(k)×Mexp(k)→Mexp(k)

which we call tensor product together with isomorphisms of functors expressing associativity and

commutativity of the tensor product, and the properties of Q(0) = H0(Spec k) playing the role of

a neutral object. That the forgetful functor or Betti realisation RB : M
exp(k) → VecQ is strictly

monoidal means that there exist natural isomorphisms

RB(M ⊗N) ∼= RB(M)⊗ RB(N) (4.4.1.1)

that are compatible with the associativity and commutativity constraints. These isomorphisms will

come directly from the construction of the tensor product, and will be equalities. Given relative

varieties with functions [X,Y, f ] and [X ′, Y ′, f ′], the Künneth morphisms are maps of vector spaces

Hn(X,Y, f)⊗Hn′
(X ′, Y ′, f ′)→ Hn+n′

(X ×X ′, (Y ×X ′) ∪ (X × Y ′), f ⊞ f ′)
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and property (2) states that these morphisms are compatible with the motivic structures.

What remains to be done to get the tannakian structure on Mexp(k) is to prove that, for each

object M , the functor −⊗M has a natural right adjoint, which we denote by Hom(M,−), so that

the usual adjunction formula holds:

Hom(X ⊗M,Y ) ∼= Hom(X,Hom(M,Y )).

4.4.2 (Construction of the tensor product). — To ease notation, let us denote by Qc = Qexp
c (k)

the cellular quiver from Definition 4.3.1. We consider the quiver morphism

prod: Qc ⊠Qc → Qc

given on objects by

prod([X,Y, f, n, i]⊠ [X ′, Y ′, f ′, n, i′]) = [X ×X ′, Y ×X ′ ∪X × Y ′, f ⊞ f ′, n+ n′, i+ i′],

and with the evident definition on morphisms. The Künneth formula provides a natural isomor-

phism

Hn(X,Y, f)(i)⊗Hn′
(X ′, Y ′, f ′)(i′) ∼= Hn+n′

(X ×X ′, Y ×X ′ ∪X × Y ′, f ⊞ f ′)(i+ i′)

since all other terms in the Künneth formula are zero for dimension reasons. We obtain hence a

morphism of quiver representations

Qc ⊠Qc Qc

VecQ

$$ρ⊠ρ

//prod

zz ρ

which induces a functor

Mexp(k)×Mexp(k) −→Mexp(k).

4.4.3 (Construction of the commutativity constraint). —

4.5. Intermezzo: Simplicial spaces and hypercoverings

We collect in this section some facts about simplicial topological spaces and their cohomology.

These are also summarised in [22, §5]. We denote by ∆ the category whose objects are the finite

ordered sets [n] = {0, 1, . . . , n}, for n ⩾ 0, and whose morphisms are order-preserving maps. Given

an integer N , let ∆N denote the full subcategory of ∆ consisting of objects [n] with n ⩽ N .

4.5.1. — A simplicial object in a category C is a contravariant functor X• : ∆→ C. A morphism

between simplicial objects is a morphism of functors. Any object of C can be seen as a constant

simplicial object. It is custom to picture a simplicial object as a diagram of the shape

· · · X3
−−−→←−−−· · ·−−−→ X2

−−−→←−−−−−−→←−−−−−−→
X1
−−−→←−−−−−−→ X0
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where the object Xn is the image of [n] under the given functor ∆→ C, and the arrows symbolise

the images of the n−1 surjective morphisms [n]→ [n−1] and the n injective morphisms [n−1]→ [n]

in ∆. A morphism ε : X0 → S coequalising the two maps X1 → X0 is called an augmentation. We

may view it as a morphism from X• to the constant simplicial object S, or we may view it as a

simplicial object in the slice category C/S.

4.5.2. — Starting from an augmented simplicial object X•, one finds by restriction a functor

∆N → C which is denoted by skN X• and called the N -skeleton. If finite limits exist in the

category C, then the functor

skN : Functors(∆op,C/S)→ Functors(∆op
N ,C/S)

admits a right adjoint coskN , called coskeleton. For instance, the coskeleton of the 0-skeleton

X0 → S is given by

cosk0(X0 → S)n = X0 ×S X0 ×S · · · ×S X0︸ ︷︷ ︸
n+1 copies

= Maps([n], (X0/S))

for all n ⩾ 0, with projections and diagonal embeddings as face and coface maps. There is also

a relative version of coskeleta: given a morphism of augmented simplicial objects X• → Y•, the

restriction functor

skY•N : Functors(∆op,C/S)/Y• → Functors(∆op
N ,C/S)/(skN Y•)

admits a right adjoint coskY•N , which we call the relative coskeleton over Y•. It is related to the

absolute version by

coskY•N (X•) = coskN (X•)×coskN (skN (Y•)) Y•

where the fibre product is taken in the category of simplicial objects in C/S. For the record, the

adjunction morphism reads

X• coskY•N (skY•N (X•))

Y•

//adj

'' ww
(4.5.2.1)

and should be interpreted as a morphism in the category of simplicial objects over Y•.

4.5.3. — A sheaf on a simplicial topological space X• is the data of a sheaf Fn on each Xn and

a natural morphism of sheaves

f∗XFn → Fm (4.5.3.1)

on Xm for each morphism f : [n]→ [m] in ∆ inducing fX : Xm → Xn. One can regard sheaves F•

on X• as sheaves on some convenient site, and using that point of view, the cohomology Hn(X•, F•)

is defined. Global sections of F• are given by

Γ(X•, F•) = ker
(
Γ(X0, f0) −−−→−−−→ Γ(X1, F1)

)
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where the two morphisms are those induced by the morphisms of sheaves (4.5.3.1) corresponding

to the two face maps d0, d1 : X1 → X0. Given a sheaf of commutative groups F• on a simplicial

topological space X•, there is a spectral sequence of groups

Ep,q1 = Hq(Xp, Fp) =⇒ Hp+q(X•, F•) (4.5.3.2)

constructed as follows. An injective resolution of F• gives an injective resolution of each Fn.

Applying global sections gives a simplicial complex of groups, hence a double complex. Its horizontal

differentials (say) are alternating sums of face maps, and its vertical differentials are induced by

the differentials of the resolution. The spectral sequence (4.5.3.2) is the one associated with this

double complex for the filtration by columns, see e.g. Definition 5.6.1 in [89].

Example 4.5.4. — Let Y• → X• be a morphism of simplicial topological spaces, such that for

each n ⩾ 0 the map Yn → Xn is a cofibration (closed immersion and neighbourhood deformation

retract). On each space Xn, consider the sheaf

Q
[Xn,Yn]

= β!β
∗Q

where β is the inclusion of the open complement of Yn in Xn. These sheaves form together a sheaf

Q
[X•,Y•]

on X•, hence a spectral sequence

Ep,q1 = Hq(Xp, Yp;Q) =⇒ Hp+q(X•, Y•;Q)

Example 4.5.5. — Let X• be a simplicial object in the category of smooth manifolds, and let

p ⩾ 0 be an integer. On each manifold Xn, consider the sheaf ΩpXn of differential p-forms. For

every order-preserving map f : [n] → [m], inducing a C∞-map fX : Xn → Xm, there is a natural

morphism

ιpf : f
∗
XΩ

p
Xm
→ ΩpXn

of sheaves onX. Thus, the sheaves ΩpXn fit together into a sheaf ΩpX•
onX•. The exterior derivatives

for the individual sheaves d : ΩpXn → Ωp+1
Xn

commute with the morphisms ιpf , hence yield a morphism

d : ΩpX•
→ Ωp+1

X•
. The resulting complex of sheaves

0→ Ω0
X•

d−−→ Ω1
X•

d−−→ Ω2
X•

d−−→ · · ·

is called the de Rham complex on X•.

4.5.6. — Let X• be a simplicial topological space, and let ε : X• → S be an augmentation.

There is a pair of adjoint functors (ε∗, ε∗) between the categories of sheaves on X• and on S. The

map ε is said to have the property of cohomological descent if the adjunction transform

idD(S) → Rε∗ε
∗

is an isomorphism of functors from D(S), the derived category of the category of sheaves on S, to

itself (cf. SGA 4, Exp. V-bis, Définition 2.2.4). Equivalently, ε has cohomological descent if and

only if for every sheaf F on S, the morphism of sheaves on S

F → ker(ε0∗ε
∗
0F → ε1∗ε

∗
1F )
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is an isomorphism. Here, ε0 : X0 → S is the augmentation map, and ε1 : X1 → S is the composite

of a face map X1 → X0 with the augmentation. If ε : X• → S has cohomological descent, there

is an isomorphism Hn(X•, ε
∗F ) → Hn(S, F ) for every sheaf F on S, and the spectral sequence

(4.5.3.2) translates into a spectral sequence

Ep,q1 = Hq(Xp, ε
∗F ) =⇒ Hp+q(S, F ), (4.5.6.1)

where the induced filtration on the cohomology groups Hn(S, F ) is the one coming from the

q-skeletons of X• for q = 0, 1, 2, . . .. A continuous map X → S is said to have the property of

cohomological descent if the induced augmentation cosk0(X) → S has cohomological descent. A

continuous map X → S is said to be of universal cohomological descent if for every continuous

T → S the map X ×S T → T has cohomological descent.

Example 4.5.7. — Let S be a topological space, and let (Ui)i∈I be an open cover of S. Let

X be the disjoint union of the open subsets Ui, and denote by ε : X → S the covering map. The

coskeleton of (ε : X → S) is a simplicial topological space given by X0 = X and

X1 = X0 ×S X0 =
∐
i,j∈I

Ui ∩ Uj .

The face maps X1 → X0 are the two projections X0 ×S X0 → X0, which in the present case

are open immersions. One checks on stalks that, for every sheaf F on S, the morphism F →
ker(ε0∗ε

∗
0F → ε1∗ε

∗
1F ) is an isomorphism. Therefore, ε has cohomological descent. The associated

spectral sequence (4.5.6.1) is the classical Leray spectral sequence of the open covering. For every

continuous T → S, the map X ×S T → T is an open cover of T and hence has cohomological

descent too. Therefore, ε : X → S has universal cohomological descent.

Theorem 4.5.8. — Continuous maps of universal cohomological descent form a Grothendieck

topology on the category of topological spaces. The following types of continuous maps are of uni-

versal cohomological descent:

(1) Proper surjective maps, in particular locally finite closed covers.

(2) Maps X → S which locally on S admit a section, in particular all open covers.

Proof. This is shown in SGA 4, Exposé V-bis, see in particular Proposition 3.3.1 for the state-

ment that morphisms of universal cohomological descent form a Grothendieck topology, Corollaire

4.1.6, Corollaire 4.1.7 for statement (1), and Proposition 4.1.8 for statement (2). □

4.5.9. — Let f• : X• → Y• be a morphism of simplicial topological spaces augmented to S:

X• Y•

S
��ε

//f•

�� η

The morphism f• is called a hypercovering if, for every integer N ⩾ 0, the continuous map

XN+1 −→ (coskY•N skY•N X•)N+1
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obtained from the adjunction (4.5.2.1) is of universal cohomological descent.

4.6. Motives of simplicial varieties

Let X be a variety together with a regular function f . If X is covered by two open subvarieties

U and V , the rapid decay cohomology groups of X, U , V , and U ∩V with respect to the function f

are related by a Mayer–Vietoris long exact sequence:

· · · −→ Hn
rd(X, f) −→ Hn

rd(U, f |U )⊕Hn
rd(V, f |V ) −→ Hn

rd(U ∩ V, f |U∩V )
∂−−→ Hn+1

rd (X, f) −→ · · ·

All terms in this sequence are motives, and differentials that connect cohomology groups of the

same degree are morphisms of motives since they are induced by inclusions of varieties. It turns

out that the connecting morphism ∂ is also a morphism of motives, but this is not clear a priori.

We shall prove it in this section in the slightly more general setting where a closed subvariety is

also allowed (Corollary 4.6.5). As an easy consequence, we establish a projective bundle formula

(Proposition 4.7.5) and a sphere bundle formula (Proposition 4.7.7) for exponential motives.

4.6.1. — Let (X•, Y•, f•) be a simplicial object in the category of pairs of varieties with potential.

Fix an integer N ≫ 1. Choose cellular filtrations of affine homotopy replacements of (Xn, Yn, fn)

for every n ⩽ N , which are compatible with the face maps (Xn, Yn, fn)→ (Xn−1, Yn−1, fn−1). We

obtain the following double complex of motives.

...
...

...

C2(X0, Y0, f0) C2(X1, Y1, f1) · · · C2(XN , YN , fN )

C1(X0, Y0, f0) C1(X1, Y1, f1) · · · C1(XN , YN , fN )

C0(X0, Y0, f0) C0(X1, Y1, f1) · · · C0(XN , YN , fN )

OO

//

OO

// //

OO

OO

//

OO

// //

OO

OO

//

OO

// //

OO

(4.6.1.1)

The vertical differentials are those of the complexes C∗(Xn, Yn, fn). The horizontal differentials

are alternating sums of morphisms induced by face maps. For every integer n < N , we define

the motive Hn(X•, Y•, f•) to be the homology in degree n of the associated total complex. Two

remarks about this constructions are in order.

(1) The reason why we bound the double complex horizontally has to do with the choice of

affine homotopy replacements and cellular filtrations. We can start by choosing an affine

homotopy replacement and a cellular filtration of XN , and proceed by choosing a filtration

of XN−1 which is sufficiently fine, so that it is compatible with the finitely many face maps

XN → XN−1, and so on. It is not clear that we can choose compatible cellular filtrations
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on all Xn simultaneously. As N can be arbitrarily large, Hn(X•, Y•, f•) is well defined for

all integers n ⩾ 0.

(2) The vertical complex C∗(Xn, Yn, fn) is, as a complex of vector spaces, naturally isomorphic

to RΓf (Q[X,Y ]
) = Ψ∞Π(Rf∗(Q[X•,Y•]

)). The vector space underlying Hn(X•, Y•, f•) is

therefore the rapid decay cohomology Hn(X•(C), Y•(C), f•).

Theorem 4.6.2. — Let (X•, Y•, f•) be an simplicial object in the category of pairs of varieties

with potential, together with an augmentation (X•, Y•, f•) → (X,Y, f). There is a natural spectral

sequence of exponential motives

Ep,q1 = Hq(Xp, Yp, fp) =⇒ Hp+q(X•, Y•, f•).

and the augmentation induces a morphism of exponential motives Hn(X•, Y•, f•)→ Hn(X,Y, f).

Proof. The spectral sequence in question, in the region Ep,qr with p + q < N , is the one

associated with the double complex (4.6.1.1). The spectral sequence is independent of the choice

of cellular filtrations. Given a morphism of simplicial objects φ : (X ′
•, Y

′
• , f

′
•) → (X•, Y•, f•), we

can choose cellular filtrations on X0, . . . XN and X ′
0, . . . X

′
N which are compatible with face maps

and the morphism φ. Such a choice induces a morphism of double complexes (4.6.1.1), hence a

morphism of spectral sequences. An augmentation is just a morphism of simplicial objects whose

target is constant, hence the last claim. □

4.6.3. — Let ε : X• → X be an augmented simplicial variety and let f : X → A1 be a regular

function. Set f• = f ◦ ε. For every real number r, the sets f−1
n (Sr) = {x ∈ Xn(C) |Re(fn(x)) ⩾ r}

form a closed simplicial subspace of X•, augmented to f−1(Sr).

Proposition 4.6.4. — Let ε : (X•, Y•, f•) → (X,Y, f) be an augmented simplicial object as

above. Suppose that the augmentations of simplicial topological spaces X•(C)→ X(C) and Y•(C)→
Y (C) both have cohomological descent. Then, the morphism

ε∗ : Hn(X,Y, f)→ Hn(X•, Y•, f•)

induced by the augmentation is an isomorphism.

Proof. We recall that for a topological space X and a closed subspace A ⊆ X, we write Q
[X,A]

for the sheaf β!β
∗Q

X
, where β is the inclusion of the open complement of A into X. Singular

cohomology of the pair (X,A) can be computed as sheaf cohomology of the sheaf Q[X,A] on X.

Let us fix an integer n ⩾ 0 and choose a large real number r. Consider the sheaves

F = Q[X,f−1(Sr)] and Fp = Q[Xp,f
−1
p (Sr)]

and notice that the sheaves Fp fit together to a sheaf F• on the simplicial space X•, namely

F• = ε∗F . Since the augmentation ε : X•(C) → X(C) has cohomological descent, the adjunction

map

Hn(X,F ) ∼= Hn(X,Rε∗F•)→ Hn(X•, F•)
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is an isomorphism. If r is large enough, the canonical morphisms Hn(X, f) → Hn(X,F ) and

Hp(Xq, fq)→ Hp(Xq, Fq) for p+ q ⩽ n are isomorphisms. It follows that Hn(X, f)→ Hn(X•, f•)

is an isomorphism. The same argument shows that Hn(Y, f)→ Hn(Y•, f•) is an isomorphism, and

the proposition follows from the five lemma. □

Corollary 4.6.5 (Mayer–Vietoris). — Let X be a variety over k, let Y ⊆ X be a closed

subvariety, and let f be a regular function on X. Assume X is covered by two open subvarieties Ua

and Ub, and set Uab = Ua ∩ Ub and V(−) = U(−) ∩ Y . All morphisms, in particular the connecting

morphism ∂, in the Mayer-Vietoris sequence in rapid decay cohomology

· · ·→ Hn(X,Y, f) −→ Hn(Ua, Va, f)⊕Hn(Ub, Vb, f) −→ Hn(Uab, Vab, f)
∂−−→ Hn+1(X,Y, f)→· · ·

are morphisms of motives.

Proof. Associated with the open covering Ua ⊔Ub → X is the simplicial object U• defined by

Un =
∐

α∈{a,b}n+1

(Uα0 ∩ Uα1 ∩ · · · ∩ Uαn)

with n + 1 face maps Un → Un−1 given by the covering obtained by deleting one of the n + 1

coordinates of the index α ∈ {a, b}n+1, and n coface maps Un−1 → Un given by the inclusion

obtained by duplicating one of the n coordinates of the index α ∈ {a, b}n. Contained in U• is the

simplicial subobject V• = U•×X Y . The E1-page of the spectral sequence calculating H
n(U•, V•, f•)

reads

...

H2(U0, V0, f0) · · ·

H1(U0, V0, f0) H1(U1, V1, f1) H1(U2, V2, f2) · · ·

H0(U0, V0, f0) H0(U1, V1, f1) H0(U2, V2, f2) · · ·

//

// // //

// // //

where differentials are alternating sums of maps induced by face maps. These horizontal complexes

are exact, except for their 0-th and 1-st homology groups, which may be non-zero. The kernel

of the differential Hn(U1, V1, f1) → Hn(U2, V2, f2) is equal to Hn(Uab, Vab, f). In particular, the

spectral sequence degenerates on the second page, and there are exact sequences

0→ En,0∞ → En,01 → En,11 → En,1∞ → 0.

These sequences correspond to the pieces of the Mayer–Vietoris sequence displayed in the statement

of the corollary. □

Lemma 4.6.6. — There are canonical isomorphisms of motives:

(1) Hn(Pdk) =

Q(−i) n = 2i ⩽ 2d

0 n odd or n > 2d.
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(2) Hn(Adk \ {0}) =


Q(0) n = 0

Q(−d) n = 2d− 1

0 else.

(3) H2d(X) = Q(−d) for every projective and geometrically connected variety X of dimension

d over k.

Proof. Morphisms of type (c) in the standard quiver representation of Qexp(k) induce iso-

morphisms Hd(Gd
m)(0)

∼= Hd−1(Gd−1
m )(−1) ∼= · · · ∼= H0(Spec k)(−d) = Q(−d). From the standard

covering of the projective space Pdk by d+1 affine spaces we obtain a spectral sequence (the Mayer–

Vietoris sequence if d = 1), in which the connecting morphism

Hd(Gd
m)→ H2d(Pdk)

appears. This connecting morphism is an isomorphism of vector spaces because Adk is contractible

as well as a morphism of motives by Theorem 4.6.2 (or Corollary 4.6.5 for d = 1), hence it is an

isomorphism of motives. The first statement of the proposition follows from this isomorphism,

induction on d, and the fact that the inclusion of a hyperplane Pd−1
k → Pdk induces an isomorphism

on cohomology in degrees up to 2d − 2. The argument for the second statement is similar—one

covers Adk \ {0} by affine opens Aa ×Gm × Ab with a+ b = d− 1. To show the third statement of

the proposition, we choose a projective embedding ι : X → PNk and consider the induced morphism

of motives Q(−d) ∼= H2d(PNk ) → H2d(X) which is an isomorphism of vector spaces, hence an

isomorphism of motives. □

4.7. The Leray spectral sequence

Let S be an algebraic variety endowed with a potential f : S → A1, and let π : X → S be a

morphism of algebraic varieties. In this section, we define a spectral sequence of motives

Ea,b2 = Ha(S, f ;Rbπ∗Q) =⇒ Ha+b(X, f ◦ π)

whose underlying spectral sequence of vector spaces is the Leray spectral sequence in rapid decay co-

homology introduced in Section 3.2.5. In particular, we will equip the vector space Ha
rd(S, f ;Rπ∗Q)

with the structure of a motive. The overall strategy for doing this is an idea of Arapura, who shows

in [3] that the classical Leray spectral sequence (when f = 0) is motivic. It will suffice to treat the

case where S is affine. Following Arapura, we construct in that case a filtration X0 ⊆ X1 ⊆ · · · of
X whose associated spectral sequence

Ep,q1 = Hp+q(Xp, Xp−1, f ◦ π) =⇒ Hp+q(X, f ◦ π),

can be identified with the Leray spectral sequence of vector spaces from the second page on. This

identification is canonical, and we use it to transport motivic structures.
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4.7.1. — Let S be a topological space with an exhaustive filtration ∅ ⊆ S0 ⊆ S1 ⊆ · · · ⊆ Sn = S

by closed subspaces. Setting Up = S \ Sp−1 we have a decreasing filtration by open subsets

S = U0 ⊇ U1 ⊇ U2 ⊇ · · · ⊇ Un ⊇ ∅.

From the given filtration of S, one obtains a natural filtration on all complexes of sheaves A on S

in the following way. Let βp : Up → S be the inclusion and define

A(p) = (βp)!(βp)
∗A.

These complexes of sheaves define the filtration

A = A(0) ⊇ A(1) ⊇ · · · ⊇ A(n) ⊇ 0

of A. Here, the symbol ⊇ means degreewise injective morphism of complexes of sheaves. By

construction,

Hn(S, grpA) = Hn(Sp, Sp−1;A).

Lemma 4.7.2. — Let A be a bounded complex of sheaves on S such that, for all integers a, p, b

with a ̸= p, the equality

Ha(Sp, Sp−1;Hb(A)) = 0

holds. Then, there is a canonical isomorphism between the spectral sequences

Ep,q1 = Hp+q(Sp, Sp−1;A) =⇒ Hp+q(S,A) (4.7.2.1)

Ea,b2 = Ha(S;Hb(A)) =⇒ Ha+b(S,A) (4.7.2.2)

from the second page on.

4.7.3 (Reduction to the affine case). — The first observation is that we can reduce to the case

where S is affine. Indeed, using Jouanolou’s trick (Lemma 4.3.5) we can find an affine homotopy

replacement h : S′ → S and set X ′ = X ×S S′. Set g = f ◦ π

4.7.4. — According to the Basic Lemma 3.3.1 (Variant!), there exists a filtration S0 ⊆ S1 ⊆ · · ·
of S such that, for all b ⩾ 0, the perverse sheaves

pHa(Sp, Sp−1;R
bπ∗F )

vanish for a ̸= p. Choose such a filtration, and define a filtration X0 ⊆ X1 ⊆ · · · of the space X by

setting Xp = π−1(Sp). From this filtration results a spectral sequence

Ep,q1 = Hp+q
rd (Xp, Xp−1, g;F ) =⇒ Hp+q(X, g;F )

with differentials Ep,q1 → Ep+1,q
1 given by the connecting morphisms in the long exact sequence for

the triple Xp−1 ⊆ Xp ⊆ Xp+1. By design, the Leray spectral sequence associated with each map

π : Xp → Sp

Ea,b2 = Ha(Sp, Sp−1, f ;R
bπ∗F ) =⇒ Ha+b(Xp, Xp−1, g;F )
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degenerates to isomorphisms Hp(Sp, Sp−1, f ;R
bπ∗F ) ∼= Hp+b(Xp, Xp−1, g;F ) ∼= Ep,b1 for all b.

· · · Hp+b(Xp, Xp−1, g;F ) Hp+b+1(Xp+1, Xp, g;F ) · · ·

· · · Hp(Sp, Sp−1, f ;R
bπ∗F ) Hp+1(Sp+1, Sp, f ;R

bπ∗F ) · · ·

// // //

// // //

The homology of the complex below is precisely Hp(S, f ;Rbπ∗F ), the second page of the Leray

spectral sequence.

Proposition 4.7.5 (Projective bundle formula). — Let X be a variety over k equipped with a

regular function f : X → A1, let Y ⊆ X be a closed subvariety and let E → X be a vector bundle

of rank r over X, with projectivisation π : P(E) → X. There is an isomorphism in Mexp(k) as

follows:

Hn(P(E),P(E)|Y , f ◦ π) ∼=
r−1⊕
i=0

Hn−2i(X,Y, f)(i).

Proof. □

Corollary 4.7.6. — Let X be a variety over k, let f : X → A1 be a regular function and let

π : E → X be a vector bundle of rank r over X. Let Y ⊆ X be a closed subvariety. There is an

isomorphism in Mexp(k) as follows:

Hn(P(E ⊕OX),P(E) ∪ P(E ⊕OX)|Y , f ◦ π) = Hn−2r(X,Y, f)(−r).

Proof. The projective bundle formula established in Proposition 4.7.5 can be seen as an

isomorphism

C∗(P(E)) ∼=
r−1⊕
i=0

C∗(X, f)[2i](i)

in the derived category of Mexp(k). The inclusion P(E)→ P(E ⊕OX) induces a morphism

r⊕
i=0

C∗(X, f)[2i](i)→
r−1⊕
i=0

C∗(X, f)[2i](i)

which is indeed just the obvious projection, hence an isomorphism

C∗(P(E ⊕OX),P(E), f ◦ π) = C∗(X, f)[2r](r)

as we wanted, in the case where Y is empty. For the general case, observe that the following diagram

the columns are exact triangles, and the second and third horizontal map are isomorphisms in the

derived category of Mexp(k).

C∗(P(E ⊕OX),P(E) ∪ P(E ⊕OX)|Y , f ◦ π) C∗(X,Y, f)[2r](r)

C∗(P(E ⊕OX),P(E), f ◦ π) C∗(X, f)[2r](r)

C∗(P(E ⊕OX)|Y ,P(E)|Y , f ◦ π) C∗(Y, f |Y )[2r](r)

//

�� ��
//

�� ��
//
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The top horizontal morphism is thus an isomorphism in the derived category as well, and yields

the sought isomorphism of motives by taking homology in degree n. □

Proposition 4.7.7 (Sphere bundle formula). — Let X be a smooth variety over k, let f : X → A1

be a regular function, and let π : E → X be a vector bundle of rank r whose Euler class is zero.

Denote by E0 the complement of the zero section in E. There is an isomorphism in Mexp(k) as

follows:

Hn(E0, f ◦ π) ∼= Hn(X, f)⊕Hn−2r+1(X, f)(r).

Proof. □

4.8. Motives with support, Gysin morphism, and proper pushforward

In this section, we show that the Gysin map in rapid decay cohomology (3.7.2.2) is a morphism

of motives. This will enable us to construct a duality pairing in the next section, thus completing

the proof that exponential motives form a tannakian category.

4.8.1. — Let (X, f) be a variety with a potential and Y ⊆ X a closed subvariety. Let Z ⊆ X

be another closed subvariety with open complement U ⊆ X. The inclusion U ⊆ X induces a

morphism

C•(X,Y, f) −→ C•(U,U ∩ Y, f|U ) (4.8.1.1)

in Db(Mexp(k)). Concretely, choosing cellular filtrations we can see this as an actual morphism of

chain complexes in Mexp(k). We set

C•
Z(X,Y, f) = cone(C•(X,Y, f) −→ C•(U,U ∩ Y, f|U )) (4.8.1.2)

Definition 4.8.2. — The exponential motive of (X,Y, f) with support on Z is the homology of

the cone of the morphism (4.8.1.1), namely:

Hn
Z(X,Y, f) = Hn(C•

Z(X,Y, f)). (4.8.2.1)

By definition, Hn
Z(X,Y, f) fits into a long exact sequence of motives

· · · → Hn
Z(X,Y, f)→ Hn(X,Y, f)→ Hn(U, Y ∩ U, f |U )→ Hn+1

Z (X,Y, f)→ · · · (4.8.2.2)

Theorem 4.8.3. — Let X be a smooth, irreducible variety over k, together with a regular function

f , and let Y be a closed subvariety of X. For any smooth closed subvariety Z ⊆ X of pure

codimension c, with open complement U , there is a canonical isomorphism of motives

Hn
Z(X,Y, f)

∼−→ Hn−2c(Z, Y ∩ Z, f|Z)(−c). (4.8.3.1)
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Under this isomorphism, the long exact sequence (4.8.2.2) becomes a long exact sequence of motives

· · · → Hn(X, f)→ Hn(U, f |U )→ Hn−2c+1(Z, f |Z)(−c)→ Hn+1(X, f)→ · · ·

whose underlying long exact sequence of vector spaces is the Gysin sequence (3.7.2.1).

Proof. We use deformation to the normal cone as in Chapter 5 of [37]. Let X̃ be the blow-up

of Z × {0} in X × A1, and equip X̃ with the potential

f̃ : X̃ → X × A1 → X
f−−→ A1

obtained by composing the blow-up map, the projection to X and f . Let π : X̃ → A1 denote

the composition of the blow-up map X̃ → X × A1 and the projection to A1. The fibre of π over

any non-zero point of A1 is isomorphic to X. The fibre π−1(0) has two irreducible components,

namely P(NZ ⊕OZ), the projective completion of the normal bundle NZ = TXZ/TZZ of Z in X,

and BlZX, the blow-up of Z in X. These two components intersect in P(NZ), seen as the infinity

section in P(NZ ⊕OZ) and as the exceptional divisor in BlZX.

Let Ỹ be the strict transform of Y × A1 in X̃. The intersection of Ỹ with π−1(0) also has two

components, namely Ỹ ∩ P(NZ ⊕OZ) = P(NZ ⊕OZ)|Y ∩Z and Ỹ ∩ BlZX, the strict transform of

Y in BlZX.

The inclusions π−1(0)→ X̃ and X ∼= π−1(1)→ X̃ induce morphisms of motives as follows:

Hn(π−1(0),BlZX ∪ P(NZ ⊕OZ)|Y ∩Z , f̃ |π−1(0))
(∗)←−−− Hn(X̃, Ỹ ∪ BlZX, f̃)→ Hn(X,Y, f)

The map labelled (∗) is an isomorphism (of vector spaces, hence of motives) because [X̃, π−1(0), f̃ ]

has trivial cohomology. The reason for this is that the quotient space X̃/π−1(0) is the same as

(X × A1)/(X × 0), which is a cone, hence contractible. We have a morphism

Hn(π−1(0),BlZX ∪ P(NZ ⊕OZ)|Y ∩Z , f̃ |π−1(0))

∼=−−→ Hn(P(NZ ⊕OZ),P(NZ) ∪ P(NZ ⊕OZ)|Y ∩Z , f̃ |P(NZ⊕OZ))

induced by inclusion, which is an isomorphism by excision. The right-hand side is isomorphic

to Hn−2c(Z, Y ∩ Z, f |Z)(−c) by Corollary 4.7.6 to the projective bundle formula. We obtain a

morphism of motives

Hn−2c(Z, Y ∩ Z, f)(−c)→ Hn(X,Y, f) (4.8.3.2)

whose underlying morphism of vector spaces is the Gysin map.

The rest of the argument is formal. The projective bundle formula can be seen as an isomor-

phism

C∗(P(E)) ∼=
r−1⊕
i=0

C∗(X)[2i](i)

in the derived category Db(M(k)). The morphism of pairs [π−1(0),BlZX] → [X̃,BlZX] induces

therefore a morphism

C∗(Z)[2c](c)→ C∗(X) (4.8.3.3)

in Db(M(k)) inducing (4.8.3.2). Its composition with C∗(X)→ C∗(U) is zero, hence a morphism

C∗(Z)[2c](c)→ C∗
Z(X)
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in Db(M(k)). This morphism is indeed an isomorphism, because the underlying morphism in the

derived category of Q-vector spaces is so. The Gysin sequence in the statement of the theorem is,

via this isomorphism, the sequence of cohomology with support (4.8.2.2). □

4.8.4. — Let (X, f) be a smooth variety together with a regular function, and let Z ⊆ X be a

smooth subvariety of pure codimension c.

Proposition 4.8.5. — Let (X, fX) and (Z, fZ) be smooth varieties, together with regular func-

tions, and π : Z → X a proper morphism such that fZ = fX ◦ π. Set c = dimX − dimZ. The

proper pushforward morphism

π∗ : H
n(Z, fZ) −→ Hn+2c(X, fX)(c) (4.8.5.1)

is a morphism of exponential motives.

Proof. It suffices to treat the case where π is a closed immersion. Indeed, since X is

quasi-projective, choosing a locally closed embedding Z ↪→ Pm, we can factor the morphism π

into the composite Z
ι
↪→ X × Pm p−→ X, where ι is a closed embedding and p is the projection. If

we endow X × Pm with the function fX ⊞ 0, then both maps are compatible with the functions.

Assume that the pushforward ι∗ is a morphism of motives. Then π∗ is given by the composition

Hn(Z, fZ)
ι∗−→ Hn+2c+2m(X × Pm, fX ⊞ 0)(c+m) −→ Hn+2c(X, fX)(c),

where the second morphism is the projection onto the component

Hn+2c(X, fX)(c)⊗H2m(Pm)(m) = Hn+2c(X, fX)(c)

of the Künneth formula.

□

4.9. Duality

Let X be a smooth connected variety of dimension d, together with a regular function f , and

Y ⊆ X a normal crossing divisor. We choose a good compactification (X,Y , f) of the triple

(X,Y, f) in the sense of Definition 3.5.8. We let D denote the complement of X in X, P the

reduced pole divisor of f , and we write D = P +H. We set

X ′ = X \ (Y ∪ P ), Y ′ = H \ (H ∩ P )

and denote by f ′ the restriction of f to X ′.

Hn
rd(X,Y, f)⊗H2d−n

rd (X ′, Y ′,−f ′) −→ Q (4.9.0.1)

Proposition 4.9.1. — There is a unique morphism of exponential motives

Hn(X,Y, f)⊗H2d−n(X ′, Y ′,−f ′) −→ Q(−d) (4.9.1.1)
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whose perverse realisation is the duality pairing (4.9.0.1).

Proof. We first construct a morphism in the opposite direction. For this, let ∆ = X ∩ X ′

embedded diagonally in X×X ′. By construction, ∆ does not intersect (Y ×X ′)∪ (X×Y ′) and the

function f ⊞ (−f ′) is identically zero on ∆. Thus, Theorem 4.8.3 yields an isomorphism of motives

Q(−d) = H0(∆)(−d) ∼−→ H2d
∆ (X ×X ′, (Y ×X ′) ∪ (X × Y ′), f ⊞ (−f ′)).

Composing with the natural “forget support” map and with the projection to the Hn(X,Y, f) ⊗
H2d−n(X ′, Y ′,−f ′) component of the Künneth isomorphism, we obtain a morphism of motives

Q(−d) −→ Hn(X,Y, f)⊗H2d−n(X ′, Y ′,−f ′).

□

Observe that, when f is constant, we recover the usual duality between cohomology and coho-

mology with compact support. More generally, this suggests to introduce the following definition:

Definition 4.9.2. — Let X be a smooth variety and f : X → A1 a regular function. We choose

a good relative compactification of X over A1, i.e. a smooth variety Xrel such that H = Xrel \X
is a normal crossing divisor and f extends to a proper morphism f rel : Xrel → A1. The motive with

compact support of the pair (X, f) is Hn(Xrel, H, f rel).

4.10. The motivic Galois group

Let us summarise what we did so far. We first constructed Mexp(k) as an abelian category.

Using the basic lemma, we proved that this category is equivalent to the one obtained from the

quiver of cellular objects. This enabled us to define a tensor product. We then show that each

objects admits a dual, completing the proof that Mexp(k) is a tannakian category.

Definition 4.10.1. — The exponential motivic Galois group Gexp(k) is the affine group scheme

over Q such that

Mexp(k) = Rep(Gexp(k)).

Given an exponential motive M , the smallest tannakian subcategory ⟨M⟩⊗ of Mexp(k) con-

taining M is equivalent to Rep(GM ) for a linear algebraic group GM . We shall call it the Galois

group of M
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Relation with other theories of motives

5.1. Relation with classical Nori motives

Let Q(k) denote the full subquiver of Qexp(k) consisting of those objets [X,Y, f, n, i] where f is

the zero function. The restriction of the Betti representation ρ to Q(k) is given by ordinary relative

cohomology:

ρ([X,Y, 0, n, i]) = Hn(X(C), Y (C))(i).

The cohomological, non-effective variant of Nori’s category of mixed motives over k may be de-

fined as the category M(k) = ⟨Q(k), ρ⟩. This is not Nori’s original construction, but the one

Ayoub sketches in [6, p.6]. The inclusion Q(k) → Qexp(k) can be seen as a morphism of quiver

representations, hence induces a faithful and exact functor

ι : M(k)→Mexp(k)

which permits us to regard classical Nori motives as exponential motives.

Theorem 5.1.1. — The functor ι : M(k)→Mexp(k) is fully faithful and exact.

Proof. We only need to prove that ι is full. For this, it suffices to show that, for each object

M of M(k), the following map is surjective.

EndM(k)(M)→ EndMexp(k)(ι(M))

Let M be an object of M(k) and let h : ι(M) → ι(M) be an endomorphism in Mexp(k). Recall

from 4.1 that M consists of the data (V,Q, α), where V is a finite-dimensional Q-vector space, Q

is a finite subquiver of Q(k) which we suppose to be non-empty to rule out degenerate cases, and

α : End(ρ|Q) → End(V ) a morphism of Q-algebras. The exponential motive ι(M) is given by the

same triple (V,Q, α), with Q now regarded as a finite subquiver of Qexp(k). The morphism h is a

linear map V → V such that there exists a finite subquiver P ⊆ Qexp(k) containing Q and such

that h is End(ρ|P )-linear. We need to find a subquiver Q′ of Q(k) containing Q such that h is

End(ρ|Q′)-linear.

Let S ⊂ A1(C) be the union of the singularities of all perverse realisations of objects in P . As

Q is non-empty, this set contains 0 ∈ C. We choose z ∈ A1(k) such that Re(z) > Re(s) for all

155
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s ∈ S. Consider the functor λz : P → Q(k) given by

λz : [X,Y, f, n, i] 7−→ [X,Y ∪ f−1(z), 0, n, i]

on objects and by the obvious rules on morphisms. After enlarging Q and P by adding all objects

and morphisms in the image of λz, we may see λz as a functor from P to Q. As we have seen in

(3.1.2.2), there are isomorphisms of vector spaces

Hn
rd(X,Y, f)(i)

∼= Hn(X,Y ∪ f−1(z))(i) (5.1.1.1)

which are functorial for morphisms in P . Together with these isomorphisms, λz is a morphism of

quiver representations. It fits into a commutative diagram

Q P Q

VecQ

��
ρ

//⊆

��
ρ

//λz

��
ρ

where the composition of the horizontal arrows is the identity on Q. The left hand triangle com-

mutes, and the right hand triangle commutes up to the natural isomorphisms (5.1.1.1). We obtain

morphisms of Q-algebras

End(ρ|Q)
via (5.1.1.1)−−−−−−−−→ End(ρ|P )

res−−−→ End(ρ|Q)

whose composite is the identity. The restriction homomorphism End(ρ|P ) → End(ρ|Q) is thus

surjective, and the induced functor from the category of End(ρ|Q) modules to the category of

End(ρ|P )-modules is full. In particular, the given End(ρ|P )-linear morphism h : V → V is also

End(ρ|Q)-linear. □

5.1.2. — From now on, we identify the category of classical Nori motives with its image in

the category of exponential motives via the fully faithful functor ι. In the course of the proof of

Theorem 5.1.1 we have shown that the morphism of proalgebras

End(ρ)→ End(ρ|Q(k))

given by restriction is surjective and, invoking Zorn’s lemma, we even see that it has sections. This

tells us more than just fullness of the canonical functor ι : M(k)→Mexp(k).

Proposition 5.1.3. — The category of classical motives M(k) is stable under taking subobjects

and quotients in Mexp(k).

Proof. LetM be an object of M(k) and letM ′ be a subobject ofM in Mexp(k). We represent

M by a triple (V,Q, α), where V is a finite-dimensional Q-vector space, Q is a finite subquiver of

Q(k), and α : End(ρ|Q)→ End(V ) is a morphism of Q-algebras. Then, M ′ is given by a subspace

V ′ of V which is stable under End(ρ|P ) for some finite P ⊆ Qexp(k) containing Q. As in the proof

of Theorem 5.1.1, we may again enlarge P and Q in such a way that the restriction morphism

End(ρ|P ) → End(ρ|Q) is surjective. But then, V ′ is stable under End(ρ|Q) as we wanted. The

same argument works for quotients. □
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From Theorem 5.1.1 and Proposition 5.1.3 we immediately derive:

Corollary 5.1.4. — The morphism of affine group schemes Gexp(k) → G(k) induced by the

canonical functor ι : M(k)→Mexp(k) is faithfully flat.

5.2. Artin motives and Galois descent

Artin motives are motives which correspond to cohomology in degree zero. They exist in

different frameworks—one can isolate a class of Artin motives within the category of Chow motives

modulo any adequate equivalence relation for cycles, within the triangulated categories of motives,

and of course also within Nori’s category. From a tannakian point of view, Artin motives over a

field k with algebraic closure k correspond to finite-dimensional, continuous representations of the

Galois group Gal(k|k). This stipulates that there is a morphism of group schemes

Gmot,k → Gal(k|k)

where the Galois group is seen as a constant group scheme. The classical fullness conjectures of

Hodge, Tate, Ogus, and others all imply that the kernel of this map is the group Gmot,k, and that

the latter is connected, see [82], statement 6.3. The main result of this section is Theorem 5.2.4.

It is more a statement about classical Nori motives rather than about exponential motives.

We fix a subfield k of C and denote by k the algebraic closure of k in C. Throughout this section,
we regard M(k) as a full subcategory of Mexp(k) via the canonical functor of Theorem 5.1.1.

5.2.1. — Let K ⊆ C be a subfield containing k. There is a canonical base change functor

reskK : Mexp(k)→Mexp(K) (5.2.1.1)

which we can describe in terms of quiver representations as follows. There is a morphism of quiver

representations given by the commutative triangle of quiver morphisms

Qexp(k) Qexp(K)

Vec
$$ρk

//ψ

zz ρK
(5.2.1.2)

where ψ is defined by ψ(X,Y, f, n, i) = (XK , YK , fK , n, i) on objects, and in the obvious way on

morphisms. The representations ρk and ρK are the standard Betti-representations 4.2.2. We define

the base change functor (5.2.1.1) to be the functor induced on linear hulls by the morphism of

quiver representations, as explained in 4.1.9. It is straightforward to check that the base change

functor (5.2.1.1) is exact, faithful, and compatible with tensor products, duals and fibre functors.

It thus induces a morphism of tannakian fundamental groups

Gmot,K → Gmot,k
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which, in general, is neither injective nor surjective. The base change functor (5.2.1.1) sends classical

motives to classical motives.

Definition 5.2.2. — Let QArt(k) denote the full subquiver of Qexp(k) consisting of objects of

the form [X,∅, 0, 0, 0] for some finite and étale k-scheme X. We call category of Artin motives the

linear hull

MArt(k) = ⟨QArt(k), ρ⟩

where ρ : QArt(k) → Vec is the quiver representation obtained by restricting the standard repre-

sentation on Qexp(k). The canonical functor MArt(k) → Mexp(k) is the functor induced by the

inclusion QArt(k) ⊆ Qexp(k) viewed as a morphism of quiver representations.

5.2.3. — The quiver QArt(k) is contained in the quiver Q(k) whose linear hull is the category

of classical Nori motives. The canonical functor MArt(k)→Mexp(k) factors therefore through the

category of classical motives. The quiver QArt(k) is also contained in the quiver Qc(k) of cellular

objects, and is closed under the product used in 4.4.2 to construct the tensor product in Mexp(k).

The category QArt(k) comes thus equipped with a symmetric tensor product, compatible with the

canonical functor MArt(k)→Mexp(k).

Theorem 5.2.4. — The tannakian fundamental group of MArt(k) is canonically isomorphic to

the Galois group Gal(k|k). The sequences of affine group schemes

1 π1(M
exp(k)) π1(M

exp(k)) Gal(k|k) 1

1 π1(M(k)) π1(M(k)) Gal(k|k) 1

//

����

//

����

// //

// // // //

are exact. Here, the injections are induced by base change (5.2.1.1) from k to k, and the surjections

are induced by the inclusion of MArt(k) into M(k), and into Mexp(k).

We split the proof of Theorem 5.2.4 into manageable portions, verifying one by one the necessary

conditions in order to apply the exactness criteria for sequences of tannakian fundamental groups

summarised in A.3.

5.2.5. — The base change functor (5.2.1.1) is exact. It admits thus formally a right adjoint

which takes values in the ind-category of Mexp(k). In the situation of a finite extension k′ of k

there is no need for ind-objects, so we have a functor

indk
′
k : Mexp(k′)→Mexp(k)

which is right adjoint to reskk′ : M
exp(k) → Mexp(k′). The functor indk

′
k is exact, and we can

construct it from a morphism of quiver representations as follows. Consider the morphism of

quivers

indk
′
k : Qexp(k′)→ Qexp(k)
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given on objects by sending [X,Y, f, n, i] to itself, by regarding a variety X over k′ as a variety over

k via the morphism Spec k′ → Spec k induced by the inclusion k ⊆ k′. We obtain a morphism of

quiver representations

Qexp(k′) Qexp(k)

Vec
$$ρk◦indk

′
k

//
indk

′
k

zz ρk
(5.2.5.1)

Lemma 5.2.6. —

Mexp(k′) = ⟨Qexp(k′), ρk′⟩ ∼= ⟨Qexp(k′), ρk ◦ indk
′
k ⟩

Lemma 5.2.7. — The morphisms of affine group schemes π1(M
exp(k)) → π1(M

exp(k)) and

π1(M
exp(k))→ π1(M

exp(k)) are both closed immersions.

Proof. Lemma A.3.2 states that in order to show that the morphism of affine group schemes

π1(M
exp(k)) → π1(M

exp(k)) is a closed immersion, we have to show that every motive M over k

is isomorphic to a subquotient of a motive coming via base change from a motive over k. In view

of Proposition 4.1.7, it suffices to show this for a motive of the form

M = Hn(X,Y, f)

over k, so X any Y are varieties over k. There is a finite extension k′ ⊆ k of k of degree d, such that

X, Y and f are defined over k′, and it suffices to show that the corresponding object Hn(X,Y, f)

of Mexp(k′) is isomorphic to a subquotient of a motive coming from k. Let us denote by Xk the

scheme X viewed as a k-variety via the structural morphism X → Spec k′ → Spec k, and consider

the object

Mk = Hn(Xk, Yk, f)

of Mexp(k). Applying the base change functor Mexp(k)→Mexp(k′) to Mk yields the motive

Hn(Xk ×k k′, Yk ×k k′, f × id) = Hn(X,Y, f)⊗H0(Spec(k′ ⊗k k′),∅, 0) ≃ Hn(X,Y, f)⊕d

which contains M as a direct factor. □

Lemma 5.2.8. — For every finite étale k-scheme X, let the Galois group G = Gal(k|k) act on

the finite-dimensional vector space H0(X,∅, 0)(0) = H0(X(C),Q) via its canonical action on the

finite set X(C) = X(k). The functor induced by this action and the universal property of linear

hulls 4.1.12

MArt(k)→ Rep(G)

is an equivalence of categories, compatible with tensor product. Here, Rep(G) stands for the cate-

gory of Q-linear, finite-dimensional and continuous representations of the profinite group G.

Proof. Note that QArt(k) does not contain morphisms of type (b) or type (c), hence is equiva-

lent as a quiver to the category of finite étale k-schemes, which in turn is equivalent to the category

of finite G-sets. The quiver QArt(k) with its standard representation is thus isomorphic to the

quiver of finite G-sets with the representation sending a finite G-set S to the vector space Q[S]
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with basis S. From this point of view, the statement of the Lemma holds for any profinite group

G, as we have already seen in Example 4.1.8. □

Lemma 5.2.9. — The morphism of affine group schemes π1(M(k)) → Gal(k|k) induced by the

canonical functor MArt(k)→M(k) is faithfully flat. In other words, this canonical functor is fully

faithful, and its essential image is stable under taking subobjects and quotients.

Proof. Fix a prime number ℓ. A morphism of affine group schemes over Q is faithfully flat if

and only if its base change to Qℓ is so, hence we can switch to motives with Qℓ-coefficients. We

will use the ℓ-adic realisation functor on the category of classical Nori motives. Let us explain first

how this works. As usual Q(k) denotes the quiver of relative pairs [X,Y, 0, n, i], and we consider

the representation

ρ⊗Qℓ : Q(k)→ VecQℓ

sending [X,Y, 0, n, i] to ρ(X,Y, 0, n, i) ⊗ Qℓ = Hn(X(C), Y (C),Q)(i) ⊗ Qℓ. Notice that since Qℓ

is flat as a Q-algebra, the natural morphism of proalgebras End(ρ) ⊗ Qℓ → End(ρ ⊗ Qℓ) is an

isomorphism. Let Repc(k,Qℓ) denote the tannakian category of continuous ℓ-adic representations

of Gal(k|k). Étale ℓ-adic cohomology furnishes a representation

ρℓ : M(k)Qℓ → Repc(k,Qℓ)

sending [X,Y, 0, n, i] to Hn
ét(Xk, Yk,Qℓ)(i), and the comparison theorem of Artin and Grothendieck

yields a Qℓ-linear isomorphism Hn(X(C), Y (C),Q)(i)⊗Qℓ
∼= Hn

ét(Xk, Yk,Qℓ)(i) which is functorial

for morphisms in Q(k). From Nori’s universal property we obtain the functor Rℓ which renders the

following diagram commutative up to isomorphisms of functors:

Repc(k,Qℓ)

M(k)Qℓ

Q(k) VecQℓ

��

OO

Rℓ

��

GG

ρℓ

??

ρ̃⊗Qℓ

//ρ⊗Qℓ

We call Rℓ : M(k)Qℓ → Repc(k,Qℓ) the ℓ-adic realisation functor . The ℓ-adic realisation functor

is faithful and exact. The verification that it is also compatible with tensor products and duals

is straightforward, we will exemplarily do the checking in the case of the perverse realisation

in Section 6.1. Given a motive M with motivic fundamental group GM , we obtain from Rℓ a

continuous morphism of topological groups

Gal(k|k)→ GM (Qℓ)

whose image is believed to be open.
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Let us now return to the proof of the lemma at hand, and call a motive Weil finite if its motivic

fundamental group is finite. Thus, if M is Weil finite, then its associated Galois representation

Rℓ(M) has finite image, and it is also clear that the functor MArt(k) → M(k) factors over the

full subcategory of Weil finite objects in M(k)Qℓ which we denote by MWf(k)Qℓ . Notice that

MWf(k)Qℓ is stable under tensor products, duals, sums and subquotients, hence constitutes a

tannakian subcategory. Its tannakian fundamental group is the group of connected components of

π1(M(k)Qℓ). Let us write Repf (k,Qℓ) for the full subcategory of Repc(k,Qℓ) whose objects are

those representations with finite image. It follows from Lemma 5.2.9 that the composite of faithful

functors

MArt(k)Qℓ MWf(k)Qℓ Repf (G,Qℓ)// //Rℓ

is an equivalence of categories, which proves the lemma. □

5.2.10. — Let ρ : Q→ Vec be a quiver representation, and let V0 be a finite-dimensional vector

space. Denote by ρ⊗ V0 the representation of Q defined by

(ρ⊗ V0)(q) = ρ(q)⊗ V0

on objects, and in the evident way on morphisms. There is a canonical morphisms of proalgebras

End(ρ)⊗ End(V0)→ End(ρ⊗ V0) (5.2.10.1)

given as follows: An element of End(ρ) is a collection of linear endomorphisms eq : ρ(q) → ρ(q),

one for every object of Q, compatible with morphisms in Q. The canonical morphism (5.2.10.1)

sends ((eq)q∈Q⊗ e) to the collection (eq⊗ e)q∈Q, and is actually an isomorphism as we have seen in

Proposition 4.1.17. To apply said proposition, we regard V0 as a representation of the quiver with

only one object and only the identity morphism. The category of End(V0)-modules is equivalent to

the category of vector spaces via the functor that sends a vector space V to the End(V0)-module

V ⊗ V0, hence the functor given in Proposition 4.1.17 is actually an equivalence of categories:

⟨Q, ρ⊗ V0⟩
≃−−→ ⟨Q, ρ⟩

5.2.11. — Let k′ ⊆ C be a finite extension of k. Associated with this extension are quiver

morphisms

Q(k)→ Q(k′) and Q(k′)→ Q(k)

the left-hand one given by base change, and the right-hand one given by regarding varieties as

varieties over k via the morphism Spec k′ → Spec k.

5.2.12. — We end this section with a remark about how much information about a finite field

extension is contained in the corresponding Artin motive. To simplify the discussion, we work with

motives over Q. Recall that two number fields k1 and k2 are said to be arithmetically equivalent if

the associated Dedekind zeta functions are equal. The point here is of course that arithmetically

equivalent number fields need not be isomorphic, for example if a is an integer such that none of



162 5. RELATION WITH OTHER THEORIES OF MOTIVES

−2a,−a, a, 2a is a square, then

k1 = Q( 8
√
a) k2 = Q(

8
√
16a)

are arithmetically equivalent, nonisomorphic number fields. Such number fields can even have

different class numbers for certain values of a (Bart de Smit, Robert Perlis, 1994, Zeta functions

do not determine...).

Proposition 5.2.13. — Two number fields define isomorphic Artin motives if and only if they

are arithmetically equivalent.

Proof. Denote by Q the algebraic closure of Q in C, and let k1 and k2 be number fields, and

let V1 = Q[Hom(k1,C)] and V2 be the corresponding linear representations of the absolute Galois

group of Q. It is a consequence of Chebotarev’s Density Theorem that the zeta functions of k1

and k2 are equal if and only if the Gal(Q|Q)-representations V1 and V2 are isomorphic, which in

turn is equivalent to saying that the Artin motives M1 = H0(Spec k1) and M2 = H0(Spec k2) are

isomorphic. □

5.3. Conjectural relation with triangulated categories of motives

Let k be a subfield of C. We denote by π : A1
k → Spec(k) the structure morphism and by

j : A1
k \ {0} → A1

k the inclusion.

5.3.1. — Let DExp(k) be the full subcategory of DMgm(A1) consisting of those objects M

satisfying π∗M = 0.

Conjecture 5.3.2. — The canonical functor DExp(k) → Db(Mexp(k)) is an equivalence of

categories.

5.3.3. — The category DExp(k) contains the category DMgm(A1) via the functor sending a

motive M over k to the motive j!j
∗π∗M [1] over A1. In particular, DExp(k) contains Tate motives

j!j
∗π∗Q(n), which are sent to Tate motives in Db(Mexp(k)) by the canonical functor. Let us see
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what Conjecture 5.3.2 predicts for extensions.

Ext1Mexp(k)(Q,Q(n))

= HomDExp(k)(j!j
∗π∗Q, j!j∗π∗Q(n)[1]) by Conjecture 5.3.2

= HomDMgm(Gm)(π
∗Q, π∗Q(n)[1]) j! fully faithful, renaming π ◦ j as π

= HomDMgm(k)(π#π
∗Q,Q(n)[1]) π# left adjoint to π∗

= HomDMgm(k)(Q⊕Q(1)[1],Q(n)[1]) because π#π
∗Q(0) =M(Gm)

=

Ext1k(Q,Q(n)) n ̸= 1

Ext1k(Q,Q(n))⊕Q n = 1
by Conjecture 5.3.2

Conjecture 5.3.2 predicts thus, that extensions of Q by Q(n) in the category of exponential motives

all come from extensions of ordinary motives, except in the case n = 1, where we should find

essentially one additional nonsplit extension

0→ Q(1)→M(γ)→ Q→ 0

which explains the additional summand Q in the last line of the computation. We will produce this

extension in section 12.8 and call it Euler–Mascheroni motive, because (spoiler alert) among its pe-

riods is the Euler–Mascheroni constant. A similar computation, noting the fact that Extqk(Q,Q(n))

is zero for q ̸= 0, 1 shows

Ext2Mexp(k)(Q,Q(n)) = Ext1k(Q,Q(n− 1))

and ExtqMexp(k)(Q,Q(n)) = 0 for q ̸= 0, 1, 2. As it turns out (??), this isomorphism can be described

explicitly as follows: Given an extension 0→ Q(n− 1)→M(ν)→ Q→ 0, we twist it by Q(1) and

take the Yoneda cup-product with the Euler–Mascheroni motive M(γ). We get a four term exact

sequence in Mexp(k)

0 Q(n) M(ν)(1) M(γ) Q 1

0 Q(1) 0

// //

''

// // //

//

77

//

representing a class in Ext2(Q,Q(n)).

5.4. The Grothendieck ring of varieties with potential

Definition 5.4.1. — The Grothendieck group of varieties with exponential is the abelian group

K0(Var
exp
k ) defined by the following generators and relations:

• generators are pairs (X, f) consisting of a k-variety and a regular function f : X → A1
k,

• relations are of the following three types:

(a) (X, f) = (Y, f ◦ h) for each isomorphism h : Y → X;

(b) (X, f) = (Y, f|Y ) + (U, f|Y ) for each closed subvariety Y ⊆ X with complement U ;

(c) (X × A1,prA1) = 0.
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Theorem 5.4.2. — There is a unique ring morphism

χ : K0(Var
exp
k ) −→ K0(M

exp(k))

such that, for each pair (X, f), one has

χ((X, f)) =
2 dimX∑
n=0

(−1)nHn
c (X, f). (5.4.2.1)

Proof. If such a morphism exists, then it is unique since we prescribe it on a set of generators.

In order to show its existence, we need to check that (5.4.2.1) is compatible with the relations (a),

(b), and (c). For the relations (a) this is clear, and for (c) notice that

Hn
c (X × A1,prA1) = 0

for all n. It remains to prove in the situation of relation (b) the equality

2 dimX∑
n=0

(−1)nHn
c (X, f) =

2 dimY∑
n=0

(−1)nHn
c (Y, f |Y ) +

2 dimU∑
n=0

(−1)nHn
c (U, f |U )

in K0(M
exp(k)). Suppose first that X and Y ⊆ X are smooth. We have then an exact sequence

0→ H0
c (U, f)→ H0

c (X, f)→ H0
c (Z, f)→ H1

c (U, f)→ · · ·

in Mexp(k) which gives the desired relation. □



CHAPTER 6

The perverse realisation

In this chapter, we connect exponential motives and the categoryPerv0 introduced in Chapter 2

by constructing and studying a functor

Rperv : M
exp(k)→ Perv0

which we call perverse realisation. The main result of this chapter is Theorem 6.5.1, stating that an

exponential motive is a conventional Nori motive if and only if its perverse realisation is trivial. Its

proof hinges on Theorem 6.4.1 which shows that every exponential motive can be embedded into an

exponential motive of the form Hn(X,Y, f). Theorem 6.4.1 is the raison d’être for the paper [36],

where we prove the analogous statement in the framework of conventional Nori motives.

6.1. Construction and compatibility with tensor products

In this section, we construct the perverse realisation functor Rperv : M
exp(k) → Perv0 using

Nori’s universal property, and show that this functor is compatible with tannakian structures. This

means, among other things, that there is a natural isomorphism

Rperv(M1 ⊗M2) ∼= Rperv(M1)⊗Rperv(M2)

in Perv0 for all objects M1 and M2 of Mexp(k), and that this isomorphism is moreover compatible

with the unit, the commutativity, and the associativity constraints. The verifications are mostly

straightforward and not particularly inspiring, and we will not repeat them for other realisations

to come later.

6.1.1. — Denote by Qexp(k) the quiver of exponential relative pairs [X,Y, f, n, i] over k, and

denote by

ρ : Qexp(k)→ VecQ

the Betti representation, as defined in 4.2.1 and 4.2.2. Let us call perverse representation the

representation

ρperv : Q
exp(k)→ Perv0 (6.1.1.1)

165
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defined as follows. On objects [X,Y, f, n, i] we define ρperv as perverse cohomology

ρperv([X,Y, f, n, i]) = Hn
perv(X,Y, f)(i)

as defined in 3.2.1. The twist (i) means that we tensor with the (−i)-fold tensor power of the

one-dimensional vector space H1(Gm,Q). On morphisms, we define the representation ρperv in

the obvious way: Morphisms of type (a) by functoriality of perverse cohomology for morphisms of

pairs, morphisms of type (b) are sent to connecting morphisms in long exact sequences for triples,

and morphisms of type (c) are sent to Künneth isomorphisms. For the latter, we need to observe

that there is a canonical isomorphism H1
perv(Gm) = j!j

∗Q[1](−1) in Perv0, where j : A1\{0} → A1

is the inclusion, so j!j
∗Q[1] is the neutral object of the tannakian category Perv0.

Definition 6.1.2. — The perverse realisation functor Rperv : M
exp(k) → Perv0 is the unique

functor for which the diagram

Perv0

Mexp(k)

Qexp(k) VecQ

��

Ψ∞

��

OO

Rperv

77

ρ̃

??

ρperv

//ρ

commutes.

6.1.3. — Let A be a Q-linear neutral tannakian category with fibre functor f : A → VecQ.

We may regard A as a quiver and f as a quiver representation. Let us write E for the proalgebra

End(f). By Nori’s theorem 4.1.11, the canonical functor

f̃ : A→ ⟨A, f⟩ = finite-dimensional, continuous E-modules (6.1.3.1)

is an equivalence of categories. The tensor product in the tannakian category A, together with the

natural isomorphism uA,B : f(A⊗B) ∼= f(A)⊗f(B) can be viewed as a morphism of representations

A⊠A A

VecQ

$$f⊠f

//⊗

zz f

which then induces a morphism of proalgebras µ : E → E⊗E. The associativity and commutativity

constraints of A show that µ is a cocommutative comultiplication, and from duality in A we obtain

an involution E → E which altogether constitute a cocommutative Hopf algebra structure on E.

This Hopf algebra structure defines a closed, symmetric monoidal structure on the category ⟨A, f⟩
of finite-dimensional, continuous E-modules. The tensor product of two E-modules is obtained by
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letting E act via the comultiplication on the tensor product of the underlying vector spaces. Thus,

the forgetful functor

ω : ⟨A, f⟩ → VecQ

is strictly monoidal, in the sense that the equality ω(A⊗B) = ω(A)⊗ω(B) holds, and associativity

and commutativity constraints in the category ⟨A, f⟩ are the same as those of the category of vector

spaces.

Proposition 6.1.4. — The functor (6.1.3.1) is monoidal. More precisely, the natural isomor-

phism uA,B is E-linear, hence constitutes a natural isomorphism

uA,B : f̃(A⊗B) ∼= f̃(A)⊗ f̃(B)

in the category ⟨A, f⟩ which is compatible with associativity and commutativity constraints.

6.2. Elementary homotopy theory for pairs of varieties with potential

In this section, we review material from [36] and adapt it to the framework of exponential

motives. We fix a subfield k ⊆ C and convene that all varieties and morphisms of varieties are

defined over k. We denote by Ho the category whose objects are pointed CW-complexes, and

whose morphisms are continuous maps respecting base points up to homotopies preserving base

points. By the cohomology of an object (X,x0) in Ho we mean the reduced singular cohomology

with rational coefficients, that is, the singular cohomology Hn(X,x0;Q) of the pair (X,x0).

6.2.1. — We call exponential affine pair any triple (X,Y, f) consisting of an affine variety X

over k, a closed, non-empty subvariety Y of X, and a regular function f on X. With the obvious

notion of morphisms and compositions, these exponential affine pairs form a category Affexp
2 (k).

Since k is embedded in the complex numbers, there is a well-defined functor

(−)top : Affexp
2 (k) → Ho

(X,Y, f) 7−→ lim
r→∞

X(C)/(Y (C) ∪ f−1(Sr))
(6.2.1.1)

where the base point of the quotient space X(C)/(Y (C)∪ f−1(Sr)) is chosen to be the class of any

point in Y (C). As in Section 3.1, we write Sr for the complex half-plane {z ∈ C |Re(z) ⩾ r}. The
limit (6.2.1.1) in the category Ho exists, since for sufficiently big real r′ ⩾ r, the transition maps

X(C)/(Y (C) ∪ f−1(Sr′))→ X(C)/(Y (C) ∪ f−1(Sr))

are isomorphisms in Ho. This functor (6.2.1.1) is compatible with cohomology, in the sense that

there is a canonical and natural isomorphism of vector spaces

Hn
rd(X,Y, f)

∼= Hn(X(C)/(Y (C) ∪ f−1(Sr))) (6.2.1.2)

for each pair (X,Y, f). Indeed, for any r ∈ R, one can define the singular cohomology of the

pair of topological spaces (X(C), Y (C) ∪ f−1(Sr)) to be the cohomology of the mapping cone of
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the inclusion i : Y (C) ∪ f−1(Sr) → X(C). Since i is the inclusion of a closed real semialgebraic

subvariety, it is with respect to an appropriate CW-structure the inclusion of a finite, closed CW-

complex into a finite CW-complex, hence is in particular a cofibration, and we know that the

mapping cone of a cofibration is homotopic to the corresponding quotient space.

6.2.2. — We say that a morphism g in Affexp
2 (k) is a homotopy equivalence if the induced

continuous map gtop between pointed topological spaces is, and we say that two morphisms g and

h with same source and target are homotopic to each other if the continuous maps gtop and htop

are. Being homotopic is an equivalence relation on morphisms in Affexp
2 (k) which is compatible

with compositions, so there is a well-defined category Affexp
2 (k)≃ whose objects are exponential

affine pairs, and whose morphisms are homotopy classes of morphisms of exponential affine pairs.

By definition, the functor (6.2.1.1) induces a functor

(−)top : Affexp
2 (k)≃ → Ho (6.2.2.1)

which sends homotopy equivalences to isomorphisms. The functor (6.2.2.1) is not conservative: it

sends morphisms which are not isomorphisms to isomorphisms. Forcing (6.2.2.1) to be conservative

leads to the following definition:

Definition 6.2.3. — We call category of exponential algebraic homotopy types over k and denote

by Hoexp(k) the localisation in the class of homotopy equivalences of the category Affexp
2 (k)≃.

6.2.4. — The category of exponential affine pairs contains as a full subcategory the category

whose objects are those (X,Y, f) where f is the zero function. In [36], this category was denoted by

Aff2(k). Localising Aff2(k) in the class of homotopy equivalences led to the category of algebraic

homotopy types Ho(k) over k. There is an obvious functor

Ho(k)→ Hoexp(k)

induced by the inclusion Aff2(k) → Affexp
2 (k), but there is no à priori reason why this functor

should be full or faithful. The object (Spec k, Spec k, 0) of Hoexp(k) is initial and final, indeed,

there are unique morphisms

(Spec k, Spec k, 0)→ (X,Y, f) (X,Y, f)→ (Spec k, Spec k, 0) (6.2.4.1)

for every object (X,Y, f) in Hoexp(k). The initial morphism, that is, the left-hand side in (6.2.4.1),

is the composite

(Spec k,Spec k, 0)
≃←−− (Y, Y, f |Y )

⊆−−→ (X,Y, f)

and the final morphism is the composite

(X,Y, f)
f−−→ (A1,A1, id)

≃←−− (Spec k, Spec k, 0)

where Spec k is mapped to the origin of A1, and the symbol ≃ indicates homotopy equivalences. It

follows in particular that homomorphism sets in Hoexp(k) contain a distinguished element.
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Definition 6.2.5. — We call standard algebraic circle the object S1(k) = (A1, {0, 1}) of Ho(k),

as well as its image (A1, {0, 1}, 0) in Hoexp(k).

6.2.6. — There is a canonical isomorphism S1(k)top ∼= [0, 1]0∼1 = S1 in Ho. Marking any other

two distinct rational points on A1 results in an isomorphic object, but the isomorphism becomes

canonical only once an ordering of the two marked points is chosen. In a similar spirit, we may

define the standard algebraic interval as the object (A1, {0}) of Ho(k), corresponding to the object

(A1, {0}, 0) in Hoexp(k).

Definition 6.2.7. — Let (X,Y, f) and (X ′, Y ′, f ′) be exponential affine pairs. We call

(X,Y, f) ∨ (X ′, Y ′, f ′) = (X ⊔X ′, Y ⊔ Y ′, f ⊔ f ′)

the wedge, and

(X,Y, f) ∧ (X ′, Y ′, f) = (X ×X ′, (X × Y ′) ∪ (Y ×X ′), f ⊞ f ′)

the smash product of (X,Y, f) and (X ′, Y ′, f ′). We call the pairs

C(X,Y, f) = (X,Y ) ∧ (A1, {0}, 0) = (X × A1, (X × {0}) ∪ (Y × A1), f ⊞ 0)

Σ(X,Y, f) = (X,Y ) ∧ (A1, {0, 1}, 0) = (X × A1, (X × {0, 1}) ∪ (Y × A1), f ⊞ 0)

the cone and the suspension of (X,Y, f).

6.2.8. — Cones and suspensions do what they ought to do. They are compatible with the

functor (−)top in the obvious way. There is a natural morphism (X,Y, f) → C(X,Y, f), namely

the one sending x to (x, 1). The cone C(X,Y, f) is contractible, in the sense that the unique

morphism C(X,Y, f)→ (Spec k, Spec k, 0) in Hoexp(k) is an isomorphism. The triple of pairs

(X,Y, f)→ C(X,Y, f)→ Σ(X,Y, f)

induces a long exact sequence of cohomology groups, which, since C(X,Y, f) is contractible, de-

generates to isomorphisms Hn(Σ(X,Y, f)) ∼= Hn+1
rd (X,Y, f). Indeed, the morphism of pairs

(X,Y, f)→ ((X × {0, 1}) ∪ (Y × A1), (X × {0}) ∪ (Y × A1), f ⊞ 0) (6.2.8.1)

sending x to (x, 1) is a homotopy equivalence, hence an isomorphism in Ho(k). The long exact

sequence of cone and suspension can be identified with the the long exact sequence of the following

triple of spaces.

(X × {0}) ∪ (Y × A1) ⊆ (X × {0, 1}) ∪ (Y × A1) ⊆ X × A1 (6.2.8.2)

Given a triple of nonempty varieties Z ⊆ Y ⊆ X, we can think of (Y,Z, f |Y ) → (X,Z, f) →
(X,Y, f) as a cofibre sequence. Associated with it comes the long Puppe-sequence

(Y, Z, f |Y )→ (X,Z, f)→ (X,Y, f)→ Σ(Y, Z, f |Y )→ Σ(X,Z, f)→ · · · (6.2.8.3)
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where only the connecting morphism (X,Y, f) → Σ(Y, Z, f |Y ) needs some explanation. It is a

morphism in the category Hoexp(k), given by the roof

(X × A1, X ∪Z Y, f ⊞ 0)

(X,Y, f) Σ(Y,Z, f |Y )

22
h

jj
s (6.2.8.4)

where X ∪Z Y stands for the union (X ×{1})∪ (Z ×A1)∪ (Y ×{0}), in which the topologist may

recognise a homotopy pushout, as we explain in the proof of Proposition 6.2.11. The map h in

(6.2.8.4) sends x to (x, 0), and the homotopy equivalence s is defined by the inclusion Y × A1 ⊆
X × A1. For later reference, we observe that the diagram of vector spaces

Hn
rd(Y, Z, f |Y ) Hn+1

rd (X,Y, f)

Hn+1
rd (Σ(Y,Z, f |Y )) Hn+1

rd (X × A1, X ∪Z Y, f ⊞ 0)

��

∼=

//∂

��
s∗

//h∗

(6.2.8.5)

commutes, so the connecting morphism ∂ in the long exact sequence is the composite of the sus-

pension isomorphism and the morphism induced in cohomology by s−1h.

Lemma 6.2.9. — Any morphism of pairs of affine algebraic varieties f : (X,Y ) → (X1, Y1) can

be factorised as

(X,Y )
f

//

g $$

(X1, Y1)

(X̃1, Ỹ1)

s

99

where g is a closed immersion, and s is a homotopy equivalence which admits an algebraic homotopy

inverse.

Proof. Since X is affine, there exists a closed immersion e : X → AN for some sufficiently

large N . Consider the pair (X̃1, Ỹ1) = (AN × X1,AN × Y1), and define the morphisms g and s

by g(x) = (e(x), f(x)) and s(t, x1) = x1. The morphism g is a closed immersion because e is,

the morphism s is a homotopy equivalence because CN is contractible, and f = sg holds by

construction. An algebraic homotopy inverse to s is the morphism (X1, Y1)→ (X̃1, Ỹ1) sending x1

to (0, x1). □
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Lemma 6.2.10. — Let f1 : (X,Y )→ (X1, Y1) and f2 : (X,Y )→ (X2, Y2) be morphisms of pairs

of algebraic varieties, both of them given by closed immersions. The pushout

(X,Y ) (X2, Y2)

(X1, Y1) (X ′, Y ′)
��

f1

//f2

��

g2

//g1

(6.2.10.1)

exists in the category of pairs of varieties. If X1 and X2 are affine, then so is X ′.

Proof. We define X ′ to be the variety obtained by gluing X1 and X2 along X. There is an

obvious way of gluing ringed spaces, and one can check that gluing varieties along a common closed

subvariety results is a variety, as is done in [80, Theorem 3.3 and Corollary 3.7]. If X = Spec(A)

and Xi = Spec(Ai) are all affine, then X ′ is affine, and indeed the spectrum of the ring

A′ = {(a1, a2) ∈ A1 ×A2 | φ1(a1) = φ2(a2)}

where φi : Ai → A are the surjective ring morphisms corresponding to the inclusions X → Xi.

There are canonical closed immersions gi : Xi → X ′, and with these, the diagram

X X2

X1 X ′ = X1 ∪X X2

��

f1

//f2

��

g2

//g1

commutes and is a push-out diagram in the category of varieties. As a closed subvariety Y ′ ⊆ X ′

we choose the union g1(Y1) ∪ g2(Y2). With this choice for Y ′ we obtain a diagram of the shape

(6.2.10.1), and the universal property of the pair (X ′, Y ′) in the category of pairs of varieties is a

direct consequence of the universal property of X ′ in the category of varieties. □

Proposition 6.2.11. — Let s : (X,Y ) → (X1, Y1) be a homotopy equivalence between affine

pairs and let f : (X,Y ) → (X2, Y2) be an arbitrary morphism of affine pairs of varieties. There

exists a diagram of affine pairs of varieties

(X,Y ) (X̃, Ỹ )

(X1, Y1) (X̃1, Ỹ1)

��
f

//s

��
f̃

//s̃

(6.2.11.1)

which commutes up to homotopy, and where s̃ is a homotopy equivalence.

Proof. We will construct the homotopy pushout of f and s. Let us first recall how this is

done classically in algebraic topology, see [85, §4.2]: Given a diagram of pointed CW-complexes
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and continuous maps

X X̃

X1

��
f

//s

(6.2.11.2)

the homotopy pushout is the space X̃1 obtained by quotienting X1⊔ (X∧ [0, 1])⊔X̃ by the relations

(x, 0) ∼ f(x) and (x, 1) ∼ s(x) for x ∈ X. If f and s are both cofibrations the homotopy pushout is

an ordinary pushout, but not in general: the homotopy pushout remembers the space of relations

X. For example, if X1 and X2 are reduced to a point, then the homotopy pushout is the suspension

of X. If the morphism s : X → X̃ in (6.2.11.2) is a homotopy equivalence, then so is the canonical

morphism s̃ : X1 → X̃1.

We now model the homotopy pushout with pairs of algebraic varieties. By Lemma 6.2.9 we

can and will suppose without loss of generality that the morphisms s : X → X̃ and f : X → X1

in (6.2.11.1) are closed immersions. Define the pair (X̃1, Ỹ1) to be the ordinary pushout of the

diagram

(X,Y ) ∨ (X,Y ) (X × A1, Y × A1)

(X1, Y1) ∨ (X̃, Ỹ ) (X̃1, Ỹ1)

��

f∨s

//(i0,i1)

��
//u

(6.2.11.3)

where (i0, i1) is the map sending one copy of X to X × {0} and the other to X × {1}. Since both,

(i0, i1) and f ∨ s are closed immersions, this pushout exists as we have seen in Lemma 6.2.10.

We define s̃ and to be the restriction of the map u to the component (X1, Y1), and f̃ to be the

restriction of u to (X̃, Ỹ ). In other terms, (X̃1, Ỹ1) is the quotient space

(X̃1, Ỹ1) =
(
(X1, Y1) ⊔ (X × A1, Y × A1) ⊔ (X̃, Ỹ ))/(x,0)=s(x),(x,1)∼f(x)

and the morphisms s̃ and f̃ are the ones induced by inclusions. The functor (−)top : Ho(k)→ Ho

sends the diagram (6.2.11.1) to a homotopy pushout. In particular, the morphism s̃ is a homotopy

equivalence since s is so by hypothesis. □

Corollary 6.2.12. — The class of homotopy equivalences in Aff2(k)/≃ admits a calculus of

left fractions. In the terminology of [38, III, §2, Def. 6], the class of homotopy equivalences is

localising.

Proof. All conditions of [38, III, §2, Def. 6] are trivially satisfied by homotopy equivalences

in Aff2(k)/≃, except condition (b) which is the content of Proposition 6.2.11. □
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6.3. A homotopy variant of the quiver of exponential pairs

6.3.1. — Let Qaff(k) ⊆ Q(k) be the full subquiver of Q(k) whose objects are those tuples

[X,Y, n, i] where X is affine and Y is non-empty. Let Qh(k) be the quiver whose objects are

the same as those of Qaff(k) but whose morphisms of type (a) are given by morphisms in the

category Ho(k) instead. We can restrict the quiver representation ρ : Q(k) → VecQ to a quiver

representation ρaff of Qaff(k), which then factorises over a representation ρh of Qh(k). The situation

is summarised in the following commutative diagram of quiver morphisms and representations:

Q(k) Qaff(k) Qh(k)

VecQ

��

ρ

��

ρaff

oo ⊇ //can.

��

ρh
(6.3.1.1)

Proposition 6.3.2. — The morphisms of proalgebras End(ρ) −−→ End(ρaff) ←−− End(ρh) ob-

tained from the commutative diagram (6.3.1.1) are isomorphisms.

Proof. Let e be an endomorphism of ρ. Concretely, e is a collection of linear endomorphisms

eq : ρ(q) → ρ(q), one for every object q = [X,Y, n, i] of Q(k), which are compatible in that, for

every morphism f : p→ q in Q(k), the diagram of vector spaces

ρ(p) ρ(q)

ρ(p) ρ(q)

//ρ(f)

��

ep

��

eq

//ρ(f)

(6.3.2.1)

commutes. In order to show that the morphism

End(ρ) −−→ End(ρaff) (6.3.2.2)

is injective, we may assume that eq = 0 for all q = [X,Y, n, i] where X is affine, and have to show

that e is zero. This is an immediate consequence of Jouanolou’s trick: given an arbitrary object

[X,Y, n, i] of Q(k), there exists an affine variety X̃ and a homotopy equivalence f : X̃ → X. Setting

Ỹ = f−1(Y ) and q̃ = [X̃, Ỹ , n, i], the morphism f : q̃ → q of type (a) induces an isomorphism of

vector spaces ρ(f) : ρ(q̃)→ ρ(q). In case Ỹ is empty, add to X̃ and isolated point ∗ and set Ỹ = ∗.
The diagram (6.3.2.1) for this particular morphism f , and hence eq is indeed zero. Let us for now

refer to q̃ → q as an affine homotopy replacement. In order to show that the morphism of proalgebras

(6.3.2.2) is surjective as well, consider an element e of End(ρaff). Choosing arbitrary affine homotopy

replacements as before, we can extend e to a well defined collection of endomorphisms eq for all

objects q of Q(k). We must check that the square (6.3.2.1) commutes, knowing that such squares

commute for morphisms in Qaff(k). This can be checked by observing that for every morphism
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f : p → q in Q(k), we can choose affine homotopy replacements p̃ → p and q̃ → q such that there

is a morphism f̃ : p̃→ q̃ in Qaff(b) for which the diagram

ρ(p̃) ρ(q̃)

ρ(p) ρ(q)

//ρ(f̃)

��

∼=

��

∼=

//ρ(f)

commutes. Attaching this square to (6.3.2.1) yields a cube where all faces other than (6.3.2.1)

commute, so (6.3.2.1) commutes as well. Thus, the collection (eq)q∈Q(k) is an element of End(ρ) as

we wanted to show.

The isomorphism End(ρaff) ∼= End(ρh) is a formality: since the quivers Qaff(k) and Qh(k) have

the same objects, we just need to check that a collection of endomorphisms eq commutes with

morphisms in Qaff(k) if and only if it commutes with morphisms in Qh(k), but that is obvious.

□

Definition 6.3.3. — Let Q0 and Q1 be finite subquivers of Qh(k). We say that Q0 and Q1 are

equivalent if there exists a finite subquiver Q+ of Qh(k) containing Q0 and Q1 and an isomorphism

of End(ρ|Q+) algebras

End(ρ|Q0)
∼=−−→ End(ρ|Q1).

Proposition 6.3.4. — Every finite subquiver of Qh(k) is equivalent to a quiver containing only

one object.

Proof. This follows from Lemma 6.3.8 and Lemma 6.3.9. □

6.3.5. — Here is how we will use Proposition 6.3.4: given a motiveM , that is, a finite-dimensional

continuous End(ρ)-module, we may by definition of continuity find some finite subquiver Q of

Qh(k) such that the structural map End(ρ) → EndQ(M) factors through the finite-dimensional

algebra E = End(ρ|Q). By Proposition 6.3.4, we may arrange Q to contain only one object, say

q = [X,Y, n, i]. As an E-module,M is a quotient of En for some n ⩾ 0, so in order to prove thatM

is a quotient of a motive of the form Hn0(X0, Y0)(i0) it suffices to show that E is. As an E-module,

E is a submodule of

End(ρ(q)) ∼= Hn(X,Y )(−i)⊗Hn(X,Y )(i)

where in the tensor product E acts via e(u⊗ v) = u⊗ ev. The commutator of an endomorphism f

of q in End(ρ(q)) is the kernel of the map f∗⊗ id− id⊗f∗, and we will then use cogroup structures

on suspensions to show that the intersection of finitely many such kernels has the desired form.
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6.3.6. — Let ρ|Q : Q → VecQ be the standard representation on some subquiver Q of Qh(k),

and suppose that we dislike certain objects in Q, and want to replace them with more likeable

objects, without changing the endomorphism algebra End(ρ|Q). In other words, we wish to find

a quiver Q0 which is equivalent to Q and contains only likeable objects. That may be possible in

theory, as follows. Write Qb for the full subquiver of bad objects and Qg for the full subquiver of

good objects of Q, and let us enlarge Q to a quiver Q+ in three steps.

Step 1: Start with setting Q+ = Q. Then, find for each bad object q of Qb a finite, connected

quiver L(q) containing q and also containing a non-empty connected subquiver Lg(q) consisting

of good objects, such that the diagram of vector spaces ρ(L(q)) is a commutative diagram of

isomorphisms. For an object q′ in L(q), denote by λ(q′) the isomorphism ρ(q)→ ρ(q′) appearing in

ρ(L(q)). We add to Q+ these quivers L(q). We understand here that we have made sure that the

only object common to L(q) and Q is q, and that for different objects p and q in Qb, the quivers

L(p) and L(q) are disjoint.

Step 2: Next, for every morphism f : p→ q in Qb, find and add to Q+ a morphism f ′ : p′ → q′,

where p′ and q′ are objects in Lg(p) and Lg(q), such that the diagram

ρ(p) ρ(q)

ρ(p′) ρ(q′)
��

λ(p′)

//ρ(f)

��

λ(q′)

//ρ(f ′)

(6.3.6.1)

commutes.

Step 3: Finally, for every morphism f : p → q or f : q → p between an object q of Qb and an

object p of Qg, find and add to Q+ a morphism f ′ : p→ q′ or f ′ : q′ → p, where q′ is an object in

Lg(q), such that the corresponding diagram

ρ(p) ρ(q) ρ(q) ρ(p)

ρ(q′) ρ(q′)
��

ρ(f ′)

//ρ(f)

��

λ(q′)

//ρ(f)

��

λ(q′)

??

ρ(f ′)
(6.3.6.2)

commutes.

Denote now by Q+
g ⊆ Q+ the full subquiver of good objects, obtained from Q+ by deleting all

bad objects and all morphisms to and from bad objects. It is straightforward to check, as we will

in 6.3.7, that the restriction morphisms

End(ρ|Q+
g
)← End(ρ|Q+)→ End(ρ|Q) (6.3.6.3)

are isomorphisms of algebras. In particular, the quivers Q+
g and Q are equivalent, and the quiver

we were looking for at the beginning of this discussion is Q0 = Q+
g .

Lemma 6.3.7. — The quiver Q0, as constructed in 6.3.6, is equivalent to Q.
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Proof. We check that the restriction morphisms (6.3.6.3) are isomorphisms. Elements of

E+ = End(ρ|Q+) are collections of linear endomorphisms (eq)q∈Q+ indexed by objects of Q+, with

eq ∈ End(ρ(q)), satisfying

eq ◦ ρ(f) = ρ(f) ◦ ep (6.3.7.1)

for each morphism f : p→ q in Q+. Elements of E = End(ρ|Q) and E0 = End(ρ|Q0) are described

similarly. In order to prove that the restriction map E+ → E is injective, consider an element

e = (eq)q∈Q+ of E+ such that eq = 0 for all q ∈ Q, fix an object q′ ∈ Q+, and let us show that eq′

is zero. If q′ is not already an object of Q, then q′ is an object of L(q) for some unique q ∈ Qb. By

definition, the diagram of vector spaces and linear maps

ρ(q) ρ(q′)

ρ(q) ρ(q′)
��

eq

//λ(q′)

∼=

��

eq′

//λ(q′)

∼=

(6.3.7.2)

commutes, and since eq = 0 we have indeed eq′ = 0. This settles injectivity of the map E+ → E,

and injectivity of E+ → E0 is shown similarly. In order to prove that the restriction map E+ → E

is also surjective, fix an element (eq)q∈Q of E. We construct a tuple (eq)q∈Q+ by considering as

before for each q′ ∈ Q+ which is not already in Q the unique map λ(q′) : ρ(q)→ ρ(q′) and take for

eq′ the unique endomorphism of ρ(q′) for which the square (6.3.7.2) commutes. It remains to pick

a morphism f in Q+ and check that the relation (6.3.7.1) holds. If the target and the source of f

both belong to Q then f is a morphism in Q and (6.3.7.1) holds by definition. If neither target nor

source of f belong to Q, then (6.3.7.1) holds because the square (6.3.6.1) in Step 2 is supposed to

commute, and if the target of f but not the source belongs to Q, or the other way around, then

the commutativity of (6.3.6.2) implies (6.3.7.1). Surjectivity of the restriction morphism E+ → E0

is shown similarly. □

Lemma 6.3.8. — Let Q be a finite subquiver of Qh(k). There exists a quiver Q0 which is

equivalent to Q and such that there exist integers n0 and i0 such that all objects in Q0 are of degree

n0 and twist i0.

Proof. Recall that we refer to the integers n and i in an object [X,Y, n, i] of Qh(k) as degree

and twist respectively. Given integers n and i and a quiver Q ⊆ Qh(k), let us denote by Q[n, i]

the full subquiver of Q consisting of objects with degree n and twist i. Notice that Q[n, i] only

contains morphisms of type (a).

Let Q ⊆ Qh(k) be a finite quiver containing objects with different twists and degrees. Following

the process outlined in 6.3.6, we will show that there exists a finite quiver Q0 which is equivalent

to Q and contains fewer different twists, and then continue inductively until there is only one twist

left. We then proceed with a different construction, reducing the number of different degrees and

not adding any new twists. This will eventually lead to a quiver which is equivalent to Q and has

only one twist and one degree.
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Since Q is finite, only finitely many of the quivers Q[n, i] are non-empty. Choose (n0, i0) large

enough, such that whenever Q[n, i] non-empty, then (n0, i0) = (n + d + t, i + t) for non-negative

integers d and t. The quiver Q can be drawn schematically as a finite diagram of the shape

Q[n0, i0]

Q[n0 − 1, i0 − 1] Q[n0 − 1, i0]

Q[n0 − 2, i0 − 2] Q[n0 − 2, i0 − 1] Q[n0 − 2, i0]

· · · · · · · · · · · ·

ww

ww

OO

ww

ww ww

OO

ww

OO

OO OO OO

where the vertical arrows symbolise (many) morphisms of type (b) and the diagonal arrows sym-

bolise morphisms of type (c), and where all nodes are finite quivers with internal morphisms only

of type (a).

Claim: Let i1 be the smallest integer such that Q[n, i1] is non-empty for some n ⩽ n0, and

suppose i1 < i0. There exists a finite quiver Q0 which is equivalent to Q and such that if Q0[n, i]

is non-empty, then i1 < i ⩽ i0 and n ⩽ n0.

To prove this claim, let us denote by Q[i1] the full subquiver of Q of objects with twist i1 and

declare these to be the bad objects. We will construct Q+ as outlined in 6.3.6. As for the first

step, let Q+ be the quiver, subject to further enlargement, obtained from Q by adding for every

q = [X,Y, n, i1] of Q[i1] the quiver L(q) consisting of the two objects q and

Tq = [X ×Gm, (Y ×Gm) ∪ (X × {1}), n+ 1, i1 + 1]

and the morphism κq : Tq → q of type (c). The induced linear map ρ(κq) : ρ(Tq) → ρ(q) is

an isomorphism. Objects in Q+ have twists between i1 and i0, and degrees at most n0. The

construction of Tq → q is functorial in the evident way for morphisms f : p→ q in Q[i1] of type (a)

and (b), so that the following diagram of vector spaces, corresponding to (6.3.6.1) in the abstract

setting, commutes.

ρ(p) ρ(q)

ρ(Tp) ρ(Tq)

//ρ(f)

��

∼=

��

∼=

//ρ(Tf)

As for the second step in the process, add the morphisms Tf to Q+. For the final step, whenever

there is a morphism in Q between an object q of Q[i1] and an object p not in Q[i1], this morphism

must be a morphism p → q of type (c). Thus p is a copy of Tq, and we add the canonical

isomorphism p = Tq to Q+. Now we can define Q0 ⊆ Q+ to be the full subquiver obtained by

deleting objects in Q[i1]. As we have checked in Lemma 6.3.7, the quivers Q and Q0 are equivalent,
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and by construction Q0 contains only objects with twist i1 < i ⩽ i0 and degrees n ⩽ n0. This proves

the claim. Arguing by induction, we can continue the proof of the lemma under the assumption

that Q contains only objects with twist i0.

Claim: Let n1 be the smallest integer such that Q[n1, i0] is non-empty, and suppose n1 < n0.

There exists a finite quiver Q0 which is equivalent to Q and such that, if Q0[n, i] is non-empty,

then i = i0 and n1 < n ⩽ n0.

Let us denote by Q[n1] = Q[n1, i0] the full subquiver of Q whose objects are those of degree n1,

and declare these to be the bad objects to be replaced. Given an object q = [Y,Z, n1, i0] of Q[n1]

let us denote by Hq and Σq the objects

Hq = [(Y × {0, 1}) ∪ (Z × A1), (Y × {0}) ∪ (Z × A1), n1, i0]

Σq = [Y × A1, (Y × {0, 1}) ∪ (Z × A1), n1 + 1, i0]

and let us write ιq : Hq → q for the morphism of type (a), given by the inclusion of Y = Y × {1}
into Y ×{0, 1} ∪ (Z ×A1) and δq : Hq → Σq for the unique morphism of type (b). The morphisms

ρ(ιq) : ρ(Hq) → ρ(q) and ρ(δq) : ρ(Hq) → ρ(Σq) are isomorphisms, and their composite is the

canonical isomorphism Hn1(Y,Z)(i0) ∼= Hn1+1(Σ(Y,Z))(i0) as we explained in 6.2.8. Let Q+ be

the quiver, subject to further enlargement, obtained by adding to Q the objects and morphisms

L(q) =

[
Σq

δq←−− Hq ιq−−→ q

]
for q ∈ Q[n1]. The construction of the objects Hq and Σq and morphisms δq and ιq is in the obvious

way functorial for morphisms f : p→ q in Q[n1], which are all of type (a), and the following diagram

of vector spaces corresponding to (6.3.6.1) in the abstract setting commutes:

ρ(Σp) ρ(Hp) ρ(p)

ρ(Σq) ρ(Hq) ρ(q)
��

ρ(Σf)

oo
∼= //

∼=

��
ρ(Hf)

��
ρ(f)

oo
∼= //

∼=

As for the second step in 6.3.6, add for every morphism f in Q[n1] the morphism Σf to Q+. For

the third and final step, whenever there is a morphism in Q between an object of Q[n1] and an

object not in Q[n1], this morphism must be a morphism q → p of type (b), say

d : [Y,Z, n1, i0]→ [X,Y, n1 + 1, i0]

of type (b). Add then to Q+ the morphism s−1f : Σq → p of type (a) as given in (6.2.8.4). The

commutative diagram (6.2.8.5) cast in different notation is the following commutative triangle:

ρ(q) ρ(p)

ρ(Σq)
��

∂

//ρ(d)

??

ρ(s−1f)
∂ = ρ(δq) ◦ ρ(ιq)−1

This completes step 3 in 6.3.6, and hence proves the claim. Arguing by induction on the number

of different degrees in Q finishes the proof of the lemma. □
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Lemma 6.3.9. — Let Q be a finite subquiver of Qh(k) and suppose that there exist integers n0

and i0 such that all objects in Q are of degree n0 and twist i0. There exists a quiver Q0 which is

equivalent to Q and consists of only one object q0 and endomorphisms.

Proof. For notational convenience, we index objects of Q by a finite set, Obj(Q) = (qα)α∈A,

and write qα = [Xα, Yα, n0, i0] for every α ∈ A. Define q0 = [X0, Y0, n0, i0] to be the object obtained

from the pair of varieties

(X0, Y0) =
∨
α∈A

(Xα, Yα)

and let us construct a quiver Q+ by adding to Q the object q0 and the following morphisms:

(1) For each α ∈ A, the morphism q0 → qα given by the inclusion ια : Xα → X0.

(2) For each α ∈ A, the morphism qα → q0 given by the morphism πα : X → Xα which is the

identity on Xα and the zero map on all other components.

(3) For each morphism h : qα → qβ in Q the endomorphism q0 → q0 given by the composite

ιβ ◦ h ◦ πα.

The vector space ρ(q0) is the direct sum

ρ(q0) =
⊕
α∈A

ρ(qα) ,

the morphisms ρ(ια) : ρ(q0) → ρ(qα) are projections and the morphisms ρ(πα) : ρ(qα)→ ρ(q0) are

the inclusions. The endomorphisms of the object q0 induce, besides the identity, the linear endo-

morphisms

ρ(q0)
proj.−−−−→ ρ(qα)

ρ(h)−−−−→ ρ(qβ)
incl.−−−−→ ρ(q0)

for every morphism h of Q, in particular projectors are obtained from identity morphisms idqα . It is

clear that to give an endomorphism of ρ(q0) which commutes with all these linear endomorphisms

is the same as to give an endomorphism of the representation ρ|Q : Q → VecQ, or more precisely,

that the algebra morphisms

End(ρ|Q)← End(ρ|Q+)→ End(ρ|Q0)

are isomorphisms, which is what we wanted to show. □

The conjunction of the statement of Lemma 6.3.8 and Lemma 6.3.9 yields Proposition 6.3.4,

stating that every finite subquiver of Qh(k) is equivalent to a quiver containing only one object.

We now follow the outline 6.3.5 towards the proof of our main theorem.

6.4. The subquotient question for exponential motives

Theorem 6.4.1. — Let M be an exponential motive.

(1) There exists an exponential motive of the form M1 = Hn1(X1, Y1, f1)(i1) and a surjective

morphism M1 →M .
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(2) There exists an exponential motive of the form M2 = Hn2(X2, Y2, f2)(i2) and an injective

morphism M →M2.

6.5. The theorem of the fixed part

The inclusion M(k)→Mexp(k) of the category of ordinary motives into the category of expo-

nential motives has a right adjoint

Γ: Mexp(k) −→M(k)

associating with an exponential motive M the largest ordinary submotive M0 ⊆M . The functor Γ

is left exact. Similarly, the inclusion of the category of vector spaces into Perv0 has a right adjoint

Γ: Perv0 −→ VecQ

associating with an object V the largest constant subobject V0, that is, invariants under the tan-

nakian fundamental group. Explicitly, if j : Gm ↪→ A1 denotes the inclusion and π : Gm → Spec(C)
for the structure morphism, this largest constant subobject is given by

V0 = j!π
∗π∗j

∗V ↪→ V.

The arrow above is induced by adjunction, on noting that j∗ = j! since j is an open immersion.

The perverse realisation of M0 is contained in the invariants of the perverse realisation of M ,

hence a natural, injective map τM : RB(Γ(M)) → Γ(Rperv(M)). We can regard this map as a

morphism of functors τ : RB ◦Γ→ Γ ◦Rperv from Mexp(k) to VecQ. The theorem of the fixed part

states that τ is an isomorphism, so the square diagram of categories and functors

Mexp(k)
Γ //

Rperv

��

M(k)

RB

��

τ

w�
Perv0

Γ // Vec

(6.5.0.1)

commutes up to an isomorphism of functors τ . This amounts to showing that the map τM is

surjective for all exponential motives M , which is the content of the following theorem:

Theorem 6.5.1. — Let M be an exponential motive with perverse realisation V, and denote by

V0 ⊆ V the largest trivial subobject of V. There exists an ordinary motive M0 and an injection

M0 →M such that the image of the perverse realisation of M0 in V is equal to V0.

6.5.2 (Caveat). — We will show in a first step that the statement of Theorem 6.5.1 holds for

exponential motives of the form M = Hn(X,Y, f)(i). The theorem in its full generality does

not follow from this particular case. We know that every exponential motive is isomorphic to a
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subquotient of a sum of motives of that particular shape. It is also easy to see that if the statement

of Theorem 6.5.1 holds for an exponential motive M , then it holds for every subobject of M , and

if the statement holds for M1 and M2, then it holds for M1 ⊕M2. Quotients are the problem—

there is no easy relation between the largest ordinary submotive M0 of M and the largest ordinary

submotive of a quotient of M . Duals won’t help. The problem is taken care of by Theorem 6.4.1.

Lemma 6.5.3. — Let X be an algebraic variety over k, let Y ⊆ X be a closed subvariety and

let f : X → A1 be a regular function. Define g : X × A1 → A1 to be the function g(z, x) = zf(x),

where z stands for the coordinate of A1. The exponential motive

Hn(X × A1, Y × A1, g)(i)

is isomorphic to a conventional Nori motive.

Proof. We can ignore the twist. According to Lemma 4.2.5, there is a canonical isomorphism

of motives

M = Hn(X × A1, Y × A1, g)
∼=−−→ Hn+1(X × A2, {(x, z, t) | x ∈ Y or zf(x) = t}, p)

where p is the projection given by p(x, z, t) = t. We fabricate an ordinary motive M0 from the fibre

of p over 1, setting

M0 = Hn(X × A1, {(x, z) | x ∈ Y or zf(x) = 1}, 0).
Lemma 4.2.5 applied to the motive M0 yields the isomorphism

M0
∼= Hn+1(X × A2, {(x, z, t) | x ∈ Y or zf(x) = 1 or t = 0}, p).

With this presentation of M0, a morphism φ∗ : M →M0 is given by the map

X × A2 φ−−→ X × A2

{(x, z, t) | x ∈ Y or zf(x) = 1 or t = 0} −→ {(x, z, t) | x ∈ Y or zf(x) = t}

given by φ(x, z, t) = (x, zt, t). We claim that φ∗ : M →M0 is an isomorphism. This can be checked

on perverse realisations. □

Remark 6.5.4. — Let us keep the notation from above but assume moreover that X is smooth

and that the zero locus of f is a smooth subvariety Z ⊆ X. Let U denote its complement. Then

one can see that Hn(X ×A1, g) is an ordinary motive as follows: the Gysin long exact sequence of

motives (Theorem 4.8.3) associated with the smooth divisor Z × A1 of X × A1 reads

Hn−1(U × A1, g|U×A1) −→ Hn−2(Z × A1)(−1) −→ Hn(X × A1, g) −→ Hn(U × A1, g|U×A1).

We claim that Hm(U ×A1, g|U×A1) = 0 in all degrees m. Indeed, since the function f is invertible

on U , the map h : U ×A1 → U ×A1 sending (x, z) to (x, zf(x)) is an isomorphism compatible with

the function g on the source and the function 0⊞ id on the target. Therefore,

H i(U × A1, g|U×A1) ≃ H i(U × A1, 0⊞ id) = 0

by the Künneth formula and the vanishing of H∗(A1, id). We thus have an isomorphism

Hn(X × A1, g) ≃ Hn−2(Z)(−1).
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Using resolution of singularities, this observation can be used to give an alternative proof of

Lemma 6.5.3.

Proof of Theorem 6.5.1. In a first step, we prove the theorem in the case where M is of

the form M = Hn(X,Y, f)(i). Without loss of generality we suppose i = 0 and suppress the

twist from the notation. We give a geometric construction of a morphism φ : M0 → M with the

required properties. We do not care whether this morphism is injective, because we can always

render φ injective by replacing M0 by φ(M0), and by Proposition 5.1.3 φ(M0) is still ordinary. Set

M0 = Hn(X × A1, Y × A1, g) with g(x, z) = zf(x), and define

M0 = Hn(X × A1, Y × A1, g)
φ−−→ Hn(X,Y, f) =M

to be the morphism induced by the inclusion x 7−→ (x, 1) of X into X × A1. By Lemma 6.5.3 we

know that M0 is an ordinary motive. Let φ : V0 → V be the perverse realisation of φ : M0 → M .

We have to prove that the image of φ : V0 → V is the largest trivial subobject of V . This amounts

to showing that the inclusion x 7−→ (x, 1) induces an isomorphism

Rm∗(ΠRf∗Q[X,Y ]
⊠QA1) ∼= ΠRg∗ pr

∗
X Q

X,Y
→ j!π

∗Rπ∗j
∗(ΠRf∗Q[X,Y ]

)

in Perv0, where j : A1 \{0} → A1 is the inclusion and m : A1×A1 → A1 is the multiplication map.

Indeed, for any object F of Perv0, there is a canonical and natural isomorphism

Rm∗(F ⊠QA1) ∼= j!π
∗Rπ∗j

∗F

0 // RB(Γ(M)) //

τM
��

RB(Γ(M
′)) //

τM′

��

RB(Γ(M
′/M))

τM′/M
��

0 // Γ(Rperv(M)) // Γ(Rperv(M
′)) // Γ(Rperv(M

′/M))

□

Theorem 6.5.5. — The canonical functor ι : M(k) → Mexp(k) and the perverse realisation

Rperv : M
exp(k)→ Perv0 induce an exact sequence

π1(Perv0)
R∗

perv−−−−−→ π1(M
exp(k))

ι∗−−→ π1(M(k)) −→ 1 (6.5.5.1)

of affine group schemes over Q.

Remark 6.5.6. — The morphism π1(Perv0) → π1(M
exp(k)) is not a closed immersion since

there are objects in Perv0 which are not isomorphic to a subquotient of the perverse realisation

of an exponential motive. For example, any object of Perv0 whose restriction to an open of C is a

local system with non-quasi-unipotent local monodromies at infinity has this property.

Proof of Theorem 6.5.5. The proof of Theorem 6.5.5 relies on a general exactness criterion

for fundamental groups of tannakian categories. We have already seen in Corollary 5.1.4 that the

morphism of affine group schemes π1(M
exp(k)) −→ π1(M(k)) is faithfully flat. The composite
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ι∗ ◦ R∗
perv is the trivial morphism, because Rperv(ιM) is isomorphic to a sum of copies of the unit

object of Perv0 for every classical Nori motive M . In order to show that the sequence (6.5.5.1) is

exact in the middle, we can without loss of generality assume that k is algebraically closed. Indeed,

if k denotes the algebraic closure of k in C, the commutative diagram of affine group schemes

π1(Perv0) π1(M
exp(k)) π1(M(k)) 1

π1(Perv0) π1(M
exp(k)) π1(M(k)) 1

Gal(k|k) Gal(k|k)

//
� _

��

//
� _

��

//

//

����

//

����

//

has exact rows and columns.

morphism

R∗
perv : π1(Perv0)→ ker(ι∗)

is surjective. To this end, we verify conditions (1) and (2) of Proposition A.3.4, starting with (1).

Let M be an exponential motive, corresponding to a representation V of the fundamental group

π1(M
exp(k)). Taking the invariants of V under the action of π1(Perv0) amounts to taking the

largest trivial subobject of Rperv(M) in Perv0. Taking invariants under the action of ker(ι∗)

amounts to extracting the largest ordinaty submotive of M . Hence, the sought after equality

V π1(Perv0) = V ker(ι∗)

is but the statement of Theorem 6.5.1. In order to verify condition (2), recall from Corollary 2.9.16

that one-dimensional objects of Perv0 are of the form (jz)!F where j : C\{z} → C is the inclusion,

and F a one-dimensional local system on C \ {z} which either constant or has monodromy (−1)
around z. If (jz)!F is a subquotient of an object of the □

6.6. Applications of Gabber’s torus trick

Right at the beginning of the book [55], Katz lists several fairly general—yet extremely powerful—

results from representation theory which later on become the main tools to determine monodromy

groups. It is not surprising that these results are useful to understand the fundamental groups in

the tannakian category (Perv0,Φ). As we shall see later (where?), there is a direct link between

the monodromy groups of differential equations computed in [55] and the tannakian fundamental

groups of objects of Perv0.

6.6.1 (Results from representation theory). —

Theorem 6.6.2 (Gabber’s torus trick, [55, Theorem 1.0]). — Let g ⊆ gln be a semisimple Lie

algebra acting irreducibly on Cn. Let K be a torus and let χ1, . . . , χn : K → Gm be characters
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of K corresponding to a homomorphism χ : K → GLn to the diagonal of GLn. Suppose that the

conjugation action of K on gln leaves g invariant. Let t ⊆ gln be the subspace of those diagonal

matrices whose diagonal entries t1, . . . , tn satisfy

(1) t1 + t2 + · · ·+ tn = 0

(2) ti + tj = tk + tm whenever χiχj = χkχm.

Then t is contained in g.

Theorem 6.6.3 (Kostant). — Let g ⊆ gln be a semisimple Lie algebra acting irreducibly on Cn.
If g contains the diagonal matrix diag(n− 1,−1, . . . ,−1), then g is sln.

Proposition 6.6.4. — Let A be a Lie-simple object of Perv0 of rank n whose set of singulari-

ties S has cardinality n and whose determinant has finite monodromy. Suppose that for all elements

(not necessarily distinct) a, b, c, d ∈ S, the relation a+ b = c+ d implies {a, b} = {c, d}. Then, the

Lie algebra of the tannakian fundamental group of A contains sln. It is equal to sln if and only if

the singularities of A sum to zero.

Proof. Let us enumerate the singularities of A as S = {s1, . . . , sn} and set

V = Φ(A) =
⊕
s∈S

Φs(A).

Since S contains as many elements as the dimension of V , each space of vanishing cycles Φs(A) is

one-dimensional. Let us choose a basis e1, . . . , en of V adapted to this decomposition and identify

the fundamental group G of A with a subgroup of GLn through this choice of basis.

Set r = s1+ · · · sn. The determinant of A′ = A⊗E(−r/n) is a rank-one object with singularity

at 0 and finite monodromy, and hence has finite fundamental group by Lemma 2.9.2. Since the

total vanishing cycles of A′ are V ⊗ Φ−r/n(E(−r/n)), the fundamental group G′ of A′ can be

canonically identified with a subgroup of GLV = GLn. Its connected component of the identity is

then contained in SLn, and the equality

G =

G′ ·Gm if r ̸= 0,

G′ if r = 0

holds. The object A′ is still Lie-simple, so we may from now on assume that r = 0 and that the

Lie algebra g of G is contained in sln. By assumption, the standard n-dimensional representation

of g is simple, and hence g is a semisimple Lie algebra (ref?).

The torus of singularities of A is the torus K = Hom(Z[S],Gm) with character group Z[S],
seen inside G ⊆ GLn as the subgroup of diagonal matrices diag(φ(s1), . . . , φ(sn)) for φ ∈ K.

Write χi : K → Gm for the character defined by χi(φ) = φ(si). Since K is contained in G, the

conjugation action of K on gln leaves g invariant. By the assumption on the singularities of A,

the relation χiχ
−1
j = χkχ

−1
m implies {i,m} = {j, k}. Therefore, the Lie algebra g contains the

subspace of diagonal matrices of trace zero, and in particular the matrix diag(n − 1,−1, . . . ,−1)
by Theorem 6.6.2, and hence g = sln by Konstant’s Theorem 6.6.3. □
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6.6.5 (The generic Galois group of the motive associated with a polynomial). — As a first

application of Proposition 6.6.4, we show that the Galois group of the exponential motive H1(A1, f)

associated with a generic polynomial f is as large as possible.

Theorem 6.6.6. — Let f ∈ k[x] be a polynomial of degree n+1. Assume that the following two

conditions hold:

(i) The derivative f ′ has no multiple roots.

(ii) Given four roots α1, α2, α3, α4 of f ′ in C, not necessarily distinct, the equality of complex

numbers f(α1) + f(α2) = f(α3) + f(α4) implies {α1, α2} = {α3, α4}.

Then the motivic Galois group of H1(A1, f) equals GLn.

Proof. The perverse realisation

A = Rperv(H
1(A1, f)) = (f∗Q/Q) [1]

of the motive H1(A1, f) has dimension n. The set of singularities of A is the set S = {f(α) |f ′(α) =
0} of critical values of f . Conditions (i) and (ii) imply that S contains n elements.

Proposition 6.6.4 shows that the Galois group A contains SLn, hence also the motivic Galois

group of H1(A1, f) contains SLn. □

Example 6.6.7. — We end this section with a complete classification of the Galois groups of

perverse sheaves A = H1(A1, f) for polynomials f of degree 2 and 3. If f is of degree 2, then A

has dimension 1 and hence the Galois group G of A is a subgroup of Gm = GL1. It is given by

G =

Gm if the critical value of f is non-zero,

{±1} if the critical value of f is zero.

Suppose now that f is of degree 3, with critical values s1 and s2. The object A is of dimension 2,

and G a subgroup of GL2.

G =


GL2 if s1 ̸= s2 and s1 + s2 ̸= 0

SL2 if s1 ̸= s2 and s1 + s2 = 0

Z/3Z ·Gm if s1 = s2 and s1 + s2 ̸= 0

Z/3Z if s1 = s2 = 0

The group Z/3Z ⊆ GL2 is, up to conjugation, generated by the matrix
(
0 −1
1 −1

)
and Gm ⊆ GL2 is

the group of scalar matrices.

Set r = s1 + s2. In the proof of Proposition 6.6.4 we have seen that it suffices to treat the

cases where r = 0, to which we come by replacing f by f − r
2 . If s1 and s2 are distinct, then

Proposition 6.6.4 shows that G contains SL2. On the other hand, det(A) is the trivial object, hence

G = SL2.

If s1 = s2 = 0, then A = j!F [1] where F is the local system of rank 2 on C× with finite

monodromy Z/3Z.





CHAPTER 7

The comparison isomorphism revisited

Let X be a variety defined over a field k ⊆ C, let Y ⊆ X be a closed subvariety, and let f be a

regular function on X. In this chapter, we introduce the de Rham cohomology Hn
dR(X,Y, f) and

define a period pairing

Hrd
n (X,Y, f)×Hn

dR(X,Y, f) −→ C (7.0.0.1)

of which we have already given examples in the introduction using the elementary point of view on

rapid decay homology. In the case where f = 0, this pairing is the same as the usual period pairing

between singular homology and de Rham cohomology. Neither rapid decay homology nor de Rham

cohomology changes when we replace f by f+c for some constant c. The period pairing will change!

The main result of this section is Theorem 7.6.1 which states that the period pairing (7.0.0.1) is

non-degenerate, in the sense that it induces an isomorphism of complex vector spaces

Hn
dR(X,Y, f)⊗k C

∼=−−→ Hn
rd(X,Y, f)⊗Q C. (7.0.0.2)

which we call comparison isomorphism. The result in this form, at least in the essential case when

X is smooth and Y empty, is due to Hien and Roucairol, see [45, Theorem 2.7]. A notable earlier

version by Esnault and Bloch [12] deals with arbitrary irregular connections on a curve. The overall

structure of the proof, of which we give a simplified and self-contained version here, is similar to

that of the classical proof in the case where f = 0. It relies on a Poincaré Lemma which we state

as Theorem 7.5.11, and a GAGA argument which permits to compare algebraic with analytic de

Rham cohomology.

7.1. Algebraic de Rham cohomology of varieties with a potential

In this section, we introduce algebraic de Rham cohomology of pairs of varieties with a potential.

In the case of smooth varieties, the definition is straightforward and was already given in (1.1.1.3)

in the introduction. As for ordinary de Rham cohomology, there are several ways of extending it to

singular varieties, which all lead to the same result [48, Chapter 3]. Following Deligne, we adopt

here the point of view of hypercoverings. Throughout, k denotes a field of characteristic zero, all

varieties and morphisms are tacitly supposed to be defined over k, and we write A1 for the affine

line Spec k[x].

7.1.1. — Let X be a smooth algebraic variety and f : X → A1 a regular function. We denote

by df the integrable connection on the rank one trivial vector bundle OX defined by df (1) = −df
187
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or, equivalently, by

df : OX −→ Ω1
X

g 7−→ df (g) = dg − gdf

on local sections g of OX . Note that df depends only on df , and agrees with the usual exterior

derivative whenever f is constant. The connection df : OX → Ω1
X canonically extends to a complex

OX
df−−−→ Ω1

X

df−−−→ · · ·
df−−−→ ΩdimX

X ,

where df : Ω
p
X → Ωp+1

X is given by df (ω) = dω − df ∧ ω on local sections ω of ΩpX .

Definition 7.1.2. — Let X be a smooth variety. The de Rham cohomology of the pair (X, f)

is the Zariski cohomology of the complex DR(Ef ). It will be denoted it by

Hn
dR(X, f) = Hn(X, (Ω•

X , df )).

7.1.3. — If f is constant, we recover from Definition 7.1.2 the usual algebraic de Rham coho-

mology of X. In general, there is a spectral sequence

Ep,q1 = Hp(X,ΩqX) =⇒ Hp+q
dR (X, f)

which degenerates at the second page if X is affine, since coherent sheaves on affine varieties have

trivial cohomology in degrees > 0. Therefore, if X is affine, the de Rham cohomology of (X, f)

is the cohomology of the complex of global section (Ω•
X(X), df ). For not necessarily affine X,

this yields a way to compute H∗
dR(X, f) as follows. Given a covering (Ui)i∈I of X by open affine

subvarieties, define Xn for integers n ⩾ 0 to be the disjoint union of the opens Uσ(0) ∩ · · · ∩ Uσ(n)
as σ ranges over all maps σ : [n] → I. Together with the inclusions obtained from non-decreasing

maps [m] → [n], the Xn form a simplicial scheme X•. Denote by fn the restriction of f to each

component of Xn. We obtain a double complex of vector spaces

...
...

OX1(X1)
df1 //

OO

Ω1
X1

(X1)
df1 //

OO

· · ·

OX0(X0)
df0 //

OO

Ω1
X0

(X0)
df0 //

OO

· · ·

(7.1.3.1)

whose vertical differentials are defined to be alternating sums of face maps Xn+1 → Xn. The

associated total complex computes the de Rham cohomologyHn(X, f). This total complex depends

naturally on the chosen affine covering, but not in a serious way. To get rid of any dependence

on the affine covering, we take the limit over all affine coverings, and denote the resulting total

complex by RΓ(X, (Ω•
X , df )). This complex depends functorially on the pair (X, f). Seen as an

object in the derived category of vector spaces, it is the object obtained by applying the derived

functor RΓ(X,−) to the object (Ω•
X , df ) in the bounded derived category of coherent sheaves on
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X, so there is no conflict in notation. Yet, we prefer for the moment the point of view where

RΓ(X, (Ω•
X , df )) is an object in the category of complexes of vector spaces.

7.1.4. — Let X be a possibly singular variety, together with a regular function f : X → A1. Let

X• → X be a smooth proper hypercovering of X and let fn be the function induced on each Xn.

Recall from Section 4.5 that this means that X• is a simplicial variety where each Xn smooth, and

that the augmentation X0 → X as well as the adjunction morphisms

Xn → (coskn−1(skn−1X•)n

are proper. Such hypercoverings exist thanks to resolution of singularities, a construction is sketched

in [22, §6.2]. We say that (X•, f•) is a smooth proper hypercovering of (X, f). Each face δi : Xn+1 →
Xn induces by functoriality morphisms of coherent sheaves δ∗iΩ

p
Xn
→ ΩpXn+1

that commute with df .

Together, these sheaves form a complex of sheaves (Ω•
X•
, df•) on the simplicial scheme X•. Face

maps induce morphisms of complexes

δ∗i : RΓ(Xn, (Ω
•
Xn , df ))→ RΓ(Xn−1, (Ω

•
Xn+1

, df )).

By considering the alternating sums of these morphisms, we obtain a double complex in the category

of k-vector spaces. We denote by RΓdR(X•, f•) the associated total complex. Let Y ⊆ X be a

closed subvariety and let Y• be a smooth proper hypercovering of Y mapping to X•, compatible

with the inclusion Y ⊆ X. Again, such a hypercovering exists as explained in [22, §6.2]. The

complex of vector spaces

RΓdR(X•, Y•, f•) = cone
(
RΓdR(X•, f•)→ RΓdR(Y•, (f |Y )•)

)
(7.1.4.1)

depends functorially on the triple (X•, Y•, f•). It is a consequence of Lemma 7.1.6 below that, once

we regard this complex as an object in the derived category of vector spaces, it only depends on

(X,Y, f) up to a unique isomorphism, and not on the chosen hypercoverings. Therefore we can use

it to define the de Rham cohomology of (X,Y, f).

7.1.5. — The construction of the complex RΓdR(X•, Y•, f•) is compatible with extensions of

scalars in the following sense. Let k′ a field extension of k and set X ′
• = X• ×Spec k Spec k

′, and

similarly for Y• and f•. There is a canonical and natural isomorphism

RΓdR(X•, Y•, f•)⊗k k′ = RΓdR(X
′
•, Y

′
• , f

′
•) (7.1.5.1)

in the derived category of k′-vector spaces. Indeed, if X is smooth and affine, there is a canonical

and natural isomorphism

Ω•
X(X)⊗k k′ = Ω•

X(X
′)

of complexes of k′-vector spaces by definition of base change and universal property of differentials.

This isomorphism induces along all construction steps the isomorphism (7.1.5.1).

Lemma 7.1.6. — Let X be a variety together with a regular function f . Let (X•, f•) → (X, f)

and (X ′
•, f

′
•) → (X, f) be smooth proper hypercoverings of X, and let h : (X•, f•) → (X ′

•, f
′
•) be a
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morphism of hypercoverings. The morphism of complexes of k-vector spaces induced by h

h∗ : RΓdR(X
′
•, f•)→ RΓdR(X•, f•) (7.1.6.1)

is a quasi-isomorphism, and is independent of h up to homotopy. In other words, the class of h∗

in the derived category of k-vector spaces is independent of h.

Proof. This follows from the work of Du Bois [31] – let us explain how. By compatibility

with extension of scalars and the Lefschetz principle, can without loss of generality assume that

k = C. Let us write ε : X• → X and ε′ : X ′
• → X for the augmentation morphisms. Theorem 3.11

of [31] states that, for k = C, the natural morphism

Rε′∗(Ω
p
X′

•
)→ Rε∗(Ω

p
X•

) (7.1.6.2)

induced by h is an isomorphism in the derived category of coherent sheaves on X. This is a highly

non-formal result, which is ultimately proven in the case of proper varieties using Hodge theory

and induction on the dimension of X. By dévissage, it follows that the morphism

h∗ : Rε′∗(Ω
•
X′

•
, df )→ Rε∗(Ω

•
X• , df ) (7.1.6.3)

is an isomorphism as well. The isomorphism (7.1.6.1) is deduced from this by applying the functor

RΓ(X,−). That the morphisms (7.1.6.2), and hence (7.1.6.3), as morphisms in the derived category

of coherent sheaves on X, are independent of h follows from [31, Theorem 2.4]. In contrast to

the previous result, the proof of the latter is a formal argument using the notion of homotopies

between morphisms of hypercoverings. In particular, the hypothesis in loc.cit. that X is projective

is superfluous. The general theory of homotopies between hypercoverings is explained in SGA 4,

Exposé V. □

7.1.7. — Using Du Bois’s results, we can define for every possibly singular variety X and

function f : X → A1 an object

(Ω•
X
, df ) = colim

ε : X•→X
Rε∗(Ω

•
X• , df )

in the filtered derived category of coherent sheaves on X. We call it Du Bois complex . In this

definition, the colimit runs over all smooth proper hypercoverings of X, and the filtration is induced

by the filtration bête on the de Rham complexes Ω•
X•

. Despite the twisted differential, it enjoys all

the functoriality properties given in [31, §4]. It comes by design with isomorphisms

Hp
(
X, (Ω•

X
, df )

)
= Hn

dR(X, f)

and, if X is smooth, we get back the usual twisted de Rham complex (Ω•
X , df ) with the filtration

bête. It follows that, in order to compute the de Rham cohomology of a singular variety, we can

use any hypercovering, and need not necessarily choose a proper one. In particular, smooth affine

hypercoverings will do.

Definition 7.1.8. — Let X be a variety together with a closed subvariety Y ⊆ X and a regular

function f . We call the k-vector spaces

Hn
dR(X,Y, f) = Hn(RΓdR(X•, Y•, f•)). (7.1.8.1)
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the de Rham cohomology of (X,Y, f).

7.1.9. — De Rham cohomology is functorial for morphisms of pairs in the obvious way. It

admits by construction long exact Mayer–Vietoris sequences and, more generally, a Leray spectral

sequence for open covers, and also for locally finite closed covers. Moreover, there is a natural long

exact sequence

· · · −→ Hn−1
dR (Y,Z, f |Y ) −→ Hn

dR(X,Y, f) −→ Hn
dR(X,Z, f) −→ Hn

dR(Y, Z, f) −→ · · · (7.1.9.1)

for each triple of closed subvarieties Z ⊆ Y ⊆ X. It is obtained by choosing compatible smooth

proper hypercoverings of X,Y and Z, and considering the following commutative diagram of com-

plexes of vector spaces.

RΓdR(X•, f•) //

id
��

RΓdR(Y•, (f |Y )•) //

��

RΓdR(X•, Y•, f•)

(∗)
��

RΓdR(X•, f•) //

��

RΓdR(Z•, (f |Z)•) //

��

RΓdR(X•, Z•, f•)

cone(id)
(∗∗)

// RΓdR(Y•, Z•, (f |Y )•)

The cone of the morphism (∗) is canonically isomorphic to the cone of (∗∗), hence a distinguished

triangle

RΓdR(X•, Y•, f•) −→ RΓdR(X•, Z•, f•) −→ RΓdR(Y•, Z•, (f |Y )•)

in the derived category of k-vector spaces. It is independent of the chosen hypercoverings, and the

long exact sequence (7.1.9.1) is obtained by taking cohomology.

7.1.10. — Let X and X ′ be smooth varieties equipped with regular functions f and f ′. There

is a canonical isomorphism of complexes of sheaves

(Ω•
X , df )⊠ (Ω•

X′ , df ′) −→ (Ω•
X×X′ , df⊞f ′) (7.1.10.1)

on X ×X ′ given by ω ⊠ ω′ 7−→ ω ∧ ω′ on local sections. Indeed, these maps are compatible with

differentials by the following calculation

df⊞f ′(ω ∧ ω′) = d(ω ∧ ω′)− d(f ⊞ f ′) ∧ ω ∧ ω′ = dfω ∧ ω′ + (−1)pω ∧ df ′(ω′)

for local sections ω of ΩpX and ω′ of ΩqX′ , and (7.1.10.1) is an isomorphism degree by degree by the

usual Künneth formula for algebraic de Rham complexes. For the general case, we observe that, if

ε : X• → X and ε′ : X ′
• → X are smooth proper hypercoverings, then so is (ε, ε′) : X•×X ′

• → X×X ′,

and we obtain an isomorphism analogous to (7.1.10.1) for the Du Bois complexes. If, in addition,

subvarieties Y ⊆ X and Y ′ ⊆ X ′ are given, we observe that the tensor product of the complexes

RΓdR(X•, Y•, f•) and RΓdR(X
′
•, Y

′
• , f

′
•) is equal to the total complex of the bottom row in the
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following diagram of complexes (functions omitted from the notation).

RΓdR(X• ×X ′
•) RΓdR

(
(X• × Y ′

•) ∪ (Y• ×X ′
•)
)

0

RΓdR(X• ×X ′
•) RΓdR(X• × Y ′

•)⊕RΓdR(Y• ×X ′
•) RΓdR(Y• × Y ′

•)

// //

�� ��
// //+/−

Each row in this diagram can be interpreted as a double complex, and the vertical maps induce a

quasi-isomorphism between associated double complexes by Mayer-Vietoris. The cup-product

H∗
dR(X,Y, f)⊗k H∗

dR(X
′, Y ′, f ′)→ H∗

dR(X ×X ′, Y ×X ′ ∪X × Y ′, f ⊞ f ′)

is the map induced in cohomology. A particular case which we shall use in the next definition is

the Künneth formula for the product with (Gm, {1}, 0). The de Rham cohomology H∗(Gm, {1}, 0)
is one-dimensional concentrated in cohomological degree 1. For a k-vector space V and an integer

i, we write

V (i) = V ⊗k H1
dR(Gm)

⊗(−i)

so that the Künneth formula for a product with (Gm, {1}, 0) can be cast as an isomorphism

Hn
dR(X,Y, f)→ Hn+1

dR (X ×Gm, Y ×Gm ∪X × {1}, f ⊞ 0)(1) (7.1.10.2)

of vector spaces.

Definition 7.1.11. — The de Rham representation ρdR : Qexp(k) → Veck is given on objects

by

ρdR([X,Y, f, n, i]) = Hn
dR(X,Y, f)(i),

and on morphisms as follows:

(a) a morphism of type (a) is sent to the morphism given by functoriality of de Rham coho-

mology for morphisms of pairs;

(b) a morphism of type (b) is sent to the connecting morphism in the long exact sequence

(7.1.9.1);

(c) a morphism of type (c) is sent to the isomorphism (7.1.10.2) obtained from the Künneth

formula.

7.1.12. — In fairness, the most complicated pair of varieties (X,Y ) of which we need to actually

calculate the de Rham cohomology consists of a smooth variety X and a normal crossing divisor

Y , for which there is an elementary recipe. With regard to concrete calculations, the machinery of

hypercoverings will merely ensure that the recipe produces a well defined outcome.
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7.2. Construction of the comparison isomorphism

In this section, we construct the period isomorphism (7.0.0.2). Of course we don’t know yet that

it is indeed an isomorphism. We will in fact construct something slightly better than just a natural

morphism between cohomology groups, namely a natural morphism between chain complexes which

compute de Rham and rapid decay cohomology of (X,Y, f) respectively. The advantage of such a

construction is that it suffices essentially to work out the case where X is smooth and Y is empty,

which is what we will do. For smooth affine varieties, the construction of the period pairing can be

given by an elementary recipe, as we have seen in the examples given in the introduction. We will

check that it agrees with the general, sheaf-theoretic construction in this section. Since algebraic

de Rham cohomology is compatible with extension of scalars, as explained in 7.1.5, we may work

without loss of generality with complex varieties.

7.2.1. — Let X be a smooth projective complex variety. Every Zariski open subset of X is open

for the analytic topology, and every regular function on a Zariski open set of X is analytic, hence

a continuous map s : Xan → X and a morphism of sheaves of rings s∗OX → Oan
X . Serre’s GAGA

theorems [81, Theorems 1,2,3] state that the analytification functor

(−)an :
{
Coherent OX -modules

}
→
{
Coherent Oan

X -modules
}

sending a coherent OX -module F to F an = s∗F ⊗s∗OX Oan
X is an equivalence of categories. A

particular aspect of this is that, for any coherent sheaf F on X, the canonical morphisms

Hn(X,F )→ Hn(Xan, s∗F )→ Hn(Xan, F an)

obtained from s are isomorphisms, and this continues to hold when in place of a single coherent sheaf

F we put a complex of coherent sheaves. The differentials in such a complex need not be OX -linear.
The most important example for this situation is the algebraic de Rham complex Ω•

X with its usual

exterior differential and its analytification Ωan,•
X . We obtain the canonical isomorphisms

Hn
dR(X) = Hn(X,Ω•

X)→ Hn(Xan,Ωan,•
X )

comparing algebraic and analytic de Rham cohomology.

The GAGA theorems fail catastrophically if X is not projective. We can still obtain an

easy comparison isomorphism between algebraic and analytic de Rham cohomology for smooth

quasi-projective varieties, at the price of choosing a smooth compactification X of X. We can

compute the algebraic de Rham cohomology of X = X \ D as the cohomology on X of the de

Rham complex Ω•
X,D

of rational differential forms with poles of arbitrary order along the divisor

at infinity D. This complex, which is also often denoted by Ω•
X
[∗D] in the literature, is the direct

image by the inclusion j : X ↪→ X of the algebraic de Rham complex of X and computes the de

Rham cohomology of X since j is an affine morphism. The analytification of Ω•
X,D

is the complex

Ωan,•
X,D

of meromorphic differential forms on X with poles of arbitrary order along D. It is not

the direct image of the analytic de Rham complex of X, but rather the subcomplex of forms of

moderate growth. We obtain isomorphisms

Hn
dR(X) = Hn(X,Ω•

X,D
)→ Hn(X

an
,Ωan,•

X,D
) (7.2.1.1)
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using the fact that sheaf cohomology commutes with colimits, and writing

Ωp
X,D

= Ωp
X
[∗D] = colim

m
Ωp
X
[mD]

as a colimit of coherent sheaves. Grothendieck’s theorem [42, Theorem 1’] comparing algebraic

and analytic de Rham cohomology of X relies then on resolution of singularities in order to reduce

to a normal crossing divisor D, and an explicit computation by Atiyah and Hodge of the local

cohomology of Ωan
X,D

.

When working with a variety X equipped with a potential f : X → A1, we content ourselves

for the moment with the isomorphism (7.2.1.1) obtained from GAGA. The differential operator df

is well defined on rational or meromorphic differential forms on X with poles in D = X \X, hence

the following proposition is immediate.

Proposition 7.2.2. — Let X be a smooth complex variety, and let f be a regular function

on X. Let X be a smooth compactification of X with complementary divisor D = X \ X. The

analytification functor induces natural isomorphisms of complex vector spaces

Hn
dR(X, f) = Hn

(
X, (Ω•

X,D
, df )

)
→ Hn

(
X

an
, (Ωan,•

X,D
, df )

)
. (7.2.2.1)

7.2.3. — In Proposition 7.2.2 we expressed the de Rham cohomology of (X, f) as the cohomology

of a complex of sheaves on the compact topological space X
an
. We do the same for rapid decay

cohomology, using the real blow-up point of view explained in Section 3.5. Let X be a smooth

complex algebraic variety, and let f : X → A1 be a regular function on X. Recall from Section 3.5

that a good compactification of (X, f) is a compactification X of X by a strict normal crossing

divisor D such that f extends to a meromorphic function f : X → P1. Choose such a good

compactification, let π : B → X be the real blow-up of X along D, and let fB : B → P̃1 be the

extension of f to B. Here, P̃1 stands for the real blow-up of P1 at infinity, which we describe as

the complex plane C completed by a circle at infinity. For b ∈ ∂B, either fB(b) ∈ C or fB(b) lies

on the circle at infinity, in which case its real part can either be negative, zero or positive. Set

B0 = B \ {b ∈ ∂B | fB(b) ∈ C or Re(fB(b)) ⩽ 0}

so that ∂B0 consists of those b ∈ ∂B where fB takes an infinite value with strictly positive real

part. The rapid decay cohomology of (X, f) is the cohomology of the pair (B0, ∂B0), which can be

computed as the cohomology of the singular cochain complex C•
(B0,∂B0) on B by Proposition 3.5.2,

or alternatively as

Hn
rd(X, f) = Hn

(
X

an
, π∗C

•
(B0,∂B0))

)
. (7.2.3.1)

Note that since C•
(B0,∂B0) is a complex of flasque sheaves, there is no difference between its direct

image and its derived direct image on X
an
.

7.2.4. — In order to compare the complexes (Ωan,•
X,D

, df ) and π∗C
•
(B0,∂B0) on X

an
, let us recall our

conventions for singular cochain complexes. For this purpose, let X be a manifold with boundary,

possibly with corners. The group Cp(X) of singular p-chains on X is the Q-linear vector space
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generated by piecewise smooth1 maps T : ∆p → X where ∆p ⊆ Rp+1 is the standard p-simplex,

defined as the convex hull of the set of canonical basis vectors e0, e1, . . . , ep. The differential

d : Cp(X)→ Cp−1(X) is given by linearity and

dT =

p∑
i=0

(−1)i(T ◦ di)

where di : ∆p−1 → ∆p is induced by the linear map given by di(ej) = ej for j < i and di(ej) = ej+1

for j ⩾ i. The resulting complex of rational vector spaces C•(X) is the singular chain complex

associated with X, and we call

C•(X) = Hom(C•(X),Q)

the singular cochain complex of X. It computes by definition the singular cohomology of X with

rational coefficients. The complex C•(X) depends contravariantly functorially on X. In particular,

the assignment of the complex C•(U) to any open U ⊆ X defines a complex of presheaves on X,

whose sheafification we denote by C•
X . Since X is locally contractible, this complex of sheaves is a

flasque resolution of the constant sheaf QX on X, hence C•
X(X) computes the sheaf cohomology of

X with coefficients in QX . One can show, using barycentric subdivision, that the canonical map

C•(X) → C•
X(X) is a quasi-isomorphism, hence the canonical isomorphism between singular and

sheaf cohomology. Given the inclusion of a subspace α : Y → X, there is a canonical morphism of

sheaves C•
X → α∗C

•
Y , ultimately induced by sending a simplex T : ∆p → Y to α ◦T . We denote by

C•
(X,Y ) = cone(C•

X → α∗C
•
Y )

its cone, and observe that C•
(X,Y ) is a flasque resolution of Q(X,Y ) = ker(QX → α∗QY ), hence

computes the cohomology of the pair of spaces (X,Y ).

7.2.5. — Let us now return to the situation where X is a good compactification of (X, f). On

X
an

we have the analytic de Rham complex (Ωan,•
X,D

, df ) of meromorphic differential forms with

poles contained in D, and the complex of singular cochains π∗C
•
(B0,∂B0). A morphism of complexes

of sheaves

I : (Ω•
X,D

, df ) −−−→ π∗C
•
(B0,∂B0) ⊗ C (7.2.5.1)

1We call a continuous map between manifolds with corners piecewise smooth if the domain admits a finite

stratification by closed submanifolds with corners such that the restriction of the map to each of them is smooth, in

the usual sense that it extends to a smooth function on an open neighbourhood. In our concrete case, the domain is

the standard simplex ∆p. One advantage of piecewise smooth maps ∆p → X is that we can pull back and integrate

differential p-forms, which would not be possible with just continous maps. On the other hand, the restriction of

a piecewise smooth map to any face of ∆p is itself piecewise smooth, and we can construct piecewise smooth maps

on ∆p by specifying compatible piecewise smooth maps on each piece in the barycentric subdivision of ∆p without

worrying about differentiability. This will come in handy when we show compatibility of the comparison isomorphism

with cup-products. Finally, we stress that continuous maps ∆p → X can be approximated within the same homotopy

class by piecewise smooth maps, hence classical singular homology with respect to continous cycles is the same as

singular cohomology using only piecewise smooth cycles.
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is specified by the following data: for every open U ⊆ X in the analytic topology and every

meromorphic p-form ω ∈ Ωp
X,D

(U), a linear map

IU (ω) : Cp(π
−1(U))⊕ Cp−1(π

−1(U) ∩ ∂B0) −−−→ C (7.2.5.2)

needs to be given. This data must be compatible with inclusions of open subsets and with differ-

entials. Given a piecewise smooth p-simplex T : ∆p → U and a piecewise smooth (p − 1)-simplex

T ′ : ∆p−1 → U ∩ ∂B0, we set

IU (ω)(T, T
′) =

∫
T
e−fω =

∫
∆p
e−f◦T T ∗ω (7.2.5.3)

This makes sense, since e−fω is everywhere defined on B0, and so T ∗(e−fω) = e−f◦T T ∗ω is a

piecewise smooth differential form on ∆p. That the right-hand side of (7.2.5.3) does not depend on

T ′ is intentional. Compatibility of the maps IU (ω) with inclusions of open subsets is tautological.

Compatibility with differentials is essentially a consequence of Stokes’s formula as we show in the

following Lemma.

Lemma 7.2.6 (Twisted Stokes formula). — With notation as in 7.2.5, the equality

IU (dfω)(T, T
′) = IU (ω)(dT + T ′, dT ′)

holds.

Proof. This can be verified by a straightforward computation. Here it is:

IU (dfω)(T, T
′) =

∫
T
e−f (dfω)

=

∫
T
d(e−fω) (definition of df )

=

∫
dT
e−fω (Stokes)

=

∫
dT
e−fω +

∫
T ′
e−fω (because e−f◦T

′
= 0)

= IU (ω)(dT + T ′, dT ′)

□

7.2.7. — It follows from Lemma 7.2.6 that the integration map (7.2.5.1) is a well defined

morphism of complexes of sheaves of complex vector spaces on X. Taking cohomology yields

morphisms of complex vector spaces

Hn(X
an
, (Ω•

X,D
, df )) −−−→ Hn(X

an
, π∗C

•
(B0,∂B0) ⊗ C) (7.2.7.1)

or alternatively

Hn
dR(X, f) −−−→ Hn

rd(X, f)⊗ C (7.2.7.2)

via the isomorphisms (7.2.2.1) and (7.2.3.1). This is the sought period map for (X, f). It is

independent of the choice of a good compactification of (X, f). We will prove that this map is
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an isomorphism by proving that the morphism of sheaves on X
an

given by (7.2.5.3) is a quasi-

isomorphism.

Definition 7.2.8. — Let X be a smooth complex variety, and let f be a regular function on

X. We call the map (7.2.7.2) period map or also comparison morphism for the pair (X, f).

7.2.9. — Let X be a smooth and affine complex variety.

7.3. The comparison isomorphism for curves

The proof of the comparison theorem 7.6.1, affirming that the map from de Rham cohomology to

rapid decay cohomology constructed in the previous section is an isomorphism, relies on a Poincaré

lemma, stated as Theorem 7.5.11. This Poincaré lemma relates the twisted de Rham complex of

differential forms with moderate growth on the real blow-up with a singular chain complex, and

in turn relies on a theorem of Hien [43, Theorem A.1] about the growth behaviour of solutions

of certain systems of linear partial differential equations. In loc. cit, this theorem is stated and

proven in a more general setup than what we need here, which makes its proof substantially more

involved, but only in the two-dimensional case. The case of arbitrary dimension is a straightforward

generalisation. For the readers convenience, we shall reformulate and prove the case we need here,

which is Theorem 7.5.5. In this section, we treat the one-dimensional case which is much lighter in

terms of notation, yet contains all essential ideas. We convene that singular cochain complexes are

taken with complex coefficients.

7.3.1. — We write X for the open complex unit disk, D = {0}, and X = X \ D. Let OX,D
denote the sheaf of meromorphic functions on X which are holomorphic on X. The real blow-up

B = BloDX is an annulus, with the inner circle as its boundary ∂B. For a complex number w

Figure 7.3.1. The real blow-up of the disk at its centre. Sectors map to sectors.

of norm 1, we write w · 0 for the corresponding boundary point of ∂B. We fix a meromorphic

function f ∈ OX,D(X) and write it as f(x) = x−ef1(x), where e ⩾ 0 is the order of the pole and

f1 is a holomorphic function on the disk. The canonical extension fB : B → P̃1 of f is given by
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fB(x) = f(π(x)) for x /∈ ∂B and by

fB(w · 0) =

w−ef1(0) · ∞ if e > 0

f(0) if e = 0

on the boundary. The positive part of the boundary ∂+B consists of those elements w · 0 ∈ ∂B
where fB(w · 0) = z · ∞ for some complex number z of norm 1 with non-negative real part. The

set ∂+B consists of e equally spaced closed arcs on the circle ∂B.

7.3.2. — Set Ω1
X,D

= OX,Ddx, and define

df : OX,D → Ω1
X,D

by df (g) = dg − gdf = (g′ − gf ′)dx.

Proposition 7.3.3. — If e = 0, then df is surjective, and its kernel is one-dimensional. If

e > 0, then the map

df : OX,D(X)→ OX,D(X)dx

is injective, and the classes {x−mdx | 0 < m ⩽ e} form a basis of coker(df ).

Proof. Suppose first that e > 0. Let g be a meromorphic function on X such that df (g) = 0.

We can write g and f as power series

f(x) =
∞∑
n=0

anx
n−e and g(x) =

∞∑
n=N

bnx
n

with a0 ̸= 0. We need to show that bN = 0 holds. To this end, we calculate

0 = g′(x)− g(x)f ′(x) =
∞∑
n=N

nbnx
n−1 −

( ∞∑
p=0

(p− e)apxp−e−1

)( ∞∑
q=N

bqx
q

)
and see that the coefficient of xN−e−1 equals −ea0bN . Since −ea0 is nonzero, bN = 0 follows, hence

injectivity of df . □

7.3.4. — Given a meromorphic function h on X, we are interested in the inhomogeneous linear

differential equation

u′ − f ′u = h (7.3.4.1)

in the unknown meromorphic function u. Locally, say in a neighbourhood of x0 ∈ X, the equation

has a one-dimensional space of solutions, namely

u(x) = ef(x)
∫ x

x0

h(t)e−f(t)dt+Aef(x) (7.3.4.2)

where A ∈ C is a constant. The problem with this is of course that (7.3.4.2) might not define a

global function on X, and even if, it might have an essential singularity at 0.
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7.3.5. — Let U ⊆ B be a simply connected, open subset, such that U ∩∂+B is simply connected

or empty.

Suppose now that h has moderate growth as x→ 0, that means, there exists an integer N such

that |h(x)| = O(|x|−N ) holds for small x. Our question is whether the function u has moderate

growth as x→ 0 for an appropriate choice of the constant A. We shall show that this is indeed the

case. Writing f as a Laurent series

f(x) = ax−d + (terms of degree > −d)

for some integer d and non-zero a ∈ C, we distinguish four cases. First case: d ⩽ 0, so f is

holomorphic. In that case, f is bounded around x = 0 and u has moderate growth for any choice

of A. Second case: d > 0 and Re(a) > 0. In that case, a special solution of the differential equation

is given by the improper integral

u(x) = ef(x)
∫ x

0
h(t)e−f(t)dt (7.3.5.1)

which converges, since e−Re(f(x)) decreases exponentially as x→ 0. We can use L’Hôpital’s rule to

examine the behaviour of u near zero: For small x we have

u(x) =

∫ x
0 h(t)e

−f(t)dt

e−f(x)
∼ h(x)

f ′(x)

hence |u(x)| = O(|x|−N+d−1) ⩽ O(|x|−N ) as x→ 0. Third case: d > 0 and Re(a) < 0. In this case

ef(x) converges to 0 as x→ 0, hence if u has moderate growth for one choice of A, then so it does

for any other. We use again L’Hôpital’s rule to see that u(x) grows as h(x)
f ′(x) as x approaches 0.

The difference between this case and the previous one is that now the indeterminacy has the shape
∞
∞ no matter where the integration starts, whereas before it was 0

0 only because the integration

started at t = 0. Fourth and last case: d > 0 and Re(a) = 0. Assume a = si with real s > 0,

the case s < 0 being similar. A special solution to (7.3.4.1) is again given by the integral formula

(7.3.5.1), where the integration path approaches zero from a positive angle 0 < δ < ε. The integral

Figure 7.3.2. An integration path approaching 0 from a positive angle

converges, since for sufficiently small δ

lim
r→0

rdRe(f(reδi)) = lim
r→0

(rd · si · r−d · e−dδi) = se(π/2−dδ)i

has positive real part. This special solution u(x) has moderate growth of order at most O(|x|−N )
along any angle above and below the real line as we have seen in the previous cases, hence again

|u(x)| = O(|x|−N ).
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Suppose now that instead of solutions of (7.3.4.1) on a sector, we are interested in solutions of

defined on the whole pointed disk. Now f and h are both meromorphic functions on the unit disk,

with only pole at the origin. As we have seen presently, there exists on each sufficiently small sector

around any angle α a solution of moderate growth, and in fact a unique one given by the improper

integral (7.3.5.1) if the real part of f(z) tends to +∞ as z approaches zero in the direction of α.

These local solutions glue together to a global solution if any only if for any two such angles α and

β the integral ∫ 0·β

0·α
h(t)e−f(t)dt (7.3.5.2)

vanishes. The notation means that we integrate along a path in the punctured unit disk starting

at 0 in the direction of α and ending at 0 from the direction β.

We can reformulate our findings in terms of sheaves as follows: Let X be the open complex

unit disk, set X = X \ {0}, and let π : B → X be the real blow-up of the origin. Let f : X → C be

a meromorphic function with only pole at zero, and denote by fB : B → P̃1 its extension to the real

blow-up. As we have shown in Section 3.5, the rapid decay cohomology of (X, f) is the cohomology

of the pair of spaces [B◦, ∂B◦], where B◦ is the union (inside B) of X and those elements b in ∂B

with fB(b) ∈ ∂P̃1 with positive real part. The cohomology of the pair [B◦, ∂B◦] is the cohomology

of B◦ with coefficients in the sheaf Q[B◦,∂B◦]. This sheaf admits as a flasque resolution the complex

of sheaves C•
[B◦,∂B◦] ⊗ C given in degree p by the sheaf of singular cochains on B◦ with boundary

in ∂B◦. Let Oan
B◦ denote the sheaf of holomorphic functions on X = B◦ \ ∂B◦ with moderate

growth near ∂B◦, set Ωan,1
B◦ = Oan

B◦dx and consider the connection df : Oan
B◦ → Ωan,1

B◦ sending u to

(u′ − f ′u)dx. Integration on chains defines a morphism of complexes of sheaves

0 Oan
B◦ Ωan,1

B◦ 0 · · ·

0 C0
[B◦,∂B◦]⊗C C1

[B◦,∂B◦]⊗C C2
[B◦,∂B◦]⊗C · · ·

//

��
I0

//
df

��
I1

//

��

//

// //d // //

(7.3.5.3)

as follows: A local section u of Oan
B◦ is sent by I0 to the map which sends a 0-simplex T : ∆0 → B◦

to the complex number e−f(T (e0))u(T (e0)), and a local section hdx of Ωan,1
B◦ is sent I0 to the map

which sends a 1-simplex T : ∆1 → B◦ to the integral

I1(hdx)(T ) =

∫
T
e−fhdx =

∫ 1

0
e−f(T (te0+(1−t)e1))h(T (te0 + (1− t)e1))dt

with the convention that the standard n-simplex is the convex hull in Rn+1 of the canonical basis

e0, e1, . . . , en. The kernel of df is generated by the function ef on opens which are disjoint from

∂B◦ and is zero on opens meeting ∂B◦, hence the morphism I0 induces an isomorphism of sheaves

ker(df ) → H0(C•
[B◦,∂B◦]) ⊗ C. We have shown that also I1 induces an isomorphism coker(df ) →

H1(C•
[B◦,∂B◦]) ⊗ C. Therefore (7.3.5.3) is an isomorphism in the derived category of complexes of

sheaves

I : (Ωan,•
B , df )

∼=−−−−→ C•
[B,∂+B]

on B◦. This is our first local Poincaré Lemma. On X, we look at the de Rham complex

(Ωan,•
X [∗D], df ) of meromorphic differential forms with a pole of any order at D = {0}, and the
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integration morphism

I : Ωan,•
X [∗D]→ π∗C

•
[B◦,∂B◦] ⊗ C

given by the same formula. Also this morphism is an isomorphism in the derived category. This

is our second local Poincaré Lemma. An interesting thing to notice here is that since C•
[B◦,∂B◦] is

flasque, we could also place the derived direct image Rπ∗C
•
[B◦,∂B◦] ⊗C in the above map, and still

get an isomorphism. Hence, the canonical morphism

Ωan,•
X [∗D] = π∗Ω

an,•
B◦ → Rπ∗Ω

an,•
B◦

is an isomorphism too. This is shown in much greater generality in [69, Corollary II, 1.1.8].

Proposition 7.3.6. — The morphism of complexes of sheaves on X

0 Oan
X,D Ωan,1

X,D 0 · · ·

0 π∗C
0
(B,∂+B) π∗C

1
(B,∂+B) π∗C

2
(B,∂+B) · · ·

//

�� I0

//
df

�� I1

//

��

//

// //d // //

(7.3.6.1)

given by integration of forms on chains is a quasi-isomorphism.

Proof. The case where f is holomorphic is easily settled, so we suppose that f has a pole of

positive order at 0, and hence that ∂+B is nonempty. Let U be a simply connected open subset of

X. It suffices to show that the morphism of complexes of vector spaces obtained from (7.3.6.1) by

taking global sections on U is a quasi-isomorphism. If 0 /∈ U , this is clear, since df is surjective on

sections with kernel of dimension 1 over U , and π : π−1(U)→ U is a homeomorphism. If 0 ∈ U we

can as well assume U = X. The differentials df and d are both injective on global sections, so all

that’s left is to show that the map

H1(Ωan,•
X,D

(X))→ H1(C•
(B,∂+B)(X)) (7.3.6.2)

given by integration is an isomorphism. This morphism sends the class of a meromorphic differential

form ω = hdx to to the cochain sending a 1-simplex, say given by a path γ : [0, 1] → B with

endpoints in ∂+B, to the integral

I1(ω)(γ) =

∫ 1

0
e−f(γ(t))h(γ(t))dt.

It follows from ?? that ω is exact if and only if I1(ω) is zero, which is the same as to say that I1(ω)

is exact because C•
(B,∂+B) has no nontrivial global section. This shows that (7.3.6.2) is injective. □
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7.4. A Dolbeault–Grothendieck lemma on the real blow-up

The goal of this section is to understand the cohomology of the sheaf of analytic functions with

moderate growth on the real blow-up at a normal crossing divisor of a variety. In particular, we

wish to show that locally on the basis, say when we blow up a complex polydisk, this cohomology

vanishes. The main result of the section is Theorem 7.4.9, originally due to Sabbah [69, Corollary

II, 1.1.8]. We deduce it from a Dolbeault–Grothendieck Lemma on the real blow-up B. In the

following Lemma 7.4.1 and Proposition 7.4.2 we recall the ∂-Poincaré Lemma in one variable,

essentially [87, Théorème 1.28], except that we formulate it for bounded functions on sectors.

Lemma 7.4.1 (Cauchy Representation). — Let B be the oriented real blow-up of the open complex

unit disk at its centre, and let U ⊆ B be open. Let f be a bounded, smooth function on U and let

V ⊆ U be a closed disk or sector. The equality

f(z) =
1

2πi

∫
∂V

f(ξ)

ξ − z
dξ +

1

2πi

∫∫
V

∂f

∂z
(ξ)

1

ξ − z
dξdξ

holds for every z in the interior of V .

Proof. This is essentially a consequence of Stokes’ Theorem for a domain in the complex plane

with piecewise smooth boundary. We suppose V is a sector, the case of a disk is well known and

proven similarly. Let Vε be the closed subset V obtained by removing from V what is contained in

the open disks around z and around 0, with small radius ε > 0. The domain Vε ⊆ C has a piecewise

Figure 7.4.3. The domain Vε, pictured in the blow-up (left), and in the complex

plane (right). Lenghts and areas are faithfully represented only on the right.

smooth boundary, consisting ot two components: the positively oriented outer boundary, and the

small circle around z with negative orientation. The differential form

ω =
f(ξ)

ξ − z
dξ

is a well-defined and smooth in a neighbourhood of Vε. Applying Stokes’ theorem and taking limits

as ε→ 0 yields∫∫
V

∂f

∂ξ
(ξ)dξdξ = lim

ε→0

∫∫
Vε

dω = lim
ε→0

∫
∂Vε

ω =

∫
∂V

f(ξ)

ξ − z
dξ − lim

ε→0

∫ 2π

0
f(z + εeiϑ)idϑ

which is the desired formula up to the factor 2πi. □
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Proposition 7.4.2. — Let B be the oriented real blow-up of the open complex unit disk at its

centre, and let U ⊆ B be open. Let f be a bounded, smooth function on U and let V ⊆ U be a

closed disk or sector. The function g defined on the interior of V by

g(z) =
1

2πi

∫∫
V

f(ξ)

ξ − z
dξdξ (7.4.2.1)

is smooth, bounded, and satisfies ∂g/∂z = f .

Proof. The surface integral is improper because of the apparent pole, but converges absolutely

since indeed ξ 7−→ (ξ − z)−1 is of class L1 on the unit disk with L1-norm at most 1. This already

shows that g is bounded, in fact ∥g∥∞ ⩽ ∥f∥∞ holds, and since integration and differentiation can

be interchanged, g is smooth since f is so. It remains to verify the differential equation ∂g/∂z = f .

Fix a point z ∈ V \ (V ∩ ∂B) and decompose f as a sum f = f1 + f2 of smooth functions, where

f1 is identically 0 in a neighbourhood of z and agrees with f in a heighbourhood of the boundary

of V . For the function f2, this means that it has compact support contained in the interior of

V \ (V ∩ ∂B) and f2 is equal to f in a neighbourhood of z. It suffices to verify equation (7.4.2.1)

for f1 and f2 separately. Defining g1 and g2 accordingly, we find

∂g1
∂z

(z) =
1

2πi

∫∫
V

∂

∂z

(
f1(ξ)

ξ − z

)
dξdξ = 0 = f1(z)

because f1(ξ)(ξ − z)−1 is a smooth, well defined function of ξ on V , so exchanging integration and

differentiation is justified, and the same expression is a holomorphic function of z. Since f2 has

compact support away from ∂B, we find

∂g2
∂z

(z) =
1

2πi

∂

∂z

∫∫
C

f1(ξ)

ξ − z
dξdξ =

1

2πi

∫∫
C

∂f1

∂ξ
(ξ)

1

ξ − z
dξdξ = f(z)

where we used Lemma 7.4.1 for the last equality. The exchange of differentiation and integral can

be justified, for example, by using polar coordinates. □

7.4.3. — In this section, X denotes the n-dimensional open complex polydisk with coordinate

functions z1, . . . zn, and D ⊆ X stands for the normal crossing divisor given by the equation

z1z2 · · · zm = 0. Let π : B → X be the real blow-up of X at D. In the sequel, if we speak of

smooth or holomorphic functions on an open subset U of B, when we really mean complex valued

functions with domain U \ (U ∩ ∂B). A smooth function f on U is said to have moderate growth

near x ∈ ∂B ∩ U if for some large enough exponent N ⩾ 0 the estimate

|f(z1, z2, . . . , zn)| ⩽ |z1z2 · · · zn|−N

holds in a neighbourhood of x. We say for short that the function f has moderate growth if it has

moderate growth near every point x ∈ ∂B ∩U , and denote by Osm
B,∂B the sheaf of smooth functions

of moderate growth on B. This sheaf contains the sheaf Oan
B,∂B of analytic functions of moderate

growth.
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7.4.4. — Let p, q ⩾ 0 be integers. We denote by Ap,qB,∂B the sheaf on B whose sections on an

open set U ⊆ B are smooth differntial forms∑
I,J

fI,J(z)dzI ∧ dzJ

of type (p, q) on U \ (U ∩ ∂B), with smooth coefficients fI,J of moderate growth. The sheaf Ap,qB,∂B
on B is soft. Indeed, there exists for every closed subset K ⊆ B and every open neighbourhood U

of K a smooth, bounded function η on B with support contained in U , and which is identically 1

in a neighbourhood of K. Such functions can be used to extend sections of Ap,qB,∂B on K to global

sections. In particular, the sheaf Ap,qB,∂B is acyclic, that means

Hn(B,Ap,qB,∂B) = 0

holds for all n > 0.

Lemma 7.4.5 (∂-Poincaré Lemma). — Let U ⊆ B be open, and let f be a smooth function of

moderate growth on U and let k ∈ {1, 2, . . . , n}. There exists locally on U a smooth function g of

moderate growth satisfying
∂g(z1, . . . , zn)

∂zk
= f(z1, . . . , zn).

If moreover f is holomorphic with respect to variables zj, j ̸= k, then g can be chosen holomorphic

in the same variables.

Proof. If not for the growth condition, this would be the classical Dolbeault-Grothendieck

Lemma on the open set U \ (∂B ∩ U). We will thus work in a neighbourhood of a boundary point

x ∈ ∂B ∩ U and walk through the classical proof, checking at each step that the construction of

g can be made compatible with growth conditions. We start with the essential case where the

dimension n is one. We can write f in the form z−Nf1 for some smooth, complex valued function

f1 on U which is bounded in a neighbourhood of the boundary point x = w · 0. Choose 0 < r < 1

sufficiently small, so that the closure of the open sector

S(w, r) = {seiϑ | 0 < s < r,−r < ϑ < r}

is contained in U , and so that f is bounded on S(w, r). A function g1 with ∂g = f1 is given by

g1(z0) =
1

2πi

∫∫
S(w,r)

f1(z)

z − z0
dzdz,

for z0 ∈ S(w, r).
The so defined function g1 is bounded by the same bound as f1 is, and satisfies ∂g1/∂z = f1 as

shown in Proposition 7.4.2. Setting g(z) = z−Zg1(z) We find

∂g(z)

∂z
= z−N

∂g1(z)

∂z
= z−Nf1(z) = f(z)

by the chain rule and the fact that z 7−→ z−N is holomorphic.

We introduce the notation

Dε = {z ∈ C | |z| < r}
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for open disks, and

Sε = {rwe2πiϑ ∈ C | 0 < r ⩽ ε,−ε ⩽ ϑ ⩽ ε}

for open sectors. A neighbourhood of a point of U

□

Proposition 7.4.6 (Dolbeault-Grothendieck Lemma). — Let U ⊆ B be open, x ∈ U and q > 0.

For every β ∈ Ap,qB,∂B(U) with ∂β = 0 there exists an open neighbourhood V of x and a form

α ∈ Ap,q−1
B,∂B (V ) with ∂α = β|V .

Proof. Consider now the general case where X has dimension n ⩾ 1, and β is a ∂-closed form

of type (p, q), with q > 0. We can write β as

β =
∑
#I=p

βI ∧ dzI

where each βI is a ∂-closed (0, q) form. It suffices to show that each βI is ∂-exact. We may thus

assume p = 0, so β can be written as

β =
∑
#J=q

fJdzJ (7.4.6.1)

and argue by induction on the smallest integer k ∈ {0, 1, 2, . . . , n} such that the sum in (7.4.6.1)

can be indexed by sets J ⊆ {1, 2, . . . , k}, that is, if J contains an index larger than k, then fJ = 0.

For k = 0 we find β = 0 and there is nothing to be proved. For k ⩾ 1, we can write β as

β = β0 + β1 ∧ dzk

where β0 and β1 are forms of type (0, q − 1), in the ideal spanned by dz1, . . . dzk−1. □

Corollary 7.4.7. — For every p ⩾ 0, the complex of sheaves on B

0→ Ωp,anB,∂B → A
0,q
B,∂B → A

1,q
B,∂B → · · ·

is exact.

Lemma 7.4.8. — Let U ⊆ X be an open subset. A function h on U has moderate growth if and

only if the composite h ◦ π on π−1(U) has moderate growth. In particular, the following equalities

hold for all p, q ⩾ 0.

π∗Ω
p,an
B,∂B = Ωp,anX,D and π∗Ap,qB,∂B = Ap,qX,D

Proof. This follows form the fact that π is a proper map. □

Theorem 7.4.9. — For every p ⩾ 0, the canonical morphism

Ωp,anX,D = π∗Ω
p,an
B,∂B → Rπ∗Ω

p,an
B,∂B

is an isomorphism in the derived category of sheaves on X.
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Proof. The sheaves Ap,qB,∂B are soft, hence acyclic. We can thus compute the derived direct

image Rπ∗Ω
p,an
B,∂B using the resolution given in Corollary 7.4.7. We find

Rπ∗Ω
p,an
B,∂B =

(
π∗Ap,•B,∂B, ∂

)
=
(
Ap,•X,D, ∂

)
= Ωp,anX,D

by Lemma 7.4.8, and the classical Dolbeault-Grothendieck Lemma for meromorphic functions on

a polydisk. □

7.5. The Poincaré Lemmas on a polydisk

7.5.1. — Our goal is to generalise the discussion of the preceding section to several variables.

To this end, we fix the following notation and terminology: pick integers n > 0 and 0 ⩽ m ⩽ n,

consider the open unit polydisk X ⊆ Cn, the divisor D of X given by x1x2 · · ·xm = 0, and the real

blow-up

π : B → X

of X along the components of D. We consider the holomorphic function f : X → P1 given in

projective coordinates by f(x) = [f0(x) : f1(x)], with f0(x) = xe11 x
e2
2 · · ·xemm for some non-negative

integers e1, e2, . . . , em. The poles f−1(∞) are contained in D, and we denote by fB : B → P̃1 the

continuous extension of f to B. Recall that B is the space

{(x1, . . . , xn, w1, . . . , wm) ∈ X × (S1)m | xiw−1
i ∈ R⩾0 for 1 ⩽ i ⩽ m}

and that the boundary ∂B of B is the set π−1(D). We identify the interior of B with X = X \D
via the projection map π. The oriented real blow-up P̃1 of P1 at {∞} is the complex plane to which

a circle at infinity ∂P̃1 = S1 has been glued. As discussed in 3.5.1, the function fB : B → P̃1 is

given by

fB(x,w) =


f1(x)
f0(x)

∈ C, if f0(x) ̸= 0

f1(x)
|f1(x)|f0(w)

−1 ∈ ∂P̃1, if f0(x) = 0, hence (x,w) ∈ ∂B.

In what follows, we are interested in the behaviour of local solutions of differential equations near

a point b ∈ ∂B. For our purposes, we may choose a point b in π−1(0), thus of the form

b = (0, . . . , 0, e2πiβ1 , . . . , e2πiβm)

and consider the open neighbourhoods

U = U(ε) =
{
(x,w)

∣∣ |xi| < ε for 1 ⩽ i ⩽ n and arg(e2πiβpw−1
p ) < ε for 1 ⩽ p ⩽ m

}
of b. As a manifold with corners, U is diffeomorphic to (−1, 1)n × [0, 1)n. Concretely, a local chart

around b ∈ π−1(0) is given by

(−ε, ε)n × [0, ε)n
≃−−→ U (7.5.1.1)

sending (α1, . . . , αn, r1, . . . , rn) to (x,w) ∈ B with xk = rke
2πi(αp+βp) and wk = e2πi(αp+βp).
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Lemma 7.5.2. — Suppose that fB(b) = i∞ ∈ ∂P1 holds. For sufficiently small ε > 0, the set

{x ∈ U | Re(fB(x)) = 0} divides U into two simply connected components.

Proof. First of all, notice that the integers ep are not all zero - if so, 0 ∈ X would not be a

pole of f , and hence fB(b) = f(0) would not be an element of the boundary of P̃1. In terms of the

coordinates given in (7.5.1.1), the argument of the function fB is given by

arg(fB(x,w)) = arg(f1(x))− (e1(α1 + β1) + · · ·+ em(αm + βm)) ∈ R/2πZ

noting that since f1(0) ̸= 0, the argument of f1 is a well defined real analytic function in a

neighbourhood of 0, taking values in R/2πZ. Set f1(x) = f1(0) · eg(x), where g is a holomorphic

function satisfying g(0) = 0, so that the argument of f1 is given by arg(f1(α, r)) = arg(f1(0)) +

im(g(x)). Writing (x,w) in coordinates (r, α), the Taylor expansion of the function im(g(r, α)) has

no linear terms in α. We have arg(fB(b)) =
π
2 by hypothesis, so we can write arg(fB(x,w)) as

arg(fB(x,w)) =
π
2 + L(α) + higher order terms

where L is a non-zero linear form, and higher order terms mean terms which contain a factor

which is quadratic in α or a factor which is linear in r. The cube (−ε, ε)n × [0, ε)n is divided in

two halves by the hyperplane L(α) = 0, and we deduce from the implicit function theorem that

for small enough ε > 0, the cube (−ε, ε)n × [0, ε)n is divided in two halves by the hyperplane

arg(fB(x,w)) =
π
2 . □

Definition 7.5.3. — We say that a holomorphic function h : U \ ∂U → C has moderate growth

near b if there exists a neighbourhood V ⊆ U of b and a Laurent polynomial g ∈ C[x1, . . . , xn, x−1
1 , . . . , x−1

m ]

such that the inequality |h(x)| ⩽ |g(x)| holds for x ∈ V \ ∂V .

7.5.4. — Sums and products of functions with moderate growth again have moderate growth,

and, in particular, the function f has moderate growth near b. Let us introduce the linear differential

operators

Di(u) =
∂u
∂xi

and Qi(u) =
∂u
∂xi
− ∂f

∂xi
u

for 1 ⩽ i < n. If h has moderate growth near b, then so do Di(h) and Qi(h).

Theorem 7.5.5. — Let h be a holomorphic function on U \ ∂U and let 1 ⩽ r ⩽ n be an integer.

If h satisfies the integrability condition Qs(h) = 0 for all 1 ⩽ s < r, then the system of partial

differential equations Qs(u) = 0 for 1 ⩽ s < r

Qr(u) = h
(Σf (h))

admits a holomorphic solution. If moreover h has moderate growth near b ∈ π−1(0), then there

exists a holomorphic solution defined in a neighbourhood of b, with moderate growth near b.
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Proof. The difference of any two solutions of (Σf (h)) is a solution of the corresponding ho-

mogeneous system (Σ0(h)), whose holomorphic solutions form the vector space of functions of the

form Aef , where A is a holomorphic function in the variables xr+1, . . . , xn. Let us set

u(x) = w(x)ef(x) and g = he−f

where w stands for a holomorphic function to be determined. We have Qs(u) = Ds(w)e
f , hence

must solve the new system Ds(w) = 0 for 1 ⩽ s < r

Dr(w) = g
(Σ0(g))

in the unknown function w. The integrability condition on h translates to

Ds(g) =
∂h
∂xs

e−f − h ∂f
∂xs

e−f = Qs(h)e
−f = 0

for 1 ⩽ s < r. The differential system (Σ0(g)) together with the integrability condition on g

is precisely what has to be solved in the proof of the classical Poincaré Lemma. Indeed, the

integrability condition on g means that g is constant with respect to the variables x1, . . . , xr−1, and

we can set

w(x1, . . . , xn) =

∫ xr

ε
2

g(x1, . . . , xr−1, z, xr+1, . . . , xn)dz

where the integration path from ε
2 to xr may be chosen to be a straight line. The general solution

u to (Σf (h)) is therefore given by

u(x) = ef ·
∫ x

ε
2

he−fdz +Aef (7.5.5.1)

with the same integration path and some holomorphic function A in the variables xr+1, . . . , xn.

The function u is holomorphic, and all that’s left to show is that for some appropriate choice of A

the solution u has moderate growth near b if h has so. Let us suppose that this is the case, and

choose ε < 1 small enough so that there exists an integer N ⩾ 0 for which the inequality

|h(x)| ⩽ |x1x2 · · ·xm|−N

holds for x ∈ U \ ∂U . We distinguish four possible regimes for fB(b) ∈ P̃1, namely fB(b) can be:

(1) An element of the interior of P̃1. So fB(b) is a complex number.

(2) An element in the boundary ∂P̃1 with positive real part.

(3) An element in the boundary ∂P̃1 with negative real part.

(4) Either +i∞ or −i∞.

In the first case, the meromorphic function f = f1
f0

: X → C is holomorphic and its extension to B

is the composite of f with the blow-up map π : B → X. We may hence assume f is bounded on

U , say

|ef(x)| ⩽M and |e−f(x)| ⩽M

hold. The function defined by (7.5.5.1) has moderate growth if we choose for A any function of

moderate growth, for example a constant. In case (2), the function e−f decays exponentially in a
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neighbourhood of b, and therefore, since h has moderate growth, the integral

∫ ε
2

0
he−fdz

converges. Put differently, we may choose 0 in place of ε2 as starting point of the integral in (7.5.5.1)

even if this new starting point is now on the boundary and not in the interior if U . Let us show

that the function

u(x) = ef(x) · xr ·
∫ 1

0
h(x1, . . . , txr, . . . , xn)e

−f(x1,...,txr,...,xn)dt (7.5.5.2)

has moderate growth near b. Set Φ(x, t) = f(x1, . . . , xr, . . . , xn)−f(x1, . . . , txr, . . . , xn), and notice

that for 0 < t < 1 and all x ∈ U we have Re(Φ(x, t) < 0. We may estimate (7.5.5.2) by

|u(x)| =

∣∣∣∣xr · ∫ 1

0
h(x1, . . . , txr, . . . , xn)e

Φ(x,t)dt

∣∣∣∣
⩽ |xr| ·

∫ 1

0
t · |x1x2 · · ·xm|−NeRe(Φ(x,t))dt

⩽ |x1 · · ·xm|−N+1

which shows that u has moderate growth near b as claimed. Case (3) is similar to case (1): Since

Re(f) tends to −∞ near b, the function ef is bounded near B, hence the function defined by

(7.5.5.1) has moderate growth near b if we choose for A a constant. The last case which remains

to discuss is case (4), in which fB(b) = ±i∞ ∈ ∂P̃1. The boundary of the open U contains the set

∂+U given by

∂+U = {(x,w) ∈ ∂B | f0(x) = 0 and Re(fB(x,w)) > 0}

and we will show that ∂+U is connected for sufficiently small ε. The rest of the argument will be

similar to the case (2). □

7.5.6. — Our next goal is to reinterpret Theorem 7.5.5 in terms of sheaves of differential forms

having moderate growth on a smooth complex variety X together with a potential f . For the

remainder of this section, we work with a fixed smooth and proper complex algebraic variety X, a

normal crossing divisor D ⊆ X and a potential f : X → P1 satisfying f−1(∞) ⊆ D. In other words,

writing also f for the restriction of f to X = X \D → A1, the pair (X, f) is a good compactification

of (X, f). Let us denote by π : B → X the real oriented blow-up of X in the components of D, and

by ∂B = π−1(D) the boundary of B. The function f : X → P1 lifts to a function fB : B → P̃1 as

was shown in 3.5.1. As usual, we set ∂+B = {b ∈ ∂B | fB(b) ∈ ∂P̃1 and Re(fB(b)) ⩾ 0} and

B◦ = {b ∈ B | π(b) /∈ D, or fB(b) ∈ ∂P̃1 and Re(fB(b)) > 0}

and ∂B◦ = B◦ ∩ ∂B. By Proposition 3.5.2 and its Corollary 3.5.3, the cohomology of the pairs

(B, ∂+B) and (B◦, ∂B◦) is canonically isomorphic to the rapid decay cohomology of (X, f). The
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following diagram summarises the situation.

∂B B P̃1

X A1

D X P1
��

//

��

π

//fB

��

??
⊆

��⊆

//

??
⊆

��⊆

// //f

Since X is compact, so is the real blow-up B and its boundary ∂B, and the blow-up map π : B → X

is proper. Let U ⊆ B◦ be an open subset, with boundary ∂U = U ∩ ∂B. Since U \ ∂U is an open

subset of the complex algebraic variety B◦ \ ∂B◦ = X, it makes sense to speak about algebraic,

rational, holomorphic or meromorphic functions on U \ ∂U . Informally, a function on an open of

B has moderate growth if it grows with at most polynomial speed near the boundary. It need not

be defined on the boundary but can have a pole there. (Compare with §II, Definition, 2.6 in [21],

or Section 9.2 in [75]).

Definition 7.5.7. — Let U ⊆ X be an open subset. We say that a function h : U \ (U ∩D)→ C
has moderate growth on U if for every point x0 ∈ D∩U there exists a neighbourhood V of x0 and a

rational function g on V whose poles are contained in D ∩ V , such that for some open W ⊆ U ∩ V
the inequality |h(x)| ⩽ |g(x)| holds for all x ∈W \ (W ∩D).

Let U ⊆ B be an open subset. We say that a function h : U \(U∩∂B)→ C has moderate growth

if for every point b0 ∈ ∂B ∩ U there exists a neighbourhood V of π(b0) and a rational function g

on V whose poles are contained in D∩V , such that for some open W ⊆ U ∩π−1(V ) the inequality

|h(x)| ⩽ |g(x)| holds for x ∈W \ (W ∩ ∂B).

7.5.8. — In the first part of the definition we could replace V by W , hence assume W = U ∩V ,

but not so in the second part. As it is custom for meromorphic functions too, we will speak about

functions of moderate growth on open subsets U ⊆ X or U ⊆ B, when we really mean functions

on U \ (U ∩ D) or U \ (U ∩ ∂B). Meromorphic functions on X with poles on D have moderate

growth. Finite sums and products of functions of moderately growing functions grow moderately.

Having moderate growth is a local condition, hence the presheaves on X and on B given by

Oan
X,D(U) = holomorphic functions on U \ ∂U with moderate growth on U ⊆ X

Oan
B,∂B(U) = holomorphic functions on U \ ∂U with moderate growth on U ⊆ B

are indeed sheaves. For any open U ⊆ X, holomorphic functions on U \D with moderate growth

are in fact meromorphic functions with poles in D. The sheaf we call Oan
X,D is more commonly

denoted Oan
X [∗D].

7.5.9. — We now extend the definitions of sheaves of functions with moderate growth to differ-

ential forms with moderate growth. Following Hien and Roucairol, we define the sheaf of analytic
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differential p-forms with moderate growth as the sheaves

Ωan,p
X,D = Oan

X,D ⊗Oan
X

Ωan,p
X (7.5.9.1)

Ωan,p
B,∂B = Oan

B,∂B ⊗π∗Oan
X
π∗Ωan,p

X (7.5.9.2)

on X, respectively on the real blow-up B. This looks more difficult than it is. On an open, say

U ⊆ B, a section of Ωan,p
B,∂B is a finite linear combination of expressions of the form h ⊗ ω or just

hω, where h is a holomorphic function with moderate growth on U , and ω is a holomorphic p-form

defined in a neighbourhood of π(U). The usual rules of computation apply.

These sheaves of differential forms with moderate growth come equipped with obvious dif-

ferential maps, which we all denote by df . Let us give the local description of the differential

Ωan,p
B,∂B → Ωan,p+1

B,∂B . Fix a point b ∈ B, set x = π(b), and choose local coordinate functions x1, . . . , xn

around x ∈ X such that D is given by the equation x1x2 · · ·xm = 0 for some 0 ⩽ m ⩽ n. If m = 0,

then x lies not on D and b not on the boundary ∂B. For a subset I ⊆ {1, 2, . . . , n}, say with

elements i1 < i2 < · · · < ip, set

dxI = dxi1dxi2 · · · dxip
so that in a neighbourhood of x the p-forms dxI form a Oan

X -basis of Ωan,p
X as I runs through the

subsets of {1, 2, . . . , n} of cardinality p. A moderate p-form η can be written, in a sufficiently small

neighbourhood of b, as

η =
∑
#I=p

uIdxI (7.5.9.3)

where the coefficients uI are holomorphic functions with moderate growth. The differential of η is

given by

df (η) =
∑
#I=p

(∑
j /∈I

∂uI
∂xj

+ ∂f
∂xj

uI

)
dxjdxI

where the inner sum could as well run over all j ∈ {1, 2, . . . , n}, only that the terms with j ∈ I are

zero. The description of the differential for smooth forms on B is similar, only that this time we

need to choose 2n real coordinate functions on around x = π(b).

7.5.10. — The real blow-up B comes with the function f : B → P̃1. We denote by ∂+P̃1 ⊆ P̃1

the half-circle of nonnegative real part, and set ∂+B = f−1(∂+P̃1). Let us denote by κ the inclusion

of the open complement of ∂+B into B, so that cohomology on B of the constructible sheaf

C[B,∂+B] = κ!κ
∗CB

is the cohomology of the pair of spaces [B, ∂+B]. The cohomology of the pair is indeed the rapid

decay cohomology of (X, f) with complex coefficients. We define a morphism of sheaves

ε : C[B,∂+B] → Oan
B,∂B

on B as follows: Given a connected open subset U of B, we have either U ∩ ∂+B ̸= ∅ in which

case C[B,∂+B](U) = 0, or we have U ∩ ∂+B = ∅ in which case C[B,∂+B](U) = C and we send λ ∈ C
to the function x 7−→ λef(x) on U \ ∂U , which indeed has moderate growth.
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Theorem 7.5.11 (Poincaré Lemma 1). — The integration map (Ωan,•
B,∂B, df )→ C•

B,∂B is a quasi-

isomorphism of complexes of sheaves on B. More precisely, for every simply connected open subset

U ⊆ B, the morphism of complexes of vector spaces given by integration

IU : (Ωan,•
B,∂B(U), df )→ C•

B,∂B(U)

is a quasi-isomorphism.

Proof. We must show that for every simply connected open set U ⊆ B the complex of vector

spaces

0 −−→ C(B,∂+B)(U)
ε−−→ Oan

B,∂B(U)
df−−−→ Ωan,1

B,∂B(U)
df−−−→ Ωan,2

B,∂B(U)
df−−−→ · · ·

is exact. For notational convenience, let us introduce for 1 ⩽ i ⩽ n the linear differential operator

Qi(u) =
∂u
∂xi

+ ∂f
∂xi
u

and for a subset J ⊆ {1, 2, . . . , n} and j ∈ J , let us write sgnJ(j) = (−1)#{i∈J | i<j} so that

dxjdxJ\{j} = sgnJ(j)dxJ holds. With this notation, the differential of a moderate p-form η on U

as in (7.5.9.3) is given by

df (η) =
∑

#J=p+1

(∑
j∈J

sgnJ(j)Qj(uJ\{j})

)
dxJ

Let ω be a moderate (p+ 1)-form on U with df (ω) = 0, and let us show that ω = df (η) for some

moderate p-form η on U . We can write ω as

ω =
∑

#J=p+1

hJdxJ 0 = df (ω) =
∑

#K=p+2

(∑
k∈K

sgnK(k)Qk(hK\{k})

)
dxK (7.5.11.1)

and consider the largest integer r ⩾ 1 for which the implication {1, 2, . . . , r−1}∩J ̸= ∅ =⇒ hJ = 0

holds. If r = n+1 then ω = 0 and there is nothing to prove. Reasoning by induction on r, we only

need to show that there exists a p-form η, say as given by (7.5.9.3), such that the coefficient of dxJ

in ω − df (η) is zero whenever {1, 2, . . . , r} ∩ J ̸= ∅. This amounts to solving a system of linear

partial differential equations in the unknown functions uI . Concretely, this system is given by

0 = hJ −
∑
j∈J

sgnJ(j)Qj(uJ\{j}) (7.5.11.2)

with one equation for every subset J ⊆ {1, 2, . . . , n} with p + 1 elements, containing at least one

element j ⩽ r. Pick any k ⩽ r − 1 and J ⊆ {1, . . . , n} of cardinality p + 1 with hJ ̸= 0, and set

K = J ∪ {k}. The term in df (ω) = 0 corresponding to K just reads Qk(hJ) = 0 because for any

other s ∈ K we have k ∈ K \ {s}, hence hK\{s} = 0 and hence Qs(hK\{s}) = 0. For a similar

reason, we will suppose that uI = 0 as soon as I contains an element i < r. One way of solving

(7.5.11.2) is to produce for every subset I ⊆ {r, r+1, . . . , n} a solution uI of the partial differential

equation

(ΣI) :

Qs(u) = 0 for 1 ⩽ s < r

Qr(u) = h
(7.5.11.3)

with the given h = hI∪{r}, knowing that h is holomorphic and has moderate growth and that the

integrability condition

Qs(h) = 0 for 1 ⩽ s < r (7.5.11.4)
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holds. If these solutions uI are holomorphic and have moderate growth, then the form η as given

in (7.5.9.3) has the desired properties and the proof is done. The existence of the solutions uI is

precisely what Theorem 7.5.5 provides. □

7.6. Proof of the comparison isomorphism

We keep the notation and assumptions of the previous section as presented in 7.5.6.

Theorem 7.6.1 (Comparison isomorphism). — Let k ⊆ C be a subfield, let X be a variety over k,

let Y ⊆ X a closed subvariety, and f a regular function on X. The morphism of complex vector

spaces

α[X,Y,f,n,i] : H
n
dR(X,Y, f)(i)⊗k C −−−→ Hn

rd(X,Y, f)(i)⊗Q C

induced by the period pairing (7.0.0.1) is an isomorphism. Moreover, this isomorphism is functorial

with respect to morphisms of type (a), (b), and (c) from Definition 4.2.1, and compatible with cup

products.

Corollary 7.6.2 (Poincaré Lemma 2). — The integration morphism

(Ωan,•
X,D

, df ) −→ π∗C
•
(B,∂+B)

is a quasi-isomorphism of complexes of sheaves on X.

Proof. For every integer p ⩾ 0, using the definition of the sheaves of differential forms with

moderate growth (7.5.9.2) and the fact that π is a proper morphism, we get

π∗Ω
an,p
B,∂B = π∗(Oan

B,∂B ⊗π∗Oan
X
π∗Ωan,p

X ) = π∗Oan
B,∂B ⊗OX Ωp

X
= Ωan,p

X,D
.

Therefore, it suffices to show that, for every polydisk U ⊂ X, the morphism of chain complexes

Ω•
B,∂B(π

−1(U)) −→ C•
B,∂+B(π

−1(U))

given by integration is a quasi-isomorphism. To this end, we choose a covering of π−1(U) by simply

connected open subsets such that each intersection is simply connected or empty (this exists). The

statement then follows from the Poincaré lemma 7.5.11 and... □

Proof of Theorem 7.6.1. We can suppose that X is smooth and Y empty. Since de Rham

cohomology and rapid decay cohomology are compatible with extension of scalars, we can as well
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assume that k = C and work with complex coefficients. We then have

Hn
dR(X, f) ≃ Hn(X, (Ωan,•

X,D
, df )) (Proposition 7.2.2)

≃ Hn(X,Rπ∗C
•
B,∂+B) (Corollary 7.6.2)

≃ Hn(B,C•
B,∂+B)

≃ Hn(B, ∂+B)

≃ Hrd(X, f) (Corollary 3.5.3)

□



CHAPTER 8

The period realisation

In this chapter, building on the comparison isomorphism from Chapter 7, we construct a real-

isation functor from Mexp(k) to the category PS(k) of period structures over k.

8.1. Period structures

In this section, we introduce a tannakian formalism of period structures to which are associ-

ated period algebras, which permits us to deal abstractly with the situation where we are given

vector spaces over Q (rapid decay cohomology) and over k (de Rham cohomology) and a period

isomorphism between their complexifications. We fix for the whole section a subfield k of C.

Definition 8.1.1. —

(1) A period structure over k is a triple (V,W,α) consisting of a finite-dimensional Q–vector

space V , a finite-dimensional k–vector space W , and an isomorphism of complex vector

spaces α : V ⊗Q C→W ⊗k C.
(2) A morphism of period structures (V,W,α)→ (V ′,W ′, α′) is a pair (fV , gW ) consisting of

a Q–linear map fV : V → V ′ and a k–linear map fW : W → W such that the following

diagram of complex vector spaces commutes:

V ⊗Q C V ′ ⊗Q C

W ⊗k C W ′ ⊗k C.
��

α

//
fV ⊗Qid

��
α′

//fW⊗kid

Denote the resulting category by PS(k). We equip it with the evident Q–linear monoidal

structure, and regard it as a neutral Q–linear tannakian category with the forgetful functor

(V,W,α) 7−→ V

as fibre functor.

215
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Definition 8.1.2. — Let P = (V,W,α) be a period structure, let v1, . . . , vn be a basis of V and

let w1, . . . , wn be a basis of W . Let α be the matrix of α with respect to the bases v1⊗1, . . . , vn⊗1

of V ⊗QC and w1⊗1, . . . , wn⊗1 ofW⊗kC. The period algebra associated with P is the k-algebra A

generated by the coefficients of α and det(α)−1. The period!field of P is the fraction field of A.

8.1.3. — Let P = (V,W,α) be a period structure. We call Galois group of P the tannakian

fundamental group G of the full tannakian subcategory ⟨P ⟩ of PS(k) generated by P . It is a linear

algebraic group over Q. Let A be the period algebra of P . There is a canonical Gk-torsor T ,

called torsor of formal periods, and a canonical morphism from Spec(A) to T , which we shall now

construct.

Every object of ⟨P ⟩ can be obtained from P by tensor constructions and extracting subquotients.

The category ⟨P ⟩ comes equipped with two canonical functors: the fibre functor σ with values in

rational vector spaces given by σ(V ′,W ′, α′) = V ′, and the other one with values in k-vector spaces

given by τ(V ′,W ′, α′) = W ′. The group G is the affine group scheme over Q which represents the

following functor:

G : {commutative Q–algebras} → {Groups} G(R) = Aut⊗R(σ ⊗R).

To give an element of G(R) is to give for every period structure (V ′,W ′, α′) in ⟨P ⟩ an R-linear

automorphism g(V ′,W ′,α′) : V
′ ⊗R→ V ′ ⊗R, and these automorphisms are required to be compat-

ible with morphisms of period structures and tensor products. In particular, g(V,W,α) determines

g(V ′,W ′,α′) for every other object (V ′,W ′, α′) of ⟨P ⟩, hence G can be viewed as a subgroup of GLV .

The group Gk = G×Q k over k is given by the “same” functor, but now viewed as a functor from

k-algebras to groups.

Next, we wish to understand the torsor of formal periods T . This shall be a Gk-torsor (aka.

principal homogeneous space), which we first describe as a functor:

T : {commutative k–algebras} → {Sets} T (R) = Isom⊗
R(τ ⊗Q R, σ ⊗k R).

The group Gk(R) acts simply transitively on the set T (R) on the left, for as long as T (R) is not

empty. Notice that T (C) contains a canonical element given by (V,W,α) 7−→ α, hence T is not

the empty functor. By representability of torsors under affine group schemes [63, Chapter III,

Theorem 4.3a)], the functor T is representable by an affine scheme of finite type T over k.

Proposition 8.1.4. — Let P be a period structure with torsor of formal periods T and period

algebra A. There exists a canonical closed immersion of k-schemes ε : Spec(A)→ T . Its image is

the Zariski closure of α ∈ T (C).

Proof. Set T = Spec(B). The complex point α on T corresponds to a morphism of k-algebras

B → C, namely the evaluation at α. We claim that the image in C of this evaluation morphism is the

period algebra A. Once this claim is proven, we define ε : Spec(A) → T to be the corresponding

morphism of affine schemes. This morphism ε is then indeed a closed immersion since A is an

integral ring, and its image is the Zariski closure of α ∈ T (C) by construction.
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A regular function on T is uniquely determined by a regular function on the variety of k-linear

isomorphisms from V ⊗k k to W , which is affine and contains T as a closed subvariety. Thus,

given bases v1, . . . , vn of V and w1, . . . , wn of W , the algebra B is generated by elements bij and

det((bij)1⩽i,j⩽n)
−1. An R-valued point of t ∈ T (R) is an isomorphism t : V ⊗Q R → W ⊗k R and

the evaluation of bij at t is determined by the formula

t(vi ⊗ 1) =
n∑
j=1

wj ⊗ bij(t)

which in the case R = C and t = α shows the desired equality. □

8.1.5. — Here is an alternative, equivalent definition of ε as a morphism of representable functors

ε : Spec(A)→ T . Fix bases of V and W as in the proof of the proposition. For every morphism of

k-algebras f : A→ R, we obtain an R-linear isomorphism V ⊗Q R→W ⊗k R given by

ε(f)(vi ⊗ 1) =
n∑
j=1

wi ⊗ f(aij)

which is independent of the choice of bases and defines an element of T (R). If g : A→ R is another

algebra morphism, then ε(f) = ε(g) implies f(aij) = g(aij) for all 1 ⩽ i, j ⩽ n, hence f = g.

Therefore ε is injective.

8.1.6. — Let P = (V,W,α) be a period structure with Galois group G ⊆ GLV . We can

characterise the group G as follows: it is the smallest algebraic subgroup of GLV such that there is

a closed k-subscheme T ⊆ Isom(V ⊗ k,W ) which is a G-torsor and such that α is a complex point

of T .

Definition 8.1.7. — Let P be a period structure with torsor of formal periods T and period

algebra A. We say that P is normal if the canonical morphism ε : Spec(A)→ T is an isomorphism.

8.1.8. — If two period structures P and P ′ generate the same tannakian subcategory of PS(k),

then P and P ′ have canonically isomorphic Galois groups and period torsors, and their period

algebras are equal. Hence P is normal if and only if P ′ is. It is not hard to show that any

substructure, quotient structure or tensor construction of a normal period structure is again normal.

However, the sum of two normal structures might not be normal (see Example (2) below)

Example 8.1.9. — It is not hard to give examples of normal and non-normal period structures.

(1) Consider the case k = Q and V = W = Q, so that α is just a complex number. The

period structure (Q,Q, α) is normal if and only if α is transcendental or an n-th root of a

rational number.

(2) By the previous example, both (Q,Q, π) and (Q,Q, π + 1) are normal period struc-

tures. Their sum is however not normal, as the corresponding period algebra is A =

Q[x, x−1, (x+ 1)−1] and Spec(A) = A1 \ {0,−1} is not a torsor under an algebraic group.
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Assuming the formal period conjecture, this means that π + 1 is not a period of a one-

dimensional motive (although it is of course a period of a two-dimensional motive).

(3) Let F be a finite field extension of k. Let V be the rational vector space with basis the

complex embeddings φ1, . . . , φn of F , let w1 . . . , wn be a k-basis of W = F and set

α(φi ⊗ 1) =

n∑
j=1

wj ⊗ φi(wj) .

The period structure (V,W,α) is normal. The period algebra of (V,W,α) is the normali-

sation of F in C.

Proposition 8.1.10. — Let P0 be normal period structure. The following holds:

(0) The unit structure (Q, k, 1) is normal.

(1) Every substructure, quotient and tensor construction of P0 is normal.

Proof. Statement (0) is trivial. To prove statement (1), pick any substructure P = (V,W,α) of

P0. The Galois group G of P is a quotient of the Galois group G0 of P0, and there is a corresponding

surjective morphism of formal period torsors T0 → T . On R-points, the map T0(R) → T (R) is

given by restriction. The period algebra A of P is contained in the period algebra A0 of P0, and

the diagram

Spec(A0) Spec(A)

T0 T

����

ε0

//

��

ε

// //

commutes, hence ε : Spec(A)→ T is surjective, hence an isomorphism. The same argument settles

the case where P is a quotient or a tensor construction of P0, or in fact any object in the tannakian

category ⟨P0⟩ generated by P0, hence statement (1) is proven. □

8.2. The period realisation and the de Rham realisation

In this section, we construct a realisation functor

RPS : M
exp(k)→ PS(k)

from the category of exponential motives to the category of period structures over k, which we call

the period realisation. As a byproduct, composing with the forgetful functor PS(k) → Veck, we

shall obtain a fibre functor

RdR : Mexp(k) −→ Veck,

which we call the de Rham realisation, as well as a canonical isomorphism RdR⊗k C ≃ RB ⊗Q C of

fibre functors on the category of exponential motives.
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8.2.1. — The period realisation functor will be constructed by means of Nori’s universal property

(Theorem 4.1.12). We thus need to define a functor from the quiver of exponential relative varieties

Qexp(k) to the category of period structures PS(k) which is compatible, upon application of the

forgetful functor PS(k) → VecQ, with the standard rapid decay representation, in the sense that

the exterior triangle in diagram (8.2.2.1) below commutes. With every object q = [X,Y, f, n, i] in

Qexp(k) we associate the period structure

σ(q) =
(
Hn

dR(X,Y, f)(i), H
n
rd(X,Y, f)(i), α[X,Y,f,n,i]

)
where α[X,Y,f,n,i] is the comparison isomorphism from Theorem 7.6.1. Since these isomorphisms

are natural with respect to morphisms of types (a), (b), and (c) by loc.cit. , we obtain in this way

a functor σ : Qexp(k)→ PS(k) with values in the category of period structures.

Definition 8.2.2. — The period realisation functor RPS : M
exp(k) → PS(k) is the unique

functor which renders the following diagram commutative:

PS(k)

Mexp(k)

Qexp(k) VecQ.
��

forget

��

OO

77

ρ̃

??

σ

//ρ

(8.2.2.1)

The de Rham realisation RdR : Mexp(k)→ Veck is the composite of the period realisation functor

and the forgetful functor PS(k)→ Veck.

8.2.3. — The period realisation functor is compatible with tannakian structures. Therefore,

RdR : Mexp(k)→ Veck is a fibre functor. The scheme of tensor isomorphisms Isom⊗(RdR, RB⊗Qk)

forms a torsor under the motivic exponential Galois group.

Given an objectM ofMexp(k), we denote by ⟨M⟩ the smallest tannakian subcategory containing

M . Let GM be the tannakian fundamental group of M and set

TM = Isom⊗(RdR|⟨M⟩, RdR|⟨M⟩ ⊗Q k)

It is a torsor under GM defined over k and comes equipped a canonical complex point

αM : Spec(C) −→ TM .

Conjecture 8.2.4. — The k-variety TM is irreducible and αM is its generic point.

Since TM it is a torsor under GM , it is a smooth variety, and hence TM is irreducible if and

only if TM is connected. Assuming that TM is connected, the conjecture amounts to the equality
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of dimensions

dimk αM
Zar = dimk TM = dimQGM .

The Zariski closure of αM is the spectrum of the period algebra and has dimension the transcendence

degree of the field obtained by adjoining to Q the periods of M .

Conjecture 8.2.5. — TM is connected

trdegQ(periods of M) = dimGM .

αM
Zar ⊂ TP ⊂ TM

Consequence: inclusion GP ↪→ GM is an equality. In tannakian terms, the period realisation

functor ⟨M⟩ → ⟨P ⟩ is an equivalence of categories, which amounts to say that it is full and the

essential image is stable under subobjects.

Conjecture 8.2.6 (Exponential period conjecture). — The period realisation functor is fully

faithful and stable under subobjects. For every motive M , the associated period structure RPS(M)

is normal.

8.2.7. — The period conjecture 8.2.6 consists of two statements. The full faithfulness of the

period realisation functor is sometimes referred to as formal period conjecture. Given a motive M

with period structure P = RPS(M) and writing GM and GP for the tannakian fundamental groups

of M and P , the formal part of the period conjecture states that the inclusion of algebraic groups

GP
⊆−−→ GM

is an equality. This equality of groups can be verified in many examples, often by some trickery with

algebraic groups and very limited information about the involved periods. The second statement

of Conjecture 8.2.6 is that the period structure P of M is normal.

This leads to the following numerical variant of the exponential period conjecture.

Conjecture 8.2.8. — Let M be an exponential motive over Q with motivic Galois group GM .

Then

trdegQ(periods of M) = dimGM .

The following theorem is nothing else but a restatement of Theorem 7.6.1.

Theorem 8.2.9. — Let Qexp(k) denote the quiver of exponential relative varieties over k from

Definition 4.2.1. There exists a canonical isomorphism of quiver representations

compB,dR : RdR ⊗k C
∼−→ RB ⊗Q C.
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8.3. Motivic exponential periods

Proposition 8.3.1. — The scheme of tensor isomorphisms Isom⊗(RdR, RB) forms a torsor

under the motivic exponential Galois group.

Definition 8.3.2. — The ring of motivic exponential periods is

Pm
exp = O(Isom⊗(RdR,RB)). (8.3.2.1)

A typical object of Pm
exp is a triple [M,ω, γ]m consisting of an exponential motiveM in Mexp(Q),

together with elements ω ∈ RdR(M) and σ ∈ RB(M)∨. Such a triple is called a matrix coefficient

and defines a regular function on the scheme of tensor isomorphisms via

Isom⊗(RdR, RB)→ A1
Q, φ 7−→ ⟨φ(ω), σ⟩.

Indeed, one can show that Pm
exp is the Q-algebra generated by the matrix coefficients [M,ω, σ]m

modulo the following two relations:

(i) Bilinearity: for all λ1, λ2, µ1, µ2 ∈ Q:

[M,λ1ω1 + λ2ω2, σ]
m = λ1[M,ω1, σ]

m + λ2[M,ω2, σ]
m,

[M,ω, µ1σ1 + µ2σ2]
m = µ1[M,ω, σ1]

m + µ2[M,ω, σ2]
m

(ii) Functoriality : if f : M1 →M2 is a morphism in Mexp(Q) such that ω2 = RdR(f)(ω1) and

σ1 = RB(f)
∨(σ2), then

[M1, ω1, σ1]
m = [M2, ω2, σ2]

m.

The product is defined as

[M1, ω1, σ1]
m[M2, ω2, σ2]

m = [M1 ⊗M2, ω1 ⊗ ω2, σ1 ⊗ σ2]m.

Evaluation at comp ∈ Pm
exp(C) yields a map

per : Pm
exp −→ C.

The main reason to consider motivic exponential periods is that they come with a new structure,

invisible at the level of numbers:

∆: Pm
exp −→ Pm

exp ⊗Q O(G). (8.3.2.2)

Let e1, . . . , en be a basis of RB(M). Then:

∆[M,ω, γ]m =

n∑
i=1

[M,ω, e∨i ]⊗ [M, ei, γ]. (8.3.2.3)





CHAPTER 9

The D-module realisation

In this chapter, we construct a realisation functor from the category of exponential motives to

a tannakian category of D-modules over the affine line that is the de Rham counterpart of Perv0.

Throughout, k denotes a subfield of the complex numbers and we set A1 = Spec k[x]. References:

[55, Chapter 12], [58, 4.2]

9.1. Preliminaries on D-modules

We start by recollecting some basic facts about D-modules on algebraic varieties. Standard

references for this section are [14] and [52]. Let X be a variety of dimension d over k. Let DX be

the sheaf of differential operators on X.

Definition 9.1.1. — A holonomic DX -module is a coherent DX -module M satisfying the fol-

lowing two properties:

(1) ExtiDX (M ,DX) = 0 for all i < d

(2) the characteristic variety Char(M ) has dimension d.

Six operations formalism: f+, f
+, f†, f

†

Introduce regular singular holonomic D-modules. We denote by Modrh(DX) the abelian cate-

gory of regular singular holonomic D-modules on the variety X.

Example 9.1.2. — With each regular function f : X → A1 on an algebraic varietyX is associated

the locally free OX -module with connection

Ef = (OX , d− df).

If f is the composition of morphisms g : X → Y and h : Y → A1, then this DX -module is equal

to g+Eh. In particular, if t denotes a coordinate on A1, the equality Ef = f+E t holds.

9.1.3. — Let k = C. Introduce the de Rham functor

DRX(M ) = [M an −→ Ω1
Xan ⊗Ω1

Xan
M an −→ · · · −→ ΩdXan ⊗Ω1

Xan
M an],

223
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where M an sits in degree −d.

Theorem 9.1.4 (Riemann–Hilbert correspondence). — Let X be a smooth complex algebraic

variety. The de Rham functor induces an equivalence of categories

DRX : Modrh(DX) −→ Perv(X(C),C).

For example, if M is a vector bundle with connection on X with associated local system F ,

the corresponding perverse sheaf is F [dimX].

9.2. Holonomic D-modules on the affine line

In what follows, we will mainly deal with D-modules on the affine line. In this case, the ring

of differential operators DA1 is the Weyl algebra k[x]⟨∂x⟩, that is, the non-commutative k-algebra

obtained by quotienting the free algebra generated by the polynomial algebras k[x] and k[∂x] by

the relation [∂x, x] = 1. Each element L of the Weyl algebra can be uniquely written as

L = ad(x)∂
d
x + ad−1(x)∂

d−1
x + · · ·+ a0(x),

where ai ∈ k[x] are polynomials and ad is non-zero; the integer d is called the degree of L.

A D-module on the affine line is a left k[x]⟨∂x⟩-module of finite type M . This amounts to the

data of a k[x]-module M together with a connection, that is, a k-linear map ∂x : M → M that

satisfies the Leibniz rule ∂x(fm) = f∂x(m) + ∂x(f)m. A D-module on the affine line M is said to

be holonomic if every element of M is annihilated by a non-zero element of the Weyl algebra.

9.2.1 (Regular and irregular singularities). — Let L(x, ∂x) =
∑
ai(x)∂

i
x be a differential operator

of degree d. The singularities at finite distance of L are the roots of the polynomial ad. If α is such

a root, we say that L has a regular singularity at α if the so-called Fuchs criterium

i− ordα(ai) ⩽ d− ordα(ad)

holds for all i = 1, . . . , d− 1, where ordα(ai) stands for the order of vanishing at α. Otherwise, we

say that L has an irregular singularity at α, and we call the integer

irrα(L) = max
i=1,...,d−1

{i− d+ ordα(ad)− ordα(ai)} > 0

the irregularity of L at α. To study the behaviour of L at infinity, we make the change of vari-

ables x = 1/t and ∂x = −t2∂t and consider the operator L∞(t, ∂t) =
∑
ai(1/t)(−t2∂t)i. We say

that L has a regular (resp. irregular) singularity at infinity if L∞ has a regular (resp. irregular)

singularity at t = 0. Finally, a holonomic D-module M is said to have regular singularities if every

element of M is annihilated by a non-zero differential operator with regular singularities.

The Newton polygon of the differential operator L(x, ∂x) =
∑d

i=0 ai(x)∂
i
x is the convex hull of

the set of points

{(−i, ord(ai)) | i = 0, . . . , d, ai ̸= 0}
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in R2. The slopes of L are the slopes of this Newton polygon.

Example 9.2.2. — The trivial DA1-module OA1 is k[x] on which ∂x acts by derivation. Let

j : A1 \ {0} ↪→ A1 be the inclusion. The functor j+ Then:

j+j
+OA1 = D/D∂xx, j†j

+OA1 = D/Dx∂x

The Riemann–Hilbert correspondence sends the D-module j†j
+OA1 to the perverse sheaf j!j

∗C[1].

9.3. Additive convolution

9.3.1. — Let π : A1 → Spec(k) be the structural morphism.

Lemma 9.3.2. —

9.3.3. — Let Holrs(A1)0 be the full subcategory of Holrs(A1) consisting of those holonomic

DA1-modules M such that the operator ∂x : M →M is invertible.

Definition 9.3.4. — Let M and N be objects of D(DA1). The additive convolution of M and

N is the object

M ∗N = sum+(M ⊠N )

of D(DA1).

9.4. Fourier transform

Since [∂x, x] = [−x, ∂x], the map

FT: k[x]⟨∂x⟩ −→ k[y]⟨∂y⟩ (9.4.0.1)

x 7−→ ∂y

∂x 7−→ −y

is an isomorphism of k-algebras.

Definition 9.4.1. — Let M be a D-module on the affine line A1
x = Spec k[x]. The Fourier

transform of M is the same M viewed as a D-module on the dual affine line A1
y = Spec k[y] through

the isomorphism (9.4.0.1). We shall denote it by FT(M ). Formally,

FT(M ) = k[y]⟨∂y⟩ ⊗k[x]⟨∂x⟩ M .

It follows immediately from the definition that Fourier transform preserves holonomicity.
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Example 9.4.2. — Let L ∈ k[x]⟨∂x⟩ be a differential operator. The Fourier transform of

the D-module k[x]⟨∂x⟩/L is the D-module k[y]⟨∂y⟩/FT(L). For example, the Fourier transform of

k[x]⟨∂x⟩/ is

9.4.3. — Let Â1 = Spec k[y] and consider the diagram

A1
x × A1

y

py

##

px

{{
A1
x A1

y

Proposition 9.4.4. — The Fourier transform of a D-module M is defined as

FT(M ) = (py)+(p
+
x M ⊗ Exy).

Proof. □

9.4.5. — The Fourier transform FT and the projector Π are compatible with each other in that

there is a canonical isomorphism of functors

FT ◦Π ∼= j+j
+FT.

9.4.6. — Let Holrs(A1) be the abelian category of holonomic D-modules with regular singular-

ities on the affine line.

Proposition 9.4.7. — Via Fourier transform, the category Holrs(A1) is equivalent to the cate-

gory of holonomic D-modules M on the dual affine line A1
y which are smooth on A1 \ {0}, have a

regular singularity at 0, and possibly a irregular singularity of exponential type at infinity.

9.4.8. — Let X be a smooth variety together with a regular function f : X → A1. Consider

Gm with coordinate z and A1 with coordinate t, and let q : X ×Gm → Gm and p : A1×Gm → Gm

denote the projection, so that the diagram

X ×Gm
f×Id

//

q $$

A1 ×Gm

pzz
Gm
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commutes. Let M be a D-module on X and consider the D-module N = M ⊠OGm on X × Gm.

There are isomorphisms

q+(N ⊗ Ezf ) ∼= p+
(
(f × Id)+(N ⊗ Ezf )

)
q = p ◦ (f × Id)

∼= p+
(
(f × Id)+(N ⊗ (f × Id)+Ezt)

)
Example 9.1.2

∼= p+
(
(f × Id)+N ⊗ Ezt

)
Projection formula

∼= p+
(
(f+M ⊠OGm)⊗ Ezt

)
Künneth formula

∼= p+
(
p+f+M ⊗ Ezt

)
Künneth formula

∼= j+FT(f+M) Proposition 9.4.4

9.5. The D-module realisation

LetPS(A1) be the category whose objects are triples (M , C, α) consisting of a regular holonomic

D-module on A1, a Q-perverse sheaf C on A1(C), and an isomorphism α : DR(M )
∼−→ C ⊗Q C.

Proposition 9.5.1. — Let X be a smooth variety, let Y ⊂ X be a smooth closed subvariety with

open complement β : X \Y ↪→ X, and let f : X → A1 be a regular function. For each integer n ⩾ 0,

the fibre at y = 1 of the Fourier transform of the DA1-module H n(f+(β†β
+OX)) is canonically

isomorphic to the de Rham cohomology Hn
dR(X,Y, f).

Proof. □

9.6.





CHAPTER 10

The ℓ-adic realisation

10.1. The perverse ℓ-adic realisation

10.2. Reduction modulo p via nearby fibres

Let p be a prime number, q a power of p, and k a finite field with q elements.

10.2.1 (Fourier transform). — Let k = Fq be the field with q elements. With an additive

character ψ : Fq → Q×
ℓ , one associates a rank one lisse sheaf Lψ on A1

k called the Artin–Schreier

sheaf. It is constructed out of the map x 7−→ xq − x, which defines a finite étale morphism

π : A1
k → A1

k with Galois group Fq. Thereofore, the étale fundamental group πét1 (A1
k) surjects onto

Fq. Composing with the character ψ gives the corresponding ℓ-adic representation πét1 (A1
k) →

Q×
ℓ . More geometrically, Lψ is the isotypical component associated with ψ in the direct sum

decomposition π∗Qℓ =
⊕

ψ Lψ. In particular, if ψ is the trivial character, then Lψ = Qℓ is the

trivial sheaf.

FTψ(C) = Rp2∗(p
∗
1C ⊗ Lψ(xy))

Theorem 10.2.2 (Laumon). — If C is tamely ramified, then FTψ(C) is a lisse sheaf on Gm.

10.2.3 (Specialisation to characteristic p). —

A1
Fp

//

��

ι // A1
Zp

��

A1
Qp

κ

��

j
oo

A1
Fp

// A1
Zp A1

Qp
oo

Definition 10.2.4. — The nearby cycles at p is

RΨpC = ι∗Rj∗κ
∗C

229
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Definition 10.2.5 (Sawin). — A perverse sheaf C on A1
Q has good reduction at a prime number

p if the following three conditions hold:

(a) the generic rank of RΨpC is equal to the generic rank of C,

(b) the singularities of C lie in Zp,
(c) the inertia subgroup Ip ⊂ Gal(Qp/Qp) acts trivially on RΨpC.

Example 10.2.6. — Let r ∈ Q and let δr be the skyscraper sheaf supported at the point r ∈ A1
Q.

If r = 0, then δ0 has good reduction everywhere. If r is non-zero, we write r = a/b with a and b

coprime integers. Then δr has good reduction at p if and only if p does not divide b.

Example 10.2.7. — The perverse sheaf j!Lχ2 [1] has bad reduction at p = 2.

RΨp(π∗Qℓ[1]) = Qℓ[1]⊕RΨp(j!Lχ2 [1])

Theorem 10.2.8 (Sawin). — If C1 and C2 have good reduction at p, then

RΨp(C1 ∗ C2) = RΨp(C1) ∗RΨp(C2).

From this, we immediately derive that, if C has good reduction at p, then

Π(RΨp(C)) = RΨp(C) ∗ j!j∗Qℓ[1] = RΨp(C ∗ j!j∗Qℓ[1]) = RΨp(Π(C)).

Therefore, RΨp restricts to a functor from Perv0(A1
Q,Qℓ) to Perv0(A1

Fp
,Qℓ)

Theorem 10.2.9 (Sawin). — Let S be a finite set of prime numbers including ℓ and let CCS

be the full subcategory of Perv0(A1
Q,Qℓ) consisting of those objects with good reduction outside S.

For each prime p /∈ S and each non-trivial additive character ψ, the functor

C 7−→ H0(A1
Fp
, RΨpC ⊗ Lψ)

is a fibre functor CCS → VecQℓ. The Frobenius at p is an automorphism of this functor.

10.3. L-functions of exponential motives



CHAPTER 11

Exponential Hodge theory

In this chapter, we construct a Hodge realisation functor from the category of exponential mo-

tives to a subcategory of mixed Hodge modules over the complex affine line—parallel to Perv0—

that Kontsevich and Soibelman call exponential mixed Hodge structures. Throughout, “Hodge

structure” means rational mixed Hodge structure. We always suppose them to be graded polar-

isable, that is, each pure subquotient admits a polarisation. We denote the category of Hodge

structures by MHS. It is a Q-linear neutral tannakian category, with respect to the forgetful

functor

f : MHS→ VecQ.

11.1. Reminder on mixed Hodge modules

The theory of Hodge modules is a long story—we will recite here a few essential properties

of categories of mixed Hodge modules, and give a brief description of their construction. For a

thorough introduction see [77, 72].

Definition 11.1.1. — Let X be a complex algebraic variety. A pre-mixed Hodge module on X

consists of the following data:

• A rational perverse sheaf L, together with an increasing filtration W•L by perverse sub-

sheaves.

• A regular holonomic DX -module M, together with an increasing filtration W•M and a

good filtration F •M.

• An isomorphism α : DR(M) ≃ L⊗Q C under which W•M corresponds to W•L⊗Q C.

Pre-mixed Hodge modules form a category and mixed Hodge modules are defined inductively

as a subcategory of them.

11.1.2. — For every complex algebraic variety X, there is an abelian category MHM(X) of

mixed Hodge modules on X, and a functor

rat : MHM(X)→ Perv(X)

231



232 11. EXPONENTIAL HODGE THEORY

which is exact and faithful, so we may look at mixed Hodge modules as perverse sheaves with extra

data, though the functor rat is not essentially surjective. Categories of mixed Hodge modules (or

better: their bounded derived categories) enjoy a six functors formalism, which is compatible with

the functor rat. If X is a point, then the category MHM(X) is the category of mixed Hodge

structures (recall the proviso that they are assumed to be graded polarisable).

11.1.3. — Let X be a smooth, connected algebraic variety of dimension n, and let V be

a variation of mixed Hodge structures on X. There is a mixed Hodge module on X naturally

associated with V , which we shall denote by V [n]. As the notation suggests, its underlying perverse

sheaf is the local system underlying V shifted to degree −n.
Mixed Hodge modules come with a functorial, exact weight filtration.

A formal consequence of the six functors formalism for mixed Hodge modules is that we can

define additive convolution on MHM(C) as we did for perverse sheaves in 2.4.1.

When X is a point, MHM(X) is nothing but the category of mixed Hodge structures (recall

the proviso that they are assumed to be graded polarisable).

11.2. Exponential mixed Hodge structures

Definition 11.2.1 (Kontsevich–Soibelman). — An exponential mixed Hodge structure is a mixed

Hodge module on the complex affine line C whose underlying perverse sheaf belongs to Perv0. We

denote the corresponding full subcategory by EMHS.

Example 11.2.2. — Of particular interest are the exponential mixed Hodge structures

E(s) = j(s)!j(s)
∗π∗Q[1],

where Π: A1
C → SpecC is the structure morphism, j(s) : C \ {s} → C the inclusion, and Q = Q(0)

stands for the one-dimensional Hodge structure of weight 0, regarded as a Hodge module on the

point. The perverse sheaf underlying E(0) was introduced under the same name in Example 2.3.4.

The inclusion of EMHS into MHM(C) admits as a left adjoint the exact idempotent functor

Π: MHM(C) −→ EMHS

M 7−→M ∗ E(0).

Definition 11.2.3. — We call canonical the functor ι : MHS→ EMHS which sends H to the

exponential mixed Hodge structure ι(H) = Π(i∗H), where i : {0} ↪→ C is the inclusion. Explicitly,

ι(H) = j!j
∗π∗H[1].

Observe that ι(H) has singularities only at 0 and trivial monodromy.
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Lemma 11.2.4. — The canonical functor ι : MHS → EMHS is fully faithful, and its essential

image is stable under taking quotients and subobjects.

Proof. The canonical functor ι : MHS→ EMHS is exact and faithful, because the functors

j!, j
∗ and π∗ are so. To check that the canonical functor is full, let V and W be Hodge structures,

and let

f : j!j
∗π∗V [1](−1)→ j!j

∗π∗W [1](−1)

be a morphism of Hodge modules. The perverse sheaf underlying j!j
∗π∗V [1](−1) is a constant local

system on C∗ given by the rational vector space underlying V (−1) in degree −1, and its fibre over

0 ∈ C is zero. The same holds for W . Therefore, if f induces the zero morphism on the fibre over

any z ̸= 0, then f is the zero morphism. Let i1 : {1} → C be the inclusion. The fibre of f over 1 is

the morphism

i∗1(f) : i
∗
1j

∗π∗V [1](−1)→ i∗1j!j
∗π∗W [1](−1)

induced by f . The fibre i∗1j
∗π∗V [1](−1) is the Hodge structure V (−1) put in degree −1. After

twisting and shifting we obtain thus a morphism of Hodge structures f1 : V → W . The difference

f − ι(f1) is then a morphism of Hodge modules and its fibre over 1 is zero, hence f = ι(f1). Let us

now check that the essential image of the canonical functor is stable under taking subobjects. Let

V be a Hodge structure, and let M ⊆ j!j
∗π∗V [1](−1) be a subobject of in the category EMHS.

Applying the left exact functor π∗j∗j
∗(−)[−1](1) we obtain a subobject

W = π∗j∗j
∗M [−1](1) ⊆ π∗j∗j∗π∗V = V

in the category of Hodge structures. Applying j∗π∗(−)[1](−1), using adjunction and applying j!

yields a morphism

j!j
∗π∗W [1](−1)→M ⊆ j!j∗π∗V [1](−1)

and we need to show that the morphism of Hodge modules j!j
∗π∗W [1](−1)→M is an isomorphism.

This is indeed the case, since the morphism of underlying perverse sheaves one obtains by applying

the functor rat is an isomorphism. This shows that the essential image of the canonical functor is

stable under taking subobjects, hence also under taking quotients. □

Remark 11.2.5. — Contrary to what is claimed in [58, p.262], the image of the canonical

functor does not form a Serre subcategory of EMHS, i.e. is not stable under extension. Here is

an example. Every graded polarisable variation of mixed Hodge structures V on C∗ determines a

mixed Hodge module V [1] on C∗ with the evident underlying perverse sheaf. For example we may

consider the variation of mixed Hodge structure whose fibre over z ∈ C is the Hodge realisation of

the 1-motive [Z u−−→ C∗] given by u(1) = z. This variation V sits in a short exact sequence

0→ Q(1)→ V → Q→ 0

and applying j!(−)[1] yields an exact sequence in EMHS. While the first and last term in this

sequence come from Hodge structures via the canonical functor, the object in the middle does not,

as the underlying perverse sheaf has a non-trivial monodromy around 0.

Proposition 11.2.6. —
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(1) Exponential mixed Hodge structures form a Q-linear tannakian category. A fibre functor

is given by the composite of the forgetful functor EMHS → Perv0 and the fibre functor

Ψ∞ : Perv0 → VecQ.

(2) The functors MHS→ EMHS→ Perv0 are functors of tannakian categories, compatible

with the given fibre functors. Their composite is the trivial functor, which sends a mixed

Hodge structure V to the perverse sheaf j!j
∗f(V )[1].

Proof. □

11.3. Intermezzo: Extensions of groups from the tannakian point of view

Let F and H be groups. By an extension of F by H one understands a group G sitting in

an exact sequence 1 → H → G → F → 1. The problem of classifying all extensions of F by

H is a classical problem in group theory, systematically studied by Schreier, Zassenhaus, Schur,

Eilenberg, Mac Lane and many others. Two types of extensions are particularly well understood:

semidirect products and extensions by abelian groups. A semidirect product or also split extension

is an extension such that the quotient map G → F admits a section F → G. The group F acts

via this section on H by conjugation, and reciprocally, any action α : F → Aut(H) defines a split

extension of F by H by considering on the set G = H × F the group law

(h, f)(h′, f ′) = (hα(f)(h′), ff ′).

Central extensions are those where H is contained in the centre of G, hence in particular is com-

mutative. Central extensions of F by H up to equivalence form a commutative group Ext1(F,H),

with the Baer sum as group law. This group is naturally isomorphic to the group cohomology

H2(F,H), where H is regarded as an F -module with trivial F -action. Given a central exten-

sion 1 → H → G → F → 1, the corresponding cohomology class is represented by the cocycle

c : F × F → H given by

c(f, f ′) = s(f)−1s(f ′)−1s(ff ′)

where s : F → G is any map, not necessarily a group homomorphism, whose composition with

the quotient map G → F is the identity on F . The generalisation to not necessarily central

extensions of F by an abelian group H is not difficult. Such extensions are also classified by group

cohomology H2(F,H), but now with the possibly nontrivial action of F on H corresponding to

the conjugation action. The even more general case where F is not necessarily commutative was

worked out by Schreier [78] and Eilenberg–Mac Lane [32]. It inevitably leads to non-commutative

group cohomology.

More generally, one would like to classify group extensions in a topos. A complete geometric

solution to this problem was given by Grothendieck and Giraud [40], and later a cohomological

interpretation was given by Breen [16]. A new problem that arises in this generality which was not

seen in the elementary case of extensions of abstract groups is that in a general topos, an extension
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1→ H → G→ F → 1 defines an H-torsor over F which need not be trivial. So, unlike in the case

of abstract groups, there is not always a morphism s : F → G which splits the surjection G→ F .

We are interested in certain extensions of affine group schemes 1→ H → G→ F → 1, namely

those where the Hopf algebra underlying G is, as a coalgebra, isomorphic to the tensor product of

the coalgebras associated with H and F . In other words, we are interested in certain extensions

of commutative group objects in the category of not necessarily commutative coalgebras. Such

extensions arise naturally when one tries to turn the vanishing cyles functor for exponential Hodge-

structures into a tensor functor. Indeed, this vanishing cyles functor takes values in the category of

what Scherk and Steenbrink call µ̂-Hodge structure in [76], that is, mixed Hodge structures with

an automorphism of finite order. The category MHSµ̂ of µ̂-Hodge structures comes equipped with

a symmetric tensor product, not the obvious one, which turns it into a tannakian category. The

tannakian fundamental group sits in an extension

0→ Ẑ→ π1(MHSµ̂)→ π1(MHS)→ 1

which is exactly of the nature described above: as an abelian category MHSµ̂ is the obvious

thing, morphisms are morphisms of Hodge structures compatible with the automorphisms, so the

coalgebra underlying the affine group scheme π1(MHSµ̂) is the tautological one. The commutative

multiplication turning this coalgebra into a commutative Hopf algebra corresponds to the special

tensor product we are considering.

The plan for this section is as follows: after fixing conventions, we start by describing extensions

of group schemes in terms of tannakian categories and in terms of Hopf algebras. That done, we

translate classical constructions from group theory such as semidirect products and the classification

of extensions, in particular commutative extensions, by group cohomology into the language of

coalgebras. In particular, we show how to use 2-cocycles to describe extensions of Hopf algebras.

Proposition 11.3.1. — Let K → A
p−−→ E

i−−→ B → K be morphisms of commutative Hopf

algebras. The corresponding sequence of affine group schemes 1→ SpecB → SpecE → SpecA→ 1

is exact if and only if the morphism p : A→ E is injective, i : E → B is surjective, and

ker(i) = E · p(A+)

where A+ = ker(εA : A→ K) is the augmentation ideal of A.

11.3.2. — Let A and B be commutative Hopf algebras and set F = SpecA and H = SpecB. By

an extension of B by A we understand a sequence of (not necessarily commutative) Hopf algebras

K → A
p−−→ E

i−−→ B → K

where p : A → E is injective, i : E → B is surjective, and ker(i) = E · p(A+), up to the usual

notion of equivalence. Commutative extensions, that means those where the multiplication on E

is commutative, are in one to one correspondence with extensions of the group scheme F by the

group scheme H. Let us denote by EXT(B,A) the set of all (equivalence classes of) extensions of

B by A and by

CEXT(B,A) ⊆ EXT(B,A)
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the subset of commutative extensions. These are just pointed sets, with the trivial extension

A ⊗ B as distinguished element. Every commutative extension E of B by A defines an H-torsor

G = SpecE over the scheme F , corresponding to an element tG ∈ H1
fppf(F,H). If G is trivial as an

H-torsor, or in other words if tG = 0, then G is isomorphic as a scheme to F ×H. Let us denote by

EXTm(A,B) ⊆ CEXT(A,B)

the subset of EXT(A,B) consisting of those extensions whose underlying algebra is A ⊗ B with

the commutative multiplication mA ⊗ mB, obtained from the multiplication mA on A and mB

on B. To give an element of EXTm(A,B) is to give a group structure on the scheme H × F

which is compatible with the inclusion H → H × F and the projection H × F → F , or else, a

comultiplication on the commutative algebra (A ⊗ B,mA ⊗mB) compatible with the morphisms

A⊗B → A and B → A⊗B. The following bijection is tautological:

EXTm(A,B)←
∼=−−→

{
Comultiplications on the algebra (A⊗B,mA⊗mB) which are

compatible with the morphisms A⊗B → A and B → A⊗B

}
.

Instead of considering extensions with fixed underlying scheme H ×F , that is, keeping the algebra

structure mA ⊗mB on A⊗B and modifying the comultiplication, we can also consider extensions

which arise by keeping the coalgebra structure µA⊗µB on A⊗B and letting the algebra structure

vary. Let us denote by

EXTµ(A,B) ⊆ EXT(A,B)

the subset consisting of those extensions whose underlying coalgebra is (A ⊗ B,µA ⊗ µB). The

following bijection is tautological:

EXTµ(A,B)←
∼=−−→

{
Multiplications on the coalgebra (A⊗B,µA⊗µB) which are

compatible with the morphisms A⊗B → A and B → A⊗B

}
.

In categorical terms, this means we consider Rep(H×F ) = Comod(A⊗B) as an abelian category,

and seek to modify the tensor product on it. The situation is not completely symmetric, since in

our setup we require A and B to be commutative, but not necessarily cocommutative. Let

CEXTµ(A,B) ⊆ CEXT(A,B)

be the subset of commutative extensions of B by A with underlying coalgebra (A ⊗ B,µA ⊗ µB).
Again we have a tautological bijection

CEXTµ(A,B)←
∼=−−→

{
Commutative multiplications on the coalgebra (A⊗B,µA⊗µB) which
are compatible with the morphisms A⊗B → A and B → A⊗B

}
.

Any such commutative extension of Hopf algebras gives rise to an extension of affine group schemes

1 → H → G → F → 1. If the corresponding torsor class tG ∈ H1
fppf(F,H) is zero, then the

multiplication on A⊗B is mA⊗mB and the comultiplication is µA⊗µB, so the extension is trivial.

In other words, the following map of pointed sets has trivial kernel:

CEXTµ(A,B)→ H1
fppf(F,H).

Example 11.3.3. — Let C be the tannakian category of Z-graded rational vector spaces, with

its usual tensor product and the forgetful functor as fibre functor. Its tannakian fundamental group

is the multiplicative group Gm. Let Cµ̂ denote the category of pairs (V, T ) consisting of a graded



11.3. INTERMEZZO: EXTENSIONS OF GROUPS FROM THE TANNAKIAN POINT OF VIEW 237

vector space V and a finite order automorphism T of V respecting the grading. The category Cµ̂ is

abelian and semisimple, and as such equivalent to the category of representations of Ẑ×Gm. The

simple objects are those (V, T ) where V is pure for the given grading and has no proper T -invariant

subspaces. If T has order exactly n, then V has dimension φ(n) and the characteristic polynomial

of T is the cyclotomic polynomial Φn(X). Let us denote by

Q(k, n) k ∈ Z, n ∈ Z⩾1,

the simple object (V, T ) where V has degree k and T has order n. Simple objects of C are those

of the form Q(k, 1). They are of dimension 1. For α ∈ Q, set V α = ker(T − exp(−2πiα)) ⊆ V ⊗C,
so that we have an eigenspace decomposition

V ⊗ C =
⊕

α∈Q∩(−1,0]

V α .

Note that each V α inherits a grading from V . We define the tensor product of two objects (V, T )

and (V ′, T ′) of Cµ̂ by

(V, T )⊗ (V ′, T ′) = (V ⊗ V ′, T ⊗ T ′),

where V ⊗ V ′ has the following grading:

grk(V ⊗ V ′) =

⊕
α,β

⊕
i,j

(gri(V
α)⊗ grj(V

′β))

 ∩ (V ⊗ V ′)

where, as before, the sums run over all α, β ∈ Q ∩ (−1, 0] and all integres i, j satisfying

i+ j =


k if α = 0 or β = 0,

k − 2 if α+ β = −1,

k − 1 else.

Let us see what happens with simple objects. If either n1 or n2 is equal to 1, say n2 = 1, then

we have

Q(k1, n1)⊗Q(k2, 1) = Q(k1 + k2, n1)

for all k1, k2, n1. Suppose now that n1 ̸= 1 and n2 ̸= 1, and let N be the least common multiple of

n1 and n2. We have

Q(k1, n1)⊗Q(k2, n2) = Q(k1 + k2 + 2, 1)η(n1,n2,1) ⊕
⊕

d|N, d̸=1

Q(k1 + k2 + 1, d)η(n1,n2,d)

where η(n1, n2, d)φ(d) is the number of pairs (a1, a2) ∈ (Z/NZ)2 where a1 has order n1, a2 has

order n2 and a1 + a2 has order d. For example

Q(0, 100)⊗Q(0, 100) = Q(2, 1)40 ⊕Q(1, 2)40 ⊕Q(1, 5)40 ⊕Q(1, 10)40 ⊕Q(1, 25)30 ⊕Q(1, 50)30

which is 1600 = φ(100)2 = 40φ(0) + 40φ(1) + 40φ(5) + 40φ(10) + 30φ(25) + 30φ(50) on the level

of dimensions. If (n1, n2) = 1, then

Q(k1, n1)⊗Q(k2, n2) = Q(k1 + k2 + 1, n1n2)

holds, and if p is a prime, then

Q(k1, p)⊗Q(k2, p) = Q(k1 + k2 + 1, p)p−2 ⊕Q(k1 + k2 + 2, 1)p−1.
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11.3.4. — We now start adapting the theory of group extensions à la Schreier to the framework of

Hopf algebras. More precisely, we replace groups with group objects in the category ofK-coalgebras.

Ultimately we are only concerned with commutative group objects, that is, commutative Hopf

algebras, yet we need to start with semidirect products.

Definition 11.3.5. — Let A and B be Hopf algebras. An action of B on A is a linear map

τ : B ⊗A→ A such that the following diagrams commute.

B ⊗B ⊗A B ⊗A K ⊗A B ⊗A B B ⊗A

B ⊗A A A K A
��

mB⊗1

//1⊗τ

��

τ

//eB⊗1

zz
τ

//1⊗eA

��

εB

��

τ

//τ //eA

B ⊗A⊗A B ⊗B ⊗A⊗A B ⊗A⊗B ⊗A

B ⊗A A A⊗A
��

1⊗mA

//µB⊗1⊗1 //ixi

��

τ⊗τ

//τ oo mA

We call trivial action the action defined by τ(b⊗ a) = εB(b)a.

11.3.6. — Let A and B be Hopf algebras, and let τ : B ⊗ A→ A be an action of B on A. We

can use τ to define a multiplication mτ on the coalgebra A⊗B as the following composite.

A⊗B ⊗A⊗B A⊗B ⊗B ⊗A⊗B

A⊗B ⊗A⊗B ⊗B A⊗A⊗B ⊗B A⊗B

//1⊗µB⊗1⊗1

��

iixi

//1⊗τ⊗1⊗1 //mA⊗mB

(11.3.6.1)

It is straightforward to check that the so defined map mτ : A ⊗ B ⊗ A ⊗ B → A ⊗ B is indeed

a multiplication on A ⊗ B, compatible with the comultiplication µA ⊗ µB, so that together they

combine to a Hopf algebra structure on A⊗B. We call this a semidirect product. The trivial action

induces this way the multiplication mA⊗mB. Reciprocally, given an extension of Hopf algebras of

the form

K → A
1⊗eB−−−−−→ (A⊗B,m)

εA⊗1−−−−→ B → K

where on A⊗B the comultiplication is µA ⊗ µB, we obtain an action τm of B on A as follows.

B ⊗A B ⊗B ⊗A A⊗B A

B ⊗A⊗B (A⊗B)⊗3

//µB⊗1

��

xi

//1⊗εB

//(eA⊗1)⊗(1⊗eB)⊗(eA⊗iB)

OO

m (11.3.6.2)

It is straightforward to check that the so defined map τm : A⊗ B ⊗ A⊗ B → A⊗ B is indeed an

action of B on A. If the multiplication m = mτ is obtained from a given action τ : B ⊗A→ A, so

that (A ⊗ B,mτ ) is a semidirect coproduct, we recover τ from mτ - this is the content of Lemma
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11.3.7. On the other hand, a multiplication m on A ⊗ B can in general not be recovered from its

induced action τm. In particular, we notice that if the multiplication m on A⊗B is commutative,

then the induced action τm is trivial, and the trivial action induces the multiplication mA⊗mB on

A⊗B.

Lemma 11.3.7. — Let τ : B ⊗ A→ A be an action of B on A, and let mτ : (A⊗B)2 → A⊗B
be the multiplication of the corresponding semidirect product, as defined by (11.3.6.1). The action

of B on A defined by means of (11.3.6.2) is equal to τ .

Proof. The product mτ is expressed by

mτ (a⊗ b⊗ a′ ⊗ b′) =
∑
•
aτ(b1 ⊗ a′)⊗ b2b′

Let us pick an element a ⊗ b of A ⊗ B and check that it gets sent to τ(b ⊗ a) by the composite

(11.3.6.2). The element a⊗ b is mapped to∑
•
(1⊗ b1)⊗ (a⊗ 1)⊗ (1⊗ iB(b2))

in (A⊗B)3. Multiplying the three terms together with mτ we obtain the element∑
••
τ(b1 ⊗ a)⊗ b2iB(b3) =

∑
•
τ(b1 ⊗ a)⊗ b2

of A ⊗ B. Here we used the coassociativity of µB and property b =
∑
b1iB(b2) of the antipode.

Finally, applying 1⊗ εB yields the element∑
•
ε(b2)τ(b1 ⊗ a) = τ(b⊗ a)

of A as desired. In this last step, we used the property b =
∑
ε(b2)b1 of the counit and bilinearity

of τ . □

11.3.8. — We call an extension K → A
p−−→ E

i−−→ B → K, where the coalgebra underlying E

is (A⊗B,µA ⊗ µB), central if the action of B on A is trivial.

CEXTµ(A,B) ⊆ ZEXTµ(A,B) ⊆ EXTµ(A,B)

Definition 11.3.9. — Let A and B be commutative Hopf algebras. A 2-cocycle of B with

coefficients in A (for the trivial action of B on A) is a morphism of coalgebras c : B ⊗B → A such

that the following diagram commutes

B3 B6 B4 A2

B6 B4 A2 A

//
µ3B

��

µ3B

//εB⊗1⊗1⊗1⊗mB //c⊗c

��

mA

//mB⊗1⊗1⊗1⊗εB //c⊗c //mA

(11.3.9.1)
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The multiplication induced by c on A⊗B is the map mc : (A⊗B)2 → A⊗B defined by linearity

and

mc(a⊗ b⊗ a′ ⊗ b′) =
∑
••
aa′c(b1 ⊗ b′1)⊗ b2b′2

for all a⊗ b⊗ a′ ⊗ b′ ∈ (A⊗B)2.

11.3.10. — Let A be a commutative Hopf algebra overK with unit e : K → A, counit ε : A→ K,

multiplication m : A ⊗ A → A, comultiplication µ : A → A ⊗ A, and antipode i : A → A. As is

customary, we write the multiplication of two elements m(a⊗b) just as ab, and the comultiplication

of an element a as

µ(a) =
∑
•
a1 ⊗ a2 (1⊗ µ)(µ(a)) = (µ⊗ 1)(µ(a)) =

∑
•
a1 ⊗ a2 ⊗ a3

for as long as no confusion seems to arise (but maybe it’s already too late for that concern).

The category of representations of the affine group scheme SpecA is canonically equivalent to the

category of A-comodules. As an abelian category, it only depends on A as a coalgebra. The algebra

structure on A corresponds to the tensor product, and the existence of the antipode is equivalent

to the existence of duals. We now seek to produce multiplications mτ : A ⊗ A → A such that

(A, e, ε, µ,mτ , iτ ) is a commutative Hopf algebra for an antipode iτ : A→ A. Let us call symmetric

2-cocycle any symmetric bilinear map

τ : A⊗A→ K

which, seen as an element of the algebra (A⊗A)∨, is invertible with inverse τ−1, and satisfies the

following cocycle condition:∑
••
τ(a1 ⊗ b1)τ(a2b2 ⊗ c) =

∑
••
τ(a⊗ b2c2)τ(b1 ⊗ c1)

As the nontion suggests, we can use such a cocycle in order to twist the originally given multipli-

cation m to a new multiplication mτ . It is defined by

mτ (a⊗ b) =
∑
••
τ(a1 ⊗ b1)a2b2τ−1(a3 ⊗ b3)

for all a, b ∈ A, and we call it twisted multiplication. It will turn out that A, equipped with this

twisted multiplication instead of the original one, is again a Hopf algebra. The new antipode will

be given by

iτ (a) =
∑
•
τ(a1 ⊗ i(a2))a3τ−1(i(a4)⊗ a5)

for a ∈ A, and we call it twisted antipode.

Proposition 11.3.11. — Let A = (A, e, ε, µ,m, i) be a commutative Hopf algebra and let τ : A⊗
A→ K be a symmetric 2-cocycle. With the twisted multiplication mτ , the twisted antipode iτ and

the original unit, counit and comultiplication, A is a commutative Hopf algebra (A, e, ε, µ,mτ , iτ ).
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Proof. All required properties of mτ and iτ are straightforward to verify. Before we start

checking a few of them, we notice that the map τ−1 : A ⊗ A → K is in general not a cocycle, but

is symmetric and satisfies∑
••
τ−1(a1b1 ⊗ c)τ−1(a2 ⊗ b2) =

∑
••
τ−1(a⊗ b1c1)τ−1(b2 ⊗ c2)

for all a, b, c ∈ A. With this relation in hand, we verify associativity of mτ .

mτ (mτ (a⊗ b)⊗ c) =
∑
••
mτ (τ(a1 ⊗ b1)a2b2τ−1(a3 ⊗ b3)⊗ c)

=
∑
•••

τ(a1 ⊗ b1)τ(a2b2 ⊗ c2)a3b3c3τ−1(a4b4 ⊗ c4)τ−1(a5 ⊗ b5)

=
∑
•••

τ(a2 ⊗ b2c2)τ(b1 ⊗ c1)a3b3c3τ−1(a4 ⊗ b4c4)τ−1(b5 ⊗ c5)

=
∑
••
mτ (a⊗ τ(b1 ⊗ c1)b2c2τ−1(b3 ⊗ c3))

= mτ (a⊗mτ (b⊗ c))

That mτ is commutative is an immediate consequence of the requirement that τ is symmetric. □

11.3.12. — Let A = (A, e, ε, µ,m, i) be a commutative Hopf algebra, and let n : A ⊗ A → A

be a symmetric bilinear map such that A′ = (A, e, ε, µ, n, j) is a Hopf algebra, for some antipode

j. Recall that if a bialgebra admits an antipode, it is unique. We want to fabricate a symmetric

2-cocycle τ such that n = mτ holds.

Proposition 11.3.13. — Let H
i−−→ G

p−−→ F be morphisms of profinite groups.

(1) The morphism i is injective if and only if for every finite H-set S there exists a finite

G-set T and an injective map of H-sets S → T .

(2) The morphism p is surjective if and only if the functor p∗ : Set(H)→ Set(G) is full.

Proof. □

Proposition 11.3.14. — Let G be a profinite group. Two closed subgroups H and N of G are

equal if and only if for every finite G-set S, the equality SH = SN holds.

Proof. If the closed subgroups H and N of G are distinct, there exists an open normal

subgroup U of G such that H/(H ∩U) and N/(N ∩U) are distinct in G/U . Up to replacing G by

G/U , we may thus assume without loss of generality that G is finite. Let S be the set of all subsets

of G, on which G acts by left translation: gX = {gx | x ∈ X} for X ∈ S a subset of G. The set

H ∈ S is a fixed point for the restricted action of H on X, hence by assumption it is a fixed point

for the action of N on G. In other words, the equality NH = H holds, whence N ⊆ H, and thus

N = H by symmetry. □



242 11. EXPONENTIAL HODGE THEORY

11.4. A fundamental exact sequence

We have introduced two canonical functors relating exponential Hodge structures to more

benign objects. The first one is the inclusion e : MHS → EMHS sending an ordinary Hodge

structure to corresponding constant exponential Hodge structure, and the second one is the functor

r : EMHS→ Perv0 associating with an exponential Hodge structure its underlying perverse sheaf.

The functors

MHS
e−−→ EMHS

r−−→ Perv0

are compatible with tensor products and with fibre functors. The composite of these functors is the

trivial functor. From the point of view of tannakian fundamental groups, this means that the two

functors induce morphisms of group schemes i : π1(Perv0) −→ π1(EMHS) and p : π1(EMHS) −→
π1(MHS) whose composite is the trivial morphism. The following theorem answers the question

at hand.

Theorem 11.4.1. — The sequence of group schemes over Q

π1(Perv0)
i−−→ π1(EMHS)

p−−→ π1(MHS) −→ 1 (11.4.1.1)

induced by the canonical functors e : MHS→ EMHS and r : EMHS→ Perv0 is exact.

11.4.2. — Before going into the proof, let us make a few comments. First, the morphism

i : π1(Perv0) −→ π1(EMHS) is not a closed immersion since there are objects in Perv0 which are

not isomorphic to a subquotient of an object underlying a mixed Hodge module. However, if one

starts with an object M in EMHS, the fundamental group fits into an exact sequence

1 −→ π1(⟨RB(M)⟩⊗) −→ π1(⟨M⟩⊗) −→ π1(⟨M⟩⊗ ∩MHS) −→ 1.

where ⟨−⟩⊗ stands for “tannakian category generated by”. Indeed, we can understand the image

of i as the tannakian fundamental group of the tannakian subcategory of Perv0 generated by all

objects which underlie an exponential Hodge structure. Our second comment is that the surjective

morphism p has no section. Indeed, a section of p would provide a functor of tannakian categories

EMHS → MHS such that the composition with the canonical functor c : MHS → EMHS is

isomorphic to the identity. But this is not possible, since in EMHS one has a square root of Q(−1)
which does not exist in the category of mixed Hodge structures. However, as we will see in the

next section, the corresponding exact sequence of Lie algebras is split.

Proof of Theorem 11.4.1. A morphism of affine group schemes G→ F is surjective if and

only if the corresponding functor Rep(F ) → Rep(G) is fully faithful, with essential image stable

under taking subobjects and quotients. Surjectivity of the morphism p in the statement of the

theorem follows thus from Lemma 11.2.4. It remains to show exactness in the middle. In order

to apply the exactness criterion given in Proposition A.3.4 we need to interpret categorically what

invariants under the kernel of p are. Let G→ F be a surjective morphism of affine group schemes

with kernel N . The functor V 7−→ V N from representations of G to representations of F is right

adjoint to the functor Rep(F ) → Rep(G). Let thus c : EMHS → MHS be the right adjoint of
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the canonical functor e, and denote by E(0) the unit object in Perv0. We need to verify that the

two following statements are true.

(1) Let M be an object of EMHS. The morphism

HomPerv0(E(0), rec(M))→ HomPerv0(E(0), r(M))

induced by the adjunction map ec(M)→M is an isomorphism.

(2) Let E be a one-dimensional object of Perv0 obtained as a subquotient of an object un-

derlying an exponential Hodge structure. Then E itself underlies an exponential Hodge

structure.

Statement (1) follows formally from the existence of a six operations formalism for Hodge mod-

ules which is compatible with the six operations for perverse sheaves via the forgetful functors r

associating with a Hodge module on a variety its underlying perverse sheaf on the same variety.

Let Π: A1 \ {0} → Spec k be the structral morphism and j : A1 \ {0} → A1 be the inclusion. The

functor e is the functor j!π
∗ from Hodge modules on the point to Hodge modules on the affine line.

Its right adjoint is the functor c = π∗j
!. The functors c and e commut with r, so we find

HomPerv0(E(0), r(M)) = HomPerv0(eQ, r(M))

= HomVec(Q, cr(M))

= HomPerv0(eQ, ecr(M))

= HomPerv0(E(0), rec(M))

using that E(0) = eQ and that e is fully faithful. As for statement (2), recall that a one-dimensional

object of Perv0 is determined up to isomorphism by the data of its only singularity s ∈ k ⊆ C, and
by the eigenvalue λ ∈ Q× of the local monodromy operator near s. The local monodromy operators

of any Hodge module on A1 are quasi-unipotent. Hence if a one-dimensional object of Perv0 is

a subquotient of an object underlying an exponential Hodge structure, then its local monodromy

is either the identity, in which case it underlies the exponential Hodge structure E(s), or its local

monodromy is multiplication by −1, in which case it underlies the exponential Hodge structure

E(s)⊗Q(12). □

11.5. The Hodge realisation of exponential motives

RHdg : Mexp(k) −→ EMHS (11.5.0.1)

Conjecture 11.5.1. — The Hodge realisation functor Mexp(k) −→ EMHS is full.
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11.5.2. — Conjecture 11.5.1 enables us to control to a certain extent extension groups of

exponential motives. For example, assuming the conjecture, the morphism of vector spaces

Ext1Mexp(k)(M1,M2)→ Ext1EMHS(RHdg(M1),RHdg(M2))

is injective for all exponential motives M1 and M2. We can use this to gain some heuristics about

the nature of the extension groups Ext1Mexp(k)(Q(0),Q(a)) for integers a.

11.6. The vanishing cycles functor

Let C denote the complex affine line with coordinate x. For each z ∈ C and each mixed Hodge

moduleM on A1, the vanishing cycles φx−zM form a mixed Hodge module on the point {z}, hence
a mixed Hodge structure. We consider the functor:

Φ: EMHS −→MHS

M 7−→
⊕
z∈C

φx−zM. (11.6.0.1)

Observe that the sum is finite, since φx−zM = 0 unless z is a singular point of M .

Proposition 11.6.1. — The functor Φ is compatible with the fibre functors.

Proof. □

The composition of Φ with the canonical functor MHS → EMHS is the identity. Observe

that this refrains Φ from being a tensor functor, since EMHS contains a square root of the object

Π(i∗Q(−1)). To remedy this, we shall rather consider Φ with values in an enriched category, which

takes into account the monodromy of vanishing cycles as well.

11.6.1. µ̂-mixed Hodge structures.

Definition 11.6.2. — A µ̂-mixed Hodge structure is a pair (H,T ) consisting of a mixed Hodge

structure and a finite order automorphism of mixed Hodge structures T : H → H. Together with

the obvious morphisms, µ-mixed Hodge structures form a category which will be denoted byMHSµ̂.

For each rational number α ∈ Q, let Hα = ker(T − exp(−2πiα)) ⊆ H ⊗Q C, so there is a direct

sum decomposition

H ⊗Q C =
⊕

α∈Q∩(−1,0]

Hα.

Following [76, p.661], we define the tensor product1

H1 ⊗µ H2

of two µ̂-mixed Hodge structures (H1, T1) and (H2, T2) as follows:

1This is called join in loc. cit. Note that there is a misprint in the definition of the weight filtration.
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(i) the underlying rational vector space is the tensor product of the underlying vector spaces

H1 ⊗H2, together with the automorphism T1 ⊗ T2;
(ii) the weight filtration is given by

Wk(H1 ⊗µ̂ H2) =

⊕
α,β

∑
i,j

WiH
α
1 ⊗WjH

β
2

 ∩ (H1 ⊗H2),

where the sum is over pairs of integers (i, j) such that

i+ j =


k if α = 0 or β = 0,

k − 2 if α+ β = −1,

k − 1 else;

(iii) the Hodge filtration is given by

F p(H1 ⊗µ̂ H2) =
⊕
α,β

∑
k,ℓ

F kHα
1 ⊗ F ℓH

β
2 ,

where the sum is over pairs of integers (k, ℓ) such that

k + ℓ =

p if α+ β > −1,

p− 1 if α+ β ⩽ −1.

One checks that, equipped with these new filtrations,H1⊗µ̂H2 is again a mixed Hodge structure.

Note that the inclusion MHS→MHSµ̂ sending a Hodge structure H to (H, id) is a tensor functor,

but the forgetful functor MHSµ̂ →MHS is not.

11.6.2. The enriched vanishing cycles functor. Recall that each φx−zM comes together

with a monodromy operator T . If Ts denotes its semisimple part, the pair (φx−zM,Ts) defines a

µ̂-mixed Hodge structure. We get thus a functor with values in MHSµ̂. The following theorem of

Saito [74] asserts that it is compatible with the tensor structures on both sides:

Theorem 11.6.3 (Saito). — The functor ϕµ̂ : EMHS→MHSµ̂ is a tensor functor.

Remark 11.6.4. — Let M be the square root of Π(i∗Q(−1)) in EMHS. Then φµ̂(M) is the

Hodge structure Q(0) equipped with the automorphism −Id. Its tensor square is Q(−1) together
with the trivial automorphism, which solves the problem we encountered before.

Theorem 11.6.5. — The corresponding exact sequence of Lie algebras is split, and a splitting

is given by the vanishing cycles functor EMHS→MHS.

11.7. Monodromic exponential Hodge structures

Definition 11.7.1 (Kontsevich). — We call an exponential Hodge structure M monodromic if

0 ∈ C is its only singularity.
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11.7.2. — A monodromic exponential Hodge structure is thus a Hodge module on the affine

line whose fibre over 0 ∈ C is trivial, and which is given by a variation of mixed Hodge structures

on C \ {0}. In other words, monodromic exponential Hodge structures are precisely those Hodge

modules of the form j!V [1], where j : C \ {0} → C is the inclusion and V is a variation of mixed

Hodge structures on C \ {0}. The category of monodromic exponential Hodge structures is, as an

abelian category, equivalent to the category of variations of Hodge structures on C \ {0}.

11.8. The vanishing cycles functor

The vanishing cycles functor

Ψ: EMHS→ {C-graded monodromic exponential Hodge structures}

Theorem 11.8.1 (Kontsevich–Soibelmann). — There exists a (non-canonical) natural isomor-

phism

Ψ(M ⊗N) ∼= Ψ(M)⊗Ψ(N).

11.9. The weight filtration

In this section, we show that exponential motives carry a canonical weight filtration with respect

to which pure objects are semisimple. We first define the filtration at the level of exponential mixed

Hodge structures following Kontsevich–Soibelman [58, 4.4], then we prove in Theorem 11.9.7 that

it is motivic.

Definition 11.9.1 (Kontsevich–Soibelman). — The weight filtration of an exponential mixed

Hodge structure M is defined by

WnM = Π(Wn(M)),

where on the right-hand side we regard M as an object of MHM(C) and WnM denotes the weight

filtration of mixed Hodge modules over the complex affine line.

Example 11.9.2. — It is instructive to examine the exponential Hodge structures E(s) from

Example 11.2.2. They are simple objects of EMHS, hence pure of some weight. However, regarded

as objects of the bigger category MHM(C), the E(s) are not simple, for they fit into an extension

0→ Qs → E(s)→ Q[1]→ 0,



11.9. THE WEIGHT FILTRATION 247

where Qs denotes the skyscraper mixed Hodge module supported on s with stalk Q(0). The above

exact sequence describes the weight filtration of E(s) as an object of MHM(C) as well:

W0E(s) = Qs ⊆W1E(s) = E(s).

Since the graded piece grW1 E(s) = Q[1] is constant, it is killed by the projector Π and one has

W0E(s) = E(s) inside EMHS. We conclude that E(s) is pure of weight 0.

11.9.3. — The weight filtration is functorial, and the functor Wn : EMHS→ EMHS is exact,

because the inclusion of EMHS into the category of mixed Hodge modules and the functor Π are

exact, and because the weight filtration is exact on mixed Hodge modules. We will use exactness

of the weight filtration in the following way: Given an exponential Hodge structure H and a

substructure H0 ⊆ H, we can recover the weight filtration on H0 and on the quotient H1 = H/H0

by

WnH0 = H0 ∩WnH and WnH1 =WnH/(H0 ∩WnH)

from the weight filtration on H. Thus, the weight filtration on H determines the weight filtration

on any subquotient of H.

Proposition 11.9.4. — The canonical functor ι : MHS → EMHS is strictly compatible with

the weight filtration. In other words, for every Hodge structure H and every integer n, the subobjects

Wn(ι(H)) and ι(WnH) of ι(H) are the same.

Proof. Fix a Hodge structure H and a weight n, and denote by α : {0} → C the inclusion and

by π : C → {0} the map to a point. Regarding H as a Hodge module on the point {0}, there is a

short exact sequence

0→ α∗H → ι(H)→ π∗H[1]→ 0

in MHM(C). In this sequence, the Hodge module π∗HC[1] is the one defined by the constant

variation of Hodge structures with fibre H, put in homological degree −1. We apply the exact

functor Wn, and obtain the exact sequence

0→ α∗WnH →WnιH → π∗Wn+1H[1]→ 0

in MHM(C). Applying the exact functor Π yields an isomorphism Π(α∗WnH)→ Π(WnιH). The

functor ι is the composite Π ◦ α∗, so we find ι(WnH)
=−−→ Wn(ι(H)) where the weight filtration

Wn is now that in the category of exponential motives. □

Let X be smooth. If the canonical map Hc(X, f) −→ H(X, f) is an isomorphism, then the

exponential mixed Hodge structure H(X, f) is pure.

Example 11.9.5. —

(1) If X is smooth and f : X −→ A1 is proper, then Hn(X, f) is pure of weight n. .
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(2) More generally, it suffices to assume that the function f is cohomologically tame in the

sense of Katz [55, Prop. 14.13.3, item (2)]. This means that all the cohomology sheaves

of the cone of the “forget supports” morphism Rf!QX → Rf∗QX are lisse over A1 hence

trivial. A more geometric condition, used by Sabbah [70, §8], is that there exists an

embedding j : X ↪→ Y into a smooth variety Y and a proper map f̄ : Y → A1 extending

f such that, for all z ∈ C, the vanishing cycles complex φf̄−z(Rj∗QX) is supported at a

finite number of points lying in X (as opposed to Y ).

11.9.6 (The weight filtration is motivic). — Let M be an exponential motive. The Hodge

realisation of M , and hence its perverse realisation and its Betti realisation come equipped with a

weight filtration. A natural question to ask is whether this filtration comes from a filtration of M

by submotives. If such a filtration exists, it is necessarily unique.

Theorem 11.9.7. — Every object M of Mexp(k) is equipped with an increasing and exhaustive

filtration W•M which maps to the weight filtration under the Hodge realisation functor.

Proof. We start with the following observation: Suppose the motive M admits an exhaustive

filtration F , such that for each graded piece Mn = grFn M the statement of the theorem holds, that

is, Mn admits a filtration by submotives whose Hodge realisation is the weight filtration. Then,

the statement of the theorem holds for M too.

We prove the theorem for motives M of increasing generality. The cases we consider are, in

summary, the following:

(1) M = Hn(X,Y, f), where f : X → A1 is proper.

(2) M = Hn(X,Y, f) for arbitrary X, Y and f

(3) M an arbitrary exponential motive

Case 1: Let X be a variety of dimension ⩽ d with a proper morphism f : X → A1, and let

Y ⊆ X be a subvariety of dimension ⩽ d − 1. If d = 0, then X is a collection of points and Y is

empty, and hence Hn(X,Y, f) is pure of weight 0. Arguing by induction on dimension, we may

suppose that the weight filtration on Hn−1(Y ) is motivic, with weights 0, 1, . . . , n−1. By resolution

of singularities, there is a smooth variety X̃ of dimension d mapping to X with a normal crossing

divisor Ỹ mapping to Y such that

Hn(X,Y, f)→ Hn(X̃, Ỹ , f̃)

is an isomorphism. We may thus suppose without loss of generality that X is smooth and Y a

normal crossing divisor. From the long exact sequence

· · · −→ Hn−1(Y, f |Y ) −→ Hn(X,Y, f) −→ Hn(X, f) −→ · · ·

and the fact that Hn(X, f) is pure of weight n, we see that the weight filtration on Hn(X,Y, f) is

given by

WsH
n(X,Y, f) = im(WsH

n−1(Y, f |Y )→ Hn(X,Y, f)) for s < n

WsH
n(X,Y, f) = Hn(X,Y, f) for s ⩾ n
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hence is motivic. In particular, the weights of Hn(X,Y, f) are 0, 1, . . . , n.

Case 2: We now treat the case of a motive M of the form M = Hn(X,Y, f) for a smooth, not

necessarily proper variety X with a function f : X → A1, and a smooth subvariety Y ⊆ X. We

choose a smooth relative compactification f : X → A1. That means the following: X is an open

subvariety of a smooth variety X with complement a normal crossing divisor D, the closure Y of

Y in X is smooth and D + Y has normal crossings, and f : X → A1 is a proper map extending f .

Let D1, D2, . . . , DN be the smooth components of the divisor D, and set

X(p) =
⊔

1⩽i1<···<ip⩽N
Di1 ∩ · · · ∩Dip

for p = 0, 1, . . . , N , and Y (p) = X(p) ∩ Y . In particular we set X(0) = X. The varieties X(p) and

Y (p) are smooth, and there are inclusions maps ιs : (X
(p), Y (p))→ (X(p−1), Y (p)) for s = 1, 2, . . . , p.

We use alternating sums of the induced Gysin morphisms (4.8.3.3) to get a double complex

· · · → C∗(X(p), Y (p), f)[2p](p)→ C∗(X(p−1), Y (p−1), f)[2p− 2](p− 1)→ · · · → C∗(X,Y , f)

The total complex of this double complex computes the cohomology of (X,Y, f). This is where the

spectral sequence

Ep,q2 = H2p+q(X(p), Y (p), f)(p) =⇒ Hp+q(X,Y, f)

comes from.

Case 3:

□

Theorem 11.9.8. — Pure objects for the weight filtration are semisimple.

Proof. Explain how to deduce it from Theorem 11.12.1. □

11.10. The irregular Hodge filtration

In this section, we recall that the de Rham cohomology H∗
dR(X, f) is equipped with an irregular

Hodge filtration which is indexed by rational numbers and has finitely many jumps. It was first

introduced by Deligne [24] in the case of curves, then generalized to higher dimensional varieties by

Yu [90]. Further properties—especially the degeneration of the corresponding spectral sequence—

were studied by Sabbah, Esnault and Yu in [71] and [35].

11.10.1 (The Kontsevich complex). — LetX be a smooth variety of dimension n over k, together

with a regular function f , and let X be a good compactification of (X, f) as in Definition 3.5.8. We

keep the same notation from loc. cit., so D = X \X is the normal crossing divisor at infinity and
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P the pole divisor of f . We write P =
∑
eiPi with Pi the irreducible components. The connection

Ef on X extends to an integrable meromorphic connection on X with associated de Rham complex

(Ω•
X
(∗D), df ).

However, the subsheaves Ωp
X
(logD) ⊆ Ωp

X
(∗D) of logarithmic differentials do not form a subcom-

plex, so one cannot naively imitate the constructions from Hodge theory.

A possible way to circumvent this problem, after Kontsevich, is as follows: given a rational

number α ∈ [0, 1) ∩Q, we set [αP ] =
∑

[αei]Pi, where [·] stands for the integral part, and

Ωp
X
(logD)([αP ]) = Ωp

X
(logD)⊗OX OX([αP ]). (11.10.1.1)

We then define a subsheaf Ωpf (α) of (11.10.1.1) by asking that, for every open subset U ⊆ X,

Ωpf (α)(U) = {ω ∈ Ωp
X
(logD)([αP ])(U) | df ∧ ω ∈ Ωp+1

X
(logD)([αP ])(U)}.

In particular, one has:

Ω0
f (α) = OX([α− 1]P ), Ωnf (α) = Ωn

X
(logD)([αP ]).

The sheaves Ωpf (α) are stable under df and form a complex which computes the de Rham

cohomology of the pair (X, f):

Proposition 11.10.2. — The inclusion (Ω•
f (α), df ) ↪→ (Ω•

X
(∗D), df ) is a quasi-isomorphism

for each α ∈ [0, 1) ∩Q. In particular, there are canonical isomorphisms

Hn
dR(X, f)

∼= Hn(X, (Ω•
f (α), df )). (11.10.2.1)

11.10.3. —

Definition 11.10.4. — The irregular Hodge filtration is given by

F p−αHn
dR(X, f) = Im(Hn(X, (Ω•⩾p

f (α), df )) −→ Hn(X, (Ω•
f (α), df ))). (11.10.4.1)

In fact, the relevant α will be those of the form α = ℓ
m where m is the multiplicity of an

irreducible component of P and ℓ = 1, . . . ,m− 1.

11.10.5. — Let us compute a few examples of irregular Hodge filtrations:

11.10.6 (Compatibility with the Künneth formula). — We now assume that we are given two

pairs (X1, f1) and (X2, f2) consisting of smooth varieties over k and regular functions. As usual,

we consider the cartesian product X1 × X2 together with the Thom–Sebastiani sum f1 ⊞ f2. By

the Künneth formula, cup-product induces an isomorphism of k-vector spaces⊕
i+j=n

H i
dR(X1, f1)⊗Hj

dR(X2, f2) −→ Hn
dR(X1 ×X2, f1 ⊞ f2). (11.10.6.1)
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We equip the left-hand side of (11.10.6.1) with the product filtration, that is

⊕
i+j=n

( ∑
a+b=λ

F aH i
dR(X1, f1)⊗ F bdR(X2, f2)

)
(11.10.6.2)

Theorem 11.10.7 (Chen–Yu, [18]). — The map (11.10.6.1) is an isomorphism of filtered vector

spaces.

11.11. Twistors

A twistor is a holomorphic vector bundle T on P1 = P1(C). We typically equip T with a real

structure κ and a connection ∇, compatible with each other. In that case, we call

T = (T , κ,∇)

a real integrable twistor. In this section, we explain some details about twistors and why they are

useful, in particular how to associate twistors with exponential Hodge structures. Short introduc-

tions to twistors can be found in [73], the full story is told in [64].

11.11.1. — Denote by σ, γ and ι the automorphisms

σ : P1 → P1 σ(z) = −z−1 0←→∞
γ : P1 → P1 γ(z) = z−1 0←→∞
ι : P1 → P1 ι(z) = −z 0→ 0; ∞→∞

of P1. The equalities γ = ι ◦ σ = σ ◦ ι hold, γ induces the identity on the unit circle, and σ and ι

are equal on the unit circle. For a vector bundle T on P1, set

T ∨ = Hom(T ,OP1) the dual bundle

T ∗ = σ∗T ∨
the Hermitian dual bundle

T c = γ∗T the conjugate bundle.

A real structure on T is an isomorphism of vector bundles

such that

is equal to κ−1.
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11.12. Semisimplicity

In classical frameworks, motives of the form Hn(X)(i) are expected to be semisimple if X is a

smooth and proper variety. For Nori motives, this is well known. In the framework of exponential

motives, this fact generalises to the statement that exponential motives of the form Hn(X, f)(i)

are semisimple, provided X is smooth and f : X → A1 is a proper morphism. The main objective

of this section is to prove this assertion, stated as Theorem 11.12.1 below. Again in the classical

setup, semisimplicity is proven in two steps: First one establishes the hard Lefschetz theorem, in

order to decompose the cohomology of X into primitive pieces, and to obtain a pairing

Hn(X)⊗Hn(X)
id⊗ηd−n−−−−−−−→ Hn(X)⊗H2d−n(X)

cup−−−→ Q(−d) (11.12.0.1)

for n ⩽ d = dimX. Using this pairing, one can associate with every subobject M ⊆ Hn(X) an

orthogonal subobjectM⊥ ⊆ Hn(X). In a second step, one uses the fact that the pairing (11.12.0.1)

induces a polarisation of Hodge structures in order to show that the canonical morphism

M ⊕M⊥ → Hn(X)

is an isomorphism. To prove Theorem 11.12.1, we will essentially follow this strategy, but using

twistors in place of Hodge structures. There is one additional issue which arises with exponential

motives: Hard Lefschetz gives us an isomorphism Hn(X, f) ∼= H2d−n(X, f), but the duality pairing

is a pairing between Hn(X,−f) and H2d−n(X, f), and hence given a subobject M ⊆ Hn(X, f)

its orthogonal M⊥ is contained in Hn(X,−f). This seems to be a problem, since in general

Hn(X, f) and Hn(X,−f) are non-isomorphic motives. We will take care of this by constructing

an autoequivalence T : Mexp(k) → Mexp(k) sending Hn(X, f) to Hn(X,−f), so we can use it to

transport M⊥ to a subobject of Hn(X, f). On the other hand, it will turn out that this sign is

essential in the construction of polarisations of twistors.

Theorem 11.12.1 (Semisimplicity Theorem). — Let X be a smooth variety and f : X → A1 be

a proper morphism. For all n ⩾ 0 the object Hn(X, f)(i) of Mexp(k) is semisimple.

11.12.2. — Let k be a subfield of C and let (a, γ) be a pair consisting of an element a ∈ k∗ and a

path γ from 1∞ to a−1∞ in the boundary of the real blowup of P1(C) at infinity. We can associate

with (a, γ) an automorphism T = T (a, γ) of the category Mexp(k), compatible with the tensor

product, duals, and the Betti realisation, as follows: Let Q = Qexp(k) be the quiver of exponential

relative varieties over k, introduced in 4.2.1, and let ρ : Q→ VecQ be the Betti representation. A

quiver morphism TQ : Q→ Q is given by

TQ([X,Y, f, n, i]) = [X,Y, af, n, i]

on objects, and in the straightforward way on morphisms. In order to turn the quiver endomorphism

TQ into an endomorphism of the representation (Q, ρ) we must, according to 4.1.9, specify an

isomorphism ρ ◦ TQ ∼= ρ, that is, a natural isomorphism of vector spaces

Hn
rd(X,Y, af)(i)

∼= Hn
rd(X,Y, f)(i)
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for every object [X,Y, f, n, i] of the quiver Q. Such an isomorphism is obtained from the chosen

path γ. Indeed, we can think of these vector spaces as the fibres at 1∞ and at a−1∞ of the sheaf

Hn
perv(X,Y, f)(i), which are isomorphic via parallel transport along γ.

11.12.3. —





CHAPTER 12

Examples and implications of the period conjecture

In this chapter, we present a number of examples of exponential motives and their periods.

These include notably exponentials of algebraic numbers, the square root of π, special values of

certain E-functions such as the Bessel function, and the Euler–Mascheroni constant. In each case,

we compute the Galois group of the corresponding exponential motive and we investigate the

implications of the exponential period conjecture.

12.1. Exponentials of algebraic numbers

Arguably, the most elementary exponential period that is not expected to be a period in the

classical sense is the base of the natural logarithm e. That e is an irrational number was known

to Euler, and its transcendence was proved by Hermite in 1873. The Lindemann–Weierstrass

theorem, which we recall below, generalises Hermite’s transcendence theorem. We will show that

it is a consequence of the exponential period conjecture, and hence serves as an illustration of it.

We will also show that the period conjecture implies that e is not a period in the classical sense,

and in fact even that it is algebraically independent from all classical periods.

Theorem 12.1.1 (Lindemann–Weierstrass). — Let α1, . . . , αn be algebraic numbers, and denote

by ⟨α1, . . . , αn⟩ the Q-subvector space of Q generated by them. Then the equality

trdeg Q(eα1 , . . . , eαn) = dimQ⟨α1, . . . , αn⟩

holds. In particular, if α1, . . . , αn are Q-linearly independent, then their exponentials eα1 , . . . , eαn

are algebraically independent.

12.1.2. — Let us now explain how one can see the Lindemann–Weierstrass theorem as an

instance of the exponential period conjecture. Given algebraic numbers α1, . . . , αn, set

E(α1, . . . , αn) = E(α1)⊕ · · · ⊕ E(αn),

where E(αi) denotes the one-dimensional exponential motive over Q defined by

E(αi) = H0(Spec(Q),−αi).
255
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In particular, E(0) = Q(0) is the unit motive. The period algebra of the motive E(α1, . . . , αn) is

generated by the exponentials eα1 , . . . , eαn , e−(α1+···+αn), and the period conjecture predicts that

its transcendence degree over Q is the dimension of the motivic Galois group of E(α1, . . . , αn).

Proposition 12.1.3. — Let α1, . . . , αn be algebraic numbers. The Galois group of the exponen-

tial motive E(α1, . . . , αn) is a split torus of dimension dimQ⟨α1, . . . , αn⟩Q.

Proof. For every α ∈ Q, the motive E(α) is one-dimensional. Its tannakian fundamental

group is thus canonically isomorphic to a subgroup of Gm. This allows us to canonically identify

the fundamental group G of E(α1, . . . , αn) with a subgroup of Gn
m. We will show that G ⊆ Gn

m

is equal to the subtorus T ⊆ Gn
m whose group of characters is the subgroup of Q generated by

α1, . . . , αn, which we view as a quotient of Zn.

There is a canonical isomorphism of motives E(α)⊗E(β) ∼= E(α+β) for all algebraic numbers

α and β. In particular, the ⊗-inverse of E(α) is E(−α). By induction, every Z-linear relation

c1α1 + · · ·+ cnαn = 0 yields an isomorphism of motives:

E(α1)
⊗c1 ⊗ · · · ⊗ E(αn)

⊗cn ∼= Q(0).

The action of the Galois group on the right-hand side is trivial, and hence it must be trivial on the

left-hand side as well. Thus, if (z1, . . . , zn) ∈ Gn
m lies in G, then zc11 z

c2
2 · · · zcnn = 1. This yields the

inclusion G ⊆ T .
In order to establish the inclusion T ⊆ G, recall that the Galois group of a motive M contains

the Galois group of its perverse realisation. Set F (α) = Rperv(E(α)), and let us show that the

Galois group of F (α1, . . . , αn) = F (α1) ⊕ · · · ⊕ F (αn) in Perv0 is already the full T . All objects

in the tannakian category generated by F are semisimple, and simple objects are precisely those

one-dimensional objects of the form

F (α) = F (α1)
⊗c1 ⊗ · · · ⊗ F (αn)⊗cn

where α = c1α1+ · · ·+cnαn is a linear combination of the algebraic numbers α1, . . . , αn. The claim

now follows from the fact that for any two complex numbers α and β we have Hom(F (α), F (β)) = 0

unless α = β. In other words, the tannakian category generated by F (α1, . . . , αn) is equivalent

to the category of rational vector spaces with a grading indexed by the finitely generated group

⟨α1, . . . , αn⟩Z. □

Proposition 12.1.4. — Assume that the exponential period conjecture 8.2.6 holds. Then the

exponential of a non-zero algebraic number is transcendental over the field of usual periods.

Proof. Let P be the field generated by the periods of usual motives. We need to show that,

given a non-zero algebraic number α and a polynomial f ∈ P[x], the relation f(eα) = 0 implies

f = 0. We choose a usual motive M over Q such that all the coefficients of f lie in the field

generated by the periods of M and we consider the exponential motive M+ =M ⊕E(α). Its field

of periods is generated by all the periods of M together with eα. Let GM and GM+ denote the

corresponding motivic Galois groups. Since ⟨M⟩⊗ is a subcategory of ⟨M+⟩⊗, there is a canonical
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surjection GM+ → GM . Assuming the exponential period conjecture, it suffices to prove that the

inequality dimGM+ > dimGM holds.

Let F and F+ be the perverse realisations of M and M+, and denote by GF+ and GF their

Galois groups. The group GF is trivial, since F comes from a usual motive, and hence is isomorphic

to a sum of copies of the neutral object in the tannakian category Perv0. The group GF+ is the

same as GE(α), and hence is isomorphic to Gm since α ̸= 0. The diagram

Gm
∼= GF+ GF = 0

GM+ GM

��

⊆

// //

��

⊆

// //

shows that the surjection GM+ → GM contains a copy of Gm in its kernel, hence the sought

inequality of dimensions. □

Proposition 12.1.5. — Assume that the exponential period conjecture 8.2.6 holds. Then, the

algebraic closure of the ring of classical periods inside the ring of exponential periods is generated

by special values of the gamma function Γ(q) with q ∈ Q \ Z⩽0.

Proof. Let w be an exponential period which is algebraic over the ring of classical periods.

There exist classical periods c0, . . . , cn such that

c0 = c1w · · ·+ cnw
n

holds. Let M be an exponential motive with w as a period, and let Mi be a classical motive with

ci as a period.

M0 →
n⊕
i=1

(Mi ⊗M⊗i)

□

12.2. The motive Q(−1
2)

There has already been some speculation about motives Q(−1
2) and Q(−1

4) over finite fields1.

Specifically, if E is a supersingular elliptic curve over a finite field and F a field of coefficients

splitting the quaternion algebra End(E), then the 2-dimensional motive H1(E) decomposes as a

sum M ⊕M where M ⊗M is isomorphic to the Tate motive F (−1) = H2(P1).

Over a field of characteristic zero, motives M with M ⊗M ≃ Q(−1) should not exist, at least

not in the classical sense, since the Hodge realisation of such an M would necessarily be a one-

dimensional Hodge structure of weight 1. This is why it is not expected that
√
2πi is a period in

1For Q(1/2), see [67] and references given there (Milne). For Q(1/4), see [50].
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the classical sense. However, we can easily write
√
2πi and

√
π as periods of exponential motives

over Q(i) and over Q respectively:

√
2πi =

∫
(i+1)R

e
−1
2i x

2

dx,

√
π = Γ(12) =

∫
R
e−x

2
dx.

The corresponding exponential motives are H1(A1
Q(i),

1
2ix

2) and H1(A1
Q, x

2) respectively, where

x is the coordinate of the affine line. This suggests that the motive H1(A1
k,

1
2ix

2) is a reasonable

candidate for Q(−1
2). We will show that indeed for any field k ⊆ C and non-zero element a ∈ k

such that a = 1
2ic

2 for some c ∈ k, there is an isomorphism

H1(A1
k, ax

2)⊗H1(A1
k, ax

2) ∼= Q(−1)

of exponential motives over k. Given any two non-zero elements a and b of k, the motives

H1(A1
k, ax

2) and H1(A1
k, bx

2) are isomorphic if and only if a = c2b for some c ∈ k∗. It follows

that if k contains i, there exist motives over k whose tensor square is Q(−1), and indeed many of

them unless k is quadratically closed. Let us fix

M(
√
π) = H1(A1, x2)

as a particular exponential motive over k with period
√
π.

Lemma 12.2.1. — Let a, b ∈ k× and let Ca,b be the affine conic over k defined by the equation

as2 + bt2 = 1. There exists an isomorphism of exponential motives

H1(A1, ax2)⊗H1(A1, bx2) ≃ H1(Ca,b).

Proof. By the Künneth formula, it suffices to show that H2(A2, ax2 + by2) and H1(Ca,b) are

isomorphic. At the level of periods, this is reflected by the identity∫
ei arg(a)R×ei arg(b)R

e−ax
2−by2dxdy =

π√
ab
,

which follows from the change of coordinates x = r cos θ and y = r sin θ. Inspired by this, we

consider the morphism h : Ca,b × A1 → A2 given by h((s, t), r) = (rs, rt). Since h sends the

subvariety Ca,b×{0} to {(0, 0)} and commutes with the functions 0⊞r2 on the source and ax2+by2

on the target, it induces a morphism of exponential motives

h : H2(A2, {(0, 0)}, ax2 + by2) −→ H2(Ca,b × A1, Ca,b × {0}, 0⊞ r2).

Noting that the left-hand side is isomorphic to H2(A2, ax2 + by2) by the exact sequence (4.2.4.2)

associated with the immersions ∅ ⊆ {(0, 0)} ⊆ A2 and applying the Künneth formula again, we get

h′ : H2(A2, ax2 + by2) −→ H1(Ca,b)⊗H1(A1, {0}, r2).

Now the last factor fits into an exact sequence of motives

0→ Q(0)→ H1(A1, {0}, r2)→ H1(A1, r2)→ 0.

We will show that the second component of h′ vanishes in H1(A1, r2), and that the induced map

H2(A2, ax2 + by2) → H1(Ca,b) is an isomorphism. For this it suffices to work in a realisation: for



12.2. THE MOTIVE Q(− 1
2
) 259

instance, de Rham cohomology. There h′ sends the generator dxdy to (tds− sdt)⊗ rdr. The first

factor is a generator of H1
dR(Ca,b) and the second vanishes in H1

dR(A1, r2) since it is equal to 1
2dr2(1).

However, it is non-zero in H1
dR(A1, {0}, r2), as one can see from the integral

∫ +∞
0 e−r

2
rdr = 1. □

In particular, M(
√
π)⊗2 = H1(s2 + t2 = 1).

12.2.2. — If the base field k contains a square root of −1, the conic C is isomorphic to Gm by

the change of coordinates u = s + it, v = s − it, and therefore M(
√
π) is a genuine tensor square

root of Q(−1). We can generalise Lemma 12.2.1 to the case where in place of M(
√
π) we consider

a motive of the form Hn(An, q) for a quadratic form q in n variables x1, . . . , xn, seen as a regular

function on An = Spec k[x1, . . . , xn]. Given a non-zero element c ∈ k, we define

M(
√
c) =

H0(Spec k(
√
c))/Q(0) if c is not a square in k,

Q(0) if c is a square in k.
(12.2.2.1)

The motive M(
√
c) is one-dimensional, and only depends on the class of c modulo squares.

Proposition 12.2.3. — Let q = q(x1, . . . , xn) be a non-degenerate quadratic form, seen as a

regular function on An = Spec k[x1, . . . , xn]. Then Hm(An, q) = 0 for m ̸= n and

Hn(An, q) ∼=M(
√
det q)⊗M(

√
π)⊗n.

Proof. It is a standard fact that there exists a linear automorphism of An transforming any

given quadratic form into a diagonal one. Thus, we may assume that q is of the form

q(x1, . . . , xn) = a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n

for some non-zero elements a1, . . . , an ∈ k. The discriminant of q is the product a1a2 · · · an, which
does not depend on the diagonalization modulo (k×)2. The Künneth formula yields

Hn(An, q) ∼= H1(A1, a1x
2)⊗H1(A1, a2x

2)⊗ · · · ⊗H1(A1, anx
2)

and Hm(An, q) = 0 for m ̸= n. The result then follows from H1(A1, aix
2) ∼=M(

√
ai)⊗M(

√
π). □

12.2.4 (The ℓ-adic realisation). — Let χ2 : F×
q → {±1} be the non-trivial quadratic character

on F×
q . Given an additive character ψ, one defines the Gauss sum

G(χ2, ψ) =
∑
x∈F×

q

χ2(x)ψ(x). (12.2.4.1)

Lemma 12.2.5. — The exponential motive H1(A1, x2) has good ramification outside p = 2 and

its ℓ-adic realisation is the one-dimensional Qℓ-vector space with Frobenius action given by multi-

plication by G(χ2, ψ).

Proof. The ℓ-adic perverse realisation of H1(A1, x2) is j!Lχ2 [1]. □
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12.3. Exponential periods on the affine line

Set A1 = Spec k[x] and let f ∈ k[x] be a polynomial of degree at least two. In this section, we

study the motive H1(A1, f) and its motivic Galois group. In particular, we want to understand

the determinant of H1(A1, f).

12.3.1. — In tannakian terms, exterior powers are constructed as follows. For any object M

of a tannakian category and any integer n ⩾ 1, the symmetric group Sn acts on the n-fold tensor

power M⊗n by permutation of factors. The n-fold exterior power of M is the eigenspace in M⊗n

of the signature character ε : Sn → {±1}. Given a non-constant polynomial f , the n-fold tensor

power of the exponential motive H1(A1, f) can be identified with Hn(An, f⊞n) via the Künneth

isomorphism

κ : H1(A1, f)⊗n
∼=−−→ Hn(An, f⊞n) (12.3.1.1)

because Hq(A1, f) = 0 for q ̸= 1. The symmetric group Sn acts on An by permutation of coordi-

nates, and this action commutes with the Thom–Sebastiani sum f⊞n = f ⊞ · · ·⊞f , hence an action

of Sn on the motive Hn(An, f⊞n). The Künneth isomorphism is not compatible with the actions

of Sn, but we rather have

κ ◦ σ = ε(σ) · (σ ◦ κ)

for σ ∈ Sn. In particular, κ sends the ε-eigenspace in H1(A1, f)⊗n to the space of invariants, and

we can thus identify the n-fold exterior power of H1(A1, f) with

n∧
H1(A1, f) = Hn(An, f⊞n)Sn (12.3.1.2)

where on the right-hand side we really mean invariants. If we look at the action of Sn as a

Q[Sn]-module structure, the space of invariants is the image of the projector

1

n!

∑
σ∈Sn

σ

seen as an idempotent endomorphism of the motive Hn(An, f⊞n).

Theorem 12.3.2. — Let n ⩾ 1 be an integer and f ∈ k[x] a polynomial of degree n + 1 with

leading term a. Define numbers b, c ∈ k by

b =
∑

f ′(α)=0

f(α), c =

(−1)
n(n−1)

2
2a
n+1 if n is odd

(−1)
n(n−1)

2 if n is even,

where the sum runs over all α ∈ C with f ′(α) = 0 counted with multiplicity. Let M(
√
c) be

the one-dimensional Artin motive with period
√
c, as in (12.2.2.1), M(

√
π) = H1(A1, x2) and

E(b) = H0(Spec k, b). There is an isomorphism of exponential motives over k

detH1(A1, f) ≃M(
√
c)⊗M(

√
π)⊗n ⊗ E(b).
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12.3.3. — The following proof of Theorem 12.3.2 is in large parts copied from2 [11, §5]. We

write the polynomial f ∈ k[x] as

f(x) = an+1x
n+1 + anx

n + · · ·+ a1x+ a0

with a = an+1 ̸= 0. Since, for any u ∈ k∗, the motives M(
√
u) ⊗M(

√
π) and H1(A1, ux2) are

isomorphic, the theorem claims that there is an isomorphism of exponential motives over k

detH1(A1, f) ≃ Hn(An, q),

where q(x1, . . . , xn) = b+ cx21 + x22 + x23 + · · ·+ x2n.

12.3.4. — The symmetric group Sn acts on Anx = Spec(k[x1, . . . , xn]), and leaves the function

f⊞n(x) = f(x1) + f(x2) + · · · + f(xn) invariant. We start with writing down the quotient variety

and the induced function on it. For 1 ⩽ i ⩽ n, let us write Si(x) for the i-th symmetric polynomial

in the variables x1 . . . xn, so S1(x) = x1 + · · · + xn, S2(x) = x1x2 + x1x3 + · · · and so on up to

Sn(x) = x1x2 · · ·xn. Let s1, . . . , sn denote another set of indeterminates. The morphism of affine

varieties

Anx = Spec(k[x1, . . . , xn])
π−−−−→ Ans = Spec(k[s1, . . . , sn])

given by the algebra morphism si 7−→ Si(x) identifies Ans as the quotient Anx/Sn. Since f⊞n is a

symmetric polynomial we have f⊞n = F ◦ π for some unique F ∈ k[s]. The morphism π induces a

morphism of motives

Hn(Ans , F )
π∗

−−−−−→ Hn(Anx, f⊞n)Sn = detHn(A1, f)

which will eventually turn ou to be an isomorphism. The key part of the proof is now to produce

an automorphism of Ans , that is, a change of variables, which turns F into a quadratic form.

12.3.5. — For each integer i ⩾ 0, consider the Newton polynomial Pi(x) = xi1 + xi2 + . . .+ xin.

Each of the Pi can be written in a unique way as a polynomial in the elementary symmetric

polynomials Si. Let us define Qi ∈ k[s] by

Qi(S1(x), S2(x), . . . , Sn(x)) = Pi(x),

so that we have

Q0(s) = n, Q1(s) = s1, Q2(s) = s21 − 2s2, Q3(s) = s31 − 3s1s2 + 3s3

and, in general,

Qi(s) =
∑

r1+2r2+...+iri=i
r1,...,ri⩾0

(−1)i i(r1 + · · ·+ ri − 1)!

r1! · · · ri!

i∏
j=1

(−sj)rj .

The polynomial Qi has degree i and only contains the variables s1, . . . , si. We do not add a

variable sn+1 to Qn+1. If we declare that si has weighted degree i, then Qi is homogeneous of

weighted degree i. For i ⩾ 1 the polynomial Qi has no constant part, and the linear part of Qi is

2To ease the comparison with loc.cit., notice that Bloch and Esnault consider connections given by ∇(1) = df ,

so what they call f is our −f .
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si for 1 ⩽ i ⩽ n and zero otherwise. For k+ l = i, the monomial sksl appears in Qi with coefficient

(−1)ii if k ̸= l, and with coefficient 1
2 i if k = l.

12.3.6. — Let us express the numbers b and c in the statement of Theorem 12.3.2 in terms

of the coefficients of f and F . The polynomial f⊞n ∈ k[x] is the polynomial f⊞n(x) = a0P0(x) +

a1P1(x) + · · ·+ anPn(x) + an+1Pn+1(x), hence

F (s) = a0Q0(s) + a1Q1(s) + · · ·+ anQn(s) + an+1Qn+1(s)

by definition. Setting

a = 1
(n+1)an+1

(
− nan, (n− 1)an−1, . . . , (−1)na1

)
we have b = F (a) by straightforward computation. The constant term of F is c = na0, its linear

homogeneous part is a1s1 + 2a2s2 + · · ·+ nansn. In the homogeneous quadratic part of F , we find

the terms sksl appear with coefficient (−1)iiai for k+ l = i and k ̸= l, and with coefficient 1
2 iai for

k = l. If we think of the homogeneous quadratic part of g as the quadratic form associated with a

symmetric bilinear form, then the matrix of this form is

B = (∇2F )(0) =
1

2


2a2 −3a3 ··· (−1)nnan (−1)n+1(n+1)an+1

−3a3 4a4 ··· (−1)n+1(n+1)an+1 0

...
...

...
(−1)nnan (−1)n+1(n+1)an+1 0 0

(−1)n+1(n+1)an+1 0 ··· 0 0


and we notice that its determinant is equal to

detB = (−1)
n(n−1)

2
(
n+1
2 an+1

)n
.

The sign (−1)
n(n−1)

2 comes from taking the product of the antidiagonal entries, while the signs we

pick up from the matrix entries themselves cancel to (−1)(n−1)n = 1. In particular, viewed modulo

squares, det(B) takes the value

det(B) =

(−1)
n(n−1)

2 ∈ k∗/k∗2 if n is even,

(−1)
n(n−1)

2
2an+1

n+1 ∈ k
∗/k∗2 if n is odd,

or det(B) = c for short, with the notation of Theorem 12.3.2.

Lemma 12.3.7. — The differential form dF on Ans (or equivalently, the gradient ∇F of F )

vanishes at the point a and nowhere else.

Proof. □

Proof of Theorem 12.3.2. We start with an affine change of variables, setting G(s) = F (s+

a)− b. The polynomial G(s) satisfies G(0) = 0 and its gradient ∇G only vanishes at 0 ∈ Ans . Thus,
G contains no constant and no linear terms, and we may write G uniquely as

G(s) = Q(s) +R(s) +H(s)

where Q and R are homogeneous quadratic polynomials, Q containing the monomials of weight

n + 1 and R containing monomials of weight ⩽ n and each monomial in H has degree ⩾ 3. This
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makes sense, since indeed all monomials in F are of weight ⩽ n+ 1, hence all monomials in G, Q,

R and H are so too. If a monomial of highest possible weight n + 1 appears in F , then the same

monomial appears in G, with the same coefficient. In particular, the matrix form of (∇2G)(0) is

upper left triangular, with the same (non-zero!) antidiagonal coefficients as B. In other words, we

have

Q(s) = λ
n∑
i=1

sisn+1−i

with λ = (−1)n+1(n+ 1)an+1. We will show that there exists, and in fact construct, an automor-

phism Φ: k[s]→ k[s] such that

Φ(G(s)) = Q(s) (12.3.7.1)

holds. To do so, we prove by induction on j ⩾ 1 the following:

Claim. There exists an automorphism Φ: k[s]→ k[s] such that Φ(G) ∈ k[s] has the form

Φ(G(s)) = Q(s) +H ′(s)

where H ′ ∈ k[s] is a polynomial in the variables sj , sj+1, . . . where all monomials are of degree ⩾ 3

and of weight ⩽ n+ 1.

For j = 1, a linear unipotent automorphism does the job of Φ. Indeed, setting Φ(si) = si+Li(s)

where Li is a suitable linear polynomial in the variables s1, . . . , si−1 yields Φ(Q(s) +R(s)) = Q(s),

hence

Φ(G(s)) = Q(s) +H ′(s)

where all monomials in H ′ are of degree ⩾ 3 and of weight ⩽ n+1. Now fix j ⩾ 1, and suppose that

we have found an automorphism Φ of k[s] satisfying the conditions in the claim. The monomial of

lowest weight which can possibly occur in H ′ is s3j . Hence if j >
n+1
3 , then H ′ = 0 and we are done.

Let us suppose thus that j < n+1
2 . The variable sn+1−j does not appear in H

′(s) again for weight

reasons. Indeed, if sn+1−j appears in a monomial of H ′, then this monomial must have degree ⩾ 3,

hence would have weight at least (n+ 1− j) + 2j > n+ 1. Let us write

H ′(sj , . . . , sn−j) = H ′(0, sj+1, . . . , sn−j) + sjψ(sj , . . . , sn−j)

and define an automorphism Ψ of k[s] by Ψ(sn+1−j) = sn+1−j− (2λ)−1ψ(sj , . . . , sn−j) and Ψ(si) =

si for i ̸= n+ 1− j. We notice that monomials in ψ have degree at least 2. We find

Ψ(Φ(G(s))) = Ψ(Φ(Q(s))) + Ψ(Φ(R(s))) + Φ(H(s))

= Φ(Q(s)) +−sjψ(s) +H ′(0, sj+1, . . . , sn−j) + sj(s)

= Q(s) +H ′′(s)

where H ′′(s) = H ′(0, sj+1, . . . , sn) has the property that all of its terms are of degree ⩾ 3 and

weight ⩽ n+ 1. The composite Ψ ◦ Φ satisfies thus the property of the claim for j + 1.
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Let us now fix an automorphism Φ of k[s] satisfying (12.3.7.1) and interpret it as an automor-

phism of Ans = Spec k[s]. The diagram

Ans Ans Ans

A1
''

Q+b

//Φ

��
G+b

//s 7−→s+a

ww
F

commutes, hence induces the sought after isomorphism of motives

Hn(Ans , F )→ Hn(Ans , Q+ b). □

Corollary 12.3.8. — Let G ⊆ GLn be the motivic Galois group of H1(A1, f). The determinant

induces a surjective group morphism det : G→ Gm.

Proof. The determinant detH1(A1, f) is a rank one object of the category Mexp(k), hence

its motivic Galois group is either Gm or a group of roots of unity. To exclude the second case,

we observe that the isomorphism in Theorem 12.3.2 implies that no tensor power of detH1(A1, f)

becomes the unit object, for example because this motive has weight n ⩾ 1. □

Corollary 12.3.9. — We keep the notation from Theorem 12.3.2. Up to multiplication by a

non-zero element of k, the determinant of a period matrix of the motive H1(A1, f) is equal to

√
c · π

n
2 · eb. (12.3.9.1)

Example 12.3.10. — Let d ⩾ 2 be an integer and f = xd. According to Example 1.1.4 from

the introduction, the period matrix of the exponential motive H1(A1, xd) with respect to suitable

bases of the de Rham and Betti realisations reads

P =
(
ξab−1
d Γ

(
a
d

))
1⩽a,b⩽d−1

.

Therefore, viewed as an element of C×/Q×, the determinant is equal to

detP =
det(ξab − 1)

dd−1

d−1∏
a=1

Γ
(a
d

)
.

Lemma 12.3.11. — The equality det(ξab − 1)1⩽a,b⩽d−1 = i
(3d−2)(d−1)

2 d
d
2 holds.

Proof. Let ∆ denote the determinant on the left-hand side. Subtracting the first column from

each other column of the Vandermonde matrix (ξab)0⩽a,b⩽d−1 yields the expression

∆ = det(ξab)0⩽a,b⩽d−1 =
∏

0⩽a<b⩽d−1

(ξb − ξa).
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Noting that, for fixed b, the product
∏
a̸=b(ξ

b − ξa) is the derivative of the polynomial xd − 1

evaluated at x = ξb, one computes the absolute value

|∆| =
∏

0⩽a̸=b⩽d−1

|ξb − ξa|
1
2 = d

d
2 .

We are thus left to determine the argument of ∆. In terms of the notation e(x) = exp(2πix),

dear to analytic number theorists, one has

ξb − ξa = e
(
a+b
2d

) (
e( b−a2d )− e(a−b2d )

)
= 2e

(
a+b
2d

)
i sin(π(b−a)d ),

and the sine is positive when a and b satisfy 0 ⩽ a < b ⩽ d−1. Then a straightforward computation

allows one to conclude:

∆

|∆|
=

∏
0⩽a<b⩽d−1

e
(
a+b
2d

)
i = e

(
(d−1)2

4

)
i
d(d−1)

2 = i
(3d−2)(d−1)

2 . □

Remark 12.3.12. —

Putting everything together, we get the expression detP = d1−
d
2 i

(3d−2)(d−1)
2

∏d−1
a=1 Γ(

a
d). Besides,

Corollary 12.3.9 specialises to the equality detP =
√
c·π

d−1
2 in C×/Q×. Combined with the previous

calculation, this implies

d−1∏
j=0

Γ

(
j

d

)
∼Q×

(2π)
d−1
2

√
d

, (12.3.12.1)

thus showing that the multiplication formula for the gamma values has motivic origin. Both sides

of (12.3.12.1) are actually equal.

12.3.13 (Computation of the epsilon factor). — Let F = Fq be a finite field with q elements.

Given a smooth variety X over F and a Qℓ-sheaf F on X, the epsilon factor is defined as

ε(X,F ) =
∏
j⩾0

det(−φF | Hj
c (XF ,F ))(−1)j ∈ Q×

ℓ ,

where φF stands for the geometric Frobenius.

Theorem 12.3.14. — Let p be a prime number and f ∈ Fp[x] a polynomial of degree n+ 1.

ε(A1
Fp , f

∗Lψ) =

ψ(b)q
n
2 n is even

−ψ(b)G(χ2, ψ)χ2(c)q
n−1
2 n is odd.
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12.4. Bessel motives and moments of Bessel functions

We have already encountered in the introduction, Example 1.1.5, a two-dimensional exponential

motive whose periods are special values of the modified Bessel functions. Namely, one considers

the variety Gm = SpecQ[x, x−1] and the function fλ = −λ
2 (x−

1
x), where λ is a non-zero algebraic

number, say a non-zero element of a number field k ⊆ C. The Bessel motive associated with λ is

B(λ) = H1(Gm, fλ)(1)

seen as an object of Mexp(k). It is a two-dimensional motive. The rapid decay homology H1(X, fλ)

has a basis consisting of a simple loop around 0 and a path joining the two connected components

of f−1
λ (Sr) for large r > 0. Having chosen such a basis, we can identify the motivic Galois group

of B(λ) with a closed subgroup of GL2. We will in this section compute various realisations and

the motivic fundamental group of B(λ). After that, we examine what happens if λ is thought of

not as a fixed parameter, but as an additional variable. We will consider the function

f(t, x) = − tm

2 (x1 + x2 + · · ·+ xn − 1
x1
− 1

x2
− · · ·+ 1

xn
)

on A1 × Gn
m for some integers m ⩾ 1 and n ⩾ 1, and calculate periods of the exponential motive

Hn+1(A1×Gn
m, f). By design, these periods are moments of Bessel functions. Typical examples of

such moments are ∫ ∞

0
tK4

0 (t)dt =
7
8ζ(3)

∫ ∞

0
t3K3

0 (t)dt = L−3(2)− 2
3

where ζ is the Riemann Zeta function, and L−3 is the Dirichlet L-function associated with the

Legendre symbol n 7−→ (−3|n). Using the theorem of the fixed part 6.5.1, we will show that

moments of Bessel functions are polynomial expressions in classical periods and special values of

the gamma function.

Proposition 12.4.1. — detB(λ) = Q(1)

Proof. The determinant of B(λ) is the one-dimensional motive

detB(λ) = H2(X ×X, f ⊞ f)S2(2)

Consider the morphism X ×X → A2 given by the algebra morphism φ : k[s, t] → k[x, x−1, y, y−1]

sending s to x + y and t to (xy)−1. Setting g(s, t) = s + λ2

4 st we have φ(g(s, t)) = f(x) + f(y),

hence a morphism of motives

H2(A2, g)→ H2(A2, f ⊞ f)S2 (12.4.1.1)

induced by φ. Since λ2

4 is a square in k∗, the motive H2(A2, g) is that of the quadratic form

(s, t) 7−→ st which has determinant −1, hence H2(A2, g) = Q(−1). It remains to check that the

morphism (12.4.1.1) is non-zero. □

Proposition 12.4.2. — Let F [1] = RpervB(λ) be the perverse realisation of B(λ). The sin-

gularities of the constructible sheaf F are at the points {iλ,−iλ}. With respect to an appropriate

basis of F0, the local monodromy operators of the local system on C \ {±iλ} defined by F are

ρ+ =
(

1 0
−2 −1

)
and ρ− =

(
1 0
2 −1

)
,
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and the fibres of F at the singular points are the local invariants.

Proof. Let p : Gm×A1 → A1 be the projection and write Q for the constant sheaf with value

Q on Gm × A1. Let j be the inclusion into Gm × A1 of the complement of the closed subvariety

Γ = {(x, z) | fλ(x) = z}

of Gm × A1. The sheaf F is R1p∗(j!j
∗Q). Rewriting the equation fλ(x) = z as

x2 + 2z
λ x− 1 = 0

shows that the singularities of F are located at those points z ∈ C where the discriminant of the

quadratic polynomial x2 + 2z
λ x− 1 vanishes, and this discriminant equals 4(z2λ−2 +1). In order to

compute the monodromy of F around the singularities ±iλ, consider the basis of

V0 = F∨
0 = H1(C×, {±1})

given by a standard loop φ around 0, and the sum γ = γ+ + γ−, where γ+ is an arc from −1 to 1

in the upper half-plane, and γ− is an arc from −1 to 1 in the lower half-plane. As z runs over a

loop ρ+ around iλ, say

ρ+ : t 7−→ iλ+ λe2πi(t−1/4)

the roots of the polynomial

x2 + 2z
λ x− 1 = x2 + 2(i+ e2πi(t−1/4))x− 1

exchange positions, moving in the lower half-plane. The monodromy action ρ+ is accordingly

given by ρ+(φ) = φ, ρ+(γ+) = −γ− − φ and ρ+(γ−) = −γ−. With respect to the basis φ, γ, the

monodromy operator for the loop ρ+ acts on V0 as the matrix(
1 −2
0 −1

)
so the matrix of ρ+ on the dual space F0 = V ∨

0 is given by the transposed matrix. The computation

of the matrix of ρ− with respect to the same basis is similar. Finally, since F is an object of Perv0,

the dimensions of the fibres dimFiλ and dimF−iλ must add up to 2 = dimF0, hence must consist

of all the local invariants. In terms of the basis dual to φ, γ, the invariants are the one-dimensional

subspaces generated by the vectors
(

1
−1

)
for ρ+ and by

(
1
1

)
for ρ−. □

Proposition 12.4.3. — The motivic Galois group of the Bessel motive B(λ) is GL2.

Proof. Let G ⊆ GL2 denote the motivic Galois group of B(λ) and let H ⊆ G be the tannakian

fundamental group of the perverse realisation F [1] = RpervB(λ) of B(λ). We first notice that H

and G are both reductive. Indeed, the perverse sheaf F [1] is a simple object in the category Perv0

since already the local system defined by F is simple. In follows that B(λ) itself is simple too, and

in any tannakian category of characteristic zero the fundamental group of any simple or semisimple

object is reductive. By Proposition 12.4.1, the group G surjects to Gm via the determinant map,

and since the perverse realisation of Q(1) is trivial, the group H is contained in SL2. Again,

since F [1] is simple, the tautological two-dimensional representation of H as a subgroup of SL2 is

irreducible, but the only algebraic subgroup of SL2 with this property is SL2 itself. It follows that

H = SL2 and G = GL2 as claimed. □
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As a consequence of Proposition 12.4.3, the period conjecture specialises to the following state-

ment:

Conjecture 12.4.4. — For every non-zero algebraic number λ ∈ C, the following complex

numbers are algebraically independent:

I0(λ), I1(λ),
1

2πiK0(λ),
1

2πiK1(λ).

12.4.5. — Let m ⩾ 1 and n ⩾ 0 be integers. We consider the affine variety X = A1 ×Gn
m and

the regular function f : X → A1 given by

f(t, x) = −1
2 t
m

n∑
q=1

(
xq − 1

xq

)
for coordinate functions t and x = (x1, . . . , xn) on X. The triple (X,∅, f) is cellular in degree

n+ 1, and we are interested in the motive

B(m,n) = Hn+1(A1 ×Gn
m, f)

which has dimension (?).

Theorem 12.4.6. — The motive B(m,n) belongs to the tannakian category generated by classical

motives and B(m, 0) = H1(A1, tm). In particular, B(1, n) is a classical motive.

Proof. The only singularity of the perverse realisation ofB(m,n) is 0 ∈ C, and the monodromy

around 0 of the underlying local system is of order m. □

12.5. Special values of E-functions

Definition 12.5.1 (Siegel). — Let f be an entire function given by a power series

f(z) =

∞∑
n=0

an
n!
zn

with algebraic coefficients an. For each n ⩾ 1, let ||an|| denote the largest absolute value of all

Galois conjugates of an, and let dn ∈ Z⩾1 be the smallest integer such that dna1, dna2, . . . , dnan

are all algebraic integers. The function f is called an E-function if

• it satisfies a homogeneous linear differential equation with coefficients in Q(z),

• there exists a constant C > 0 such that ∥an∥ ⩽ Cn and dn ⩽ Cn for all n ⩾ 1.

12.5.2. — Instead of dn ⩽ Cn, Siegel [83] asks for the seemingly less stringent condition that,

for every ε > 0, there is a constant Cε > 0 such that dn ⩽ Cε(n!)
ε holds for all n. However, no
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examples of functions satisfying the latter condition but not the former one are known3. An elegant

alternative way to formulate the growth condition on the coefficients is to ask for

h([a0 : a1 : a2 : · · · : an]) = O(n)

where h stands for logarithmic height on Pn. Standard examples of E-functions include polynomials,

the exponential function, and the Bessel function J0(z
2). The exponential integral functions En

(see 12.6.1 below) are not E-functions, already because they have a singularity at 0.

Theorem 12.5.3 (Siegel–Shidlovskii). — Let f = (f1, . . . , fn) be E-functions which satisfy a

linear differential equation f ′ = Af for some n by n matrix A with coefficients in Q(z). The equality

trdegQ(f1(α), . . . , fn(α)) = trdegC(z)(f1(z), . . . , fn(z))

holds for any non-zero α ∈ Q which is not a pole of any of the coefficients of A.

12.6. Special values of exponential integral functions

In this section, we introduce exponential motives whose periods contain special values of the

exponential integral functions E1, E2, . . .. The theorem of Siegel–Shidlovskii about special values

of E-functions shows that a small part of the period conjecture holds for these motives.

12.6.1. — Recall that, for each integer n, the exponential integral function En is defined, in the

half-plane Re(s) > 0, by the convergent integral

En(s) =

∫ ∞

1
e−sx

dx

xn
.

In particular, E0(s) =
e−s

s . As a function of s, this integral defines a holomorphic function on the

right half complex plane, which extends to a holomorphic function on C\ [−∞, 0]. The function En
is closely related to the incomplete gamma function

Γ(s, x) =

∫ ∞

x
ts−1e−tdt,

namely by En(s) = sn−1Γ(n− 1, s). Integration by parts shows the recurrence relation

nEn+1(s) = e−s − sEn(s)

which allows us to calculate En for n ⩽ 0 from E0, and En for n ⩾ 1 from E1. In particular we

see that for n ⩽ 0 the function En(s) is a rational function of es and s, whereas for n ⩾ 1 the

function En(s) is a rational function of s, es and E1(s). One can show that the field extension

of C(s) generated by {En(s) | n ∈ Z} has transcendence degree 2. In other words, the functions es

and E1(s) are algebraically independent over C(s).

3Since f satisfies a differential equation, which can be thought of as a kind of linear recurrence relation for the

coefficients an, Siegel’s condition should imply the one we gave in the definition.
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12.6.2. — Special values of exponential integral functions En are not very much studied, with

the notable exception of the so-called Gompertz constant

G = e · E1(1) = 0.596347362323194074341 . . .

which is in several ways related to the Euler-Mascheroni constant, as we will see in section 12.8. It

admits two intriguing continued fraction representations

G =
1

2− 1
4− 4

6− 9

8− 16

10− 25

12− 36

14− 49
16−...

and G =
1

1 + 1
1+ 1

1+ 2

1+ 2

1+ 3

1+ 3

1+ 4
1+...

attributed to Stieltjes. The resulting rational approximations are however not good enough in order

to deduce that G is irrational. Irrationality of G is, as far as we know, still an open problem.

12.6.3. — Let k ⊆ C be a number field, and pick α ∈ k×. The integral representation of E1(α)

suggests that the exponential motive

M = H1(Gm, {1}, αx).

contains E1(α) among its periods. By the exact sequence for triples (4.2.4.2), the motive M fits

into a short exact sequence

0 −→ E(−α) −→M −→ H1(Gm, αx) −→ 0.

We claim that H1(Gm, αx) is isomorphic to Q(−1) = H1(Gm) as exponential motive. To see

this, consider X = Gm × A1 = Spec k[x, x−1, t], together with the function f(x, t) = xt. The

inclusions of Gm into X as Gm × {0}, respectively as Gm × {α}, yield morphisms of motives

H1(A1, f)→ H1(Gm), respectively H
1(A1, f)→ H1(Gm, αx), which are isomorphisms. Therefore,

we get an extension

0 −→ E(−α) −→M −→ Q(−1) −→ 0. (12.6.3.1)

A basis for rapid decay homology is given by the cycles γ◦ and γ−, defined as

γ◦(t) = e2πit and γ−(t) = 1 + rα−1t.

According to the elementary definition of rapid decay homology, γ− should be seen as a family of

cycles indexed by r ≫ 1 . A basis for the de Rham cohomology consists of the 1-form ω = x−1dx

on Gm, and the 0-form δ0 supported on the marked point {1} ⊆ Gm. With respect to these bases,

the period matrix of M reads:

δ0 ω

γ− e−α E1(α)

γ◦ 0 2πi

Proposition 12.6.4. — The extension of motives (12.6.3.1) is not split. With respect to the

basis dual to the basis {γ◦, γ−} of H1(Gm, {1}, αx), the motivic fundamental group of M is the

three-dimensional group

GM =
{(

a b
0 d

) ∣∣ a, d ∈ Gm, b ∈ Ga

}
.
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Proof. The semisimplification ofM is the motive E(−α)⊕Q(−1), whose motivic fundamental

group is the two-dimensional diagonal torus in GL2, since α ̸= 0. It only remains to show that the

extension (12.6.3.1) is not split. To do so, it suffices to show that the perverse realisation of this

sequence, which reads

0 −→ E(−α) −→ Rperv(M) −→ E(0) −→ 0

is not split. The object A = Rperv(M) of Perv0 has two singularities {0, α}. The fibre of A[−1]
over a point z /∈ {1, α} is the linear dual of the vector space H1(C×, {1, α−1z}). A basis of this

space is given by a positively oriented simple loop γ◦ around 0, and a path γz from 1 to α−1z. As z

moves in a loop based at r ≫ 0 around the singular point α, the path γr gets deformed into itself.

Hence the local monodromy around α is trivial. As z moves in a loop around the singular point 0

on the other hand, γr gets deformed into a path whose homology class is γ◦ + γr. It follows that

with respect to the dual basis {γ∨−, γ∨◦ } of H1
rd(Gm, {1}, αx}, the global monodromy of the local

system underlying A is given by(
1 1
0 1

)
around 0 and

(
1 0
0 1

)
around α.

Global invariants are the 1-dimensional subspace generated by γ∨− =
(
1
0

)
, which is the subspace

E(−α) of A. From the monodromy around 0 we see that the extension is not split, and more

precisely, that the tannakian fundamental group of A is equal to

GA =
{(

a b
0 1

) ∣∣ a ∈ Gm, b ∈ Ga

}
with torus of singularities given by the cocharacter a 7−→

(
a 0
0 1

)
. □

Conjecture 12.6.5. — For every non-zero algebraic number α, the complex numbers 2iπ, e−α,

and E1(α) are algebraically independent.

Lemma 12.6.6. — The power series f(z) =
∞∑
n=1

1

n · n!
zn is a transcendental E-function.

Proof. It is clear that f(z) is an entire function, whose coefficients an = 1/n are bounded.

We only have to check that, for some constant C, the inequality

dn = lcm(1, 2, 3, 4, 5, . . . , n) ⩽ Cn

holds. This least common multiple is conveniently expressed using the summatory von-Mangoldt

function or secondary Chebyshev function ψ(n): We have

dn = exp(ψ(n))

for all n ⩾ 1. The function ψ grows asymptotically as ψ(x) ∼ x - this is equivalent to the prime

number theorem. In particular ψ(x) < cx for sufficiently large c > 1, hence dn < ecn = Cn. In

order to show that f is a E-function, it remains to find a linear differential equation for f . Indeed,

we have 1 + zf ′(z) = ez by inspection of the power series, hence

(1 + zf ′(z))′ = 1 + zf ′(z)
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is the differential equation (ez)′ = ez. Rearranging terms yields the differential equation

zf ′′(z) + (1− z)f ′(z) = 1

which is only affine and not linear, but we can always derive once more. □

The general solution of zu′′ + (1 − z)u′ = 1 is A + Bf(z) − log(z) for constants A and B.

Unfortunately, log(z) is not an E-function. The Siegel–Shidlovski theorem thus only shows that

special values of the function f , such as

f(−1) =
∫ 1

0

∫ 1

0
e−xydxdy

are transcendental. Once we show that f(z) and ez are algebraically independent over C(z), we
will obtain algebraic independence over Q of, say, f(−1) and e.

12.7. Laurent polynomials and special values of E-functions

We fix a number field k ⊆ C. Regular functions on Gm = A1 \ {0} are Laurent polynomials

with coefficients in k, so we obtain a motive M = H1(Gm, f) from every Laurent polynomial f . In

this section, we show how to relate some of the periods of M to special values of E-functions. The

Siegel-Shidlovskii theorem allows us then to prove some transcendence results.

12.7.1. — Let f ∈ k[x, x−1] be a Laurent polynomial of the form

f(x) =
1

d
(c−rx

−r + · · ·+ csx
s)

where d > 0 is an integer and the ci ∈ Ok are algebraic integers. We assume that r and s are both

positive and the coefficients c−r and cs non-zero. The motive M = H1(Gm, f) has dimension r+ s.

A particular element in the rapid decay homology of (Gm, f) is the standard loop γ winding once

counterclockwise around 0. Given another Laurent polynomial g ∈ k[x, x−1], we set

E(g, z) =
1

2πi

∮
e−zf(x)g(x)dx,

where z is a complex variable and the integral sign means integration along the loop γ. The function

E(g, z) is entire and satisfies the following three relations:

aE(g, z) + bE(h, z) = E(ag + bh, z), (12.7.1.1)

∂
∂zE(g, z) = −E(fg, z), (12.7.1.2)

E(g′, z) = zE(f ′g, z). (12.7.1.3)

In the first one, a and b are scalars in k and h is another Laurent polynomial. The second one is

obtained by differentiating under the integral sign, which is allowed since the cycle γ is compact.

Finally, the third one follows from Stokes’ formula and could be rewritten as E(dzf (g), z) = 0.

Proposition 12.7.2. — The function E(g, z) is an E-function.



12.7. LAURENT POLYNOMIALS AND SPECIAL VALUES OF E-FUNCTIONS 273

Proof. We have to verify that E(g, z) satisfies a non-zero linear differential equation, and that

the coefficients an of the Taylor expansion

E(g, z) =
∞∑
n=0

an
n!
zn

lie in a common number field and their logarithmic height has at most linear growth. By (12.7.1.1)

and the fact that linear combinations of E-functions are again E-functions, we may assume that g

is a monomial, say g(x) = xd for some integer d ∈ Z.

Let us start with bounding the coefficients. By (12.7.1.2), they are equal to

an = (−1)nE(fng, 0) =
(−1)n

2πi

∮
f(x)ng(x)dx

which is, by Cauchy’s formula, the coefficient of x−1 in the Laurent polynomial f(x)ng(x). Since

we already assume g(x) = xd, the coefficient an is the coefficient of x1−d in f(x)n. It is thus clear

that an belongs to k. Moreover, we can write an in terms of the coefficients of f as

an =
1

dn

∑
ci1ci2 · · · cin ,

where the sum runs over all n-tuples of integers (i1, . . . , in) ∈ [−r, s]n satisfying i1+ · · ·+ in = 1−d.
Define C = max{∥c−r∥, . . . , ∥cn∥}. The estimate

∥an∥ ⩽ (r + s)nmax
{
∥ci1ci2 · · · cin∥

∣∣ − r ⩽ i1, . . . , in ⩽ s} ⩽ (r + s)n · Cn

is what was needed in Definition 12.5.1. It remains to show that E(g, z) satisfies a non-trivial

differential equation. This is a straightforward consequence of the relations (12.7.1.1), (12.7.1.2)

and (12.7.1.3). Indeed, the functional equation tells us that the C(z)-linear space of entire functions
spanned by {E(g, z) | g ∈ k[x, x−1]} is finite-dimensional, of dimension at most r + s. Therefore,

for any fixed g, the functions ∂i

∂zi
{E(g, z) | 0 ⩽ i ⩽ r + s} are C(z)-linearly dependent. □

12.7.3. — In the proof of proposition 12.7.2, we have explained why the function E(g, z)

satisfies a differential equation of order ⩽ r + s. Let us now describe an explicit construction of

this differential equation, in the form of a system of first order linear differential equations. Set

Ep(z) = E(xp, z). Our goal is to produce an equation

∂
∂zE = LE

where E is the vector of functions (E0, . . . , Er+s−1) and L is a matrix with coefficients in k(z). The

functional equation (12.7.1.3) applied to g(x) = xp+1 reads

(p+ 1)Ep(z) = zE(xpf ′(x), z) =
z

d

s∑
q=−r

qcqEp+q(z) (12.7.3.1)

For each p ∈ Z, we can determine uniquely apq ∈ k[z, z−1] such that

Ep(z) =

r+s−1∑
q=0

apq(z)Eq(z) (12.7.3.2)
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holds. This is indeed possible, trivially so for 0 ⩽ p < r + s and inductively on p for p < 0

and p ⩾ r + s. For our needs, we need to determine the coefficients apq for −r ⩽ p < 0 and

r + s ⩽ p < r + 2s. The differential relation (12.7.1.2) in the case g(x) = xp reads

E′
p(z) = −E(xpf(x), z) = −

s∑
q=−r

cqEp+q(z) (12.7.3.3)

For each 0 ⩽ p < r + s, we can substitute the relations (12.7.3.2) into the right-hand side of

(12.7.3.3), and obtain so the sought system of differential equations. The coefficients of the matrix

L are linear combinations of the apq ∈ k[z, z−1], hence are themselves elements of k[z, z−1].

Example 12.7.4. — Consider the Laurent polynomial f(x) = x−3+x−1+x+x3. Since f is odd,

we expect that the resulting motive M = H1(Gm, f) has some extra symmetries. The dimension

of M is 3 + 3 − 1 = 5. The diferential forms dx, xdx, . . . , x5dx represent a basis of the de Rham

cohomology H1
dR(Gm, zf). Here are the equations (12.7.3.1) for p = 0, 1, 2, 3, 4, 5.

E0(z) = −3zE−3(z)− zE−1(z) + zE1(z) + 3zE3(z)

2E1(z) = −3zE−2(z)− zE0(z) + zE2(z) + 3zE4(z)

3E2(z) = −3zE−1(z)− zE1(z) + zE3(z) + 3zE5(z)

4E3(z) = −3zE0(z)− zE2(z) + zE4(z) + 3zE6(z)

5E4(z) = −3zE1(z)− zE3(z) + zE5(z) + 3zE7(z)

6E5(z) = −3zE2(z)− zE4(z) + zE6(z) + 3zE8(z)

The linear relations (12.7.3.2) for p = −1,−2,−3 and p = 6, 7, 8 are obtained from these. Here

they are.

E−1(z) = −1
3E1(z)− 1

zE2(z) +
1
3E3(z) + E5(z)

E−2(z) = −1
3E0(z)− 2

3zE1(z) +
1
3E2(z) + E4(z)

E−3(z) = −1
3E−1(z)− 1

3zE0(z) +
1
3E1(z) + E3(z)

= − 1
3zE0(z) +

4
9E1(z) +

1
3zE2(z) +

8
9E3(z)− 1

3E5(z)

E6(z) = E0(z) +
1
3E2(z) +

4
3zE3(z)− 1

3E4(z)

E7(z) = E1(z) +
1
3E3(z) +

5
3zE4(z)− 1

3E5(z)

E8(z) = E2(z) +
1
3E4(z) +

2
zE5(z)− 1

3E6(z)

= −1
3E0(z) +

8
9E2(z)− 4

9zE3(z) +
4
9E4(z) +

2
zE5(z)
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Next, let us write the differential relations (12.7.3.3) for 0 ⩽ p < r + s.

E′
0(z) = −E−3(z)− E−1(z)− E1(z)− E3(z)

E′
1(z) = −E−2(z)− E0(z)− E2(z)− E4(z)

E′
2(z) = −E−1(z)− E1(z)− E3(z)− E5(z)

E′
3(z) = −E0(z)− E2(z)− E4(z)− E6(z)

E′
4(z) = −E1(z)− E3(z)− E5(z)− E7(z)

E′
5(z) = −E2(z)− E4(z)− E6(z)− E8(z)

Substituting E−3, E−2, E−1 and E6, E7, E8, we obtain:

E′
0(z) = 1

3zE0(z)− 10
9 E1(z) +

2
3zE2(z)− 20

9 E3(z)− 2
3E5(z)

E′
1(z) = −2

3E0(z) +
2
3zE1(z)− 4

3E2(z)− 2E4(z)

E′
2(z) = −2

3E1(z) +
1
zE2(z)− 4

3E3(z)− 2E5(z)

E′
3(z) = −2E0(z)− 4

3E2(z)− 4
3zE3(z)− 2

3E4(z)

E′
4(z) = −2E1(z)− 4

3E3(z)− 5
3zE4(z)− 2

3E5(z)

E′
5(z) = −2

3E0(z)− 20
9 E2(z)− 8

9zE3(z)− 10
9 E4(z)− 2

zE5(z)

From this system we can read off the matrix L.

L =



1
3z −10

9
2
3z −20

9 0 −2
3

−2
3

2
3z −4

3 0 −2 0

0 −2
3

1
z −4

3 0 −2
−2 0 −4

3 − 4
3z −2

3 0

0 −2 0 −4
3 − 5

3z −2
3

−2
3 0 −20

9 − 8
9z −10

9 −2
z



12.8. The Euler–Mascheroni constant

In this final section, we describe a two-dimensional exponential motive over the field of ratio-

nal numbers that is a non-classical extension of Q(−1) by Q(0) containing the Euler–Mascheroni

constant γ among its periods. We refer the reader to [60] for a beautiful survey of the role this

constant played in Euler’s work and subsequent developments. That γ is an exponential period

was observed by Belkale and Brosnan in [9] using the integral representation

γ = −
∫ ∞

0
log(x)e−xdx = −

∫ ∞

0
e−x

∫ x

1

dy

y
dx = −

∫ ∞

0

∫ 1

0
e−x

x− 1

(x− 1)y + 1
dydx,

which follows from the fact that −γ is the value at 1 of the derivative of the gamma function.

Although the integrand has a pole at the point (0, 1) which lies on the boundary of the integra-

tion domain, the integral converges absolutely. However, this makes it difficult to write down an

exponential motive out of this integral representation.
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To get rid of the pole of the integrand, we resort to blowing up the affine plane at the origin. In

terms of the integral, this just means that we change variables from (x, y) to (xy, y), thus obtaining:

γ = −
∫ ∞

0

∫ x

1

1

y
e−xydyd(xy) =

∫ 1

0

∫ 1

0
e−xydxdy −

∫ ∞

1

∫ ∞

1
e−xydxdy. (12.8.0.1)

The first of these two integrals is a special value of the E-function from Lemma 12.6.6, and it

is a transcendental number by the Siegel–Shidlovskii theorem. The second integral is the special

value E1(1) of the exponential integral function that we already studied in Section 12.6.

12.8.1 (The Euler–Mascheroni motive). — The integral representation (12.8.0.1) suggests the

following geometric picture: let X = SpecQ[x, y] be the affine plane, Y the union of four lines

given by the equation xy(x − 1)(y − 1) = 0, and f the regular function f(x, y) = xy on X. The

exponential motive H2(X,Y, f) has γ among its periods by design. As we will see below, it turns

out to be three-dimensional. In the course of the computation of its period matrix, we observed that

H2(X,Y, f) should admit a two-dimensional quotient M(γ), still containing γ among its periods,

and which sits in an non-split extension

0 −→ Q(0) −→M(γ) −→ Q(−1) −→ 0.

To define M(γ), we consider the blow-up π : X̃ → X of the affine plane at the point (1, 1). Let Ỹ

denote the strict transform of Y , let E be the exceptional divisor, and f̃ = f ◦ π the induced

function on X̃. The motive H2(X̃, Ỹ , f̃) is again three-dimensional but the blow-up map π yields

a rank-two morphism of exponential motives

π∗ : H2(X,Y, f) −→ H2(X̃, Ỹ , f̃).

Definition 12.8.2. — The Euler–Mascheroni motive M(γ) ⊆ H2(X̃, Ỹ , f̃) is the image of π∗.

In what follows, we will first compute all realisations of the whole motive H2(X,Y, f), then

identify the realisations of the quotient M(γ).

12.8.3 (Computation of rapid decay homology). — The topological picture is the following: The

topological space X(C) = C2 has the homotopy type of a point. The subspace Y (C) consists of

four copies of the complex plane glued to a square, and hence has the homotopy type of a circle.

The set f−1(Sr) = {(x, y) ∈ C2 | Re(xy) ⩾ r} is homeomorphic to C∗ × R× R⩾0, and is for r > 1

glued to Y (C) in the adjacent lines y = 1 and x = 1. Here is the real picture.

The space Y (C) ∪ f−1(Sr) has the homotopy type of a wedge of three circles, which bound

three 2-cells forming a basis of H2(X(C), Y (C) ∪ f−1(Sr)). In the picture on the left-hand side,

two of these 2-cells are visible - the square shaped cell γ□ and the triangle shaped cell γ△. In the

blow-up pictured on the right-hand side, these two cells merge to a single cell, which maps via the

blow-up map π to γ□ − γ△. The boundary of the third cell is the circle in {(x, y) ∈ C2 | xy = r}
given by the simple loop t 7−→ (e2πit, re−2πit). There is another subtlety which is invisible in the

picture: the three sides of the triangle shaped cell are paths from (1, 1) to (1, r) in the x = 1 plane,

from (1, 1) to (r, 1) in the y = 1 plane, and from (r, 1) to (1, r) in the xy = r plane. For the first



12.8. THE EULER–MASCHERONI CONSTANT 277

Figure 12.8.1

two paths, any choice is homotopic to any other, but not so for the third since in the xy = r plane

a point is missing. Two choices for the boundary of γ△ differ by a class in H1(f
−1(Sr),Q) ≃ Q.

One evident choice for γ△ is the cell which is contained in R2 ⊆ C2. The boundary morphism

∂ : H2(X(C), Y (C) ∪ f−1(Sr)) −→ H1(Y (C) ∪ f−1(Sr))

is an isomorphism. Therefore, H2(X(C), Y (C) ∪ f−1(Sr)) has dimension 3, a basis being given

by the two cells γ□ and γ△ in the picture, and a disk γ◦ filling the loop t 7−→ (e2πit, re−2πit).

It follows in particular that the motive H2(X,Y, f) is of dimension 3, as claimed. The quotient

H2(X,Y, f)→M(γ) corresponds to the two-dimensional subspace

⟨γ□ − γ△, γ◦⟩.

Hence, M(γ) is two-dimensional.

12.8.4 (Computation of de Rham cohomology). — Let Y (1) be the normalisation of Y , i.e. the

disjoint union of the four irreducible components of Y , and let Y (2) ⊆ Y be the four singular

points of Y . Write ι : Y (1) → X for the composite of the normalisation map with the inclusion,

α : Y (2) → Y (1) for the inclusion of Y (2) into the two vertical lines, and β : Y (2) → Y (1) for the

inclusion of Y (2) into the two horizontal lines. The de Rham complex associated with (X,Y, f) is

the total complex of the double complex

0 Ω0(X) Ω1(X) Ω2(X) 0

0 Ω0(Y (1)) Ω1(Y (1)) 0

0 Ω0(Y (2)) 0

// //
df

��
ι∗

��
ι∗

//
df

��

//

//

��
α∗−β∗

//
df

��

//

// //

which we describe now explicitly. The de Rham complex (Ω∗(X), df ) is the complex

Q[x, y] −→ Q[x, y]dx⊕Q[x, y]dy −→ Q[x, y]dxdy
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with differentials given by

df (g) =
(
yg +

∂g

∂x

)
dx+

(
xg +

∂g

∂y

)
dy

df (gdx+ hdy) =
(
−xg + yh+

∂g

∂y
− ∂h

∂x

)
dxdy

and its homology is concentrated in degree 2 of dimension 1, represented by the form dxdy.

The variety Y (1) is the union of four affine lines, say the spectrum of Q[x0]⊕Q[x1]⊕Q[y0]⊕Q[y1]

where we name coordinates in such a way that x0 is the coordinate on the line y = 0, x1 the

coordinate on the line y = 1, y0 the coordinate on the line x = 0, and y1 the coordinate on the line

x = 1. A regular function g = g(x, y) on the plane restricts thus to

ι∗(g) =
(
g(x0, 0), g(x1, 1), g(0, y0), g(1, y1)

)
,

and a 1-form gdx+ hdy on the plane restricts to

ι∗(gdx+ hdy) =
(
g(x0, 0)dx0, g(x1, 1)dx1, h(0, y0)dy0, h(1, y1)dy1

)
.

In particular, the function f(x, y) = xy restricts to (0, x1, 0, y1). The differential df : Ω
0(Y (1)) →

Ω1(Y (1)) is given by

df
(
g0, g1, h0, h1

)
=
(
g′0dx0, (g

′
1 + g1)dx1, h

′
0dy0, (h

′
1 + h1)dy1)

)
.

The homology of (Ω∗(Y (1)), df ) is concentrated in degree 0 of dimension 2, generated by the constant

functions

(1, 0, 0, 0) and (0, 0, 1, 0). (12.8.4.1)

Elements of Ω0(Y (2)) are quadruples of rational numbers which we arrange in a matrix in the

evident way. The map α∗ − β∗ : Ω0(Y (1))→ Ω0(Y (2)) is given by

(α∗ − β∗)(g0, g1, h0, h1) =

(
−g0(1) + h1(0) −g1(1) + h1(1)

−g0(0) + h0(0) −g0(1) + h1(0)

)
.

A particular basis of Ω0(Y (2)) is given by the four elements(
1 0

1 0

)
,

(
0 0

−1 −1

)
, δ00 =

(
0 0

1 0

)
, δ11 =

(
0 1

0 0

)
,

where the first two are the images under α∗−β∗ of the basis of ker(df ) given in (12.8.4.1). From this

explicit description, it is straightforward to check that H2
dR(X,Y, f) has dimension 3, and a basis

is represented by the triples (dxdy, 0, 0), (0, 0, δ00), and (0, 0, δ11) in Ω2(X)⊕Ω1(Y (1))⊕Ω0(Y (2)).

12.8.5 (The period matrix). — In order to compute a period matrix, we need represent rapid

cycles in a way which is compatible with de Rham complex. Keeping the notation of the previous

paragraph, the rapid decay homology of [X,Y, f ] can also be computed as the homology of the
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total complex associated with the following double complex of singular chains:

0 C0(X, f) C1(X, f) C2(X, f) · · ·

0 C0(Y
(1), f) C1(Y

(1), f) · · ·

0 C0(Y
(2)) · · ·

oo oo d oo d oo
OO

ι∗

oo

OO
ι∗

oo d oo

OO

oo

OO
α∗−β∗

oo

OO

The complexes in the top and middle row are the reduced singular chain complexes of the quotient

spaces X(C)/f−1(Sr) and Y (1)(C)/(f ◦ ι)−1(Sr) for some large real r > 1. Up to homotopy, this

choice of r is unimportant. In this setup, a cycle γ in H2(X,Y, f) is represented by a triple

(T, L, P ) ∈ C2(X, f)⊕ C1(Y
(1), f)⊕ C0(Y

(2))

where T represents a preimage of γ under the map H2(X, f) → H2(X,Y, f), and L and P satisfy

dT = ι∗L and dL = α∗P −β∗P . The three cycles γ□, γ△ and γ◦ correspond to the following triples:

γ□
(
T1 + T2,−L1 + L2 − L3 + L4, P00 − P01 − P10 + P11

)
γ△

(
T3,−L5 + L6, P11

)
γ◦

(
T0, 0, 0

)
The cycles T1, T2, . . . are drawn in Figure 12.8.2 except for the cycle T0 which is just γ◦ seen as an

element in C2(X, f).

Figure 12.8.2. Cycles on X, Ỹ and Z

We can now turn to the computation of the integrals of dxdy, δ00, and δ11, each over the three

topological cycles γ□, γ△, and γ◦. The integrals over γ□ are∫
γ□

e−fδ00 =

∫
P00−P01−P10+P11

e−fδ00 = 1,∫
γ□

e−fδ11 =

∫
P00−P01−P10+P11

e−fδ11 = e−1,∫
γ□

e−fdxdy =

∫
T1+T2

e−fdxdy =

∫ 1

0

∫ 1

0
e−xydxdy = γ + E1(1),

and the integrals over γ△ are ∫
γ△

e−fδ00 =

∫
P11

e−fδ00 = 0,
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γ△

e−fδ11 =

∫
P11

e−fδ11 = e−1,∫
γ△

e−fdxdy =

∫
T3

e−fdxdy =

∫ ∞

1

∫ ∞

1
e−xydxdy = E1(1).

Over γ◦, only the integral over e−fdxdy is non-zero. Setting x = e2πit and y = re−2πit we find∫
γ◦

e−fdxdy = 2πi

∫ 1

0

∫ 1

0
e−re2πite−2πitdtdr = 2πi(1− e−r)

and this quantity converges to 2πi as r →∞. The following table (aka. period matrix) summarises

the results: ∫
δ00 δ11 dxdy

γ□ − γ△ 1 0 γ

γ△ 0 e−1 E1(1)

γ◦ 0 0 2πi

12.8.6 (The Euler–Mascheroni motive as an extension). — Let us examine the structure of the

motive M(γ) in detail. We keep the notation from 12.8.1 and denote by E the exceptional divisor

of the blow-up π : X̃ → X. Let Z ⊆ Y be the union of two lines defined by (x − 1)(y − 1) = 0,

and denote by Z̃ ⊆ X̃ the strict transform of Z. We consider the following commutative diagram

of exponential motives with exact rows and columns:

0

��

0

��

H1(E,E ∩ Ỹ , 1)
∼= //

��

H1(E,E ∩ Z̃, 1)

��
0 // H1(Y,Z, f |Y ) //

∼=
��

H2(X,Y, f)

π∗

��

// H2(X,Z, f) //

π∗
0
��

0

0 // H1(Ỹ , Z̃, f̃) // H2(X̃, Ỹ , f̃) //

��

H2(X̃, Z̃, f̃) //

��

0

H2(E,E ∩ Ỹ , 1)
∼= //

��

H2(E,E ∩ Z̃, 1)

��
0 0

The middle column comes from the long exact sequence of the pair of immersions Ỹ ⊆ Ỹ ∪E ⊆ X̃
and the excision isomorphism Hn(Ỹ ∪ E, Ỹ , f̃|Ỹ ∪E)

∼= Hn(E,E ∩ Ỹ , 1). The right-hand column is

obtained in the same way replacing Y by Z, and the top and bottom isomorphisms follow from the

equality E ∩ Ỹ = E ∩ Z̃. The horizontal short exact sequences are part of the long exact sequences

associated with the triples Z ⊆ Y ⊆ X and Z̃ ⊆ Y ⊆ X respectively. The zeroes on the right-hand

side are explained by cohomological dimension. The zeroes on the left-hand side can be obtained

by writing out the long exact sequences of the pairs Z ⊆ X and Z̃ ⊆ X̃.
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The motive H1(Ỹ , Z̃, f̃) is isomorphic to Q(0). The motives on top and bottom of the vertical

sequences are all of dimension 1, and hence π∗ is of rank 2 = 3 − 1. It follows that M(γ) is of

dimension 2, and sits in a short exact sequence

0→ Q(0)→M(γ)→ im(π∗0)→ 0 .

The sequence 0 → H1(E,E ∩ Z̃, 1) → H2(X,Z, f) → H2(X, f) → 0 is exact, and the motive

H2(X, f) is isomorphic to Q(−1) by Proposition 12.2.3. Hence the image of the map π∗0 is Q(−1).

Proposition 12.8.7. — The Euler–Mascheroni motive is a non-trivial extension of Q(−1)
by Q(0). In other words, there is a short exact sequence

0→ Q(0)→M(γ)→ Q(−1)→ 0

of exponential motives, and the vanishing Hom(M(γ),Q(0)) = 0 holds.

Proof. In order to show that M(γ) is a non-trivial extension, it suffices to check that some

realisation of M(γ) is a non-trivial extension. Let us look at the Hodge realisation. The Hodge

realisation of the exact sequence is a sequence of mixed Hodge modules whose fibre over z ̸= 0, 1 is

the sequence of mixed Hodge structures presented in the lower row of the following diagram.

H1(Y ∪ f−1(z), Y ) H1(Ỹ ∪ f−1(z) ∪ E, Ỹ ∪ E)

H1(P1, {0,∞}) H2(X,Y ∪ f−1(z)) H2(X̃, Ỹ ∪ f−1(z)) H2(P1, {0,∞})
��

//
∼=

��
// //(∗) //

The vertical maps are morphisms induced by triples, and the top horizontal morphism is the induced

by the blow-up map π restricted to Ỹ ∪ f−1(z) ∪E. The morphism labelled (∗) is also induced by

the blow-up map, and hence the diagram commutes. The image of the morphism (∗) is the fibre

over z of the Hodge realisation of M(γ). The top horizontal morphism is an isomorphism of Hodge

structures, so the fibre over z of the Hodge realisation of M(γ) is the Hodge structure

H1(Gm, {1, z2}) ∼= H1(f−1(z), {(1, z), (z, 1)})

which is an extension of Q(−1) by Q, non-split unless z is a root of unity. □

Corollary 12.8.8. — The motivic fundamental group of M(γ) with respect to an appropriate

basis is equal to the group

GM(γ) =
{(

1 b
0 a

) ∣∣ a ∈ Gm, b ∈ Ga

}
.

Therefore, the exponential period conjecture implies that γ and 2πi are algebraically independent.

Proof. The semisimplification of the motive M(γ) is isomorphic to Q(0)⊕Q(−1), and hence

the reductive quotient of GM(γ) is the group

GQ(0)⊕Q(−1) =
{(

1 0
0 a

) ∣∣ a ∈ Gm

}
.

Since M(γ) is a non-trivial extension, the unipotent radical of GM(γ) is a non-zero subgroup of Ga,

and hence equal to Ga. □
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Corollary 12.8.9. — The motivic fundamental group of H2(X,Y, f) with respect to an appro-

priate basis is equal to the group

GH2(X,Y,f) =
{( 1 0 b

0 a c
0 0 d

) ∣∣ b, c ∈ Ga, a, d ∈ Gm

}
.

Therefore, the exponential period conjecture implies that the numbers e−1, E1(1), γ, and 2πi are

algebraically independent.

Remark 12.8.10. — The shape of the period matrix suggests that H2(X,Y, f) has a subobject

or a quotient isomorphic to the motive associated with E1(1), as introduced in the previous section.

Indeed, this is the case. Let Z be the union of the lines x = 1 and y = 1. The exact sequence

(4.2.4.2) for the pair of inclusions Z ⊆ Y ⊆ X yields an exact sequence

0 −→ H1(Y,Z, f |Y ) −→ H2(X,Y, f) −→ H2(X,Z, f) −→ 0

12.8.11 (Computation of Hodge realisation). — The perverse sheaf underlying the exponential

Hodge realisation of M has two singularities, S = {0, 1}.

Corollary 12.8.12. — The exponential period conjecture implies that γ is transcendental over

the field of usual periods.

Proof. Arguing as in the proof of Proposition 12.1.4, we are reduced to showing that, for

each usual motive M over Q, the dimension of the motivic Galois group of M+ = M ⊕M(γ) is

bigger than that of the motivic Galois group of M . For this, we use that the perverse realisation

Rperv(M
+) has fundamental group Ga. Letting GM+ and GM denote the motivic Galois groups

of M+ and M and GF+ and GF the fundamental groups of their perverse realisations, there is a

commutative diagram

Ga
∼= GF+ GF = 0

GM+ GM .
��

⊆

// //

��

⊆

// //

The one-dimensional group Ga is thus contained in the kernel of the surjection GM+ → GM , hence

the sought-after inequality dimGM+ > dimGM . □



CHAPTER 13

Gamma motives and the abelianisation of the motivic exponential

Galois group

At the outset of this monograph stands Lang’s conjecture 1.3.4 about the transcendence de-

gree of the field generated by the values of the gamma function at rational numbers with a fixed

denominator. As we saw in Example 1.1.4 from the introduction, they all appear as periods of the

exponential motives

Mn = H1(A1
Q, x

n).

Note that, if n divides m, the map x 7−→ xm/n induces an inclusion Mn ⊂ Mm. We call gamma

motive the ind-exponential motive colimnMn.

13.1. The Serre tori

We convene that all Hodge structures are polarisable, rational Hodge structures. We say that

a Hodge structure is of CM-type if its Mumford-Tate group is commutative.

By a CM field we understand a subfield k ⊆ C which is

With this definition, Q ⊆ C is a CM field. It is important to us that CM fields are actual

subfields of C, and hence come with a distinguished embedding k → C.

13.1.1. — Tori over Q are in one to one correspondence with finitely generated free Z-modules

equipped with a continuous action of Gal(Q/Q). To a torus T corresponds its group of characters

XT = Hom(TQ,Gm,Q), and to a Z-module X with Galois action corresponds the torus TX =

Hom(X,Gm). Let T be a torus over Q with character group X. To give a representation T → GLV

of T on a vector space V is to give a decomposition of Q-vector spaces

V ⊗Q =
⊕
χ∈X

Wχ

which is compatible with Galois actions, in the sense that g(Wχ) =Wgχ holds for all g ∈ Gal(Q/Q).

To such a decomposition corresponds the representation ρ defined by

ρ(t)(w) = t(χ)w

283
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for all elements t : X → Gm of T , characters χ : TQ → Gm,Q and vectors w ∈ Wχ. A priori, this

representation is only defined over Q, and it is the compatibility condition that ensures that it is

defined over Q. In these terms, the image of the representation ρ : T → GLV corresponds to the

subgroup of X generated by

{χ ∈ X |Wχ ̸= 0} ⊆ X

which is indeed a Galois submodule. In particular ρ is faithful if and only if the characters χ with

Wχ ̸= 0 generate X.

13.1.2. — Let k be a CM field, and write Σ for the set of complex embeddings of k. The Serre

torus Sk associated with k is the torus over Q whose group group of characters is

Xk =
{
χ ∈ Map(Σ,Z)

∣∣∣ σ 7−→ χ(σ) + χ(σ) is constant.
}

with its natural Gal(Q/Q)-action. It is a torus of dimension 1
2 [k : Q] − 1, except when k = Q, in

which case Sk = Gm. An inclusion of CM fields k ⊆ k′ induces a map res : Σ′ → Σ between the

respective sets of complex embeddings sending σ′ : k′ → C to its restriction to k. This restriction

map in turn induces a Galois equivariant injective group homomorphism Xk → Xk′ sending χ to

χ ◦ res, and hence a surjective morphism of tori(
w,
∑
σ∈Σ

nσσ
)
7−→

(
w,
∑
σ∈Σ′

nσ′|kσ
′
)
.

We call Serre torus the protorus

S = lim
k⊆C

Sk,

where the limit runs over all CM fields k ⊆ C ordered by inclusion. The composite of finitely many

CM fields is CM, hence this limit filtered, and to give a finite-dimensional representation of S is to

give a finite-dimensional representation of Sk for some sufficiently large CM field k.

13.1.3. — Let k ⊆ C be a CM-field, and let V be a finite-dimensional representation of Sk.

We will construct a Hodge structure on the vector space V . According to the general discussion of

representations of tori, the action of Sk on V corresponds to a decomposition

V ⊗Q =
⊕
χ∈Xk

Wχ

which is compatible with Galois actions. We declare the Hodge decomposition of V to be

V p,q =
⊕

χ(σ0)=p
χ(σ0)=q

Wχ ⊗Q C,

where σ0 : k → C is the inclusion.

13.1.4. — Let V be a Hodge structure of weight w, and let k be a CM-field. A complex

multiplication of k on V is a Q-algebra homomorphism ι : k → End(V ) such that V is a one-

dimensional k-vector space via ι. In other words, dimQ V = [k : Q]. Given such a complex

multiplication, we obtain
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Proposition 13.1.5. — Let V be an irreducible Hodge structure. The following are equivalent:

(1) The Hodge structure V is of CM-type, that is to say the Mumford-Tate group of V is

commutative.

(2) The Q-algebra k = End(V ) is a CM-field, and V has complex multiplication by k.

Theorem 13.1.6. —

13.1.7. — The Fermat curve C ⊆ P2 of degree n > 1 is the plane curve defined by the equation

xn + yn = zn. It is smooth of genus 1
2(n − 1)(n − 2). A basis of the de Rham cohomology group

H1
dR(C) is given by the forms

ωr,s = xr−1ys−ndx

for integers 1 ⩽ r, s ⩽ n − 1 satisfying r + s ̸= n. They are meromorphic forms on C. The forms

{ωr,s | r + s < n} are holomorphic, and hence form a basis of H0(C,Ω1
C).

13.2. Groups of circulant matrices

Let n ⩾ 3 be an integer. We introduce a torus Tn ⊆ GLn of dimension 1+ φ(n)
2 and a surjective

map πn : Tn → SQ(µn) with kernel Z/nZ. For every quotient m of n, we construct a surjective

morphism Tn → Tm fitting into a map of short exact sequences

,

0 Z/nZ Tn SQ(µn) 1

0 Z/mZ Tm SQ(µm) 1

// //

���� ����

//πn

����

//

// // //πm //

where the vertical map on the left is the canonical projection, and the vertical map on the right is

induced by the inclusion Q(µm)→ Q(µn) as explained in 13.1.2.

13.2.1. — Let n ⩾ 3 be an integer. An n× n matrix of the form

C =


c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

cn−2 cn−1 c0 · · · cn−3

...
...

...
...

c1 c2 c3 · · · c0


is called a circulant matrix. The polynomial fC(X) = c0 + c1X + · · · + cn−1X

n−1 is called its

associated polynomial. The determinant of C is the product f(1)f(ζ) · · · f(ζn−1), where ζ is a
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primitive n-th root of unity. Circulant matrices are precisely those matrices which commute with

the particular circulant matrix

h =


0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0
...

...
...

...

1 0 0 · · · 0

 ,

and every circulant matrix is a linear combination of h0, h1, . . . , hn−1. In particular, circulant

matrices form a subalgebra of the ring of all n×n matrices that is isomorphic to the group algebra

of Z/nZ. We denote by Circn ⊆ GLn the algebraic group of invertible circulant matrices. As an

algebraic group over Q, this group is a torus of dimension n, which splits over the cyclotomic field

of n-th roots of unity. A splitting is given by the isomorphism Circn → Gn
m of algebraic groups

over Q(µn) sending a circulant matrix C to the n-tuple
(
fC(ζ

j)
)
j=0,...,n−1

, where ζ is a primitive

n-th root of unity. The group of characters of Circn is the free group generated by the set of n-th

roots of unity, with its obvious Galois action.

Definition 13.2.2. — Let n ⩾ 3 be an integer. We denote by Tn ⊆ Circn the subtorus of

circulant matrices C satisfying the following two conditions:

(1) For every divisor 1 ⩽ d < n of n and every residue k modulo d

∑
j≡k (d)
0⩽j<n

cj =

1 if k ≡ 0 (d)

0 otherwise

(2)

13.3. The gamma motive

In this section, we shall compute the motivic Galois group of Mn and explain the relation with

the Serre torus of the cyclotomic field Q(µn). From this we will deduce that Lang’s conjecture is

equivalent to the exponential period conjecture 8.2.6 for the motive Mn. This can be seen as a

mise au goût du jour of Anderson’s theory of ulterior motives [1].

13.3.1 (Motives of Fermat hypersurfaces). — Given two integers n,m ⩾ 2, we consider the

following variants of the Fermat hypersurface:

Y = {[x0 : · · · : xm] ∈ Pm | xn1 + . . .+ xnm = xn0},

X = {[x1 : · · · : xm] ∈ Pm−1 | xn1 + . . .+ xnm = 0},

U = {(x1, . . . , xm) ∈ Am | xn1 + · · ·+ xnm = 1}.
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We shall regard them as varieties over the cyclotomic field k = Q(µn) and write e.g. Xm−2
n in-

stead of X when we want to emphasise the degree and the dimension. Observe that the map

[x1 : . . . : xm] 7−→ [0 : x1 : . . . : xm] induces a closed immersion ι : X ↪→ Y , whose open complement

is U under the identification Am ≃ Pm+1 \ {x0 = 0}.
Following Anderson [1, 10.2], we make the group Λ =

⊕m
i=1 µn act on Y by

(ξ1, . . . , ξm) · [x0 : x1 : · · · : xm] = [x0 : ξ1x1 : · · · : ξmxm].

This action stabilizes both X and U . We identify the character group of Λ(C) with (Z/n)m by

associating with an element a = (a1, . . . , am) ∈ (Z/n)m the character (ξ1, . . . , ξm) 7−→
∏m
i=1 ξ

ai
i .

Setting

Ψ = {a = (a1, . . . , am) ∈ (Z/n)m | ai ̸= 0, a1 + · · ·+ am = 0},

there is a direct sum decomposition of classical motives

Hm−2(X) = ι∗H∗(Pm−1)⊕
⊕
a∈Ψ

Hm−2
a , (13.3.1.1)

It follows that the primitive cohomology Hm−2
prim (X) is cut out in Hm−2(X) by the projector

θprim =
1

mn

∑
λ∈Λ(C)

∑
a∈Ψ

(a, λ)λ.

The map [x1 : . . . : xm] 7−→ [0 : x1 : . . . : xm] induces a closed immersion ι : X ↪→ Y , whose

open complement is U , under the identification Am ≃ Pm+1 \ {x0 = 0}. Noting that X is a smooth

divisor on Y , the Gysin exact sequence of motives reads:

· · · −→ H i(Y ) −→ H i(U) −→ H i−1(X)(−1) −→ H i+1(Y ) −→ · · · (13.3.1.2)

Moreover, (13.3.1.2) is Λ-equivariant, so we can replace each term with its image under the projector

θprim and still get an exact sequence. Since θprim annhilates the cohomology of Y , it follows that:

Hm−1
prim (U)

∼−→ Hm−2
prim (X)(−1).

We introduce the differential form

Ω =
m∑
ℓ=1

(−1)ℓxℓdx1 ∧ · · · ∧ d̂xℓ ∧ · · · ∧ dxm.

13.3.2 (Tensor powers of the gamma motive). — We now have all the ingredients to prove that,

for each integer m ⩾ 2, the tensor power M⊗m
n contains a submotive isomorphic to Hm−2

prim (X)(−1).

Proposition 13.3.3. — There is an isomorphism of exponential motives

(M⊗m
n )µn

∼−→ Hm−2
prim (Xm−2

n )(−1). (13.3.3.1)

Proof. The proof is an elaboration on the ideas that were already used in Lemma 12.2.1. We

first recall that, by the Künneth formula,

M⊗m
n = Hm(Am, xn1 + · · ·+ xnm).
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Consider the morphism h : U × A1 → Am given by

h((x1, . . . , xm), r) = (rx1, . . . , rxm).

Since h sends the closed subvariety U × {0} ⊆ U × A1 to the origin O ∈ A1 and commutes with

the functions 0⊞ rn on U × A1 and xn1 + . . .+ xnm on Am, it induces a morphism of motives

Hm(Am, O, xn1 + . . .+ xmn ) −→ Hm(U × A1, U × {0}, 0⊞ rn).

The source is isomorphic to Hm(Am, xn1 + . . . + xmn ) by the long exact sequence (4.2.4.2) and the

target decomposes as a tensor product according to the Künneth formula, so we get a map:

M⊗m
n −→ Hm−1(U)⊗H1(A1, {0}, rn). (13.3.3.2)

We need to show that the morphism

(M⊗m
n )µn −→ Hm−1(U)⊗H1(A1, rn) (13.3.3.3)

obtained from (13.3.3.2) by restricting to the submotive (M⊗m
n )µn ⊆ M⊗m

n and composing with

the projection H1(A1, {0}, rn)→ H1(A1, rn) is identically zero. This will yield a morphism

(M⊗m
n )µn −→ Hm−1(U) (13.3.3.4)

and the proof will show as well that (13.3.3.4) is injective with image Hm−1
prim (U).

To carry out this program we look at the de Rham realisation. A basis ofHm
dR(Am, xn1+. . .+xnm)

is given by the differentials

ωj = xj1−1
1 · · ·xjm−1

m dx1 · · · dxm, j = (j1, . . . , jm) ∈ {1, . . . , n− 1}m,

which are µn-invariant if and only if n divides |j| = j1+. . .+jm. By a straightforward computation,

the morphism h sends this basis to

h∗ωj =

m∑
ℓ=1

(−1)m−ℓxj1−1
1 · · ·xjℓℓ · · ·x

jm−1
m dx1 · · · d̂xℓ · · · dxm ⊗ r|j|−1dr

= (−1)mxj1−1
1 · · ·xjm−1

m Ω⊗ r|j|−1dr.

Let us now assume that n divides |j|. By induction, the relation

ran−1dr − 1
(a−1)r

(a−1)n−1dr = drn(− 1
nr

(a−1)n)

implies that the differentials ran−1dr and 1
(a−1)!r

n−1dr are cohomologous for all integers a ⩾ 1.

Taking into account that rn−1dr spans the kernel of the projectionH1
dR(A1, {0}, rn)→ H1

dR(A1, rn),

it follows that (13.3.3.3) realises to the zero map in de Rham cohomology, hence it is itself zero.

The argument also shows that the resulting morphism

(RdR(Mn)
⊗m)µn −→ Hm−1

dR (U)

sends the basis [ωj ], where j runs through the indices such that n divides |j|, to

(−1)m

(|j| − 1)!
[xj1−1

1 · · ·xjm−1
m Ω].

To conclude, it suffices to show that these classes form a basis of Hm−1
dR,prim(U). □
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Remark 13.3.4. — Let us analyse the content of the proposition for m = 2. Set ζ = e
πi
n . The

variety X0
n ⊆ P1 is the finite set of points Pr = [1: ζ2r−1] for r ∈ Z/n. The group Λ = µ2n permutes

these points as follows:

(e
2πia1
n , e

2πia2
n ) · Pr = Pa2−a1+r.

In particular, if a1+a2 ≡ 0, then Pr is sent to Pr−2a1 . Now recall that the gamma function satisfies

Γ( jn)Γ(1−
j

n
) =

π

sin(πjn )
=

2πi

ζj + ζn−j
.

Remark 13.3.5. — Here is how the fact that (M⊗m
n )µn is isomorphic to a usual motive is reflected

at the level of the irregular Hodge filtration. A basis of RdR(M
⊗m
n ) is given by the elements

xj1−1
1 dx1 ⊗ · · · ⊗ xjm−1

m dxm, 1 ⩽ ji ⩽ n− 1, (13.3.5.1)

which are pure of Hodge type ( j1+...+jmn ,m− j1+...+jm
n ). This type is integral if and only if j1+. . .+jm

is a multiple of n. Since ξ acts on (13.3.5.1) by multiplication by ξj1+...+jm , the µn-invariant

differentials are exactly those having integral Hodge type.





APPENDIX A

Tannakian formalism

A.1. Neutral tannakian categories

Recall that a dual of an object M of a tensor category is an object M∨, together with a

coevaluation morphism c : 1→M ⊗M∨ such that the composition

Hom(X ⊗M,Y ) −→ Hom(X ⊗M ⊗M∨, Y ⊗M∨) −→ Hom(X,Y ⊗M∨)

is bijective. If each object admits a dual, we say that the symmetric monoidal category is closed.

A.2. Dictionary

A.2.1. — A tannakian category has a finite fundamental group if and only if it is generated as

an abelian linear category by finitely many objects.

It suffices to observe that in any tannakian category T with tannakian fundamental group

G, the full subcategory T0 consisting of those objects which have finite fundamental groups is a

tannakian subcategory, corresponding to representations of G/G0.

A.2.2. — Let T be a tannakian category together with a fibre functor ω, and let X be an object

of T. A Jordan–Hölder sequence for X is a filtration by subobjects

0 = X0 ⊊ X1 ⊊ · · · ⊊ Xn = X (A.2.2.1)

which has maximal length. Note that such a filtration always exists since the length is bounded

by the dimension of the vector space ω(X). All successive quotients Xi/Xi−1 of a Jordan–Hölder

sequence are simple objects of T, and we call semisimplification of X the associated graded object

Xss =

n⊕
i=1

Xi/Xi−1.

Two distinct Jordan–Hölder filtrations produce the same semisimplification up to reordering of the

factors. The object X generates a tannakian subcategory ⟨X⟩⊗ of T and the semisimplification Xss

generates a tannakian subcategory ⟨Xss⟩⊗ of ⟨X⟩⊗. If GX and GXss denote the tannakian funda-

mental groups of X and Xss respectively, the surjective homomorphism GX → GXss corresponding

to the inclusion ⟨Xss⟩⊗ ⊂ ⟨X⟩⊗ identifies GXss with the maximal reductive quotient of GX . Let us

choose a basis of ω(X) adapted to the filtration (A.2.2.1). Then we can regard GX as a subgroup of

GL(ω(X)) consisting of upper triangular block matrices with the reductive tannakian fundamental

groups of the simple pieces of Xss on the diagonal.

291
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Remark A.2.3. — The assignment X 7−→ Xss is not functorial. For particular tannakian

categories such as mixed Hodge structures or motives there is however a functorial filtration (the

weight filtration) that induces a non-canonical splitting of the maximal reductive quotient.

A.3. Exactness criteria

A.3.1. — Let H
i−−→ G

p−−→ F be morphisms of affine group schemes over a field K. We say

that the sequence 1→ H
i−−→ G

p−−→ F → 1 is exact if the following holds:

(1) The morphism i is a closed immersion.

(2) The morphism p is a faithfully flat.

(3) The composite p ◦ i is equal to the trivial morphism H → SpecK → F

(4) The morphism H → ker(p) = SpecK ×F G obtained from the universal property of the

pull-back

H

ker(p) G

SpecK F

''

i

��

��
//

�� ��
p

//

is an isomorphism.

Lemma A.3.2. — Let h : G1 → G2 be a morphism of affine group schemes over a field and denote

by ωh : Rep(G2)→ Rep(G1) the induced functor between their categories of representations.

(1) The morphism h is a closed immersion if and only if every object of Rep(G1) is a sub-

quotient of an object in the essential image of ωh.

(2) The morphism h is faithfully flat if and only if ωh is fully faithful and its essential image

is stable under subquotients.

Proof. [26, Proposition 2.21] □

A.3.3. — One such criterion is given in [34, Appendix] and another one in section 4 of [29].

The following proposition is a compromise between the two. Notice that condition (1) alone is

not sufficient to ensure exactness. It is indeed equivalent to the statement that ker(p) is equal to

the normal subgroup of G generated by im(i), or also, that the GIT quotient ker(p)/ im(i) has no

non-constant regular functions. The typical example for this situation is the case where H is a

parabolic subgroup of N = G and F = {1}.

Proposition A.3.4. — A sequence of affine group schemes H
i−−→ G

p−−→ F over a field of

characteristic zero K satisfying p ◦ i = 1 is exact if the following two conditions are satisfied:

(1) For every representation V of G, the equality V H = V ker(p) holds.
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(2) Every one-dimensional representation of H which is obtained as a subquotient of some

representation of G can be obtained from a one-dimensional representation of G. In other

words, the restriction map Hom(G,Gm)→ Hom(i(H),Gm) is surjective.

Proof. Let us write N for the kernel of p, and suppose without loss of generality that H, G,

and F are linear groups and that H is a subgroup of N ⊆ G via the inclusion i. We can deduce

from condition (2) that, for every representation V of G, the equality

P(V )H = P(V )N (A.3.4.1)

holds. Indeed, a line ⟨v⟩ in V which is stable under H corresponds to a character χ : H → Gm.

By hypothesis, we can extend this character to χ : G → Gm. Let K(χ−1) be the one-dimensional

representation of G with character χ−1. Then, v ⊗ 1 ∈ V ⊗K(χ−1) is fixed by H, hence by N . It

follows that the line ⟨v⟩ is also stable under N . That the equality H = N follows from (A.3.4.1)

is an observation of dos Santos [29, Lemma 4.2 and 4.3]. The argument goes as follows: The

quotient G/H is a quasi-projective algebraic variety with G-action, G acting by left translation on

right cosets. By Chevalley’s theorem, there exists a representation V of G and a G-equivariant

immersion α : G/H → PV . The point α(1) ∈ P(V ) is fixed by H, hence by N . This means that

the equality NH = H holds in G, hence H = N . □
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83. C. L. Siegel, Über einige Anwendungen diophantischer Approximationen [reprint of Abhandlungen der Preußis-

chen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1929, Nr. 1], On some applications of

Diophantine approximations, Quad./Monogr., vol. 2, Ed. Norm., Pisa, 2014, pp. 81–138.

84. P. Tauvel and R. W. T. Yu, Lie algebras and algebraic groups, Springer Monographs in Mathematics, Springer-

Verlag, Berlin, 2005.

85. T. tom Dieck, Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS),
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Lψ the Artin–Schreier sheaf associated with an additive character, page 209

E(α) the exponential motive with period eα or its perverse realisation, page 231

EMHS the category of exponential mixed Hodge structures, page 212

Qexp(k) the quiver of exponential relative varieties over k, page 120

Qexp
aff (k) the subquiver of Qexp

c (k) where varieties are affine, page 124

Qexp
c (k) the subquiver of Qexp

c (k) consisting of cellular objects, page 124

Hn
dR(X, f) de Rham cohomology of the pair (X, f), page 181

Hrd
n (X, f) rapid decay homology of the pair (X, f), page 7

Hn
rd(X, f) rapid decay cohomology of the pair (X, f), page 8

⟨Q, ρ⟩ the linear hull of a quiver representation ρ : Q→ VecQ, page 113

Vecµ the category of monodromic vector spaces, page 64

GM the Galois group of an exponential motive M , page 146

Gexp(k) the exponential motivic Galois group, page 146

RΨp the nearby cycles functor from perverse sheaves on A1
Q to perverse sheaves on

A1
Fp , page 210

PS(k) the category of period structures over k, page 199

Perv the category of Q-perverse sheaves on A1(C), page 37

Perv0 the category of Q-perverse sheaves on A1(C) with no global cohomology, page 37

Ψ∞ the nearby fibre at infinity functor on the category Perv0, page 38

Sr the closed half-plane of complex numbers z with Re(z) ⩾ r, page 7
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