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ABSTRACT. We prove a generic vanishing theorem for twists of perverse sheaves on a commutative
algebraic group G over a finite field. Using this tool, we construct a tannakian category with
convolution on G as tensor operation. Using Deligne’s Riemann Hypothesis, we show how this
leads to equidistribution theorems for discrete Fourier transforms of trace functions of perverse
sheaves on G, generalizing the work of Katz in the case of the multiplicative group. We give some
concrete examples of applications of these results.



Preface
Acknowledgements
Introduction
1. Statement of results
2. Outline
3. Conventions and notation
Part 1. Theoretical foundations
Chapter 1. Preliminaries
1.1. Review of quantitative sheaf theory
1.2. Existence of rational points
1.3.  Structure of commutative algebraic groups
1.4. Convolution
1.5.  Character groups
1.6. Complexity estimates for character sheaves
1.7.  Arithmetic Fourier transforms
1.8.  Generic sets of characters
1.9. Fourier—Mellin transforms on semiabelian varieties
1.10. A geometric lemma
1.11. Geometric and arithmetic semisimplicity
1.12. A result from representation theory
Chapter 2. Generic vanishing theorems
2.1. Statement of the vanishing theorems
2.2.  The case of unipotent groups
2.3. Perverse sheaves on tori
2.4. Perverse sheaves on abelian varieties
2.5.  Proof of the general vanishing theorem
Chapter 3. Tannakian categories of perverse sheaves
3.1. Introduction
3.2.  Categories of objects defined over finite fields
3.3.  Weakly unramified characters
3.4. Negligible objects
3.5. Tannakian categories
3.6. Euler—Poincaré characteristic and Grothendieck groups
3.7.  Arithmetic fiber functors
3.8.  The arithmetic tannakian group
3.9. Frobenius conjugacy classes

Contents

=

10
12

17

19
19
21
22
22
23
25
27
27
30
30
31
32

33
33
35
38
41
50

93
93
o4
o4
95
o7
60
61
64
66



3.10. Frobenius-unramified characters
3.11. Group-theoretic properties

Chapter 4. Equidistribution theorems
4.1. Equidistribution on average
4.2.  The basic estimate
4.3. Equidistribution for characteristic polynomials
4.4. Equidistribution for arithmetic Fourier transforms
4.5.  Equidistribution for conjugacy classes
4.6. Equidistribution without average
4.7. Horizontal equidistribution

Part 2. Applications
Description of applications

Chapter 5. Uber eine neue Art von L-Reihen
5.1. L-functions
5.2.  Objects with finite arithmetic tannakian groups on abelian varieties
5.3. Perverse sheaves with finitely many ramified characters
5.4. The general case

Chapter 6. Stratification theorems for exponential sums
Chapter 7. Generic Fourier inversion
Chapter 8. Independence of ¢

Chapter 9. Diophantine group theory
9.1. The diophantine irreducibility criterion
9.2. Larsen’s alternative
9.3. Sidon morphisms
9.4. Gabber’s torus trick
9.5. Recognition criteria for Eg
9.6. Finiteness of tannakian groups on abelian varieties

Chapter 10. The product of the additive and the multiplicative groups
10.1.  Introduction
10.2. Tannakian group for diagonal objects
10.3. Diagonal objects of dimension 2
10.4. Negligible objects and objects of dimension one

Chapter 11. Variance of arithmetic functions in arithmetic progressions
11.1. Introduction
11.2.  Equidistribution on tori associated to polynomials
11.3.  Application to von Mangoldt functions

Chapter 12. Equidistribution on abelian varieties
12.1. Equidistribution in the jacobian of a curve
12.2. The intermediate jacobian of a cubic threefold

Chapter 13.  “Much remains to be done”
13.1. Problems

67
69

73
73
74
75
79
81
83
84

87
89

91
91
94
97
98

103
109
111

117
117
117
121
126
128
129

131
131
135
141
142

145
145
146
150

159
159
163

169
169



13.2.  Questions

Appendix A. Survey of perverse sheaves
A.1. Complexes of f-adic sheaves
A.2. Perverse sheaves

A.3. Weights
A.4. Trace functions

Appendix B. The arithmetic Mellin transform over finite fields
B.1. The category &
B.2. Deligne’s fiber functor and Frobenius conjugacy classes
B.3. Finite tannakian groups
B.4. Hypergeometric sheaves

Appendix C. The product formula for epsilon factors
C.1. The product formula
C.2. Local epsilon factors
C.3. The Euler-Poincaré characteristic formula

Appendix D. Deligne’s letter to Kazhdan

Appendix E. Intuition for analytic number theorists
E.1. Trace functions
E.2. Weights and purity
E.3. Constructible sheaves and complexes
E.4. Perverse sheaves
E.5. Tannakian categories
E.6.  Frequently-asked questions

Index
Glossary

Bibliography

169

173
173
174
176
177

179
179
179
180
180

183
183
184
185

187

193
193
195
196
199
201
202

205
207
211






Preface

The Fourier transform, and the whole collection of its variants whose study is summarized
under the heading of “harmonic analysis”, is one of the most important tools of mathematics. In
its many forms, its applications cover the whole range not only of mathematics, but also physics,
computer science, chemistry and indeed of all sciences where quantitative tools are applied.

In 1976, P. Deligne observed in a letter to D. Kazhdan (which is reproduced in Appendix D)
that the formalism of algebraic geometry, and especially of ¢-adic cohomology and the derived
category of f-adic sheaves, provided a new “geometric” form of the Fourier transform. Instead of
the familiar integral formula

f@>=/;fukz%”%m

associating to a function f (say f: R — C in the Schwartz space) its Fourier transform f, Deligne’s
version takes as input an f-adic constructible sheaf M, or a complex of those, on the one/:dimensional
affine space over a finite field k of characteristic p, and outputs a Fourier transform M which is of
the same kind.

We note that although the most general and convenient category of input objects M, which we
will also call “coefficients”, is given by the formalism of derived categories of /-adic complexes with
¢ prime different from p, there is a simpler definition in the case considered here, where M can (in
almost all cases) be thought of as being a continuous finite-dimensional representation

0: Gal(k(T)*/k(T)) — GL(Qy)
of the absolute Galois group of the field k(T) of rational functions on k.

The crucial point for the interpretation of this construction as a Fourier transform is that to
each object M is associated classically a sequence of “trace functions”, which are functions

tM(';kn): kp — C ~ Qﬁ

defined on the finite extensions k, of k of degree n, for all integers n > 1, and Deligne’s Fourier
transform then satisfies

tl\A/I(y;kn) = Z 75M('T§ kn)CQiﬂTrkn/Fp(Iy)/p
z€ky

Thus, the trace functions of M coincide with the discrete Fourier transforms of those of M.

Deligne’s Fourier transform shares many features with the classical euclidean Fourier transform,
once properly interpreted in terms of the coefficients M. For instance:

— it satisfies a form of the Fourier inversion formula
f@) = | Fupemvay,
R

in the sense that applying the (similarly defined) analogue of the inverse Fourier transform
to M recovers M.



— it satisfies analogues of the Plancherel formula, which are however rather less obvious: one
interpretation is that if the representation ¢ above is irreducible, then so is the represen-
tation associated to M.

— it safisfies a geometric analogue of the fundamental algebraic relation f = f which
relates the Fourier transform and the convolution product

(f* 9)(a /f — y)dy

of functions (this property is often taken as the key feature of Fourier analysis and espe-
cially Pontryagin duality, see e.g. [13]). Indeed, to two coefficients M; and Ms, another
geometric construction associates a third one Mg, such that the trace function of Mg is
given by

tMS ﬂf k Z tMl ya tM2( y’ kn)7
yEkn

the discrete convolution of those of M; and Ms.

— and there is a subtle analogue, due to Laumon, of the stationary phase principle for
estimating oscillatory integrals.

There are however also special features related to the geometric nature of trace functions:

— Deligne’s Fourier transform preserves a particularly important subcategory of coefficients,
that of perverse sheaves — this extremely important fact has no obvious classical analogue.

— If a coefficient object M is a perverse sheaf, and hence also its transform 1\7[, then one
can associate to it a natural intrinsic symmetry group, also called its monodromy group,
which is an algebraic group over Q, (or over C). The definition of this group can be
seen as a wide-ranging generalization of that of the Galois group of a polynomial. (In the
one-dimensional case, where M can be identified, in most cases, with a Galois represen-
tation o: Gal(k(T )Sep/k:( )) = GL,(Q) as above, the symmetry group is the Zariski-
closure of the image of p.)

Deligne’s Fourier transform has found a number of very important applications in arithmetic
and algebraic geometry, as well as number theory. In the former direction, Laumon [85] used
it to obtain a product formula for the epsilon factors of Artin-type L-functions on curves over
finite fields. In number theory, Katz used the Fourier transform extensively to study in depth
the distribution properties of families of exponential sums, which are obtained as discrete Fourier
transforms of simple trace functions (see for instance [61] and [62]); the symmetry group of the

Fourier transform M plays an essential role here. A prominent example of such sums are the

Kloosterman sums
Kl (a: p) Z (x + ax)

which are the values of the trace function of the Fourier transforms of a one-dimensional Galois
representation, and are omnipresent in modern analytic number theory (here and below, we denote
e(z) = exp(2inz), and  is the inverse of x modulo p). Results about these and similar sums, which
often rely on properties of the ¢-adic Fourier transform, have by now become essential in many
fundamental results of analytic number theory — some concrete examples, for instance, appear in
Zhang’s famous work on bounded gaps between primes | , Lemma 12], and systematic use of the
Fourier transform begins in various papers of Fouvry, Kowalski and Michel (see for instance [36]).
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Deligne’s transform is the geometric analogue of the classical euclidean Fourier transform on
R and can be generalized to n variables. But, in recent years, a number of applications have led
to questions concerning similar properties of other discrete Fourier transforms, for instance those
related to the multiplicative group k,<, which are functions on the group of multiplicative characters
x: kX — Q. The study of the distribution, or average properties, of these sums is outside of the
realm of applications of Deligne’s Fourier transform, and cannot be expressed in the usual formalism
of algebraic geometry over finite fields.

The fundamental motivation for this book is the search for a definition of the analogue of
Deligne’s Fourier transform on an arbitrary commutative algebraic group over a finite field, and
for the general theory and applications of this form of harmonic analysis. In particular, we believe
that these arithmetic Fourier transforms can be interpreted in the context of much more general
arithmetic or geometric avatars of harmonic and functional analysis.

The basic examples of commutative algebraic groups are the multiplicative groups (or tori),
and abelian varieties, and these can be combined (together with additive groups) in various ways.
The choice of an input object M on such a group G leads to its arithmetic Fourier transforms,
which are the functions of the form

%\M(X§ kn) = Z X(Z‘)tM(:I:; kn)a
2€G(kn)

defined for any n > 1, where the parameter x ranges over characters of the finite group G(ky,).

The simplest example beyond the additive case is that of G(k,) = k,S, in which case the
characters are multiplicative characters of k,. N. Katz, in a striking breakthrough, succeeded a
few years ago in finding an interpretation of these arithmetic Fourier transforms in his fundamental
book [68]. To do this, Katz exploited the formalism of tannakian categories, and the fact that the
convolution product extends to any commutative algebraic group: given coefficients M; and My
on G, there exists a geometrically-defined object Mg such that their respective trace functions

satisfy

57 (3}; kn) = Z tmM,y (y§ kn)tMg (ch_l; kn)v
y€G(kn)
forn > 1 and x € G(ky).

Although Katz’s interpretation of the arithmetic Mellin transforms is not fully geometric (there
is no analogue of the object M which “is” Deligne’s additive Fourier transform for the additive
group), Katz shows that it is enough to define a symmetry group for the arithmetic Mellin transform.
In combination with another fundamental tool, Deligne’s general form of the Riemann Hypothesis
over finite fields [27], this allowed Katz to prove an equidistribution theorem which controls the
distributions of arithmetic Mellin transforms. A number of significant applications followed (see,
for instance, the paper [73] of Keating and Rudnick, and the work [51] of Hall, Keating and
Roditty—Gershon).

One of the main theoretical achievements of this book is the extension of these ideas of Katz to
any connected commutative algebraic group. This extension is very far from routine, since certain
necessary tools, such as generic cohomological vanishing, or estimates for Betti numbers, which are
very elementary in the case considered by Katz were not known previously for groups of dimension
at least 2. Indeed, we rely in an essential way on the very recent quantitative sheaf theory due to
Sawin [98] (which was partly motivated by this work and drafted in final form jointly with the
authors).

For any suitable coefficient object on the group G, our construction provides the fundamental
invariant of its arithmetic Fourier transform, its intrinsic symmetry group. Combined again with
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other tools such as Deligne’s Riemann Hypothesis over finite fields, this is already sufficient to
prove a very general form of equidistribution theorem, which encompasses the previously known
cases of Deligne and Katz (and in fact sharpens these in certain aspects). In turn, we can use this
equidistribution theorem for a number of first applications, including strengthening and simplifying
the results of [51]. But there remain also many open questions and problems, both on the theoretical
side and on that of applications — we will discuss briefly some of these at the end of this book.

After this preface, the book will continue with a more technical introduction, which contains
precise statements of some of the key results and a quick description of some of the crucial points
which are involved in the proofs. We then split the remainder of the book in two parts, one
containing the main theoretical results, and the other devoted to a variety of applications. These
are complemented by appendices recalling important material, and by Appendix D where Deligne’s
letter to Kazhdan is reproduced.

A more precise outline of each chapter will be found at the end of the introduction.

Readers with a background in analytic number theory who are not familiar with the theory of
trace functions and the underlying geometric objects are invited to first read Appendiz E, where we
attempt to present them in a concrete and intuitive way.
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Introduction

1. Statement of results

Since Deligne’s proof of his equidistribution theorem for traces of Frobenius of ¢-adic local sys-
tems on varieties over finite fields [27], it has been known that any family of exponential sums
parameterized by an algebraic variety satisfies some form of equidistribution, and that the con-
crete expression of this equidistribution statement depends on the determination of the geometric
monodromy group of the ¢-adic sheaf that underlies the family of exponential sums.

The best known result of this kind is probably the computation by Katz [61] of these monodromy
groups in the case of Kloosterman sums in many variables over finite fields, which are defined for
some fixed non-trivial additive character ¢ of Fy and a € F as

_1m—1
Kinlai) = oty 3 bt ).

(Il,...,ﬂf,’m)E(Fg)””
T Tm=a
This computation led him in particular to the proof of the average version of the Sato-Tate law
for classical Kloosterman sums, namely the equidistribution of the set (Kla(a;q)) acF; 34— 400

with respect to the Sato-Tate measure on [—2,2]|. Further deep investigations by Katz, especially
in his monograph [62], provide a cornucopia of examples of equidistribution statements.

Among other things, this framework allows for the study of exponential sums of the form

S(M,¢) = > tui(a; Fon)ih(),

IGFqn

where ty is the trace function of a perverse sheaf M on the additive group G, over F, and v ranges
over characters of Fyn. These sums are the discrete Fourier transform ¢ — S(M, ¢) of the function
x +— tym(z, Fgn) on the finite group Fn = G4(F4n), and the key point is that they are themselves
the trace functions of another perverse sheaf on the dual group parameterizing additive characters.

In a more recent conceptual breakthrough, Katz [68] succeeded in proving equidistribution
results for families of exponential sums parameterized by multiplicative characters, despite the fact
that the set of multiplicative characters of a finite field F; does not naturally arise as the set of
F,-points of an algebraic variety. In analogy with the above, such sums are of the form

SOM,x) = Y taalw; Fon)x(2),

xEF:n

except that M is now a perverse sheaf on the multiplicative group G,, over F; and x ranges
over characters of F;n. Katz’s beautiful insight was to replace points of algebraic varieties by
fiber functors of tannakian categories as parameter spaces, and produce the groups governing
equidistribution by means of the tannakian formalism (see [38] for an accessible survey). Further
work of Katz generalized this to elliptic curves [70] and certain abelian varieties (see [70]).
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The primary goal of this book is to extend these ideas to exponential sums (arith-
metic Fourier transforms) parameterized by the characters of the points of any con-
nected commutative algebraic group over a finite field.

More precisely, let k be a finite field and k an algebraic closure of k. For each n > 1, we
denote by k, the extension of k of degree n inside k. Let ¢ be a prime number different from the
characteristic of k and Q, an algebraic closure of the field of /-adic numbers. Let G be a connected
commutative algebraic group over k. We denote by @(kn) the group of Q-valued characters
of G(k,) and, for each y € é(l{:n), by %, the (-adic lisse character sheaf of rank one associated to x
by means of the Lang torsor construction, as briefly recalled in Section 1.5. By perverse sheaves,
we always understand Q,-perverse sheaves.

In rough outline, we establish the following types of theoretical results:

— We prove generic and stratified vanishing theorems for the cohomology of twists of perverse
sheaves on G by the sheaves . associated to characters x € G(ky).

— Using the stratified vanishing theorems, we construct a tannakian category of perverse
sheaves on G in which the tensor product is given by the convolution coming from the
group law.

— We prove that the tannakian group of a semisimple object M of this category that is
pure of weight zero controls the distribution properties of the analogue of the sums above,
namely

SIMx) = > tu(w;ka)x(x),

$EG(kJn)

where y ranges over the set @(kn) Under some assumptions on G (e.g., for tori and abelian
varieties), we prove the stronger result that the unitary conjugacy classes of which these
sums are traces become equidistributed in a maximal compact subgroup of the tannakian
group as n — +00, as is customary since Deligne’s work.

Once this is done, we provide a number of applications, both of a general nature or for concrete
groups and concrete perverse sheaves.

The following statements are special cases of our main results, which we formulate in simplified
form in order to make it possible to present self-contained statements at this stage.

THEOREM 1. Let M be a perverse sheaf on a connected commutative algebraic group G of
dimension d over a finite field k.

(1) (Generic vanishing) The sets
X (kn) = {x € G(kn) | H.(G;, M ® Z,) = H(G, M ® %) =0 for all i # 0
and HY(G, M ® %) is isomorphic to H* (G, M ® 2}
are generic, in the sense that the estimate

Glkn) = Z (kn)| < |kn|®?

holds for n > 1, with an implied constant that only depends on M.
(2) (Stratified vanishing) For —d < i < d and n > 1, the estimate

){X € Glky) | HL(GLM® 2) # 0 or H(Gp, M®.2,) # o}] < [k|?

holds, with an tmplied constant that only depends on M.
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The most general vanishing statements that we prove appear as Theorems 2.1 and 2.3. Appli-
cations to “stratification” estimates for exponential sums are then given in Chapter 6.

REMARK 1. (1) With variations in the definition of generic set of characters, such statements
were proved by Katz—Laumon [71] for powers of the additive group, Saibi [97] for unipotent groups,
Gabber—Loeser [45] for tori, Weissauer [110] for abelian varieties and Kramer [79] for semiabelian
varieties (see Remark 2.2 for more precise references).

(2) In characteristic zero, and especially over the field of complex numbers, theorems of this
type have also been proved for abelian and semiabelian varieties by Schnell [101], Bhatt—Scholze—
Schnell [7] and Liu-Maxim-Wang [87] (see also [88] for a survey of some applications of such
results). Over arbitrary algebraically closed fields, there has also been recent works of Esnault and
Kerz [32].

Using the vanishing theorems, and ideas going back to Gabber—Loeser and Katz, we can con-
struct tannakian categories with the convolution on G as tensor operation. Using these, and
Deligne’s Riemann Hypothesis over finite fields, we obtain the following equidistribution theorem
for the Fourier transforms of trace functions on G, i.e., for families of exponential sums parameter-
ized by characters of G.

THEOREM 2 (Equidistribution on average for arithmetic Fourier transforms). Let G be a con-
nected commutative algebraic group over k. Let M be a geometrically simple £-adic perverse sheaf
on G that is pure of weight zero, with complex-valued trace functions ty(+;ky): G(k,) — C for
n > 1. There exists an integer r = 0 and a compact subgroup K C U,(C) of the unitary group such
that the sums

SMx) = > tu(wka)x(@)

2€G(kn)

for complex-valued characters x of G(ky) become equidistributed on average in C with respect to
the image by the trace of the Haar probability measure p on K. That is, for any bounded continuous
function f: C — C, the followz'ng equality holds:

1) N%wN > |Zf 20) = [ AT duta),

where x runs over all characters of G(ky,).

The general version of this theorem appears as Theorem 4.8. Under an additional assumption
(which holds for tori, abelian varieties and G, at least), we can also deduce it from Theorem 4.11,
which is a more precise equidistribution result for unitary conjugacy classes of Frobenius in the
compact group K. (The difference between these two statements is quite similar to the difference
between the Frobenius equidistribution theorem for cycle types of Frobenius classes in the Galois
group of a polynomial, viewed as a permutation group, and the more precise Chebotarev density
theorem.)

REMARK 2. (1) In the classical setting of G, and the Fourier transform, the group K is a
maximal compact subgroup of the arithmetic monodromy group of the (lisse sheaf underlying the)
¢-adic Fourier transform of M (see Proposition 3.32).

Note that this is in contrast with more usual versions of Deligne’s equidistribution theorem,
without the extra Cesaro average over n, where the focus is on the geometric monodromy group
(see, e.g., the versions of Katz [61, Ch.3] and Katz—Sarnak [72, Ch.9]). This slight change of
emphasis extends to the general situation, and means that we can avoid additional (necessary)
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assumptions such as the equality of the geometric and arithmetic monodromy groups, which occur
frequently otherwise (see, e.g., [61, §3.3]), and are not always easy to check.

The Cesaro average can of course be interpreted as a form of “smoothing” (a “summation
method” in the classical terminology). Although it is quite natural, it can be replaced by many
others (see Remark 4.7).

(3) We will also discuss a “horizontal” version, where we consider suitable families (M,,) of
perverse sheaves over F, for primes p — 400. However, such results depend on a more quantitative
version of the stratified vanishing theorem, which we have not established in full generality yet.

(4) As already mentioned, this equidistribution theorem is essentially Deligne’s equidistribution
theorem on average for the f-adic Fourier transform of M when G = G,. When G is the multi-
plicative group (or its non-split form), one obtains (an average version of) Katz’s equidistribution
theorem [68]. In [70], Katz proves a similar theorem for elliptic curves.

(5) The assumption that G is connected arises from the fact that the Lang torsor construction
is only applicable in this case. For the purpose of equidistribution results, however, one can easily
handle a non-connected algebraic group by considering one by one the restrictions to the neutral
component of G of the objects ([z — ¢~ 12]*M), where ¢ runs over representatives of the connected
components of G. (Note that different connected components might give rise to exponential sums
with different distributions.)

ExXAMPLE 1. A simple concrete class of examples where we obtain equidistribution statements
is the following (in the case when G is not an abelian variety): assume that k = F),, and let d be the
dimension of G; then for any non-constant function f: G — A, there exists a perverse sheaf M ¥
such that

(—1)de(T1”Fpn/Fp(f($))>

pnd/Q D
for all n > 1 and © € G(Fpn) (where e(z) = exp(2inz)), so that Theorem 2 shows that the

exponential sums
1 Trg,,. /v, (f(2))
2 Xwe(—EE—)

2€C(Fyn) p

(which are intuitively sums over d variables) become equidistributed on average, with limiting
measure of a very specific kind.

Specializing even more to G = Gfln, the function f is a Laurent polynomial in d variables z1,
..., x4 and their inverses, and these exponential sums become the sums

X
wlv-'vxdEFPn

Tern/Fp(f(x)))
p

parameterized by a tuple (x1,...,xq) of characters of F;n.

As a further concrete application, we will see how to deduce statements like the following, which
considerably strengthens earlier work of Hall, Keating and Roddity-Gershon [51].

THEOREM 3 (Variance of the von Mangoldt function of the Legendre elliptic curve). Let k be
a finite field of characteristic > 5. Let & be the Legendre elliptic curve with affine model

y2 = (e —1)(x — 1)

8



over the field k(t). Let Ag /() be the von Mangoldt function of &, defined by the generating series

L'(&/k(t
-1 L(& /k ZAé"/k (o)
over monic polynomials g € kl[t].

Let f € E[t] be a square-free polynomial of degree > 4 and set B = k[t]/fk[t]. Let m > 1 be an
integer. For any a € B, consider the sum

ve(mifya) = Y Agpep(9)

deg(g)=m
g=a (mod f)

over monic polynomials of degree m with coefficients in k. Let a be the degree of the greatest
common divisor of f and t(t — 1). Then the following equality holds:

1 1
lim s> e (m f,a) Ve(m; £,0)| = min(m, 2deg(f) ~ 2+ ).
k|00 |k[* |B] ;3 Bl Z@;
This theorem is proved at the end of Chapter 11.

REMARK 3. (1) The meaning of the limit is that we replace k by its extensions k,, of degree n > 1
and let n — 400, and compute the variance for & based-changed to k, (note that B depends on k,
so it is also replaced by ky[t]/ fkn[t]).

(2) The version in [51] requires the assumption deg(f) > 900 and moreover that the greatest
common divisor of ¢(t — 1) and f is equal to t. We have greatly relaxed the former condition and
fully removed the latter, which was recognized as being quite artificial (see [51, Rem 11.0.2]).

These improvements are due to the consideration of the problem in its natural setting, in-
volving characters of a torus of dimension deg(f), whereas the authors of [51] used cosets of a
one-dimensional torus together with Katz’s work on G,

We also give a proof of an unpublished theorem of Katz [67] answering a question of Tsimerman
about equidistribution of Artin L-functions on curves over finite fields.

THEOREM 4 (Katz). Let C be a smooth projective geometrically connected curve of genus g > 2
over a finite field k and let D = Y n;z; be a divisor of degree one on C. For each geometrically
non-trivial character o: 71 (C)*> — C* of finite order such that [] 0(Fryy(z,),.0,)™ = 1, we write its
normalized Artin L-function as

Q,T/\/U{? det 1_T@C/k:g)
for a conjugacy class O¢y, , in the unitary group Ujy,—2(C).

(1) If C is non-hyperelliptic and (29 —2)D is a canonical divisor on C, then the classes Oy o
lie in SUsy_o(C) and become equidistributed with respect to the image on the space of
conjugacy classes of the Haar probability measure of SUzq_o(C).

(2) If C is hyperelliptic, the hyperelliptic involution has a fized point O € C(k) and D = O,
then the classes O¢yy, , lie in USpy,_o(C) and become equidistributed with respect to the
image on the space of conjugacy classes of the Haar probability measure on USpy,_5(C).

See Chapter 12 for the proof of this result, as well as some more general statements (including,
in Theorem 12.5, a result where the algebraic group G occurring may involve abelian, toric and
unipotent parts).



2. Outline

In this section, we present the plan of the book, and we sketch one of the main ideas of the
proof of Theorem 2, in order to point out the key difficulties for groups of dimension bigger than
one, which are solved using Sawin’s quantitative sheaf theory [98].

The book is organized as follows:

— In Chapter 1, we state some preliminary results; these include a survey of the formalism of
quantitative sheaf theory [98], as well as basic structural results concerning commutative
algebraic groups and character sheaves.

— In Chapter 2, we prove the generic and stratified vanishing theorems for commutative
algebraic groups over finite fields. The very rough idea is to prove a relative version of
the vanishing theorems for the various basic types of commutative groups, with a good
control of the implicit constant. These relative statements are of independent interest. For
example, in the case of tori, Gabber—Loeser [45] prove the stratified vanishing theorem as
stated above only under the assumption that resolution of singularities over k holds for up
to the dimension of the torus. We remove this assumption using alterations. For abelian
varieties, we extend Weissauer’s work [110] by proving a relative version of the theorem,
which involves the use of Orgogozo’s work [95] on constructibility and moderation.

— In Chapter 3, we construct a suitable tannakian category of perverse sheaves on a commu-
tative group over a finite field with convolution as tensor operation, and establish its basic
properties, as well as those of the corresponding tannakian monodromy group. We will
see that some subtleties arise when defining “Frobenius conjugacy classes” corresponding
to characters of G.

— In Chapter 4, we combine these two ingredients to establish a number of “vertical” equidis-
tribution theorems; there are some issues when we want to refine the statements at the
level of conjugacy classes (related to those of the previous sections), which we are not
currently able to solve in full generality, although we can always establish equidistribution
for the characteristic polynomials.

— Chapter 2 introduces a selection of first applications of a general nature. These include
the following:

(1) the definition of the analogue of the L-function for arithmetic Fourier transforms,
which is used to give information on finite tannakian groups over abelian varieties

(Chapter 5);

(2) a stratification result for exponential sums, similar to those of Katz, Laumon and
Fouvry, although currently often restricted to the “vertical” direction (Chapter 6);

(3) a generic Fourier inversion formula (Chapter 7);

(4) some preliminary results of independence of ¢ for the tannakian group when working
with perverse sheaves which are part of a compatible system (Chapter 8);

(5) various results of “Diophantine group theory”, where averages of exponential sums
are related to invariants of the tannakian group; this includes in particular Larsen’s
Alternative, but also some criteria to recognize the exceptional group Eg (Chapter 9).

— Chapters 10, 11 and 12 contain applications to concrete cases. The algebraic groups
involved are, respectively, the product G, x G, higher-dimensional tori, and jacobians
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of curves, as well as the intermediate jacobian of a smooth cubic threefold (where the
relevant Tannakian group is Eg, as first shown in the complex setting by Kramer).

— In Chapter 13, we list some open questions and problems. To paraphrase Katz ([68,
p.18]): “Much remains to be done”.

— Finally, we include appendices to survey the basic theory of perverse sheaves (Appendix A),
to recall the most important results of Katz concerning the arithmetic Mellin transform
on Gy, (Appendix B), and to recall the product formula of Laumon for the epsilon factor
of L-functions over finite fields (Appendix C). We conclude by reproducing, with Deligne’s
permission, the letter to Kazhdan in which the ¢-adic Fourier transform was first discussed
(Appendix D), and we attempt to sketch the intuitive nature of the theory of general trace
functions, to provide some intuition for analytic number theorists in Appendix E.

We now survey the key analytic step in the proof of Theorem 2 (see Proposition 4.12).

We can work with trace functions and characters with values in Q, by using some isomorphism
t: Qy — C, which we fix and view as an identification. The first step, following from the generic
vanishing theorem, will be to prove that there exist subsets % (k) of characters of G(k,) and
conjugacy classes Oy, (x) in some unitary group U,(C) such that Tr(Owm g, (x)) = S(M, x) for
X € ¥ (ky) and

| (kn)| ~ |G (k)]

as n — +00. The second step (an application of the theory of tannakian categories) will be an
intrinsic a priori definition of the compact group K for which equidistribution should hold.

By (essentially) the Weyl criterion for equidistribution, Theorem 2 will follow from the proof
that, for every non-trivial irreducible representation g of the unitary group U,(C), the limit

1 1

S Tro(Ow, ()

1<n<N‘ (kn)| XE (kn)

exists and is equal to the multiplicity of the trivial representation in the restriction of ¢ to the
subgroup K.

The tannakian formalism and the Grothendieck—Lefschetz trace formula yield on the one hand
the equality

Tro(Ome, (X)) = Y X(@)toan (i Fn)
2€G(kn)

forn > 1 and x € #(k,), and on the other hand the equality

(2) D X@tgan(@ika) = Y (=1)! Tr(Fry,, | HL(Gy, o(M) ® )
2€G(kn) jl<d

for n > 1 and any character y of G(k,), where Fry, is the geometric Frobenius automorphism
of k.

The definition of the set % (k,) implies in particular the property that for x € #(k,), the only
possibly non-zero term in the right-hand side of (2) is the one with j = 0. Thus we have

Y Tro®w ()= D Tr(Fr, | HY(GE oM) © %))
XED (kn) XED (k)
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If we add to the right-hand side of this last expression the two sums
Si= > Tr(Fry, | H(GE,o(M) ® 4)),
X¢Y (kn)

= > > (—1Y Te(Fry, | HI(GR, o(M) @ 4)),

1<]j|<d x¢ ¥ (kn)

then the resulting quantity is

S W T, | H(CL M@ L) = S S x@)tyn @k

lil<d xeG(kn) x€G (ky,) T€EG(kn)
= > tan(@ka) D x(@) = [Gka)| teou)(1;Fn)
z€G(kn) XEé(kn)

by the trace formula again, followed by an exchange of the sums and an application of the orthog-
onality of characters of finite abelian groups. This is a single value of the trace function, and it is
relatively straightforward to show that it gives the desired multiplicity as limit. So the key difficulty
18 to control the two auxiliary sums S1 and So.

This can be done if:
(1) We have some bound on the size of the individual traces Tr(Fry, | HA(Gz, o(M) @ 24));
(2) We have some bound on the number of x where H. can be non-zero for a given j.

The second bound is given by the stratified vanishing theorem for o(M). For the first, Deligne’s
Riemann Hypothesis (see Theorem A.19) implies the inequality

| Tr(Fry,, | B(Gg, o(M) ©.2))] < k|97 dim H (G, 0(M) © Z),

and we see that we require a bound on the dimension of the cohomology spaces, which should be
independent of x. We obtain such bounds as special cases of Sawin’s quantitative sheaf theory [98],
which is a quantitative form of the finiteness theorems for the six operations on the derived category
of f-adic sheaves on quasi-projective algebraic varieties.

REMARK 4. If G is one-dimensional, then the Euler—Poincaré characteristic formula (see The-
orem C.2) easily implies precise bounds on the dimension of the cohomology spaces that arise, and
hence this critical issue does not arise for the additive or multiplicative groups, or for elliptic curves
(for such groups, Theorem 1 is also straightforward). It also does not arise if the set #'(k,,) is the
whole group @(kn), which is the case in some instances considered by Katz for higher-dimensional
abelian varieties.

3. Conventions and notation

We summarize the notation that we use, as well as some typographical conventions that we
follow consistently unless otherwise specified.

Given complex-valued functions f and ¢ defined on a set S, we write f < g if there exists a
real number C > 0 (called an “implicit constant”) such that the inequality |f(s)| < Cg(s) holds for
all s € S. We write f < gif f < gand g < f. If f and g are defined on a topological space X,
and § is a filter on X, then we say that f ~ ¢ along § if limg f(x)/g(x) =

For any complex number z, we write e(z) = exp(2inz); for ¢ > 1 and a € Z/qZ, the value
e(a/q) is then well-defined.
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By a wvariety over a field k, we mean a reduced separated k-scheme of finite type. In particular,
an algebraic group, as opposed to a group scheme, is always supposed to be reduced, and hence
smooth if the field k is perfect.

Let S be a scheme. We say that a pair (X,u) is a quasi-projective scheme over S if X is a
scheme over S and u is a locally-closed immersion u: X — Pg for some integer n > 0. We call n the
embedding dimension of (X, u), or simply of u, and we say that u is a quasi-projective embedding
of X. If S is the spectrum of a field &k and X is a variety over k, we will speak of quasi-projective
varieties over k. In some cases, we omit the mention of u, when it is clear in context which locally-
closed immersion is used. By a morphism f: (X,u) — (Y,v) of quasi-projective schemes over S,
we mean an S-morphism of the underlying schemes.

An algebraic group G over an algebraically closed field of characteristic zero is called reductive
if all its finite-dimensional representations are completely reducible (that is, we do not require G
to be connected).

Let X be a scheme and ¢ a prime number invertible on X.

Perverse sheaves (when X is an algebraic variety defined over a field k) are always considered
with respect to the middle perversity. We include a short survey of the most important properties
of perverse sheaves in Appendix A, but recall here some of the definitions. An ¢-adic complex is said
to be semiperverse if, for any integer i, the support of the cohomology sheaf .7#*(M) is of dimension
at most —i. This is equivalent to the fact that the perverse cohomology sheaves P.#*(M) are zero
for i > 1 (see [6, Prop.1.3.7]).

We say that a complex M in D2(X, Q) has perverse amplitude [a, ] if its perverse cohomology
sheaves P.77'(M) are zero for i ¢ [a, b].

A stratification 2 of X is a finite set-theoretic partition of the associated reduced scheme Xed
into non-empty reduced locally-closed subschemes of X, called the strats of 2.

Let 2 be a stratification of X, and let .# be an f-adic sheaf on X. The sheaf .% is said to be
tame and constructible along 2 if it is tamely ramified, in the sense explained in [95, §1.3.1L and
if its restriction to any strat of 2" is a lisse sheaf. More generally, a complex M € D2(X, Q,) is

said to be tame and constructible along 2 if all its cohomology sheaves are tame and constructible
along 2.

Let f: X — Y be a morphism of schemes. For an object M of D2(X, Q,), we write RiM = Rf,.M
to indicate that the canonical “forget support” morphism RfiM — Rf.M is an isomorphism (and
similarly for equality of cohomology groups with and without compact support).

Let ¢ > 1 and w € Z be integers. A complex number « is called a ¢-Weil number of weight w
if o is algebraic over Q and all its Galois conjugates have modulus ¢%/2. If k is a finite field, then
a k-Weil number is a |k|-Weil number.

Throughout, for any prime £, we consider a fized isomorphism 1y: Q, — C. Trace functions
of £-adic perverse sheaves are thus always identified with complez-valued functions through o, and
L-adic characters are identified with complex characters. On the other hand, purity of perverse
sheaves (or lisse sheaves or L-adic complezes) refers to purity in the sense of Deligne, i.e., pointwise
purity means that the eigenvalues of Frobenius are Weil numbers of some weight; see the survey in
Section A.3.

The following notation are used consistently in all the book, although frequently with reminders
(some objects, such as character sheaves, will be defined later).

- X —=7Y: difference set (elements of X that are not in Y); also used in scheme-theoretic
settings.
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— |X]|: cardinality of a set X.

- DB(X) = DB(X,Q,): category of bounded constructible complexes of Q,-sheaves on a
scheme X such that the prime ¢ is inversible in X.

- K(X) = K(X,Qy): the Grothendieck group (or ring) of D2(X); it has a basis consisting of
classes of simple perverse sheaves (see [85, §0.8]).

— a8 for k a finite field and o an f-adic unit, the f-adic sheaf of rank 1 on Spec(k) on which
the geometric Frobenius acts by multiplication by «; more generally, for f: X — Spec(k)
a scheme over k, the pullback to X of ade8.

—~ M ® N: derived tensor product of objects of DP(X).

— Perv(X) = Perv(X, Q,): the category of /-adic perverse sheaves on X. A simple perverse
sheaf will also sometimes be called an irreducible perverse sheaf.

— D(M): the Verdier dual of a complex M.
— HHM): for M € D2(X), the i-th cohomology sheaf of M.
— P#{(M): for M € DP(X), the i-th perverse cohomology sheaf of M.
HY (M) = H(Xz, M): the étale cohomology groups of the pull-back of M to X x, k.
— H{(M) = H%(Xz, M): étale cohomology groups with compact support.
— h (X, M) = dim H (X, M).
— hi(Xg, M) = dim Hi (X, M).

— H*(X, M) or H7 (X, M): the graded vector space which is the direct sum of all cohomology
spaces H"(Xz, M) or H.(Xz, M).

- X(Xz, M), xc(Xjz,M): Euler-Poincaré characteristic for cohomology or cohomology with
compact support.

— tym(w; ky): Frobenius trace function of an object M of D2(X) for » € X(k,); tm(z) =
tMm (x; k’)
- (M)

— G (resp. G§[°): arithmetic (resp. geometric) tannakian group associated with a perverse
sheaf M.

— G(ky): group of Q,-characters of the finite group G (k).

- G: disjoint union of the sets (A}(kn) for n > 1.

— II(G): for a semiabelian variety G, the Q -scheme of f-adic characters of G.
— 2, character sheaf on Gy, associated to a character x € @(kn)

— M,: for an object M of D?(G) and a character x, the object M ® %, .
Moreover, the following notational conventions will be used (often with reminders).

— k: a finite field of characteristic p.

— £ a prime different from p.

— k: an algebraic closure of k.

— kp: the extension of degree n of k inside k.
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— G: a connected commutative algebraic group (in particular of finite type) defined over k.
— T: a torus; U: a unipotent group; A: an abelian variety.

— F: a Q-sheaf; .Z: a Q-lisse sheaf of rank one.

— M, N: objects of D?(X) or Perv(X).
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Part 1

Theoretical foundations






CHAPTER 1
Preliminaries

In this chapter, we summarize some tools we use throughout the book, especially the basic
properties of Sawin’s quantitative sheaf theory [98] with an emphasis on commutative algebraic
groups.

1.1. Review of quantitative sheaf theory

Let k be a field, k an algebraic closure of k, and ¢ a prime number different from the characteristic
of k.

DEFINITION 1.1 (Complexity). (1) Assume k = k is algebraically closed. Let My, 41 m+1 be the
variety of (n+ 1) x (m + 1) matrices of maximal rank, viewed as an affine scheme over k. For each
0 < m < n, consider a geometric generic point a,, of My,41,,+1 defined over an algebraically closed
extension K of k, and let [,,, : PR — P} denote the associated linear map.

(a) The complezity of an object M of D2(P?) is defined as
c(M) = max Y h'(PE,M®I,,Qy) = max » (PR, I: M),

o<m<n o<m<n
i€Z i€Z
where the last equality follows from the projection formula.
(b) Let (X,u) be a quasi-projective variety over k. For any object M of DP(X), the complexity
of M with respect to w is defined as ¢, (M) = c(wM).

(2) Let k be a field. Let (X, u) be a quasi-projective variety over & and M an object of D2 (X).
We define ¢, (M) = ¢y, (My), the complexity of the base change of M to Xj.

The invariance of étale cohomology under base change between algebraically closed fields implies
that the complexity is well-defined (i.e., it does not depend on the choice of field of definition of
the generic points a,y,).

LEMMA 1.2. Let (X,u) be a quasi-projective variety over k and let M be an object of D2(X).
The following inequality holds:

(1.1) D RUXE M) < cu(M).
1€Z

PROOF. This follows from the equality hi(X;, M) = hi(Pg,wM) and the invariance of étale
cohomology under extension of scalars between algebraically closed fields, combined with the fact
that l,, : Pk — P} is an isomorphism. O

The following simple fact will be useful.

PROPOSITION 1.3. Let f: (X,u) — (Y,v) be a finite surjective radicial morphism of quasi-
projective varieties over k. For each object M of D2(Y), the equality cuor(f*M) = c,(M) holds.
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PRrROOF. Let n be the embedding dimension of u. Using the notation of Definition 1.1, for each
0 < m < n and each i € Z, there is a canonical isomorphism

since, for f finite surjective radicial, the adjunction map M — f,f*M = fif*M is an isomorphism
(see, e.g. [42, Cor.5.3.10]), hence the result. O

DEFINITION 1.4. Let f: (X,u) — (Y, v) be a morphism of quasi-projective varieties over k with
embedding dimensions nx and ny respectively. For all integers 0 < mx < nx and 0 < my < ny,
consider geometric generic points ax of My, 1 myx+1 and by of My, 11 my+1 defined over an al-
gebraically closed extension K of k, and let Iy : PEX — PpX and ly,: PFY — PR denote the
associated linear maps. The complexity of f is defined as

cun(f) = max max Zh (XK, lay ,Qp @ f v lyy Q).

0<mx<nx 0Smy <ny 4

The main result of [98] establishes, among other things, the “continuity” of the six operations
on the derived category with respect to the complexity. In this result and the remainder of this
section, the implicit constants depend only on the embedding dimensions of the quasi-projective
varieties, unless otherwise specified.

THEOREM 1.5 ([98, Th.6.8 and Prop.6.14]). Let f: (X,u) — (Y,v) be a morphism of quasi-
projective varieties over k. Let M,N, P be objects of D2(X) and let Q be an object of D2(Y). The
following holds inequalities hold:

(1) cu(M & N) = ¢y (M) + cu(N).

(2) cuM®N) < cu(M)eu(N).

(3) if M = N — P is a distinguished triangle, then ¢, (N) < ¢, (M) + ¢, (P).
(4) cu(M[k]) = cu(M) for any k € Z.

(5) cu(RHom(M, N)) < cyid(u)cu(M)cy(N).

(6) cy(RAM) < cyo(f)eu(M) and cv('Rf*M) L Cyid(w)Cyid (V) Cuo (f)eu(M).
( ) Cv(f Q) < Cu,v(f)cv(Q) and Cv(fQ) < Cu,id(u)cv,id(U)Cu,v(f)cv(Q)-

In all these estimates the implied constants depend only on the embedding dimensions of u
and v.

REMARK 1.6. Although the notion of complexity on a quasi-projective scheme (X, u) depends
on the quasi-projective immersion u, note that if v is another quasi-projective immersion of X, then
applying the property (7) to the identity morphism between (X, u) and (X, v), we get

Cu(M) = Cv(M)
for all objects M of D?(X), where the implied constants are essentially ¢, ,(Id) and ¢, ,(Id), up to
constants depending on the embedding dimensions of u and v. Thus, as long as we only consider
on X an absolutely bounded number of different quasi-projective immersions, we can think of the

complexity as being essentially independent of them. (This is reminiscent of similar properties of
height functions in diophantine geometry.)

The complexity can also be used to control the degree of the locus where a complex of sheaves
is lisse, and of the locus where the generic base change theorem holds.

THEOREM 1.7 ([98, Th.6.22]). Let (X, u) be an irreducible quasi-projective variety over k. Let
M be an object of D2(X). Let Z be the complement of the mazimal open subset where X is smooth
and M s lisse. Then the estimate

deg(u(2)) < (3 + s)c(u)eu(M)
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holds, where the degrees are computed in the projective space target of u, and s is the degree of the
codimension 1 part of the singular locus of X.

THEOREM 1.8 ([98, Th.6.26]). Let (X,u), (Y,v) and (S,w) be quasi-projective algebraic vari-
eties over k. Let f: X =Y and g: Y — S be morphisms.

For any object M of D2(X), there exists an integer C > 0, depending only on c,(M) and
(f,g9,u,v,w), and a dense open set U C S such that

(i) The image of the complement of U has degree < C.
(ii) The object f«M is of formation compatible with any base change S' — U C S.
ProprosITION 1.9 ([98, Th.6.15]). Let (X,u) be a quasi-projective variety over k. Let M be

an object of D2(X). For each integer i, let M;1,...,M;,, denote the Jordan-Holder factors of the
perverse cohomology sheaf P2#*(M). Then the following estimate holds:

Z Z cu(M;j) < cyid(u)cy(M).

I€Z 1<j<n;

We also recall the quantitative statement of the Riemann Hypothesis when interpreted as a
quasi-orthogonality statement.

THEOREM 1.10 ([98, Th.7.13(2)]). Let k be a finite field and ¢ a prime different from the
characteristic of k. Let (X,u) be a quasi-projective algebraic variety over k. Let M and N be
geometrically simple £-adic perverse sheaves on X that are pure of weight zero, with complex trace
functions ty and tn respectively. Then the estimate

Y tu(@)in(z) < cu(M)eu(N)[k 72
zeX(k)
holds if M and N are not geometrically isomorphic, whereas
> In(@)? = 1+ 0, (M) [k| ),
zeX(k)

In both estimates, the implied constants only depend on the embedding dimension of X and are
effective.

Finally, we have pointwise bounds for the trace functions.

ProposITION 1.11 ([98, Prop.7.11(2)]). Let k be a finite field and £ a prime different from
the characteristic of k. Let (X,u) be a quasi-projective algebraic variety over k, and let M be a
non-punctual simple perverse sheaf on X which is pure of weight 0. For anyn > 1 and x € X(ky),
we have

tM(x; kn) < W

1.2. Existence of rational points

The following lemma is standard, but we sketch the proof for completeness.

LEMMA 1.12. Let (X, u) be a non-empty quasi-projective variety over a finite field k with em-
bedding dimension n. There exists a finite extension k' of k with degree bounded in terms of
(dim(X), deg(u(X)),n) such that X(k") is non-empty.

Proor. This follows from the Lang—Weil bound or the Riemann Hypothesis for X combined
with estimates for sums of Betti numbers as in [64]. O
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1.3. Structure of commutative algebraic groups

Let k be a field and let G be a commutative algebraic group over k. The scheme G is quasi-
projective (see, e.g., [21, Prop. A.3.5] or [107, Lemma 39.8.7]). We will always assume that G is
given with a quasi-projective immersion v of G, and the complexity of f-adic complexes will be
understood with respect to u (so that we sometimes write just ¢(M) instead of ¢,(M)). If G is
either a power of G, or of G,,,, we assume that u is simply the obvious embedding in the projective
space of the same dimension. We will on occasion make use of Remark 1.6 and use auxiliary
quasi-projective immersions.

Smooth connected commutative algebraic groups over a finite field admit a dévissage in terms of
the fundamental classes of abelian varieties, tori, unipotent' and finite commutative group schemes.
The most convenient version for us is the following statement, which follows from results of Barsotti—
Chevalley and Rosenlicht (see for instance the account in the book of Brion, Samuel and Umae,
combining [16, Cor. 5.5.2] with the structure theorem for connected affine commutative algebraic
groups over perfect fields as a product of a unipotent group and a torus, see e.g. [15, Th. 5.3.1, (2)]).

PROPOSITION 1.13. Let k be a finite field and let G be a connected commutative algebraic group

over k. There exist an abelian variety A, a torus T, a unipotent group U and a finite commutative
subgroup scheme N of A x U x T, all defined over k, such that G is isomorphic to (A x U x T)/N.

We further recall that a finite commutative group scheme N over a perfect field has a unique
direct product decomposition N = N,. x N; where N, is reduced and N is local (i.e., equal to its
connected component of the identity; see, e.g., [15, Prop. 2.5.4]).

1.4. Convolution

Let G be a commutative algebraic group over a field k. We denote by
m:GxG—=G, inv:G—G, eeG(k)
the group law, the inversion morphism, and the neutral element respectively.

DEFINITION 1.14 (Convolution). The convolution product and the convolution product with
compact support on G are the functors from D?(G) x D2(G) to D2(G) defined as

M, N =Rm (MEN), M N=Rm(MKN)
for objects M and N of D2(G).

If G is projective, then so is the morphism m, and hence the two convolutions agree. In general,
there is a canonical “forget supports” morphism

M N — M %, N.

We will write M i N = M %, N when this morphism is an isomorphism.

If u is a quasi-projective immersion of G, then we deduce from Theorem 1.5 that for any
objects M and N, the following estimates hold:

cu(M #, N) < ¢,(M)ey, (N), cu(M# N) < ¢, (M)ey (N).
For an object M of D2(G), we define
MY = inv* D(M),

L Tn this book, “unipotent” only applies to commutative groups.
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where D(M) is the Verdier dual. Since inv* = inv' commutes with D, the functor M + M is
an involution, in the sense that the functor M — (MY)V is canonically isomorphic to the identity
functor.

We denote by 1 the skyscraper sheaf supported at the neutral element e of G.

The basic formal properties of the convolution products are given by the following lemma:

LEMMA 1.15. Let M and N be objects of Perv(G). There exist canonical isomorphisms

(1.2) Hom(1,M" %, N) ~ Hom(M, N) ~ Hom(M % N 1)
(1.3) DM #, N) ~ D(M) %, D(N), D(M % N) ~ D(M) , D(N)
(1.4) Hi(Gg, M) ®q, He(Gg, N) ~ HZ(Gg, M = N)

(1.5) H*(Gg, M) ®g, H* (G, N) =~ H*(Gg, M #, N).

In the first isomorphisms, the hom-spaces are taken in DE(G).

PRrOOF. All these are consequences of the formal properties of the six operations on D2(G).
More precisely, all can be found in [62, 8.1.8,8.1.9], except for the first statement. This is proved
for tori in [45, p. 533]; however, the argument applies to any G, since it uses only formal properties
of the six operations on D2(G). O

1.5. Character groups

In this section, we denote by k a finite field, by k an algebraic closure of k, and by k, the
extension of degree n of k in k. Let £ be a prime number distinct from the characteristic of k.

Let G be a connected commutative algebraic group defined over k. For each n > 1, the norm
map is the group homomorphism Ny /1 G(kn) — G(k) defined as Ny, /i (7) = ?:_01 !kl

For any n > 1, let (A}(kn) be the group of characters y: G(k,) — QEX We denote by G the
disjoint union

G=|J G(kn)
n>1

(note that this is not a group; we also omit the dependency on ¢ in this notation).

Given any set S C G, we also define S(k,) = SN G(ky), so that S is the disjoint union of the
subsets S(ky,).

Since G is geometrically irreducible (see e.g. [92, Cor. 1.35]), the estimate
(G (kn)| = |Gkn)| = [k]" ™) 4+ O(|g| =1/ Aim(@))
holds for n > 1 by the Lang—Weil estimates. If G is an abelian variety we have more precisely
(“{3‘1/2 _ 1)2ndim(G) < ’é(kn)‘ < (‘k|1/2 + 1)2ndim(G)
and if G is a torus, then

(k] = )" ™D < |Clk)| < ([K] + 1) D).

These can be derived from the computation of étale cohomology of abelian varieties combined
with the trace formula, or from Steinberg’s formula for tori; see for instance [91, Th.15.1, Th. 19.1]
for the case of abelian varieties and [18, Prop. 3.3.5] for the case of tori.
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We now recall from [26, Sommes trig., 1.4] the Lang torsor construction and the basic properties
of the associated character sheaves. There is an exact sequence of commutative algebraic groups’

1—>G(I<:)—>Gi>G—>1,

where £ is the Lang isogeny x + Fr(z) - 27!, The Lang isogeny is an étale covering, and hence
induces a surjective map 7{*(G,e) — G(k). Given a character x € G(k), we denote by 2, the
(-adic lisse sheaf of rank one on G obtained by composing this map with y~! and we say that 7
is the character sheaf on G associated to Y.

For z € G(k), the geometric Frobenius automorphism at x acts on the stalk of %, at = by
multiplication by x(z). In particular, the lisse sheaf .2 is pure of weight zero.

The dual D(Zy) of a character sheaf is isomorphic to £, -1, and there are canonical isomor-
phisms
L ® Ly = Lyixe
for any two characters y; and yo.
If n>1and x € é(kn) is non-trivial, then for all ¢ € Z, the cohomology space Hi(GE,fx)
vanishes (see [26, Sommes trig., Th. 2.7*]). More generally, we have the following relative version.

LEMMA 1.16. Let f: G = H be a surjective morphism of commutative algebraic groups over k.
Let x € G(k). The complex R f.%, vanishes unless £, |ker(f)° is the constant sheaf, i.e., unless x
is trivial on ker(f)°.

ProoOF. Let M = Rfi.%,. Let y € H and let z € G be such that f(z) = y. By the proper base
change theorem, the stalk of M at y is given by
My = H2( ()20 = HE(z + ker(f))g ) = Hi(ker(F)p, [z 22]" 2, ker(£)).

We write ker(f) as the disjoint union of cosets u ker(f)° where u runs over a set of representatives
of the group of connected components of ker( f). Thus

HY (ker(f)z, [x — x2]" 2| ker(f @H* (ker(f), [z — zuz]" 2| ker(f)°).

Since %) is a character sheaf, the sheaf [z — zuz]*.%, is geometrically isomorphic to %, so
that we have an isomorphism

@H* ker(f)?, % | ker(f)°),

and the result now follows from [26, Sommes trig., Th. 2.7*]. O

Letn>1and x € G(k‘) The base change of .Z, to Gy, is the character sheaf on Gy, associated
to the character x o Ny, of G(k). In particular, the trace function of £y on k, is given by
to (w3 kn) = x(Ng, /i(2))
for z € G(ky,).

When there is no risk of confusion, we will still denote by £ the pullback of the character
sheaf associated to x to k. The previous remark shows that x and x o Ny give rise to the same
base change to k.

2 Note that it is here that the assumption that G is connected plays a role, since in general the image of the
morphism x > Fry(z) - 7! is contained in the connected component of the neutral element.
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Let f: G — H be a homomorphism of commutative algebraic groups defined over k. For
any n > 1, denote by f,, the induced morphism G(k;,) — H(k,); then we have dual homomorphisms

fn ( kn) — G(k ) defined by x — x o f,. The combination of all these maps gives a map

~

f H | — G, which we will often denote simply by x = X0 f. We will sometimes say that a character
X € G arises from H if x belongs to the image of f

For x € H(ky), there is a canonical isomorphism %=, , ~ f* 2Ly
For any object M of D2(G) and any character y of G(k:), we denote by
M, = M® .2,
the “twist” of M by the character sheaf .Z,.
For all x € G, and all objects M and N of DP(G) (or DP(Gy)), there are canonical isomorphisms

(1.6) D(My) ~ D(M), -1,
(1.7) (Mx)v = (MV)X7
(1.8) (M, N)y = (My %, Ny), (M N), >~ (M, * Ny).

The first two properties follow from duality from D(%y) = £, -1, and the third from the
projection formula combined with the canonical isomorphism m*.%Z, ~ p].Z, W p5.%,, where p; and
p2 are the projections G x G — G (see [62, 8.1.10 (4)]).
More generally, for any algebraic variety X over k, any morphism f: X — G, and any object
M of DP(X), we denote
M, =M® f*.Z,
and we use the same notation for objects in D2(Gj) and D?(Xy), or in D2(Gy,) and D2(Xy,).

We will extensively (and often without comment) use the following standard lemma, which we
prove for lack of a convenient reference.

LEMMA 1.17. Let f: X — G be a morphism from an algebraic variety X to a connected commu-
tative algebraic group G, both defined over k. Let x € G be a character. Then the functor M — M,
on D2(X) or D2(X}) is t-ezact. In particular, if M is perverse (resp. semiperverse) then so is M.

PROOF. Let i € Z. Since .Z is a lisse sheaf on G, the pullback f*.Z is lisse on X, and hence
tensoring with f*.%, is exact for the standard t-structure on D2(X) or DP(X}) (i.e., the t-structure
whose heart is the category of lisse sheaves in degree 0). There are thus canonical isomorphisms
HM f* L) ~ A (M) f*&, for all i. Hence, looking at the support, we see that the functor
M — M, is right t-exact for the perverse t-structure. It is also left t-exact since D(M,) is isomorphic
to D(M), -1, hence the result. O

1.6. Complexity estimates for character sheaves

We keep the notation of the previous section. The first essential new ingredient for our work is
the fact that the complexity of character sheaves on G is uniformly bounded.

PRrROPOSITION 1.18. Let G be a connected commutative algebraic group over k with a quasi-
projective immersion u. There exists a real number C = 0 such that, for every n > 1 and for every
character x € G(ky,), the inequality c,(Z,) < C holds.

PRrROOF. We will proceed in several steps, noting first that we may assume that n = 1.

(1) If the result is true for the groups G; and Gg, then it is true for their product G = G; x Ga.
Indeed, let p;: G — G; denote the projections. Since any character x of G(k) is of the form
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(x1,22) — x1(x1)x2(x2) for some characters x; of G;(k), the corresponding character sheaf is the
external product %, = pi.%,, X p5.Z,,, which has complexity bounded in terms of the complexity
of Z,, and that of .Z,,, and hence bounded uniformly by assumption.

(More precisely, this is one case where we use Remark 1.6, since we most easily bound the
complexity of p].Z,, W p5.Z,, with respect to the composition v of the given quasi-projective
immersions u; and ug of G; and Gy and the Segre embedding using Theorem 1.5, as in [98,
Prop. 6.13]; by Remark 1.6, this is enough.)

(2) If the result holds for a group G, then for any finite subgroup scheme H (defined over k),
the results holds for the quotient G/H (if this quotient is an algebraic group). To see this, we can
further decompose H = H,. x H; where H, is reduced and H; is local, so that we may assume that H
is either reduced or local. Let v be a quasi-projective embedding of G/H and let m: G — G/H be
the quotient morphism.

If H is reduced, then 7 is a finite étale covering, so for any lisse sheaf . on G/H, the sheaf ¥
is a direct factor of m,w*.%, and we deduce

(L) < cp(mem™ L) K ey (7" L).

This implies the result since 7*.Z is a character sheaf on G if .Z is a character sheaf on G/H.

If H is local, then the quotient morphism 7 is radicial, and hence we have ¢,(M) = cyor(7*M)
for any object M on G/H, by Proposition 1.3, and the result again follows.

(3) The result is valid for tori and unipotent groups. For the former, since complexity is a
geometric invariant, we may assume that we have a split torus, and the result then follows from (1)
and the case of G = Gy, which is established in [98, Prop. 7.5].

Assume then that G is a unipotent group. Let GV be its Serre dual (or more precisely, an
algebraic group model of it, see Section 2.2 for details). There exists a lisse f-adic sheaf £ of
rank 1 on GY x G such that the character sheaves associated to characters of G(k) are in bijection
with the points a € GY(k) by mapping a € GV(k) to the restriction of the sheaf .Z to {a} x G.
Hence, by Theorem 1.5, the complexity of any character sheaf of G is bounded in terms of the
complexity of the single sheaf .Z.

(4) The result holds for abelian varieties by [98, Prop. 7.9], since abelian varieties are projective
and any character sheaf is lisse on G.

(5) The general case now follows using the previous results and the dévissage of Proposition 1.13.
O

REMARK 1.19. A potential alternative (more conceptual) approach to this result would be the
following. For a character sheaf .Z on G, there is an isomorphism

m*' L ~pi L WpyL
(recall that m is the multiplication map G x G — G). If one could prove directly the estimate
(1.9) (L) < c(pi L Rps.2L),
then we would deduce from Theorem 1.5 that
c(ZL)? < c(m* &) < (L),

and hence ¢(.Z) < 1. Note that Proposition 1.18 shows that (1.9) is indeed true, and it is maybe
not out of the question that one could provide a direct proof.
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1.7. Arithmetic Fourier transforms

We continue with the notation of the previous section. Given an f-adic complex M in D2(G), we
can consider for any fixed n > 1 the discrete Fourier transform of the trace function = — ty(z; ky,)
on G(ky), which we normalize to be the function from G(k,) to Q,, or C, defined by

X SOLY) = > x(@)ta(ws k).
2€G(kn)

This Fourier transform satisfies the usual formalism of commutative harmonic analysis (see,

e.g., [13]). For instance the Fourier inversion formula
1 -
(1.10) ta(@ikn) = 1m > SM, x)x()
G(ka)l £
X€G(kn)

holds for any = € G(k,), and the Plancherel formula

> ekl = i X SOLP

z€G(kn) x€G(kn)

is valid.

Putting together the data of these discrete Fourier transforms on G(k,,) for all n > 1, we obtain
what we call the arithmetic Fourier transform of the complex M, an element of the product set

[T %G (k). Qy),
n>1

where, for any set X and ring A, we denote by %' (X, A) the A-module of functions f: X — A.

Combining the Fourier inversion formula (1.10) with the known injectivity theorem for trace
functions (see Proposition A.22), we deduce a corresponding injectivity property of the discrete
Fourier transform of complexes:

PROPOSITION 1.20. Let My and My be complexes in DY(G) such that for all n > 1 and all
characters x € G(ky,,), we have the equality

Z x(@)tm, (5 kn) = Z X('T)th(x;kn)'
z€G(kn) x€G(kn)

Then the classes of M1 and Ms in the Grothendieck group K(G) = K(G, Q) are equal.

REMARK 1.21. In Chapter 7, we will establish a more refined statement where the equality of
discrete Fourier transforms is only assumed to hold for characters in a “generic” set, as described
below.

1.8. Generic sets of characters

For an arbitrary connected commutative algebraic group, there is no obvious topology (or

measure) on the set G of characters which would lead to a natural notion of sets containing “almost
all” characters. We will use instead the following definition of a generic set of characters.

DEFINITION 1.22. Let k be a finite field aAnd let G be a connected commutative algebraic group
of dimension d over k. Let S be a subset of G.
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Let ¢ > 0 be an integer. We say that S has character codimension at least i, which we denote
sometimes by ccodim(S) > i, if the estimate

(L11) SCkn)] < [k
holds for all integers n > 1.

We say that S is generic if G —S has character codimension at least 1, i.e., if the estimate
(1.12) G (kn)=S(kn)| < k7@
holds for all integers n > 1.

We now discuss the relation between the definition of generic sets and other notions that appear
in the literature, in the case of unipotent and semiabelian varieties.

If G is unipotent, then the set of characters can be identified with the k-points of a k-scheme GV,
see again Section 2.2. If S C G is algebraic (i.e., if it is the disjoint union of the sets S(k: ) for some
subvariety S of G), then the condition ccod1m(S) > i implies that the codimension of S in G is at
least i. Conversely, if S is a closed subvariety of G, defined over k, then ccodim(S(k)) > codimg(S).

Let G be a semiabelian variety over k. Let ¢ be a prime different from the characteristic
of k. The set of f-adic characters of G can be naturally identified with the set of Q,-points of
a Qg-scheme, as we now recall.

Let 7} (Gy) be the geometric tame étale fundamental group of G (see for instance the paper [74])
of Kerz and Schmidt for various equivalent definitions; note that it is well-known that semiabelian
varieties have good compactifications), and let II(G, Qg) be the group of continuous characters
x: 7 (Gg) — QZX For any n > 1 and any character y € G(k: ), the character sheaf .2 is tamely
ramified (indeed, only the case of tori requires proof; since the question is geometric, we may assume
that G = G¢, for some integer d > 0, and the result follows by induction from the well-known case

of Gy, and the multiplicativity of the tame fundamental group, for which see, e.g., [94, Th.5.1]),
and hence corresponds to a point in II(G, Q). This leads to a natural injective map
é — H(G7Q€)7

and we will identify G this way with a subset of II(G, Q).

We have a decomposition II(G, Q,) = II(G, Q,) ¢ x II(G, Qy)¢, where II(G, Q) is the group of
torsion characters of order prime to £ and II(G, Q). is the group of characters that factor through
the maximal pro-¢ quotient 7¢(Gz)s of 7t (G). Since 74(Gy)s is a free Zy-module of finite rank,
by a result of Brion and Szamuely [17], we can identify I1(G, Q,), with the Q,-points of a scheme
II(G)y, following the arguments of Gabber and Loeser in [45, Section 3.3].

Let then I1(G) be the disjoint union of the schemes II(G), indexed by x € II(G, Q). We have
then

(G, Q) = I(G)(Qy),
and as above we will identify G with a subset of II(G)(Qy).

Let G’ be a semiabelian variety over k and f: G — G’ a homomorphism. Then we have a
dual morphism II(G’) — TI(G), which we denote by x — x o f; if f is an inclusion, we also write

simply x o f = x|g. The restriction of this map to the subset G’ is the map f G’ — G defined
previously.

DEFINITION 1.23. Let G be a semiabelian variety over a finite field &k, and let £ be a prime
different from the characteristic of k.
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(1) A subset S C II(G)(Qy) is a translate of an algebraic cotorus (abbreviated tac) if there ex-
ists a surjective morphism of semiabelian varieties 7: G — G;—C, with non-trivial connected

kernel, and a character xo € I1(G)(Qy) such that

S={xo- (X om) € TG)(Qy) | X" € TG (Qy)}-

We then say that S is defined by the quotient G, — G;—f and the character xo, and we
say that S has dimension dim(G;}). The kernel of 7 is also called the kernel of the tac. If
the quotient morphism is defined over a finite extension k&’ of k, then we say that S is a
tac of Gpr.

(2) We say that a subset S C II(G)(Q,) contains most characters if the complement of S is
contained in a finite union of tacs.

(3) We say that a subset S C II(G)(Qy) is weakly generic if it is a generic set in the sense of
the Zariski topology in II(G).

By extension, we shall say that a subset S C G contains most characters, or is weakly generic,
if its image in I1(G)(Qy,) satisfies this property.

REMARK 1.24. (1) The terminology “most” is used by Krédmer and Weissauer [82]; Esnault and
Kerz [32] speak of “quasi-linear” subsets. What we call “weakly generic” is usually called “generic”
(see for example the papers [82], [79] and [45]).

(2) Let S C TI(G)(Q,) be a subset that contains most characters. The Lang—Weil estimates
imply that SN G is generic. Also, if S C G is a generic set and II(G)(Q,) — S is not Zariski-dense,
then S is weakly generic.

(3) The tac defined by 7 and o can also be interpreted as the set of characters x such that the
restriction of x to ker(w) is equal to that of yo.

(4) If a tac S has dimension i, then SN G has character codimension > dim(G) — i since
(SN G)(kn)| < |G/ (kn)| < [K[™
if S is defined by the quotient G — G’ and the character .

LEMMA 1.25. Let G be a semiabelian variety over a finite field k. Let £ be a prime different
from the characteristic of k. Let I be a non-empty finite set and let (Si)ieLbe a family of tacs in G,
defined by quotient morphisms m;: Gy — G, . and characters x; € II(G)(Q).

Let K be the subgroup of Gy, generated by the subgroups ker(m;). The intersection S = (S; is
not empty if and only if the restriction of x; to K is independent of 1.

If this is the case, then S is a tac, which is defined by the quotient morphism 7: G — Gj/K
and any of the characters x;.

PRrROOF. We denote K; = ker(m;) for i« € I. Since each K; is connected by definition, the
subgroup K generated by the K, is also connected.

Let x € II(G)(Q,). We have x € S; if and only if x | K; = x; | K;, hence if y € S, the restriction
of x; to K must coincide with the restriction of x to K, and is therefore independent of .

Conversely, if this condition is satisfied, then pick any ip € I. The tac defined by G; — Gz /K
and the character y;, consists of characters x such that x | K = x;, | K. This condition is equivalent
to x | Ki = x4, | Ki for all ¢ € I Since x; | Ki = xi, | Ki, we see that this tac is exactly the
intersection of the S;. O
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1.9. Fourier—Mellin transforms on semiabelian varieties

Let k be a finite field and G a semiabelian variety over k. Let £ be a prime different from the
characteristic of k. We use the notation of the previous section.

We recall here some results of Gabber and Loeser for tori [45], generalized by Kramer [79] to
semiabelian varieties.

Let R be the ring of integers of a finite extension of Q; and Q¢ = R[n{(Gy)e]. We have
T(G)e = Spec(Q @n a).

Let p: G — Spec(k) be the structural morphism. We denote by cang the tautological character
cang: 74 (Gg)e — QF,

which defines a lisse 2g-sheaf of rank one on Gz, which we denote 4. Given a complex N €
DE(GE, R), one can define the Fourier-Mellin transforms of N, with and without compact support,

as the objects
FMi(N) = Rpi(N ©r Z6) € DE(k, Q) = Deoy ()
and

FM, (N) = Rp, (N ®r %) € D2, (Q¢).

coh

Inverting ¢ and passing to the direct limit over all extensions R C Q, and all x € II(G, Q,)¢,
we then get two functors

My, FM,: Dg(Gg) = Dy (T1(G)),
where D2, (II(G)) is the derived category of the category of coherent sheaves on II(G).
By (the generalization of) [45, Cor.3.3.2], for N € D?(G;) and every x € II(G)(Qy), viewed as
a closed immersion i, : {x} — II(G), we have canonical isomorphisms
Lii FMi(N) ~ Rpi(Ny) and  Lii FM.(N) >~ Rp.(Ny),

where Li, indicates left-derived functors.

1.10. A geometric lemma

We will use the following lemma in the proof of the general higher vanishing theorem.
A connected commutative algebraic group G is said to be almost simple if it has no proper
connected closed subgroup. Examples of such groups are G,, G,, and simple abelian varieties.

LEMMA 1.26. Let k be a field. Let s > 0 be an integer. We denote [s] = {1,...,s}. Let

G= f[Gi
i=1

be a product of almost simple connected commutative algebraic groups over k. Let d = dim(G).

Gy = H Gi,
i€l
which we identify with a subgroup of G in the obvious way.
Let 1 < i< d. Let & be the set of subsets I such that dim(Gy) > d —i. For each 1 € &;, let Hy
be a non-trivial subgroup of Gi. Then the algebraic subgroup generated by all Hy has dimension at
least 1.

For any subset I C [s], let
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PRrOOF. We denote d; = dim(G;) for 1 <i < s.

We work by induction on s, and for each s, by induction on i. The case s = 1 is elementary,
since H;) = G in that case. For any s, the result is also clear for 7 = 1, since we then have H = G
and dim(Ag) > 1. Assume now that 2 < i < g and that the result is known for (s,4’) for ' < i as
well as for (s',i) for any s’ < s.

The subgroup Hjj C G is non-trivial, and hence there exists some integer j < s such that
the image of Hj, under the projection G — Gj is non-trivial; this means that this image must be
equal to G; since all G; are almost simple. Up to reordering the factors, we may assume that the
projection of H, on Gy is surjective.

If gs > i, then we are done since we then have dim(I) > dim(Hy)) > dim(Gs) = ds > i. We
therefore assume now that dy < 1.

Let G = Gy x --- X Gs_1 and ¢/ = ¢ — d,. The dimension of G’ is d' = d — d,. We have
1<i<d andd—i=d —1. BachJ C [s — 1] with dim(G)) > d' — ¢ = d — i is an element of &;.
By induction, applied to the subgroups Hjy for J € &, the subgroup H' of G’ generated by all Hy
has dimension > i =14 — d;.

To conclude, we observe that since H' is a subgroup of G’ with dimension > i — ds and Hi, is a
subgroup of G = G’ x Gy such that the projection of Hjy to Gs is surjective, the subgroup H that
they generate together satisfies

dim(H) = dim(H/) + dlm(H[S]) — dim(H' N H[S])
> dim(H') + dim(Hp) — dim(G' NHyy) =i —ds +ds =i
since dim(G' N Hig) + dim(Gy) = dim(Hyy)). O

1.11. Geometric and arithmetic semisimplicity

Let k be a finite field, and k and algebraic closure of k. Let ¢ be a prime different from the
characteristic of k.

For an algebraic variety X over k and a complex M in D2(X, Q,), we will sometimes refer to
properties of M (e.g., M being a simple or semisimple perverse sheaf) as arithmetic, and to the
analogue for the base change of M to My, as being geometric. Thus we may speak of a geometrically
simple perverse sheaf, or an arithmetically semisimple perverse sheaf.

We collect here some facts about certain relations between such properties.

LEMMA 1.27. Let X a geometrically irreducible algebraic variety over k and # a lisse (-adic
sheaf on X. If F is arithmetically semsimple, then it is geometrically semisimple.

Proor. Using the correspondance between lisse sheaves and representations of the étale fun-
damental group, this follows, e.g., from [104, Lem. 5 (a)]. O

LEMMA 1.28. Let (X, u) be a quasi-projective variety over k. Let M be an arithmetically simple
perverse sheaf on X. There exists a finite extension of k of degree bounded in terms of ¢, (M) such
that the base change of M to Xy is a direct sum of geometrically simple perverse sheaves on k'.

In particular, M is geometrically semisimple.

PRrROOF. By [6, Prop.5.3.9 (ii)], there exists an integer n > 1 and a geometrically simple perverse
sheaf N on Xy, such that M = f,,.N, where f,,: X}, — X is the base change morphism. Since N is
non-zero, we deduce that n < ¢,(M) by looking at the rank at a generic point of the support. The
base change of M to k,, is then a direct sum of geometrically simple perverse sheaves. ([l

31



LEMMA 1.29. Let k be a finite field and k an algebraic closure of k. Let £ be a prime different
from the characteristic of k. Let X be a smooth and geometrically connected quasi-projective variety

over k. Two arithmetically simple perverse sheaves on X are geometrically isomorphic if and only
if there exists a € Q, such that M ~ a°¢ @ N.

This is a standard fact (see, e.g., [89, Lemme 4.4.4]).

1.12. A result from representation theory

The following basic fact from representation theory of reductive groups will play a crucial role.

PROPOSITION 1.30. Let F be a field of characteristic zero and let G be a reductive algebraic group
over F. Let V be a finite-dimensional faithful representation of G over F. Any finite-dimensional
irreducible representation of G over F occurs in a tensor power (V®VY)E™ for some integer m > 0,
where VV is the contragredient of V.

See, for instance, [28, Prop. 3.1] for the proof.
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CHAPTER 2
Generic vanishing theorems

Throughout this chapter, k denotes a finite field, k an algebraic closure of k, and k,, the extension
of degree n of k inside k for each n > 1. We also fix once for all a prime number ¢ different from
the characteristic of k. All complexes of sheaves and characters are tacitly understood to be f-adic
complexes and characters for this choice of £.

2.1. Statement of the vanishing theorems
We now state our main vanishing theorems.

THEOREM 2.1 (Generic vanishing). Let G be a connected commutative algebraic group over k

and let M be a perverse sheaf on G. The set of characters x € G satisfying
1) H' (G, My) = H(GE, M) =0 for alli #0,
. Hg(GkaMX) = HO(GkaMX)

is generic in the sense of Definition 1.22.

This gives the first part of Theorem 1 from the introduction.

REMARK 2.2. Various versions of Theorem 2.1 have been proved by the following authors:

(1) Katz—Laumon [71, Th.2.1.3, Scholie2.3.1] in the case of powers of the additive group
and Saibi [97, Th.3.1] in the case of unipotent groups; in both cases, the generic set is a
Zariski-dense open subset of the k-scheme parameterizing characters.

(2) Gabber—Loeser [45, Cor.2.3.2] for tori, with “generic” replaced by a condition imply-
ing “weakly-generic” in the sense of Definition 1.23; see also [45, Th.7.2.1], for “most”
characters in codimension 1.

(3) Weissauer | , Vanishing Th., p.561] for abelian varieties, with “generic” replaced by
“most”, and Krémer [79, Th. 2.1] for semiabelian varieties, with “weakly generic” charac-
ters.

We will in fact prove the following stronger result, which also controls the “stratification” arising
from the non-vanishing of other cohomology groups; this has a number of useful applications.

THEOREM 2.3 (Stratified vanishing). Let G be a connected commutative algebraic group of
dimension d over k, and M a perverse sheaf on G. There exist subsets

~

Sy C - CH=G
such that the following holds:

(1) For 0 < i< d, the subset .%; has character codimension at least i.
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(2) For0<i<d, any x € G such that at least one of the cohomology groups
(22) HZ(GE7MX)3 H_Z(GmeX)a HZC(GEaMX)v H(:_Z(GI%MX)

s non-zero belongs to ..

(3) For x € =1, the equality HY(Gy, M, ) = H%(Gj, My,) holds.

(4) If G is a torus or an abelian variety, then .7 is a finite union of tacs of G of dimension
<d-—i.

(5) If G is a unipotent group, then .7 is the set of closed points of a closed subvariety of
dimension < d — i of the Serre dual GV.

Concretely, this implies that for 0 < ¢ < d, the estimate
[{x € G(kn) H(Gg, My) # 0 or Hy'(Gg, My) # 0
or H'(Gg, M) # 0 or H*(Gg, My) # 0} < [k "
holds for all » > 1, and so this implies the second part of Theorem 1.
Note that Theorem 2.1 is a straightforward consequence of Theorem 2.3, since the set of char-

acters satisfying (2.1) contains the generic set ./p—7.

REMARK 2.4. We expect that this result should be true with the stronger information that the
implied constants in (1.11) for the subsets .%; depend only on the complexity of M. A result of this
type would be especially useful for applications to “horizontal” equidistribution theorems.

However, we can only prove this at the current time in the following cases:

(1) if G is a unipotent group (use the equality of Fourier transforms of [97, Th. 3.1] combined
with Theorem 1.7);

(2) if G is a geometrically simple abelian variety (see Corollary 2.19);

(3) and probably, although we have not checked this in full details, if G = U x G,,, where U
is unipotent.

The issues that arise in attempting to handle the general case are:

— For tori, the use of de Jong’s theorem on alterations, where we do not control the number
of exceptional components that appear (thus, a suitably effective version of de Jong’s
theorem, or an effective form of embedded resolution of singularities, would probably
imply the desired conclusion in this case).

— For abelian varieties, the need to find and control the complexity of an alteration that
“moderates” certain perverse sheaves, to apply results of Orgogozo.

COROLLARY 2.5. Let G be a connected commutative algebraic group over k. Let M be an object
of DX(G). Then for generic x € G and any i € Z, we have canonical isomorphisms

HZC(GTm MX) = Hl(Gfm MX) = HB(G];, p%Z(MX))

PROOF. The proof is similar to that of [79, Cor. 2.3]; see the proof of Corollary 2.18 below for
a similar statement. 0

We will prove Theorem 2.3 in Section 2.5. Before doing this, we need to establish some pre-
liminaries concerning perverse sheaves on the basic building blocks of Proposition 1.13, namely (in
rough order of difficulty) unipotent groups, tori and abelian varieties.

Note that proving either Theorem 1 or Theorem 2 for a given group G only involves the
corresponding material for groups of the types which actually appear in Proposition 1.13 applied
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to G. In particular, for instance, the proof of Theorem 3 (and other similar statements) only
depends on the case of tori, i.e., on Section 2.3.

To facilitate orientation, we list below the key statements about each type of groups; Section 2.5
only requires these statements from the next three sections.
(1) Unipotent groups: Proposition 2.7.
(2) Tori: Corollary 2.15.

(3) Abelian varieties: Corollary 2.28 and the auxiliary Theorem 2.25, due to Orgogozo [95].

2.2. The case of unipotent groups

We begin by summarizing the duality theory of commutative unipotent groups; a good account
can also be found in [14, App. F].

Let U be a connected unipotent commutative algebraic group over a finite field k of characteristic
p. The functor that sends a perfect k-scheme S (i.e., a scheme for which the absolute Frobenius is
an automorphism) to the extension group

Ext'(U xx S, Qp/Zp) = lim Ext"(U %, S,p™ " Zy/Zy)

in the category of commutative group schemes over S (with Q,/Z, viewed as a constant group
scheme) is representable by a connected commutative group scheme U* over k, called the Serre
dual of U. This goes back to a remark by Serre [102, p.55] and was developed by Bégueri in [5,
Prop. 1.2.1] and Saibi [97]. Morever, if m > 1 is such that p™U = 0, then the natural morphism

Ext!(U x S,p"Zy/Zp) — @Extl(U X S,p "2/ Zy)

is an isomorphism.
Let A be a finite abelian group. For each integer n > 1, the short exact sequence

x T z)-x— 1
1 — U(k,) — Uy, ok (@) U, — 1

induces an isomorphism
Hom(U(k,),A) — Ext!(Ug,, A)
(see [14, Prop.F.2]).
Let m > 1 be such that p™U = 0. We take A = p~"Z,/pZ, ~ Z/p™Z. For any integer n > 1,

we obtain an isomorphism

U* (k) — Ext!(Uyg,, A) — Hom(U(ky,), A).

Fix now a faithful character ¢: p~™Z,/Z, — Qex . We then obtain, for any n > 1, an isomor-
phism
U*(kyp) — U(ky).

Saibi [97, Lemma1.5.4.1] (see also [14, Remark F.1 (ii)]) proved that there exists a connected
commutative unipotent algebraic group UY and a bi-extension 2y yv of UY x U by Qp/Z, such
that the bi-extension induces an isomorphism between the perfectization of UV and U*. Together
with the above character v, this induces isomorphisms

Bn: UV (kn) = Ulky)

for all n > 1. (See also [14, Remark F.4 (ii)] for a different approach to the construction of the
finite-type model UY.) We also write 9, for the character 3, (z).
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We denote by £y uv 4 the associated lisse f-adic sheaf of rank 1 on UY x U; its trace functions
are given by

tn(.l', Y; kn) = Bn(x) (y)
for all n > 1 and (z,9), € U(k,) x UY(ky,).

EXAMPLE 2.6. Fix a non-trivial additive character 1: k — Q,. Suppose that U = G¢ for some

d > 0. We denote
d
-y = Z LiYi
i=1

for (z,y) € U x U.
There exists a choice of bi-extension with UY = U, and the isomorphisms

Bt (GE)(kn) — G(ky)

are given by x +— 1, where

V2 (y) = (Trg, i(z - ).

We come back to the general case. Let p: U x;, UY — U and p¥: U x;, UY — UV denote the
projections to both factors. The Fourier transform is the functor FT,: D2(U) — D2(UY) defined
by

FTy(M) = Rp/ (p"(M) ® Zy,uvp) = Rp)/ (0" (M) @ Lu,uvp),
where the second equality (more precisely, the fact that the natural transformation “forget sup-
ports” from the left-hand side to the right-hand side is an isomorphism) is [97, Th. 3.1]. A corollary
of this is that the Fourier transform is compatible with Verdier duality, in that there is a canonical
functorial isomorphism

D(FTy(M)) ~ FT,-1(D(M))(dim U)
for each object M of D2(U), see [97, Cor. 3.2.1]. We refer the reader to Saibi’s article [97] for the
other main properties of the ¢-adic Fourier transform on unipotent groups.

By the proper base change theorem and the definition of Fourier transform using p’, for all

a € UY(k) and i € Z, there are natural isomorphisms
(2.3) H(Ug, My, ) = A (FTy(M)),.

Since unipotent groups are affine, it follows from Artin’s vanishing theorem that the Fourier trans-
form shifts the perverse degree by the dimension of U. In particular, if M is perverse, then so is
FTy,(M)[dim(U)].

PROPOSITION 2.7. Let U be a connected unipotent commutative algebraic group of dimension d
over k. Fiz a locally-closed immersion u of U into some projective space to compute the complexity.
Let M be an object of D2(U) of perverse amplitude [a, b].

There exists an integer C > 0, depending only on ¢, (M), and a stratification (S;) of UV such
that every strat S; is either empty or has dimension d — i, with the following properties:

(1) The sum of the degrees of the irreducible components of u(S;) is at most C.
(2) For each a € S;(k), the vanishing HZ(Uy, My, ) = 0 holds for all j ¢ [a,b + i].

In particular, the estimate
(2.4) 1Si(kn)| < [Kn|*™
holds for all m > 1, with an implicit constant that only depends on ¢, (M).
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Moreover, for any a € So(k) and any j € Z, we have

HI(Ug, My, ) = H? (Ug,, My,).

PROOF. Since the Fourier transform shifts the perverse degree by d, the complex FT, (M) has
perverse amplitude [a +d, b+ d]. By Theorem 1.5, the complexity ¢, (FTy(M)) is bounded in terms
of ¢, (M).

By Theorems 1.7 and 1.8, there exists a smooth open subscheme Sq C UV, with closed comple-
ment Yo of degree bounded in terms of ¢, (FTy(M)), and hence in terms of ¢, (M), such that the
restriction of FTy(M) to Sp has lisse cohomology sheaves and such that FT, (M) is of formation
compatible with any base change S’ — Sy C U" (this follows from the formula for the Fourier
transform in terms of p;). Up to replacing Sy by a smaller open subset we may assume that Sy is
affine (and this does not increase the complexity of the complement).

In particular, using (2.3) and this compatibility, we obtain the following equality for a € So(k):
H(Ug, My,) = 2" (FTy(M))a = H'(Ug, My, ).

By a slight generalization of [6, Cor.4.1.10. 7], the pullback by a closed immersion of a complex
of perverse amplitude [a, b] has perverse amplitude [a — 1, b]. Therefore, the restriction of FTy (M)
to Y has perverse amplitude [a+d—1,b+d]. Proceeding by induction, we construct a stratification
(Si)o<i<a of UY into strats S; such that

(1) each S; is smooth, empty or equidimensional of dimension d — ;

(2)
(3)

the closure of each S; has degree bounded in terms of ¢, (M);

3) the restriction of FTy(M) to each S; has lisse cohomology sheaves and is of perverse

amplitude [a +d —i,b+ d].

Let 0 < i < d. On each connected component of S;, the support of the cohomology sheaves
of FT (M) is either empty or equal to S; (since these sheaves are lisse). However, the definition of
perversity implies the inequality

dim supp 7 (FT(M)js,) < —j + b+ d
for all integers j. Since S; has dimension d — i, the non-vanishing of #7(FTy(M)g,) implies
therefore the inequality
d—i<—j+b+d, ie j<b+i.
Since S; is smooth of dimension d — i (so the dualizing complex on S; is Q[d —i](d — i) and the

Verdier dual of a lisse sheaf is the naive dual) and the cohomology sheaves on S; are lisse, duality
implies that D(FT,(M)g,) also has lisse cohomology sheaves, given by the formula

A (D(FTy(M))js,) = (27972 HFH(F Ty (M)gs,))¥ (d — i)

for all j.
Thus, arguing as above, the perversity condition shows that the condition #7 (FTy(M)s,) # 0
implies
d—i1<j+2d—2i—a—d+1i, ie j=>a.
We conclude that the cohomology sheaves of the complex FT, (M) |s; are concentrated in degrees

[a,b + i]. By proper base change, this implies assertion (2) of the proposition and concludes the
proof. O
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REMARK 2.8. This result is a generalization to all unipotent groups, and a quantification by
means of the complexity, of some of the Fouvry—Katz—Laumon stratification results for additive
exponential sums [71, 34]. It may have interesting applications to analytic number theory, since
the quantitative form means that it may be used over varying finite fields, e.g. ), as p — +00; see
Chapter 6.

2.3. Perverse sheaves on tori

In this section, we generalize some of the results of Gabber and Loeser [45] about perverse
sheaves on tori. We begin with a generalization of [45, Th.4.1.1’], which is proved in loc. cit.
under the assumption that resolution of singularities and simplification of ideals hold for varieties
of dimension at most the dimension of the torus in question. The structure of our proof is the
same, but we are able to replace the appeal to resolution of singularities with de Jong’s theorem
on alterations [23].

THEOREM 2.9. Let T be a torus over k and let M be an object of D2(T). For all characters
x € I(T)(Qy) outside of a finite union of tacs, the equality H*(T,M,) = H.L(T,M,) holds for
alli € Z.

As in [45], the proof of Theorem 2.9 relies on the auxiliary proposition stated below. We pick
a smooth compactification of T by a simple normal crossing divisor j: T — T (for example, the
projective space), and denote by i: T —T — T the complementary closed immersion. Given any
morphism ¢: W — T of varieties over k, denote by jw: ¢ }(T) — W and iw: ¢ (T =T) - W
the corresponding open and closed immersions. Recall the Qp-sheaf of rank one Zr on T from
Section 1.9.

PROPOSITION 2.10. With notation as above, let N be an object of D?(o~1(T)). There exists a

finite union . of tacs in T such that, for any r > 0 and any & € ¢ 1(T ="T), the support of the
module (R jw+«(N ® ¢*(Zr)))e is contained in 7 .

PRrROOF. The idea of the proof is to reduce to the situation of [45, Prop. 4.3.1].

We use induction on the dimension of W. We can then readily assume that N is a lisse sheaf on
a locally-closed irreducible subvariety U of ¢ ~!(T), extended by zero to ¢~ !(T). We can assume
further that U is dense in W. Now the monodromy of N can be assumed to be pro-£. Indeed,
consider the finite étale cover f: U — U associated to the ¢-Sylow subgroup of the monodromy
group of N, and let W’ be the normalization of W in the function field of U. The sheaf N is a direct
factor of fif*N, and it suffices to prove the theorem for f*N and W’. Hence, we assume that the
monodromy of N is pro-£.

By de Jong’s theorem [23, Th.4.1], there exists an alteration f: W' — W such that W’ is
smooth and the reduction of the complement of f~'(U) in W' is a strict normal crossing divisor.
Since we are working over a perfect field, we can further assume that the alteration f is generically
étale. Hence, there exists a dense open subset Ug of U such that f is finite étale over f~(Ug). By
induction, it is enough to prove the result for Uy and Ny, and hence by the same argument as
above, it is enough to prove it for f.f*Nyy,. By proper base change, it is then enough to prove the
result for W' and J*Npy,- By a last dévissage, it is finally enough to prove it for f*N.

We are now in a situation where we can suppose that W is smooth, that the complements
of =(T) and U in W are strict normal crossing divisors, and that the monodromy of N is pro-£.
This is exactly the situation at the end of the proof of [45, Prop. 4.3.1’, starting from p. 544, line -4]
(with N replacing A there) and the remaining argument is identical to that of loc. cit. O
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PROOF. Proof of Theorem 2.9] The fact that Proposition 2.10 implies Theorem 2.9 is completely
similar to the fact that Proposition 4.3.1" implies Théoreéme 4.1.1" in [45]. We keep the notation
introduced before the statement of Proposition 2.10, and apply Proposition 2.10 with W = T and ¢
the identity morphism, so that jw = j and iw = 4.

Let x € T such that x does not belong to finite number of tacs of T given by Proposition 2.10.
Then i*Rj.(Ny) € DP(T —=T) is trivial, and hence its cohomology complex
RI(T—=T,i*Rj.(Ny))
is also trivial. But this last complex is isomorphic to the cone of the morphism

Rsi1(Ny) = Rsx(Ny),

where s: T; — Spec(k) is the structure morphism, hence the theorem. ]

We now use Proposition 2.10 to deduce a relative version of Theorem 2.9.

THEOREM 2.11. Let T be a torus over k, let S be an arbitrary scheme over k, and let G = Sx T.
Denote by p: G — S the projection. Let N € D2(G).

For x € II(T)(Qy) away from a finite union of tacs ., we have Rpi(Ny) = Rp.(Ny).

In particular, if N is a perverse sheaf, then for x not in .7, the complex Rpi(Ny) = Rp.(Ny) is
a perverse sheaf on S.

PROOF. This is similar to Theorem 2.9. We apply Proposition 2.10 with W =S x; T, and
check that, for each character x away from the finite union of tacs given by the proposition, the
object iy Rjw« (N ® &) is trivial, which follows from the immediate extension of [45, Prop. 4.7.2]
to an arbitrary base scheme S. U

THEOREM 2.12. Let T be a d-dimensional torus over k, let S be an arbitrary scheme over k,
and define X =T x S. Let i be an integer such that 1 < i < d.

Let M be a perverse sheaf on X. There exist a finite extension k' of k and a family (S¢) ez of
tacs of T of dimension < d — i with the property that for any x € Tk/ which does not belong to
the union of the Sy there ewists a quotient torus Ty, — Z of dimension i — 1 such that

RQS!MX = RQS*MX

and this complex is perverse on B Xy Spr.

Proor. Up to replacing k by a finite extension, we can assume that T} is split, and thus reduce
to T = G2,
Now let 1 < i < d. For each subset I of [d] = {1,...,d} of size i — 1, we apply Theorem 2.11

with (T,S) = (G%]_I, G! x8) over k, so that the projection p in the theorem is then the canonical
projection
q: GL xs=GMd x5 Gl xs.

We obtain a finite union of tacs of GL%]_I such that for characters x of G%H outside of this
finite union, we have

Ran(My) = R (My)
and this complex is perverse.
Let
(m5: Gl™ = Y1, x1)jex
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be the quotient morphisms and characters defining this finite family of tacs. For j € X;, we define
Ky ; = ker(m;); this is a non-trivial subtorus of G%]_I, which we identify with a subtorus of G¢,
using the canonical embedding gl G2 . In addition, we define X1, € I1(G4)(Qy) to be the
character that is trivial on G, and coincides with x1; on G,[g]_l.

Let .# be the set of all maps f from the subsets of [d] of size i — 1 to the disjoint union of the
X1 that send a subset I to an element j € Xj for each I; this set is finite. For f € %, let Sy be the
intersection of the tacs of G& defined by

(G, = G /Ky 1), X1 )
We claim that the family (Sy) ez (to be precise, the subfamily where Sy is not empty) satisfies

the assertions of the theorem.

Indeed, first of all Lemma 1.25 shows that S is either empty or is again a tac; moreover, in
the second case, it is defined by the projection GJ' — Gl /T 7 where T is the subtorue of G¢
generated by the Ky y(1) (as subtori of G2). By Lemma 1.26 applied to G; = G, for all i and the
subgroups Ky r(1), we have dim(Ty) > i for all such f, and hence the quotient

pr: G, = Yy =Gih /Ty
has image of dimension < d — 4, as desired.

Finally, let x € (A}fn be a character that does not belong to any of the tacs Sy. This implies
that there exists some f € .%, some subset I C [d] of size i — 1 and some j € Xi such that the

restriction x1 of x to G[TZH is not equal to xi,;.

We can write x = x1x’ where X’ is a character of GL . Then, considering the quotient ¢: G%, —
G! , the base change ¢s is the canonical projection ¢; and from the application of Theorem 2.11 to
q1, we obtain

Rys«(My) = Rgs(My,) @ £ = Rysi(My) © 2y = Rasi(My),

and the fact that this object is perverse. (|

We deduce two corollaries that are sometimes more convenient for applications. The first one
is Theorem 2.3 for tori.

COROLLARY 2.13. Let T be a torus of dimension d over k. Let M € Perv(T). For —d <i <d,
the sets R ' N ‘
{xeT | H(Tp,My) #0},  {xeT | Ho(Tg, My) # 0}
are contained in a finite union of tacs of T of dimension < d — |i|, and in particular they have
character codimension at least |i|.

PrOOF. We apply Theorem 2.12 to |i| and claim that the characters in either of these sets
belong to the union of the tacs Sy that arise. Indeed, if x is not in any Sy, then there exists a
quotient torus Ty — Z of dimension 7 — 1 such that RgsiM, = Rgs«M,, and hence

H'(Tj, M) = H'(Bg, Rgs«M, ) =0

since Rgs«M,, is a perverse sheaf and dim(B) = i — 1. The argument is similar for cohomology with
compact support. O

REMARK 2.14. We recall that, concretely, this corollary implies that for |i| < d, the estimate
{x € T(kn) | H'(Tg, My) # 0 or Hy(Tg, My) # 0} < [k
holds for all n > 1.
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The following “stratified” statement is also a useful formulation of the result.

COROLLARY 2.15. Let T be a torus of dimension d over k and S a variety over k. Set X =T xS
and let q denote the projection q: X — S. Let M be a perverse sheaf on X. There exists a finite
extension k' of k and a partition of ’Tk/ into subsets (S;)o<i<a of character codimension > i such
that, for any i and x € S;, the object Rqi(M,,) of DP(S) has perverse amplitude [—i, i].

PROOF. Using the notation of the proof of the theorem, for any integer ¢ with 1 < i < d, let &}
be the finite extension arising from its application to i and let .%; be the corresponding family of
tacs. Define §Z to be the union of the Sy for f € .%; for 1 <i < d.

Let k£’ be the compositum of all k;. Define Sy = T—S;and S; =S; —§¢+1 for 1 <7 < d. These
sets form a partition of 'Tk/, and since S; C §1 for ¢ > 1, they have character codimension > ¢. This
property is also clear for ¢ = 0.

Let 0 < i < d, and let x € S;. Then x ¢ §i+1, and hence the theorem provides a projection
gs: G4 xS — Z x S with dim(Z) = 4 such that RgsiM, is perverse. Composing with the projection
Z x S — S and using Artin’s vanishing theorem, it follows that RgM, has perverse amplitude
[—1,1]. O

2.4. Perverse sheaves on abelian varieties

In this section, we will review and extend some results of Kramer and Weissauer on perverse
sheaves on abelian varieties.

2.4.1. Statement of the results and corollaries. Let k be a finite field, and k an algebraic
closure of k.

Let X be an abelian variety over k. We fix a projective embedding u of Xj. For subvarieties
of X, the degree means the degree of the image by u; for a tac of S defined by 7: X — A and x, we
will say that the degree of S is the degree of the image u(ker(r)).

For a perverse sheaf M on X, a combination of the main result of Weissauer [110] and of the

machinery developped by Kramer and Weissauer [82] implies that for most characters x € X, we
have H*(Xz, M) = 0 for all i # 0; we will show here that this result can be made quantitative
using the complexity of M, and will then establish a relative version (see Section 2.4.4).

THEOREM 2.16. Let X be an abelian variety over k. Let M be a perverse sheaf on X.

There exist an integer ¢ > 0 depending only on c,(M), a finite extension k' of k of degree
< ¢, and a finite family (Sf)rer of tacs of Xy with |F| < ¢, each of degree at most c, such that
any x € Xy which does not belong to the union of the Sy satisfies

H (X5, My) =0
for all i # 0.

We will prove this below, but first we establish some corollaries.

COROLLARY 2.17. Let M € D2(X) be a compler on X.

There exist an integer ¢ > 0, depending only on c,(M), a finite extension k' of k of degree < c,
and a finite family (Sf)rer of tacs of Xy, each of degree at most c, with |F| < ¢, such that for
any x € Xy which does not belong to the union of the S, there is a canonical isomorphism

Hi(XIE7MX) = HO(X,;:, pt%m(M)x)
foralli € Z.
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PROOF. This is the same argument as in the proof of Corollary 2.5; the dependency on ¢, (M)
is obtained by means of Proposition 1.9 to control the perverse cohomology sheaves of M. O

Alternatively, the next corollary may be more convenient for applications.

COROLLARY 2.18. Let M € D2(X},) be a complex on X. The set .# of characters x € X such
that we have isomorphisms

Hi(Xl_wa) = HO(XI_w p%pi(M)x)
for all i € Z is generic, and the implicit constant in (1.12) depends only on c,(M).

In particular, if M is a perverse sheaf, then the set of x such that H (X, My) =0 for all i # 0
is generic and the implicit constant in (1.12) depends only on ¢, (M).

PRrROOF. Assume first that M is a perverse sheaf. We apply Theorem 2.16 to M, and use the
notation there. For n > 1, let k/, = k’k,,. For any x € X(ky)— .7 (ky), the corresponding character
in X(k;,) belongs to S¢(k;,) for some f € F. Let Af be the abelian variety such that S¢ is defined

by 7y: Xpr — Ay; we have
(k) = (k)| < D [Af (R < 12| (KR 4 1)2 A [, [Bm00,
feF
where the implied constant depends only on ¢, (M) by the theorem.
Now in the general case, recalling that P.#*(M, ) is canonically isomorphic to P.7#*(M), for all i
and all x, we have the convergent perverse spectral sequences
EZQJ = HZ(XI;H p%](M%{) = HH_J(XE? MX)

By the previous case applied to each of the finitely many perverse cohomology sheaves, the set
of x such that H'(Xz, P27 (M),) = 0 for all 7 # 0 and all j is generic; for any such character, the
spectral sequence degenerates and we obtain isomorphisms

Hi(XEvMX) = HO(XEu p%i(M)x)-

Applying Proposition 1.9, we see that the last statement concerning the implicit constant
in (1.12) holds. O

COROLLARY 2.19. Let X be a geometrically simple abelian variety over k. Let M be a perverse
sheaf on X. Then there exists a constant ¢ depending only on ¢, (M) and a finite set . C I1(X)(Qy)
of cardinality at most ¢ such that for x € I(X)(Q,) — -,

H'(Xz, My) = 0 fori # 0.

PRrROOF. Since X is a geometrically simple abelian variety, then a tac of X contains a single
character. Hence, the result follows from Theorem 2.16. ]

2.4.2. A rationality lemma. The following is a variant of a result by Bombieri and Zannier
[9, Lem. 2].

LEMMA 2.20. Let X be an abelian variety over k of dimension g, and let Y be a closed subvariety
of degree d with respect to some projective embedding uw of X of embedding dimension n. Let A C Xj,
be a non-trivial abelian subvariety such that A + Yy = Y which is mazimal with this property.

There exists a finite extension k' of k, of degree bounded in terms of (d,g,n), such that A is
defined over k' and has degree bounded in terms of (d, g, n).
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PRrROOF. In this proof, we will say that a closed subvariety W of X has fully bounded degree if
it is defined over a finite extension of k of degree bounded in terms of (d, g,n), and if the degree of
u(W) is bounded in terms of (d, g,n).

We first observe that since A is non-trivial, we must have dim(Y) > 1.
Let (Y;)ier be the family of geometrically irreducible components of Y. Note that they are all

defined over a finite extension k' of k of degree bounded in terms of d. For a € A(k) and any i € 1,

there exists j € I such that a +Y; = Y}, so that the group A(k) acts by permutation on the finite

set {Y;}. The stabilizer of any fixed irreducible component Y; is a finite index subgroup of A(k).

But the group A(k) is divisible since A is an abelian variety, and thus this stabilizer must be equal

to A. Tt follows that, a +Y; = Y; for any i € I and any a € A(k). Replacing k with ¥’ and Y with
one of its geometrically irreducible components, we can therefore assume that Y is irreducible.

We further make a finite extension of k so that Y(k) contains a point x; by Lemma 1.12, we
can bound the degree of the extension that is required in terms of (d, g, n).

We will now construct inductively a strictly decreasing family
YoOoY1 D

of irreducible closed subvarieties of dimension > 1 of Y, with fully-bounded degree, as follows.

We put Yo = Yz. Now suppose that Y; has been defined for some i > 0. Let y € Y;(k)
be any point different from x (such points exist, since Y; is of dimension at least 1). Define
Vy, =Y;N(x—y+Y;); by the same argument as before, the geometrically irreducible components
of V,, are invariant under translation by A(k). Let C be the set of y € Y(k), different from z, such
that some irreducible component of V, containing x is a proper subvariety of Y;. The set C is a
constructible set, defined over a finite extension of k of degree bounded in terms of (d, g), hence
either C is empty, or there exists such a finite extension k' such that Y(k’) contains an element

of C.

In the first case, we define Y;41 to be any irreducible component of V, containing x with
dimension < dim(Y;). We have A + Y;11 = Y;41, and (by Bézout’s theorem) the degree of Y,y is
bounded in terms of d and g. Thus Y;4; has fully-bounded degree.

In the second case, we end the construction of the sequence.

The second case must arise after at most g steps of the induction; we now define Z to be the
last term of the sequence. We thus have A + Z = Z, and moreover the fact that the induction

cannot be continued beyond Z shows that (x — z) + Z = Z for all z € Z(k).

The maximality of A among abelian subvarieties with A4+Y =Y implies that A is also maximal
among abelian subvarieties B of X such that B+ 7Z = Z. Let

S={aeX|a+Z="17}

This is an algebraic subgroup of X, and its connected component is an abelian subvariety, and
hence is equal to A. But for z € Z(k), we have A C Z—z as well as z—Z C S, and hence A =Z —z
since the latter is irreducible. The construction of the subvariety Z therefore shows that A is of

fully bounded degree, which concludes the proof. O

2.4.3. Conclusion of the proof. We now proceed with the proof of Theorem 2.16. As we
indicated, the first ingredient is a quantitative version of a result of Weissauer [110],

PrROPOSITION 2.21. Let X be an abelian variety over k with a projective embedding u, and let
M be a geometrically simple perverse sheaf on X such that x(Xz, M) = 0.
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There exists a finite extension k' of k of degree bounded in terms of ¢,,(M) and a tac S on Xy
with kernel an abelian subvariety Ay of degree bounded in terms of ¢, (M), such that

if and only if x is in S.

PrOOF. By [110, Th.3 and Lem. 6], there exists a maximal abelian variety A; of Xj such
that M is invariant by translation by Az, and this abelian variety is non-trivial.

Denoting by ¢: Xz — Xz/Ajz the quotient morphism, this is equivalent to the fact that M
is isomorphic over k to a perverse sheaf of the form %, ® ¢*(M)[dim(A)] for some character
xo0: 71(Xj) — Q, and some simple perverse sheaf M on Xz /Ag. The first step is now to prove that
Aj and M are defined over a finite extension of k of degree bounded in terms of ¢, (M), and that
the degree of Az in the image of u is similarly bounded.

Let k" D k be the field of definition of Ag; it is a finite extension of k. Let Z C X be the support
of M, which is a closed subvariety of X, and let U C Z be the maximal open subset on which M is
lisse, and Y = Z—U. By Theorem 1.7, the degrees of Zz and Yy, are bounded in terms of ¢, (M).

Since M over k is invariant by translation by closed points of Ay, the same holds for Z and U,
and hence also for Y, so that A + Y; = Y. By Lemma 2.20, the abelian variety Ay is defined
over a finite extension of k of degree bounded in terms of the degree of Y, and hence of ¢, (M), and
with degree in the image of u also bounded. This concludes the proof of the claim.

Now let x be a character not in the tac S of X/ defined by (q,x, ). We now compute for
every ¢ € Z that

HY (X7, M) = HY((X/A), Raw (M) = H'((X/A)f, Rgu( L) © M[dim(A))).

Since x is not in the tac S, the restriction of Z,.,, to Ag is non-trivial, and hence we have
R« (Zyro) = 0 by Lemma 1.16, and therefore H (X, M, ) = 0 for all i.

Conversely, if y = Xal - (x ©¢q), then we have
H* (X5, My) = H*(Ag, Q) @ H*((X/A)z, Mg[dim(A))),
by the Kiinneth formula, and this is non-zero since A was maximal such that M is geometrically

invariant by translation by A, so that the Euler—Poincaré characteristic of the perverse sheaf M is
non-zero. ]

REMARK 2.22. With some extra work, one can prove that one can choose the character xo

—

defining the tac of Proposition 2.21 to be of finite order, i.e., to belongs to (X/A),,.

PROOF OF THEOREM 2.16. We follow the method used by Krémer and Weissauer to prove [82,
Th. 1.1], keeping track of the complexity.

Since X is an abelian variety, the two convolution products of Section 1.4 coincide; for an
object M of DP(X) and an integer n > 1, we denote by M*" the n-th iterated convolution product
of M.

We recall the axiomatic framework of [82, Section 5], specialized to our situation as in [82,
Example 5.1]. Let D be the full subcategory of D2(X;) whose objects are direct sums of shifts of
geometrically semisimple perverse sheaves which are obtained by pullback from Xy, for some n > 1.
Let P C Perv(Xz) be the corresponding subcategory of perverse sheaves, namely that with objects
the geometrically semisimple perverse sheaves arising by pullback from Xy, for some n > 1. Then
the categories P and D satisfy the axioms (D1), (D2), and (D3) of [82, Section 5|, namely:
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(D1) The category D is stable under degree shift, convolution and perverse truncation functors;
the category P is the heart of this ¢t-structure, and is a semisimple abelian category.

(D2) Any object M of D can be written (non-canonically) as a direct sum
e () [—m.
neZz
(D3) The Hard Lefschetz Theorem holds for objects of D.
Let N be the full subcategory of D whose objects are the complexes N such that all geometrically
simple constituents of all perverse cohomology sheaves P.7°*(N) for i € Z have Euler—Poincaré

characteristic equal to 0. By [82, Cor.6.4], the category N satisfies the axioms (N1), (N2), (N3)
and (N4) of [82, Section 5], namely:

(N1) We have N« D C N and the category N is stable under direct sums, retracts, degree
shifts, perverse truncation and duality;

(N2) If N is an object of N, then for most characters x, we have H'(Xj, N, ) = 0 for all 4;
(N3) The category N contains all objects M of D such that H*(Xz,N) = 0 for all i € Z;
(N4) The category N contains all simple objects of P with zero Euler—Poincaré characteristic.

(Note that we will not make use of this version of (N2).)
By [82, Theorem 9.1], every M € P is an N-multiplier, meaning that for all integers i # 0 and
any integer r > 1, every subquotient of P22 ((M & MY)*") lies in N.

We now argue as in the proof of [82, Lemma 8.2] to prove Theorem 2.16 for a perverse sheaf M
on X.

~ Step 1. We assume that M is arithmetically simple. By Lemma 1.28, the base change of M to
k is an object of P. We denote g = dim(X); by (D2), we have

* 1
MY ~ @B My [m),
meZ
for some objects M,,, of P, which are in fact objects of N for m # 0 since M is an N-multiplier.

By Proposition 1.9, the number of integers m such that M,, is non-zero is bounded in terms
of ¢,(M), and similarly ¢,(M,,) is bounded in terms of ¢,(M). By the semisimplicity property
in (D1), each M,, is a direct sum of simple perverse sheaves in N, and by Proposition 1.9, the
number and the complexity of these constituents are bounded in terms of ¢,(M). We denote by €
the finite set of all these simple perverse sheaves. By Lemma 1.28, there exists a finite extension &’
of k, of degree bounded in terms of ¢, (M), such that any element C of € is defined over £’.

We apply Proposition 2.21 to each C € €. Let .7 denote the corresponding tac; it is of degree
bounded in terms of ¢, (M).

We claim that if x € X does not belong to the union of the tacs .#¢, then we have
Hi (XEa MX) =0
for all ¢ # 0. This statement will conclude the proof of Theorem 2.16 for M.

Let x be a character that is not in any of the tacs .#¢. Since M;(g i isomorphic to (M*(9+1))X
and H*(Xj, Cy) = 0 for x ¢ 7, we have

HY (Xg, M) = HY(Xz, My, ),

for any ¢ € Z. The right-hand side vanishes if |n| > ¢ since M is perverse. Finally, by the
compatibility between convolution and the Kiinneth formula (see Lemma 1.15 below) we also have
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an isomorphism

H* (X, MEOTD) o~ H (Xp, M, ) © ),
and by comparing we see that only the space H’(Xz, M, ) may be non-zero, which establishes the
claim.

Step 2. Now let M be an arbitrary perverse sheaf on X. By Proposition 1.9, the number of
geometric Jordan—-Holder factors of M is bounded in terms of ¢, (M), and hence also the number of
arithmetic Jordan-Holder factors; we then apply the first step to each of the terms of a composition
series for M, and deduce the corresponding result for M. O

2.4.4. The relative version. Our next goal is to establish a relative version of Theorem 2.16.
The arguments of Kramer and Weissauer in [82, Section 2] when the base field is C do not apply,
since they rely on Verdier stratifications. We instead use a constructibility result of Orgogozo [95],
which is a stratification result, locally for the alteration topology.

THEOREM 2.23. Let S be a quasi-projective scheme over k, and let A be an abelian variety
over k. Let X = A xS, and denote by f: X — S the canonical morphism. Fix a projective
embedding u of X.

Let a: X' — X be an alteration defined over k, and 2" a stratification of X'.

Let a < b be integers. Let M be an object of D2(X) with perverse amplitude [a,b] such that o*M
is tame and constructible along 2.

There exist an integer d > 1, a finite extension k' of k and a finite family (S¢)sez of tacs
of Ay, such that

(1) The integer d and the size of F are bounded in terms of ¢, (M) and the data (X, X', o, Z7),
(2) Each tac Sy has degree at most d,
(3) The degree of k' is at most d,

with the property that for any x € Xk/ which does not belong to the union of the Sy, the object
Rf«(My) has perverse amplitude [a,b].

By [95, Prop.1.6.7], for any object M of DP(X), there does exist an alteration a: X’ — X
(in fact, a finite surjective morphism) and a stratification 2~ of X’ such that o*M is tame and
constructible along 2”. In particular, the following corollary follows.

COROLLARY 2.24. Let S be a quasi-projective scheme over k and let A be an abelian variety
over k. Define X = A x S and denote f: A x S — S the projection.

Let a < b be integers and let M be an object of D2(X) with perverse amplitude [a,b]. There exist
a finite extension k' of k and a finite family (S¢)rez of tacs of Ay such that for any character

X € Ay that does not belong to the union of the S¢, the object R f.(My) has perverse amplitude [a, b].

For the proof of Theorem 2.23, we use the following special case of [95, Th.3.1.1].

THEOREM 2.25 (Orgogozo). Let f: X — Y be a proper morphism defined over k. Let a: X' — X
be an alteration and 2" a stratification of X'. Then there exist an alteration 3:Y' — Y and a
stratification 2" of Y' such that for any object M of D2(X), the condition that o*(M) is tame and
constructible along 2~ implies that B*Rf«M is tame and constructible along %" .

PROOF OF THEOREM 2.23. By shifting and Verdier duality, it is enough to prove the weaker

statement where “M is of perverse amplitude [a, b]” is replaced by “M is semiperverse”.

Apply Theorem 2.25 to the proper morphism f: A xS — S and to the alteration a. We obtain
an alteration 3: S’ — S and a stratification .#’ of S’ such that 8*Rf,M is tame and constructible
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along .. Note that since any %, is lisse and tame, a*M,, is tame and constructible along 2" (see
[95, 5.2.5] for details), and hence the complex S*Rf.M, is also tame and constructible along .7’
for any x € A.

Consider the image of the stratification ./ by 8. By Chevalley’s theorem, it is covering of S
by constructible sets, but not necessarily a partition. Refine this covering and remove redundant
strats in order to obtain a stratification . of S where all strats are equidimensional. Then refine
the stratification .’ in such a way that preimages by 3 of strats of .# are union of strats of .’
and that 3 induces surjective morphisms from each strat of .’ to a strat of .¥.

Let x € A. Even if the complex Rf;M, is not necessarily constructible along .7, it has the
property that for any strat S; of .7, the support of the restriction of each cohomology sheaf of R f, M,
to S; is either S; or empty, since the analogue property holds for 8*R f.M, and the stratification
', and f is surjective from a strat of .’ to one of .7.

Consider now the preimage of the stratification . by f, and also the image of the stratification
2" of X" by a. Choose a stratification 2~ of X that refines both these coverings of X, with the
property that for any strats X; and S; of 2™ and . such that f(X;) C S;, the restriction of f to X;
is smooth (in particular, that X; is equidimensional above S;). Now refine 2" similarly to ., in
such a way that preimages by « of strats of .2~ are union of strats of .2/ and « induces surjective
morphisms from any strat of 27 to a strat of 2.

By Lemma 1.12, up to replacing k with a finite extension of degree bounded in terms of ¢, (M)
(and the fixed data (X, X', a, Z”)), we can assume that each strat S; of . has a k-rational point
s;. We now apply Corollary 2.17 for each i to the restriction My, of M to f~1(s;) ~ A for each i,
obtaining extensions k; of k and families (Sy;)fe.#, of tacs of Ay, satisfying the properties of this
corollary.

Let k' be the compositum of all k;, which has degree bounded in terms of ¢, (M) and the fixed

data. We claim that for any character x € Xk/ that belongs to none of the tacs Sy; for any 4, the
object Rf«M, is semiperverse. This will conclude the proof.

Suppose that the claim fails for some x. Then there exists an integer k € Z such that
dim Supp(A* (Rf.(My))) > —k.
Since Supp(#%(Rf.(M,))) is a union of strats of ., there is a strat S; C Supp(S#*(Rf.(M,)))
of .7 of dimension > —k. In particular, we have J#*(Rf, (My))s; # 0. By proper base change,
we have S8 (Rf.(My))s, = HE (A x {s;} , My, ), and hence the latter is also non-zero. From the
assumption on y and Corollary 2.17, we have
HP (A7 % {55}, My, ) > HO(Ag x {53}, P78 (Ms,)y),
and hence Ps7%(Ms,) = P#°(Ms,[—k]) # 0. By definition of the perverse t-structure, this implies
that there exists some r € Z such that
dim Supp(#"(My,)) = —r+k > 0.

The support of " (M) is a union of strats of 2", so there exists a strat X; C Supp(s"(M))
of 2" with dim(X; NA x {s; }) = —r + k. Since X; is equidimensional over S; and dim(S;) > —k,
we conclude that

dim Supp (" (M)) > dim(X;) = —r + k + dim(S;) > —,

contradicting the semiperversity of M. O

We now prove a vanishing theorem for higher cohomology groups of perverse sheaves on abelian
varieties. We begin with an analogue of Theorem 2.12.
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PROPOSITION 2.26. Let A be a g-dimensional algebraic variety over k, let S be a quasi-projective
scheme over k, and define X = A X S. Fiz a projective embedding u of X.

Let a: X' — X be an alteration and 2" a stratification of X'.

Let i be an integer with 1 < i < g. Let a < b be integers.

Let M be an object of D2(X) with perverse amplitude [a,b] such that oM is tame and con-
structible along 2. There exist a finite extension k' of k and a family (S¢) ez of tacs of Ay

of dimension < d — i with the property that for any x € Xk/ which does not belong to the union
of the Sy there exists a quotient abelian variety q: Ay — B of dimension at most i — 1 such that
Rgs«M, has perverse amplitude [a, b].

Moreover, the degree of k' over k and the size of F depend only on c,(M) and (X, X', o, Z).

PROOF. As in the proof of Theorem 2.25, we can work with each perverse cohomology sheaf,
and it is therefore enough to prove the proposition for a = b = 0, which means that M is perverse.

By Poincaré’s complete reducibility theorem, up to replacing k with a finite extension, there
exists an isogeny f: A — B over k where B is a product of geometrically simple abelian varieties.
We first claim that it is enough to prove the proposition for B.

To see this, we assume that the statement holds for B. Consider the base change fg: X — B xS.
Since f is finite, f.(M) is perverse for every perverse sheaf M on A. By Theorem 2.25, we find
an alteration §: B’ — B x S and a stratification of B’ such that 5*f,(M,) is tame and adapted
for every M such that o*M is tame and adapted to 2”. Then the proposition can be applied to
f«(My). Let N be the kernel of the isogeny f. Choose up to |N| characters of A whose restrictions
to N run over the character group of N. Then the proposition for A follows by applying the result
for B to the objects f.(M,), where x varies among this finite set of characters. This proves the
claim.

So we assume that A = A; x --- X A is a product of geometrically simple abelian varieties. Set
gj = dim(A;) for all j. For any subset I C [s], let

AI = H Ai7
i€l
viewed as a subvariety of A, and let Af‘ = Alg-1 be the kernel of the canonical projection A — Ay,

Fix an integer 1 <7 < g = dim(A). Let & be the set of subsets I C [s] such that dim(A;) < i;
for I € &, we have dim(A{) > g —i.

FixI € & Let p: A xS — A; x S be the projection. We apply Theorem 2.23 to p and M,
i.e., with (A,S) there equal to (A{, A x S). Up to replacing k by a finite extension &', we obtain a
finite family (Si;);jex, of tacs of Ai‘k, such that the object Rp.(M,) is perverse on Ay x S for any

X € :’—if'k, not in the union of these tacs. Let

(TrLj7 XL])JGXI

be the projection and characters defining these tacs, and let Ky ; = ker(my ), viewed as a subgroup
of Ak’ .

Let .# be the set of all maps f from & to the disjoint union of the .} that send a subset I to
an element j € X for each I; this set is finite. For f € %, let Sy be the intersection of the tacs
of Ay defined by

(Aw — Ap /K p)s X1, pn)
forlT € é&.
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We claim that the family (S¢) ez (to be precise, the subfamily where Sy is not empty) satisfies
the assertions of the theorem.

Indeed, first of all Lemma 1.25 shows that S is either empty or is again a tac; moreover, in
the second case, it is defined by the projection Ay — Ay /By where By is the abelian subvariety
in Ag generated by the Ki f1), viewed as subvarieties of Ag,. For such f, by Lemma 1.26 applied
to A and the subgroups Kj f(1y, we have dim(By) > i, and hence the quotient

pr: Ak/ — Ak//Bf

has image of dimension < d — 3.

Finally, let x € Kk/ be a character that does not belong to any of the tacs S;y. This implies
that there exists some f € %, some subset I C & and some j € X; such that the restriction x1 of
x to Allk, is not equal to x1,;.

We can write x = x1x’ where x’ is a character of Ay /. Then, considering the particular quotient
q: Ay — Apy, the base change ¢g is the canonical projection gr and hence
Rgg« My = Rgsi (M) ® £

is perverse. 0

As in the case of tori, we state two further consequences that are useful in applications.

COROLLARY 2.27. Let A be an abelian variety defined over k of dimension g. Let M be a
perverse sheaf on A. For —g < i < g, the sets

{x €A | H'(Aj,M,) # 0}

are contained in a finite union of tacs of A of dimension < g — |i|, and in particular they have
character codimension at least |i|.

PROOF. We argue as in the proof of Corollary 2.13 using the previous theorem (with a = b = 0),
as we may since we have recalled that one can find an alteration « of A such that the pull-back
a*M is tame. O

COROLLARY 2.28. Let A be a g-dimensional algebraic variety over k, let S be a quasi-projective
scheme over k, and define X = A X S. Fiz a projective embedding u of X.

Let a: X' — X be an alteration and 2" a stratification of X'.

Let M be a perverse sheaf on X such that o*M is tame and constructible along 2. There exists
a finite extension k'/k and a partition of Ay into subsets (S;)o<i<g of character codimension > i
such that for any i and x € S;, the object RgM,, has perverse amplitude [—i,1].

Moreover, for any integer n > 1, we have
(2.5) [Si(kn)| < [k|"97,

where the implied constant depends only on (c,(M), X, X', o, 7).

PROOF. We argue as in the proof of Corollary 2.15 for the first part; to deduce (2.5), we simply
note for each 7 < g, the number of tacs in Proposition 2.26 is bounded in terms of the indicated data,
and for each tac S of dimension i, the number of characters in S(k,) is < (|kn |2 +1)% < |k[™. O
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2.5. Proof of the general vanishing theorem

We can now prove Theorem 2.3.

We consider the dévissage of Proposition 1.13. Namely, let A be an abelian variety, T a
torus, U a unipotent group and N a finite commutative subgroup scheme of A x U x T such that
G is isomorphic to (A x U x T)/N. Further, we write N = N,. x N; where N, is reduced and N; is
local.

Let M be a perverse sheaf on G.
Step 1. We claim that it is enough to prove the theorem for the group G=AxUxT.

Indeed, since N = N,. x N;, the quotient morphism p: G — G can be factored as the composition
of an étale isogeny and a purely inseparable one. The latter is a universal homeomorphism, and
since universal homeomorphisms preserve the étale site, and since pull-back by a finite étale map
preserves perversity, it follows that the pull-back p*(M) is perverse.

Assume that the result of Theorem 2.3 holds for p*(M) on G. Then we obtain the vanishing
theorem for M as follows. Let ./ be the subsets of loc. cit. for p*(M) on G, and define .% to be
the set of x € G such that pox € /. Since G has the same dimension as G and /] has character
codimension i, do does .%;.

If x € (A}, then the projection formula gives isomorphisms
Hi(Gl?np*(Mx)) = Hi(G/}aP*<M)x0p)
for all = € Z.

The vanishing of H(G, p* (M, )yop) implies that of H!(Gg, M,), since the latter space is a direct
summand of the former. A similar argument applies for compactly-supported cohomology, which
shows that the characters x € G such that any of the groups (2.2) is non-zero belong to .%;.

Finally, suppose that x € .#y— .71, so that po x € 5 — .. Since the forget support map is
functorial, the forget support morphism

H2(Gro " (My)) = HY(G, p"(My))
induces by restriction the forget support morphism
H(C)(Gl%a My) — HO(GEaMX)a

and since the former is an isomorphism (from our assumption that Theorem 2.3 holds for (~}), so is
the latter. This concludes the proof of the claim of Step 1.

Step 2. We now assume that G = A x U x T. We fix a quasi-projective immersion u of G. Let
da = dim(A), dy = dim(U), dy = dim(T), and d = da + dy + dp = dim(G).

Up to replacing k by a finite extension, we can assume that T is split. By applying Corollary 2.15
with S = A x U, we can partition T into subsets (Si)o<i<dy of character codimension > ¢ such
that if x € S;, then the complex Rpi(M,) € DP(A x U) is of perverse amplitude [—i,4], where
p: AxUxT — A x U is the canonical projection.

We now wish to apply Proposition 2.26 to A x U, but we first need to find an alteration that
moderates all complexes Rpi(M,).

Let j: T — T = (P1)T be the obvious compactification of T. By [95, Prop.1.6.7], there
exists an alteration a: X — A x U x T and a stratification 2~ of X such that a*(j;M) is tame and
constructible along 2. For each character y € T, the sheaf 1(Zy) is tame, and hence o*(j1M,) is
also constructible and tame along 2" (see [95, 5.2.5] for details).
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We apply Theorem 2.25 to the proper projection A x Ux T — A x U. This provides us with an
alteration f: X’ — A x U and a stratification 2" of X’ such that the complex S*Rpri(M,) is tame

and constructible along 2" for every x € T. Moreover, by Proposition 1.18 and Theorem 1.5, the
complexity of Rpri(M,) is bounded independently of x € T.

We can now apply Corollary 2.28 to S = U and the complexes Rp1i(M,). For each character
x € T, we obtain a partition (Sy.j)o<j<d, of A into subsets such that Sy,;j has character codimension
at least j, with the property that for (x,§) € S; x Sy, the complex Rpai(Rpmi(My))¢) has perverse
amplitude [—i — j,i + j].

By Proposition 1.18 and Theorem 1.5, the complexity of the object Rpai(Rpri(My))e) is
bounded independently of (x,&) € S; x Sy,;. Hence, by applying Proposition 2.7 to these ob-

jects we find for each (x,&) a partition (Sy ¢m)o<m<dy Of U such that the set Sy,¢,m has character
codimension at least m and, moreover, we have

He (Gry Myey) = 0
for each ¥ € Sy ¢, unless n € [—i — j,i+ j +m)].
For 0 < r < d, we now define 5’: to be the set of characters (x,&, ) € G such that

¥ ESyem: €8y XES
for some 4, j, m such that i +j +m > r.
For any integer n > 1, we have
(Al = D0 D D0 Brgmlba)| < R < )
i+jtm>r x€8;(kn) €8Sy, j (kn)

by (2.4) and (2.5) (note that the uniformity with respect to the perverse sheaf in these estimates,
and the uniform bound on the complexity, are crucial to control the sums over y and £). Thus the
set .%, has character codimension at least r.

By construction of the sets S;, Sy j and Sy, ¢, the condition H.(Gj, My¢y) # 0, for (x, &, 9) € (A},
implies that (x,§,v) € ;. We apply a similar argument with D(M) to obtain the analogue

conclusion for ordinary cohomology and set .#; to be the intersection of the set 5/’? for M and of
the analogue for D(M). By construction, the sets .#; satisfy the first two claims of Theorem 2.3.

We now establish the last claims of Theorem 2.3.
First, let (x,§,¢) € G —.%,. By Theorem 2.12, we have Rpmi(My) = Rpr«(M,). Moreover
PAI = PAs since pa is proper, and by the last claim of Proposition 2.7, we obtain
HY (G, Mygy) = H(Ug, RpaRpriMyey) = HO(Ug, RoaRpmiMyey) = HY (G, Myey).

Finally, if G is a torus (resp. an abelian variety) then we use Corollary 2.13 (resp. Corol-
lary 2.27) to prove that the sets .#; are contained in a finite union of tacs of G of dimension
<d—i.

This finally concludes the proof. |
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CHAPTER 3
Tannakian categories of perverse sheaves

3.1. Introduction

Throughout this chapter, k& denotes a finite field and k& an algebraic closure of k. We denote
by ¢ a prime number different from the characteristic of k. All complexes we consider are f-adic
complexes.

Let G be a connected commutative algebraic group over k.

Let M be a perverse sheaf on G. We wish to define a “symmetry group” that governs the
statistical behavior of the arithmetic Fourier transform

SOMx) = > x(@)tw(w; kn)

2€G(kn)

for x € é(kn) The fundamental mechanism for this relation is that the symmetry group G
should come with a (faithful) linear representation G C GL, for some r > 0, and to (almost all)
characters x should correspond an element (or conjugacy class) Fr, € G such that S(M, x) is the
trace of Fr,.

The idea behind the construction of the group G (following Katz [68]) is based on the fact
that we have a “geometric” control on the algebra structure on the space of arithmetic Fourier
transforms through the link with convolution: for two objects M; and My on G, we have

S(M1, x)S(M2, x) = > x(@)(tuy * tag,) (5 k),
z€G(kn)

where
(tMl * tM2)(x3 kn) - Z b, (y§ kn)th (y_1x§ kn)a
y€G(kn)
for € G(ky,), is the convolution product in the classical sense of Fourier analysis on G(k,).

It is fundamental that by the proper base change theorem and the trace formula, we can view
this function as a trace function, namely

(tl\/h * tMQ)(:C; kn) = My My (335 kn)a

where M; % My is the convolution with compact support (Section 1.4).

This geometric interpretation suggests to use the convolution as “tensor operation” to define
a tannakian category, which would be equivalent to the category of representations of the desired
symmetry group.

In essence, this is what we will do. However, there are some significant issues to handle:

— The first one, already present in the work of Katz for G,,, has to do with the fact that
convolution with compact support does not always preserve perverse sheaves (for instance,
if G has dimension d, then the convolution %, [d] % Z,,[d] is not perverse) or duality
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(because duality transforms the convolution *; into the convolution ., which is different
in general).

We can solve this first problem using a suitable quotient category where the two
geometric convolution products turn out to coincide (this idea goes back to Gabber and
Loeser and was also used by Katz).

A related issue is that weights do not always behave well under convolution, in the case of
affine groups at least. Since weights dictate the size of the sums S(M, x), this is a crucial
issue for our intended applications. This is again related to the difference between the two
geometric convolutions, each of which leads in practice to inequalities in one direction for
the weights.

Finally there is a major new difficulty in comparison with the work of Katz. The link
between the alg\stract tannakian ideas and the arithmetic Fourier transform is that for a
character x € G(ky,), the formula

S(M, x) = Tr(Fry, | HY(Gg, My))

should hold. This is in fact (by the generic vanishing theorem) only true in general for a
generic set of xy where the contributions of H. in the trace formula vanish for ¢ # 0. But
we also want “higher-order” versions of this formula to hold, namely for instance

S(M7X)2 = Tr(Fry, | HS(GE>MX 1 My)),

and so on for further powers (intuitively, this is because understanding the limits of aver-
ages of such expressions is necessary to apply the Weyl equidistribution criterion, as we will
do in the next chapter). This amounts roughly to requesting that M — H2(Gg, M,) should
be compatible with convolution and so should (roughly) the generic vanishing theorem.

Thus we need to distinguish various types of characters depending on their behavior
with respect to operations of this type.

3.2. Categories of objects defined over finite fields

We denote by D(G) and P(G) the full subcategories of D?(Gz) and Perv(Gy) respectively
whose objects are defined over some finite extension of the base field k. These categories are stable

by direct sum, shifts and duality. Moreover, the perverse cohomology sheaves of an object of D(G)
belong to P(G).

We recall from Section 1.4 the definition and properties of the two convolutions bifunctors
(M,N) + M *, N and (M,N) + M % N for objects M and N of D?(G) or D2(Gj). These are

compatible with base change, so that the convolutions on Gy preserve the category D(G). In
addition, the functor M — MY also induces a functor on D(G) and P(G).

3.3. Weakly unramified characters

DEFINITION 3.1 (Weakly unramified characters). Let M be an object of P(G). A character
x € G is said to be weakly unramified for M if the following holds:

H'(Gg, M) = HL(G, M) =0 for all i # 0,
H2(Gy, My) = HY(Gg, My).

We denote by 2.,(M) the set of weakly unramified characters for M.
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REMARK 3.2. The terminology is suggested by analogy with the case of the additive group, in
which the characters for which generic vanishing holds correspond to points at which the Fourier
transform is lisse. However, we will see that the generic vanishing condition is not in general strong
enough to obtain the properties we seek (namely, that the assignment M — HY(Gy, M, ) defines
a fiber functor on a suitable tannakian category of perverse sheaves on Gj). We will introduce
unramified characters in Definition 3.24, as well as the variant of Frobenius-unramified characters
in Definition 3.34.

With this definition, we can reformulate the Stratified Generic Vanishing Theorem 2.1 as follows:

THEOREM 3.3. The subset 2, (M) C G of weakly unramified characters for an object M of P(QG)
1S generic.

3.4. Negligible objects

In general, none of the two convolution bifunctors on the derived category preserves the sub-
category of perverse sheaves. As first observed in the case of tori by Gabber and Loeser [45], there
is however a suitable quotient of the category P(G) on which both convolution functors induce the
same bifunctor.

DEFINITION 3.4. An object M of P(G) is said to be negligible if the set of characters x € G
satisfying H(Gz, M,) = 0 is generic. An object N of D(G) is said to be negligible if all its perverse
cohomology objects P.7#%(N) are negligible.

We denote by Negp(G) and Negp(G) the full subcategories of P(G) and D(G) respectively
consisting of negligible objects.

We denote by Kyes(G) the subgroup of the Grothendieck group K(G) generated by classes of
negligible perverse sheaves, or equivalently by classes of negligible objects.

Given an object M of P(G), set
N (M) = {x € G| H(G, M,) = H.(G, M) = 0 for all }.
Using Theorem 3.3, we see that M is negligible if and only if .4 (M) is a generic subset of G. For
M € Negp(G), we set
A (M) = A (V).

It follows from the definition that, for each negligible perverse sheaf M (resp. object of Negp (G)),
the perverse sheaf M"Y is also negligible (resp. the complex MV is negligible).

EXAMPLE 3.5. Any character sheaf .2, on G is negligible. More generally, let f: G — H be a
surjective morphism of algebraic groups such that the dimension d of the kernel ker(f) is positive.
Let n € G and let N be any object of D2(H). We claim that the object M = (f*N), is negligible.

Indeed, let ¢ € Z. We can factor f = f1 o fo, where fy is smooth of relative dimension d and f;
is radicial. Then f5[d] is t-exact (see [6, §4.2.4]), and so is tensoring by .%;, (Lemma 1.17), so there
is a canonical isomorphism

PA(J*N)y) = f5(PATUN)),.
For y € @, the projection formula leads to canonical isomorphisms
H*(G, M) =~ H*(Gy, f5 P UN)) @ L, ) =~ H* (Hg, P74 (N) @ R fa1. L)
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The complex R fo. %, is zero if the restriction of ny to the subgroup ker(f2)° is not the trivial
character (see Lemma 1.16). Since this condition defines a generic set of characters y, we deduce
that P2"(M) is negligible, and the result follows.

REMARK 3.6. Intuitively, to say that M is negligible means that the arithmetic Fourier transform
of M (see Section 1.7) satisfies S(M, x) = 0 for x in a generic subset of G. To illustrate this concrete
aspect, we show how it explains the previous example. Thus consider M = (f*N),,, with notation

as above for some 7 € (A}(k) Let x € é(k:n), the corresponding value of the Fourier transform is

SMx) = . x@tu(zikn) = Y x(@)(no Ny, ) (@)tn(f(2); kn)

$€G(k‘n) Z‘EG(kn)
= Z tN(fU; kn) Z X(noNkn/k)(w)v
yGH(kn) IEEG(kn)

f(@)=y
and the inner sum is either empty or a sum of a character over the k,,-points of a coset of the kernel
of f, which vanishes unless x = (o Ny, /k)*l on the kernel of f.

In some cases, one can show that, conversely, all simple negligible perverse sheaves are of the
form (f*N), for some quotient morphism f with kernel of dimension at least 1. This is for instance
the case for abelian varieties, by a result of Weissauer [110, Lemma 6, Th. 3] (see also Remark 5.13)
and we will prove later that this is also the case for G, x G, (see Section 10.4).

This structural property is however not always true. For instance, if G is a unipotent group of
dimension at least 2 (e.g., G = G¢ with d > 2), with Serre dual GV, then we can take any object
N € D2(GY) whose support S has codimension at least 1, and the inverse Fourier transform M of N
will be a negligible object on G. If S is not a translate of a subgroup of G, then the object M is not
obtained by pullback from any quotient of G. (In the terminology of [34, §4], in the case of G¢,
such objects are said to have A-number equal to 0, and they play a delicate role in certain analytic
applications.)

We recall that a full subcategory S of an abelian category C is said to be a Serre subcategory
if it is not empty, stable by extension and by subobject and quotient. A strictly full triangulated
subcategory S of a triangulated category C is said to be thick if, for any morphism f: X — Y in C
which factors through an object of S, and which appears in a distinguished triangle

Xx-Lyoz
with Z object of S, the objects X and Y are in S.

LEMMA 3.7. The category Negp(G) is a Serre subcategory of P(G), and Negp(G) is a thick
triangulated subcategory of D(G).

ProOF. Fix an exact sequence X — Y — Z in P(G) such that X and Z are objects of Negp(G).

By Theorem 3.3, there is a generic set of characters x € G that are weakly unramified for X, Y,
and Z. From the long exact sequence in cohomology, we find that for any such y, the vanishing
HY (G, Yy) = Hi(Gj, Yy) = 0 holds for all 4, and hence Y is negligible. The first statement follows
easily. An argument of Gabber—Loeser (see [45, Prop.3.6.1(i)]) then implies that Negp(G) is a
thick triangulated subcategory of D(G). O

LEMMA 3.8. For all objects M and N of D(G), the following properties hold:

(1) The cone of the canonical morphism M % N — M x, N lies in Negp(G).
(2) If M belongs to Negp (G), then so do M % N and M *, N for each object N.
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(3) If M and N belong to P(G), then P22 (M % N) and P (M , N) lie in Negp(G) for each
non-zero integer 1.

We omit the proof, which is the same as that of [79, Lem. 4.3].

3.5. Tannakian categories

By results of Gabriel [46] for abelian categories and Verdier (see the treatment in the book [93]
of Neeman) for triangulated categories, we can define the quotient of an abelian or triangulated
category by a Serre or thick subcategory. This allows us to make the following definition.

DEFINITION 3.9 (Convolution categories). The convolution category of G, denoted D(G), is the
quotient category of D(G) by Negp(G); it is a triangulated category.

The perverse convolution category of G, denoted P(G), is the quotient abelian category of P(G)
by Negp(G).

Those two constructions are compatible, in the sense that the t-structure on D(G) induces a
t-structure on D(G) whose heart is the category P(G) (see [45, Prop. 3.6.1]).
_ Since the functor N — NV preserves negligible objects, it induces a functor on P(G) (resp. on
D(G)), which is still an involution.

PropoSITION 3.10. With notation as above, the following properties hold:

(1) The convolution products %1 and *, induce bifunctors on D(G) x D(G). B
(2) The canonical forget support morphisms M #y N — M %, N induce isomorphisms in D(G),
and define by passing to the quotient a convolution bifunctor denoted

x: D(G) x D(G) — D(G).

(3) The subcategory P(G) of D(G) is stable under the convolution *.

(4) The categories D(G) and P(G), endowed with the bifunctor , are symmetric Q,-linear
monoidal categories with unit object 1 the image of the skyscraper sheaf at the meutral
element of G.

PROOF. The fact that x and *, induce functors on D(G) x D(G) follows from Lemma 3.8 (2).
That they agree is Lemma 3.8 (1). The stability of P(G) under * is Lemma 3.8 (3). The fact that
we obtain symmetric Q,-linear monoidal categories is now clear. The last assertion follows from
the canonical isomorphisms 1 % M ~ 1 %, M ~ M which exist for any complex M. O

It is also very useful that there exists a natural subcategory of P(G) that is equivalent to the
perverse convolution category.

DEFINITION 3.11. The internal convolution category of G is the full subcategory Piy (G) of the
category P(G) whose objects are perverse sheaves that have no subobject or quotient in Negp(G).

PROPOSITION 3.12. The localization functor P(G) — P(G) restricts to an equivalence of cate-
gories o
Pint(G) — P(G),

hence the convolution product bifunctor x on P(QG) induces a convolution bifunctor s on Piy(G).
PROOF. The argument is the same as that of Gabber and Loeser [45, Déf.-Prop. 3.7.2]. ([l

The convolution product on Piy (G) will sometimes be called the internal or middle convolution.
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REMARK 3.13. One can give a more explicit form of the equivalence of categories above, and
of the internal convolution.

First, Gabber and Loeser (loc. cﬁ) give an explicit quasi-inverse functor M — M, to the
equivalence of categories Pin(G) — P(G). Namely, let M be an object of P(G). Let M; be the
largest subobject of M that belongs to Negp (G) and let M! be the smallest subobject of M such that
M/M! belongs to Negp(G). Define Mjy, = M'/(M! N M;). Then we have canonical isomorphisms

Mint > (M* + M) /My,
and the assignment M +— My is a functor which factors through P(G) and induces a quasi-inverse
of the localization functor.

In particular, this implies that if M is a semisimple object of P(G), then My is the sum of all
the simple constituents of M that are not in Negp(G).

Second, it follows from the argument in [45, Déf.-Prop. 3.7.3] that for M and N in Pj(G),
there are canonical isomorphisms

M #ing N — PO (M 5 N)ipg — PAO (M 5 Ny
From the adjunctions in Lemma 1.15 (1), we see that for all M € P(G), the identity morphism
idyr: M — M defines evaluation and coevaluation maps
ev: Mx MY = 1 and coev: 1 — MY %, M.

They correspond to maps in P(G) which we denote in the same way.

PROPOSITION 3.14. The monoidal category P(G) is rigid. That is, for each object M of P(G),
the morphisms

M~ M 1 M0 N MY s ML g M~ M
MY o 15 MY 0V VN MY Y Y 1~ MY
are the identity on M and on MV respectively.
PROOF. The argument is the same as that of Kramer in [79, Th. 5.2]. O

For any object M of P(G) (resp. of Piy(G)), we denote by (M) the subcategory of P(G)
(resp. of Pyt (G)) which is tensor-generated by M, i.e., the full subcategory whose objects are the
subquotients of all convolution powers of M & MVY.

Our next goal is to prove the following crucial result:

THEOREM 3.15. The categories P(G) and Pin(G) are neutral tannakian categories.

In particular, for any object M of Pint(G) or of P(G), the category (M) is a neutral tannakian
category over Q,.

Recall that this means that there exists a fiber functor, namely a faithful exact tensor functor
from P(G) to the category Vectg, of finite dimensional Q,-vector spaces.

We begin the proof with an auxiliary result. Recall that the trace Tr(f) € Q, = End(1) of an
endomorphism f of M € Py (G) is defined as the composition

coev

*in id
1OV N g MY LB Y S g

The dimension of M € Piyt(G) is then intrinsically defined as dim(M) = Tr(idy). It is, a priori,
an element of Q,.
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PROPOSITION 3.16. Let M be an object of Pint(G) and let C be the cone of the canonical
morphism
Mx MY — M x, MY,

For any character x € G in the generic set
Zw(M) N A(C),
the following equality holds:
(3.1) dim HY(G, M, ) = dim(M).

In particular, dim(M) is a non-negative integer, and there exists a generic set of characters x
such that the dimension of HY(Gy, M) is independent of x.

PROOF. We need to determine the morphism

coev

12 Mo MY <5 1.

Twisting by x and taking cohomology, the sequence above induces a sequence
Qﬂ — H*(GE, (M *int MV)X) — Qf'
By Lemma 3.8, the object C is in Negp(G) so that for y € 4(C), we have a canonical

isomorphism
H*(Ggy (M #ine M)y ) =~ H* (G, (M % MY),).
By Lemma 1.15, there is also a canonical isomorphism
HE (G, (M o+, MY),) = HY(G, My) © H (G, (M),

If x € 2(M), then we also get H*(Gg, M, ) = H(Gy, My ) and H*(Gg, MY) = HY(Gg, M),
and therefore the sequence above becomes

Q, — End(H(Gj, My)) — Q.

Since the evaluation and coevaluation maps are sent to evaluation and covevaluation maps in vector
spaces (see the proof of [79, Th.5.2]), this composition is the multiplication by the dimension of
H°(Gy, My), which is therefore equal to the dimension of M in Py (G). O

PROOF OF THEOREM 3.15. By Proposition 3.14, the equivalent categories P(G) and Piy(G)
are Qy-linear rigid tensor symmetric categories. Since the unit 1 is (the image of) a skyscraper
sheaf, we have End(1) ~ Q,.

Proposition 3.16 and Theorem 3.3 imply that the dimension dim(M) of every object M of P(G)
is a non-negative integer. By a theorem of Deligne [29, Th. 7.1], it follows that the category P(G) is
a tannakian category. A further theorem of Deligne (see the proof by Coulembier in [22, Th.6.4.1])
implies that it is indeed neutral (i.e., there exists a fiber functor defined over Q,). O

REMARK 3.17. (1) In Example 10.14, we will give examples to show that there may exist
unramified characters for which formula (3.1) does not hold.

(2) In this book, we will exclusively consider from now on the categories (M) generated by
a single object. A simpler proof that these are neutral tannakian categories is then provided by
combining [29, Th.7.1] with [29, Cor. 6.20].

COROLLARY 3.18. Let M be an object of Pint(G). There exists an affine algebraic group G
over Q, such that the category (M) is equivalent to the category RepQZ(G) of finite-dimensional
Q,-representations of G. If M is semisimple, then the group G is reductive and the category (M)
18 semisimple.
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PROOF. The first part follows from the tannakian reconstruction theorem [30, Th.2.11]. If M
is semisimple then since the category of representations of G is equivalent to the category (M)
generated by the semisimple object M, it follows, e.g., from [92, Th.22.42] that the group G is
reductive, and that every object N € (M) is semisimple. 0

DEFINITION 3.19. For any object M of Piy(G) or of P(G), we denote by G{[° the affine
algebraic group over Q, given by the corollary, and we say that it is the geometric tannakian group
of the object M.

ExAMPLE 3.20. (1) Let G = Gy,. A perverse sheaf N on G, is negligible if and only if it has
no suboject or quotient which is isomorphic to a shifted Kummer sheaf %, [1] for some character ¥,
and it follows that the category Piy(G,y,) is the same as the category P of Katz (defined in [
Ch. 2]; see also Section B.1).

(2) Let G = G,. Fix an additive character ¢ of k. By the proper base change theorem,
a perverse sheaf N on G, is negligible if and only if its Fourier transform FT(N) is punctual,
which means that N is a finite direct sum of Artin-Schreier sheaves £, ,)[1] for some y € Gq.
This implies that the category Pin(G,) coincides with the category of perverse sheaves on G,
with property P, as defined by Katz again (this follows by combining Cor.2.6.14, Cor. 2.6.15 and
Lemma 2.6.13 of [63]; see Remark 2.10.4 in loc. cit.).

)

3.6. Euler—Poincaré characteristic and Grothendieck groups

Proposition 3.16 has some other useful corollaries which we state now.
PROPOSITION 3.21. Let M be an object of D2(G).

(1) There ezists a generic set 2 C G such that the Euler—Poincaré characteristic x(Gz, My)
is independent of x € X .

(2) IfM is negligible, then x(Gy,, My) = 0 for all x in a generic set of characters. The converse
holds if M is a perverse sheaf.

(3) If G is a semiabelian variety, then the Euler—Poincaré characteristic x(Gg, My) is inde-
pendent of x € Z  and it is non-negative if M is a perverse sheaf.

ProoOF. The decomposition
M= S (-1) P (v
1€Z
in the Grothendieck group K(G), together with Lemma 1.17, implies that

X(G My) = Y (=1)" X(G, P (M), )
1€Z
for all x € G. Thus the first statement is an immediate consequence of Proposition 3.16, combined
wih the generic vanishing theorem, applied to each perverse cohomology sheaf.

If N is a negligible perverse sheaf, then by definition we get H*(Gz, N,) = 0 for a generic set of
characters, hence also x(Gg, N, ) = 0 for a generic set of characters. The previous formula shows
that this is also true for any complex M.

Conversely, assume that M is a perverse sheaf and x(Gg,M,) = 0 for all x in a generic set.
Combined with the generic vanishing theorem, this implies that H*(Gg, M, ) = 0 for x generic,
hence M is negligible.
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If G is a semiabelian variety, then the Euler-Poincaré characteristic x(Gg, M, ) is independent
of x by a result of Deligne (see [56]), because all the x € G are tame. In this case, the tannakian
dimension of a perverse sheaf on G is therefore the same as its Euler—Poincaré characteristic. [

COROLLARY 3.22. A perverse sheaf M in P(G) is negligible if and only if its class in the
Grothendieck group K(G) belongs to the subgroup Kneg(G) generated by classes of negligible perverse
sheaves.

PRrOOF. It suffices to prove that a perverse sheaf M is negligible if the class of M in K(G) can
be expressed as a finite sum
M= Z e’;‘iMi

in K(G), where M; is a negligible perverse sheaf for all i € I and ¢; € {—1,1}. Such a formula
implies the equality
X(Gfgv MX) = Z giX(Gka Mi,X)
1€l
for all x € G. For a generic set of characters we have x(Gj,M;,) = 0 for all i € I, since M; is

negligible by assumption, hence x(Gz, M) = 0 for a generic set of characters; thus M is negligible
by Proposition 3.21, (2). O

COROLLARY 3.23. Suppose that G is a semiabelian variety. Let M be a negligible perverse sheaf
on G. The Euler—Poincaré characteristic of M is O and the set of characters x € G such that the
space HO(Gy, M, ) is non-zero is contained in a finite union of tacs.

PrOOF. The fact that x(M) = 0 has been stated in Proposition 3.21. By Theorem 2.16, there
exists a finite family (S¢) of tacs of G such that H*(Gg, My) = 0 for all i # 0 and x not belonging
to the union . of these tacs. For any x not in ., we then deduce by loc. cit. that

dimHO(GE, M) = x(My) = x(M) = 0.

3.7. Arithmetic fiber functors

We now address the question of constructing arithmetic fiber functors that will be used to define
conjugacy classes of elements in the tannakian groups.

DEFINITION 3.24 (Unramified characters). Let M be an object of Pin(G). A weakly unramified
character xy € G for M is said to be unramified for M if the functor

N — wy(N) = HY(G, Ny )
is a fiber functor on the category (M). We denote by
2 (M) C Z,(M) C G
the set of unramified characters for M. We say that the perverse sheaf M is generically unramified

if the subset 2" (M) C G is generic.

We expect that all semisimple objects of Pin(G) are generically unramified. We can currently
only prove this property for the three fundamental types of algebraic groups.

THEOREM 3.25. If G is a torus, an abelian variety or a unipotent group, then any semisimple
object of Pint(G) is generically unramified.
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For tori or abelian varieties, we need a general technical criterion ensuring that an object M is
generically unramified.

LEMMA 3.26. Let M be a semisimple object of Pint(G). Set L = M & M. For each m > 2,
let C,y, be the cone of the canonical morphism L*" — L*". All characters x in

(3.2) ZwM) N () A (Cr)

m>2

are unramified for M.

PROOF. Let x be a character in the set (3.2). By Proposition 1.30, every object N of (M) is
a direct sum of direct factors of m-fold convolution products L*i for some integers m. By the
definition of (3.2) and Lemma 1.15, we have canonical isomorphisms

m

H (G, L) ~ HY (G, L) ~ HY(G Ly)®

for any m.
By (3.2) again, we have H*(Gg, L) = H(Gy, Ly ), and hence w, (L*nt) = w, (L)®™. This proves
that the functor w, is compatible with the tensor product; other compatibilities are elementary,
and the functor w, is exact on (M), hence the result (see [30, Prop. 1.19]). O

PROOF OF THEOREM 3.25 FOR ABELIAN VARIETIES. If G is an abelian variety, then both con-
volution functors are canonically isomorphic; hence, all objects C,,, vanish and the set (3.2) is the
same as 2, (M), which is generic. O

REMARK 3.27. There is a more precise result if G is an abelian variety. Indeed, we have
recalled that 2,(M) = 2 (M) for any semisimple object of Piy(G), and by the strong form of the
Stratified Generic Vanishing Theorem (Theorem 2.3), it follows that the set of ramified characters
is contained in a finite union of tacs of G.

PROOF OF THEOREM 3.25 FOR TORI. We use the notation of the previous lemma. For a
torus G, a result of Gabber and Loeser [45, Prop.3.9.3 (iv)] implies that there is an inclusion
N (Cq) C A (C,y,) for all integers m > 2. So the set

Zw(M) N () A (Cn) = Z2(M) N A (Ca)
m>=2

is generic, by the generic vanishing theorem and the definition of negligible objects. (]
Finally we consider unipotent groups.

PROOF OF THEOREM 3.25 FOR G UNIPOTENT. We denote by GY a form of the Serre dual
of G, and we fix an additive character ¢ to compute the Fourier transform FTy; on G (see Sec-
tion 2.2).

Let M be a semisimple object of Pin(G). We claim that there exists a dense open set V.C G
such that for every objects N and N’ of (M), the restriction of FT,(N) to V is lisse and there exists
a canonical isomorphism

(3.3) FT (N s N')[V = (FT,(N) @ FTy,(N'))|V.

Indeed, if this claim holds, then it is elementary that for any a € V(k), the corresponding
character v, € G is unramified for M.

62



The claim above follows in turn from a more general statement: for every objects M; and My
of Pin(G), and for any open dense subset W C GY such that the Fourier transforms FT,(M;) and
FTy,(Ms) are lisse on W, there exists a canonical isomorphism

FTd, (Ml *int Mg)’W — (FT¢(M1) X FT¢(M2))‘W

Indeed, the isomorphism shows in particular that the Fourier transform of M i, Mo is also lisse
on W; since the same is true of the dual D(My), it follows that the Fourier transform of any object
of (M) is lisse on W, leading to the previous claim (with V = W).

We now prove the general statement above. Let M = P.2#%(M;*M,). By definition of My#j,;Ma,
we have My it Mo = Mjy (see Remark 3.13).

Let Pr<o and Pr>( be the perverse truncation functors. We have canonical morphisms

(3.4) pTgo(Ml *) MQ) — My % Mo
and
(35) pTgQ(Ml X Mg) — pT;o(pTgo(Ml *| MQ)) = pe%pO(Ml x| Mg) = M.

By Lemma 3.8, the mapping cones of both morphisms are negligible. By the vanishing theorem
for unipotent groups (Proposition 2.7), there is a dense open subset W' of W such that the induced
morphisms

(3.6) FTy(P7<0(Mj % Ma))|W’ — FTy(M; % My)| W

and

(3.7) FTy(Pr<o(Mj % My))|W’ — FTy, (M)W

are isomorphisms. Inverting (3.6) and composing with (3.7), we obtain a canonical isomorphism
(3.8) FTy(My % My)|[W' — FTy, (M)W,

Recall from Remark 3.13 that if M is the smallest subobject of M such that M/M¢ is negligible,
then we have a canonical injection M! — M with negligible cokernel and a canonical surjection
M! — Myt with negligible kernel. By the vanishing theorem for unipotent groups (Proposition 2.7),
up to replacing W’ by a smaller dense open subset, we can assume that the canonical morphisms

(3.9) FTy (M)W — FT,(M)|W’
and
(3.10) FTy (M)W’ — FTy(Mint ) [W'

are isomorphisms. Inverting (3.9) and composing with (3.10), we get a canonical isomorphism
(3.11) FTy (M)[W’ — FTy (Ming)[W = FTy, (M #ing Ma)[W'.
Composing (3.8) and (3.11), we get a canonical isomorphism
(3.12) FTy (M % My)[W' ~ FT (M i M)W,

Denote by j: W' — W the open immersion. By the definition of the category Piy(G), the
Fourier transform FT,(M; *in; M) (which is a perverse sheaf up to shift) has no shifted perverse

component supported in GY — W’ (such a component would be negligible), and therefore we have
a canonical isomorphism

(313) ]l*j*(FTw(Ml *int M2)|W) >~ FTd, (Ml *int Mg)’W
by the properties of the intermediate extension functor ji. (see Proposition A.9).
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By Lemma 1.15, there is a canonical isomorphism FTy (M % My) ~ FTy(M;) @ FTy(Ms).
Since FTy(M;) and FT, (M) are lisse on W, we have also a canonical isomorphim

g (FTy(Mp) @ FTy (Mz2))[W) 2 (FTy (M1) @ FTy(Mz))[W,
hence a canonical isomorphism

(3.14) Jred(FTy (M # M2)[W) =~ (FTy (M) ® FTy(Mg))[W.

We now apply the functor ji. to the isomorphism (3.12), and use (3.13) and (3.14) to obtain
the desired canonical isomorphism (3.3); this concludes the proof of the claim. O

3.8. The arithmetic tannakian group

In this section, we consider the situation over the finite field k. Base change M — M gives a
functor Perv(G) — P(G). For a perverse sheaf M on G, we define the set of unramified characters
for M as 2°(M) = 2" (Mz).

We denote by Negis'(G) (resp. P21(G)) the full subcategory of Perv(G) whose objects are the
perverse sheaves M such that Mz is an object of Negp(G) (resp. of Piyt(G)). As in the geometric

ari

case, we find that Negp'(G) is a Serre subcategory of Perv(G) and that the localization functor in-
duces an equivalence from P& (G) to the quotient abelian category P* (G) = Perv(G)/Negi(G).

int

Also similarly to the geometric case, the two convolution bifunctors on Perv(_G) induce equiv-
alent bifunctors on P*'(Q) (compare with Proposition 3.10). The categories P* (G) and P2(Q)

are then rigid symmetric Q,-linear tensor categories, with unit object 1 still the skyscraper sheaf

at the unit of G, which again satisfies End(1) ~ Q,.
Let M be a perverse sheaf on G. To distinguish between the arithmetic and geometric sit-
uations, we denote from now on by (M) (resp. (M)5®) the subcategory of P&i(G) ~ P*(G)

(resp. of Pi(G) ~ P(G)) that is tensor-generated by (the image of) M (resp. by Mp). Base
change N — Nj gives a functor from (M)™ to (M)5.

THEOREM 3.28. Let M be an object of Perv(G). The categories (M)™ and (M)5® are neutral
Q-linear tannakian categories. There exist algebraic groups G%;° and G over Q, such that (M)™

is equivalent to the category RepQZ(Gf/?) and (M)®°° is equivalent to the category Repg, (GE)-

Moreover, if v is the tannakian dimension of M, then the objects M and M, of (M)* and (M)&®,
respectively, correspond to faithful representations of Gﬁi and Gl%ffo in GL,(Qy).

PROOF. The case of (M) is dealt by Theorem 3.15 and Corollary 3.18. The case of (M)™

follows by the same argument because Proposition 3.16 also applies to P?;;(G)

The last assertion is a tautological consequence of the formalism. O

REMARK 3.29. We will call Gﬁi the arithmetic tannakian group of M, and G{[° its geometric
tannakian group.

PROPOSITION 3.30. Let M be an object of Perv(G). The functor of base change to k is a tensor

functor from (M)™ to (M)E® that induces a morphism ¢: GE° — G4, This morphism is a closed
1mmersion.

PRrROOF. The first assertion is immediate, and it implies by the tannakian formalism the ex-
istence of the homomorphism ¢. According to [30, Prop.2.21 (b)], this morphism ¢ is a closed
immersion if and only if every object of (M)&® is isomorphic to a subquotient of an object in the
essential image of the base-change functor.
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Let N be such an object of (M)®, viewed as an object of Piy(G). By definition of the
category P(G), there exists a finite extension k,, of k in k such that N is the base change to k of a
perverse sheaf N; on Gg, . Then N is a subquotient of the base change of the perverse sheaf f,.N;
to Gy, where f,,: Spec(ky) — Spec(k) is the canonical morphism, hence the result. O

From now on, we will identify the geometric tannakian group of a perverse sheaf M on G with
its image in the arithmetic tannakian group.

We recall the convention from Section 1.11 concerning properties over k and k.

THEOREM 3.31. Let M be a perverse sheaf on G. Assume that M is arithmetically semisimple
and pure of weight zero. Let r be the tannakian dimension of M.

(1) The groups G%}P and G%Aeo are reductive subgroups of GL,.

(2) Every object N of <M>ari is arithmetically semisimple and pure of weight zero, and every
object N of (M)& is semisimple.

PROOF. Since any pure perverse sheaf on G is geometrically semisimple by [6, Th.5.3.8], the
assertions for (M)8 follow. The same proof is also valid for (M)
semisimple, so that the group G34 is also reductive, and all objects of (M)*" are arithmetically
semisimple.

, since M is arithmetically

We now prove the purity statement. Since M is pure of weight zero, it follows from the descrip-
tion of My, in Remark 3.13 that the corresponding object of P{i(G) is also pure of weight zero,
and similarly for its dual

For any perverse sheaves N; and Ny on G that are pure of weight zero, the convolution Ny *jnt No
is also pure of weight zero. Indeed, by Deligne’s Riemann Hypothesis [27, 3.3.1], the object Ny % Ny
is mixed of weights < 0. Hence, the quotient Ny iyt No of N %) Ny is also mixed of weights < 0
by [6, Prop.5.3.1]. Thanks to Lemma 1.15, the same applies to the Verdier dual D(Ny #ip Na),
which implies the claim.

Hence, the property of being pure of weight zero is preserved by convolution, duality and taking
subobjects. Thus we conclude that every object N of (M)*" is pure of weight zero. t

We now show that the tannakian groups coincide with those of Katz for the multiplicative
group, and with monodromy groups of the Fourier transform for unipotent groups.

PROPOSITION 3.32. Let M be a perverse sheaf on G. Assume that M is arithmetically semisimple
and pure of weight zero.

(1) If G = Gy, then the arithmetic and geometric tannakian groups of G coincide with those
defined by Katz using category P.

(2) If G is unipotent of dimension d, and v is a fived additive character used to define its
Fourier transform, then there exists a dense open subset U of the Serre dual GV such that
(FTy Mint)|U is isomorphic to a lisse sheaf % on U, pure of weight d, placed in degree 0.
The arithmetic and geometric tannakian groups of M coincide with the arithmetic and
geometric group of the lisse sheaf F .

PROOF. In the case of G, the statement follows directly from Example 3.20 (1) (see also
Section B.1 for the definition of P).

Suppose then that G is unipotent. To prove the first assertion, we may assume that M is simple
and non-negligible. Its Fourier transform is then a simple d-shifted perverse sheaf on the Serre
dual GV, pure of weight d, and with support equal to G (since the object M would be negligible if

65



the support were smaller). Thus it is a single lisse sheaf, pure of weight d, on an open dense subset
of GV.

For the second part of (2), we note that by (the proof of) Theorem 3.25 for unipotent groups,
the convolution product on (M)* can be identified with the tensor product on the subcategory
generated by % of the category of lisse sheaves on U. The result then follows. U

3.9. Frobenius conjugacy classes

We keep working over the finite field £ and use the same notation as in the previous subsection.
For any finite extension k), of k, we denote by Fry, the geometric Frobenius automorphism of k,.

For an object M of DP(X), and a character y € @, we denote by Fry g, (x) the automorphism
of the Qg-vector space H2(Gz, M, ) induced by the action of Fry,,.

Let r be the dimension of this space. If this automorphism is pure of weight zero, for instance
if M is pure of weight 0 and x is weakly unramified for M, then there is a unique conjugacy class
OM k, (X) in the complex unitary group U, (C) containing the semisimple part of ¢o(Frak, (X))-

We call Fryp g, (x) the Frobenius automorphism of M associated to x over k, and Oy, (x) the
unitary Frobenius conjugacy class of M associated to x over k.

Suppose now that M is an arithmetically semisimple perverse sheaf on G.

Let n > 1 and let x € @(l{:n) be an unramified character for M, so that the functor wy: N —
H%(G;,Ny) is a fiber functor on the tannakian category (M)*". For any object N of (M)*", the
Frobenius automorphism Fry, now induces an automorphism of w, (N), and thus defines an auto-
morphism of the fiber functor w,. By the tannakian formalism, this corresponds to a unique con-
jugacy class in G¥1(Q,). We denote by Fryj, (x) the corresponding conjugacy class of G5(C),
and call it the Frobenius conjugacy class of M associated to x over ky,.

Suppose furthermore that M is pure of weight zero. Let Ky be a maximal compact subgroup of
the reductive group G#1(C). Since all objects of (M)*" are pure of weight zero (by Theorem 3.31),
the Peter-Weyl Theorem implies that the semisimple part of Fryy g, (x) intersects Ky in a unique
conjugacy class, which is denoted Oy, (x), and is called the wunitary Frobenius conjugacy class
of M associated to .

For an unramified character y, the space wy (M) has dimension r, the tannakian dimension
of M, and the conjugacy class of Fryi, () in the automorphism group of H2(Gy, M, ) coincides
with that of Fryi, (x), and similarly for @y g, (X)-

When k,, = k, we will sometimes use simply the notation Fryi(x), ©m(x), Fram(x), Owm(x)-

We have the following important consequences of the formalism.

LEMMA 3.33. Let M be an arithmetically semisimple perverse sheaf on G that is pure of weight
zero and of tannakian dimension r > 0.

(1) Let x € Zw(M)(k) be a weakly unramified character for M. For any integer n > 1, we
have

Tr(Owp, (X)) = TrOMO0)™) = Y x(Ng, (@) tm (s kn),
2€G(kn)
where ty is the trace function of M and the trace on the left is that on GL,..

(2) Let x € 2 (M)(k) be an unramified character. Let o be an algebraic Q,-representation
of G¥ and denote by o(M) the corresponding object of <M>ari. The character x is unram-
ified for o(M) and

Tr(o(Fra(x))) = Tr(Fry | HY(G, o(M)y))-
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PRrOOF. (1) By definition, we have
Te(@y(x)") = Te(Fra (x)") = Tr(Fr} | HO(Gy, My ).

Since x is weakly unramified, we have H'(G;,M,) = 0 for all i # 0 and H%(Gj,M,) =
HY(Gz, M, ), so that we can write

Tr(Om()") = > (1) Tr(Frf | HA(GE, My)) = > x(Ng, (@) tw (s kn),
1€Z zeG(k)

by the trace formula.

(2) The fact that x is unramified for o(M) follows from the definition and Proposition 1.30, and
the formula follows then from the definition of the Frobenius conjugacy class of x for o(M). O

3.10. Frobenius-unramified characters

Because weakly unramified characters do not always give rise to fiber functors, and moreover
we do not always know if there exist sufficiently many (if any) unramified characters, we introduce
an intermediate notion.

DEFINITION 3.34 (Frobenius-unramified characters). Let M be an object of Perv(G) which is
arithmetically semisimple and pure of weight zero, of tannakian dimension 7. Let o be a repre-
sentation of GL, and let N be the object of (M)™" corresponding to the restriction of o to Gﬁf[i.
Let n > 1 and let x € 2, (M)(k,) be a weakly unramified character for M. We say that x is
Frobenius-unramified for o if x is weakly unramified for N and if the formula

Tr(o(Omk, (X))") = Te(Fry, | HA(Gg, Ny))
holds for all integers v > 1, or equivalently if
det(1 — (O g, (x))T) = det(1 — T Fry,, | HY(Gz, Ny)).
The disjoint union over n of the set of Frobenius-unramified characters is denoted 2% (o).

REMARK 3.35. (1) The key point is that since p is a representation of GL,, we can consider
the conjugacy class of o(Fry g, (x)) (in GL(V), where g is a representation on V); a priori, this is
not possible for a representation of G2, unless we know that the conjugacy class of the Frobenius
automorphism of HQ(G,;, M, ) happens to be conjugate to some element of the arithmetic tannakian
group.

(2) We will also sometimes write 2r(g) = Z7(N), although this set depends on M, since we
view N as an object of (M)™'. When confusion might arise, we may also write 25 (N)u.

Any unramified character for M is Frobenius-unramified for all objects of (M) (see Lemma 3.33,
(2)). But in contrast to unramified characters, we can prove in all cases that the set of Frobenius-
unramified characters is generic.

PROPOSITION 3.36. Let M be an object of Perv(G) which is arithmetically semisimple and pure
of weight zero and of tannakian dimension r > 0. For any representation o of GL,, the set 2% (o)
18 generic.

PRrROOF. We first suppose that there exist non-negative integers m and [ such that N is the
object My, ; = M*int™ s (MY)*nel (in other words, we assume that ¢ = Std®” ®(Std¥)®!, where
Std is the “tautological” identity representation of GL,.).
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Let C be the cone of the canonical morphism M*" %, (MV)*g — M* x, (MV)*Z*. By Lemma 3.8,
the object C belongs to Negp (G), and hence for x in the generic set .4 (C), the equalities
H(Gy, Cy) = H'(G;,C) = 0
hold for every i € Z.

For x € 4(C), we have canonical isomorphisms

(3.15) HE (G (M7 1 (MY)"),) = HE (G, (M 0 (MY)"))
and
(3.16) H (G, (M (MY)™),) 2 HY (G, (M7 0 (MY)™),0).

By Remark 3.13, there is a generic set U C G such that for x € U, we have canonical isomor-
phisms

m !
(3.17) HZ (G, (M p)x) = HE(Gg, (M™% (MY)y)
and

m *%
(318) H*(wa (Mm,l)x) & H*(GE’ (M*' * (MV)X)

We now define Z,,; = Zw(M) N A (C) N U; this is a generic set, and we will show that it
satisfies the stated conditions for the object M,, ;.

Let n > 1 and let x € Z5,(kn). By the Kiinneth isomorphisms of Lemma 1.15 and the fact
that x is weakly unramified for M (and therefore also for M), we have canonical isomorphisms

(3.19) HE (G, (M 5 (MY)*),) o HO(G, My)®™ @ (HO(Gi, My)¥)®!
and
(3.20) H* (G, (M*T %y (MV)*E*)X) ~ HO(G,;,MX)@”” Q (HO(G%,MX)V)@”.

The canonical isomorphism H2(Gj, M) ~ H°(Gj, M,,) now implies an isomorphism between the
objects in (3.19) and (3.20).

Combining this isomorphism with the ones of (3.15), (3.16), (3.17) and (3.18) proves that y is
weakly unramified for M,,; and gives a canonical isomorphism

(3.21) HY (G, My)®™ @ (HQ(Gy, My)¥)®! =~ HY(Gg, (Myn1)y)-
from which it follows that
(3.22) TT(FI"Mm,l,kn (x)") = Tr(Frak, (X)) Tr(Fram g, (%)),

for all v > 1, which is the desired conclusion.

In the case of a general object N, we appeal to Proposition 1.30 to express N as a finite direct
sum of subobjects of the form M,, ; for suitable values of m and [, and we apply the result for these.

0

COROLLARY 3.37. Let M be an object of Perv(G) which is arithmetically semisimple and pure
of weight zero and of tannakian dimension r > 0. If the group G{}' is finite, then M is generically

unramified.

PRrROOF. The fact that the tannakian group is finite implies that any object of (M)Mi is a
subobject of a direct sum of copies of a single object N = M*int™ ;. (MV)*int! for some (fixed)
integers m and [ (see [30, Prop.2.20 (a)]). Any Frobenius-unramified character for N is then an
unramified character for M. O
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3.11. Group-theoretic properties

We continue with the notation of the previous sections.
The following basic proposition establishes the relation between the geometric and arithmetic
tannakian groups.

PROPOSITION 3.38. Let M be a geometrically semisimple object of Perv(G).. The geometric
tannakian group G%;fo is a normal subgroup of the arithmetic tannakian group G3{y'.

PrOOF. The proof is identical with that of [68, Lemma 6.1]. O

PROPOSITION 3.39. Let M be an arithmetically semisimple object of Perv(G). Assume that M
is pure of weight zero.

(1) The quotient G351/ GE[° is of multiplicative type.

(2) Let V be a geometrically trivial object of (M)™" which corresponds to a faithful represen-
tation of the group Gﬁi/G‘E/Ieo. Any character x € G is unramified for V, and the class &
of the Frobenius conjugacy class of any such character is independent of x and generates
a Zariski-dense subgroup of G3f'/GE°.

(3) For any n > 1 and any character x € G(ky) unramified for M, the image in G51/GS[° of
the Frobenius conjugacy class Fryp i (x) is equal to £™.

ProOOF. This follows by the same arguments as in [68, Lemma 7.1] (checking first that, using
the structure of geometrically trivial objects as direct sums of ad®8 ® §; for suitable «, it is indeed
straightforward that all characters are unramified for such objects). O

We will also use the following result in Chapter 10.

ProproSITION 3.40. Let Gy and Go be connected commutative algebraic groups over k and
let p: Gi — Ggo be a morphism of algebraic groups. Let M be a perverse sheaf on Gy which is
arithmetically semisimple and pure of weight zero.

Let x1 € Gy(k) be a character such that we have Rp, (My,) = Rp«(My,). Assume further that
N = Rpi(M,) is perverse and arithmetically semisimple.

(1) The object N is pure of weight zero.
(2) Letn > 1 and let x € Zw(N)(ky) be a character such that x1 - (x op) is weakly unramified
for M. Then the conjugacy classes Ok, (x1 - (x 0p)) and On k, (x) satisfy

det(1 — TOwmk, (X1 - (x 0 p))) = det(1 — TON, (X)) € C[T]
and in particular
det(Onk, (x1 - (X 0 p)))) = det(On, (X))-

PRrROOF. It suffices to consider the case where y € @(k) For any n > 1, the exponential sums

Sn="Y_ tul@ika)(x1- (x°p)(Ng, k(@)
2€G1(kn)

S = Z N (Y5 kn) X (N, /1(y))
y€Ga(kn)

are equal by the trace formula. Hence, the corresponding L-functions
n TTL
exp(3o8utr). en (8o
n>1 n>1
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are also equal. But these L-functions coincide with the (reversed) characteristic polynomials of the
conjugacy classes Oy (X1 - (x op)) and Oy x(x), by Lemma 3.33 (1), hence the result. O

REMARK 3.41. If the morphism p: G; — Gy is affine, then the condition Rpi(M,,) = Rp.«(M,,)
implies that N is perverse.

We will give an application when the group Go is the multiplicative group. For this we need a
lemma.

LEMMA 3.42. Let N be a simple perverse sheaf on Gy, over k which is an object of the cate-
gory PU(G,,,). Assume that N is pure of weight 0 and of tannakian dimension 1. Suppose that there

nt
exists an integer d > 1 and a finite set % C Gy, such that for alln > 1 and for x € G, (kn)—% (ky),
the determinant det(@NJCn)d depends only on n. Then N is geometrically of finite order.

ProoF. If N is not geometrically of finite order, then the perverse sheaf N is a hypergeometric
sheaf of generic rank at least 1 (see Section B.4 and Theorem B.4 for reminders of the definition of
hypergeometric sheaves and for this result, due to Katz). But these hypergeometric sheaves do not
have the indicated property, e.g. because the Oy g, (x) become equidistributed in S! as y varies
among unramified characters in Gy, (ky) (see Theorem B.4, (3) and [68, Th. 7.2] or Theorem 4.11).

O

PROPOSITION 3.43. Let G be a connected commutative algebraic group over k and let p: G —
G,, be a non-trivial morphism of algebraic groups. Let M be a perverse sheaf on G which is
arithmetically semisimple and pure of weight zero.

Let x1 € G(k) be a character such that the equality Rpi(My,) = Rp«(M,,) holds. Assume
further that the complex N = Rpi(M,, ) is a perverse sheaf on Gy, and is arithmetically semisimple.
It is then pure of weight zero.

Suppose that the set of x € G, such that X1(xop) is unramified for the object det(M) is generic,
and that the tannakian determinant of N is arithmetically (resp. geometrically) of infinite order.
Then the tannakian determinant of M is arithmetically (resp. geometrically) of infinite order.

PROOF. We begin by proving that the determinant is arithmetically of infinite order in both
cases. Let n > 1 and let x € Gy, (k) be a character such that x;(x op) is unramified for the object
det(M). We then have

(3.23) O et (M) k, (X) = det (On, (X1(x 0p))) = det (Onk, (X))

by Proposition 3.40. By assumption this is valid for all but finitely many y € (A}m, and moreover
N has determinant which is arithmetically of infinite order, so that the arithmetic tannakian group
of det(M) must be infinite.

It remains to deduce that the geometric tannakian determinant of M has infinite order if the
same property holds for N. If not, then det(M)? would be geometrically trivial for some integer
d > 1. In this case, for any n > 1 and any character x € @(kn) which is Frobenius-unramified
for det, the determinant det(Onx, (x))¢ only depends on n (see Proposition 3.39, (2)). By (3.23)
and Lemma 3.42, the tannakian determinant of N (which is an object of tannakian dimension 1
on G,,) is geometrically of finite order, which contradicts the assumption. O

REMARK 3.44. If G = T x G, for some torus T and p is the projection on G, then, according
to Theorem 2.11 applied to p and M, the assumption that Rp)M,, = Rp.M,, and that this complex
is a perverse sheaf is true for all x; outside of a finite union of tacs of T. Moreover, by varying
X1, we can always find such a character for which x1(x o p) is unramified for generic y, since M is
generically unramified by Theorem 3.25.
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Using further work of Katz, we can give a sufficient criterion to apply this proposition.

COROLLARY 3.45. Let G be a connected commutative algebraic group over k andletp: G — Gy,
be a non-trivial morphism of algebraic groups. Let M be a perverse sheaf on G which is arithmetically
semisimple and pure of weight zero.

Let x1 € G(k) be a character such that Rpi(My,) = Rp«(M,,). Assume that this object N =
Rpi(My,) is a perverse sheaf on G, which is arithmetically semisimple and of the form F|[1] for
some middle extension sheaf F (see Example A.12 for the definition of middle extension sheaves).
Let

(61,...,61), (fl,...,fm)
the size of the unipotent Jordan blocks in the tame monodromy representation of F at 0 and oo
respectively.

Suppose that the set of x € C‘rm such that x1(xop) is unramified for the object det(M) is generic.

If we have
D=2 fi#0
i J

then the tannakian determinant of M is geometrically of infinite order.

PRrROOF. According to the previous proposition, it suffices to show that the tannakian deter-
minant of N is geometrically of infinite order. By [6&, Th.16.1], the condition implies that the
determinant of the Frobenius action on Deligne’s fiber functor wpe(N) is not unitary (see Sec-
tion B.2 for the definition of this functor), and the result follows from Katz’s classification of
objects of tannakian dimension 1 on Gy, (Theorem B.4). O
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CHAPTER 4
Equidistribution theorems

4.1. Equidistribution on average

Along with the classical form of equidistribution that goes back in principle to Weyl and appears
in Deligne’s equidistribution theorem, we will use a useful variant that allows us to avoid the
assumption that the geometric and the arithmetic tannakian groups are equal, at the cost of
getting slightly weaker statements.

DEFINITION 4.1. Let X be a locally compact topological space and let i be a Borel probability
measure on X. Let (Y,,©0,),>1 be a sequence of pairs of finite sets Y,, and maps 0,,: Y,, — X.

(1) We say that (Y,,©,), or simply (Y,) when the maps ©,, are clear from the context,
becomes p-equidistributed on average as n — oo if the sets Y,, are non-empty for all large
enough n and if the sequence of probability measures

Z Z on N'=[{n <N | Y, #0},

1<n<N yEY
Yn#0

defined on X for large enough N, converges weakly to p as N goes to infinity, i.e., for any
bounded continuous function f: X — C, the following holds:

w % Xy X s0uon - [ s

1<n <N YEY
Yn#0

(2) The sequence (Y, Oy), or simply (Y,), becomes p-equidistributed as n — oo if the sets
Y, are non-empty for all large enough n and if the sequence of probability measures

N 2 e

yEY

defined on X for large enough n, converges weakly to p as n goes to infinity, i.e., for any
bounded continuous function f: X — C, the following holds:

iy 000 s

REMARK 4.2. (1) In practice, since N’ ~ N as N — +o00, we will sometimes not distinguish
between N and N’, and use the convention that those terms for which Y,, is empty are omitted
from the sum over n when discussing equidistribution on average.

(2) Since convergence of a sequence (z,) of complex numbers implies that of its Cesaro means
N1y, <n<N Tn), With the same limit, equidistribution implies equidistribution on average.
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4.2. The basic estimate

We state here a preliminary estimate that will be the key analytic step in the proof of our
equidistribution results, including Theorem 2.

We denote as usual by k a finite field with algebraic closure k, and by k, the extension of k of
degree n in k. We fix a prime £ distinct from the characteristic of k.

PROPOSITION 4.3. Let G be a commutative connected algebraic group over k. Let M be an (-adic
perverse sheaf on G that is arithmetically semisimple and pure of weight zero, and of tannakian
dimension r. Let N be an object of (M)™".

For all n > 1 such that Zr(N)(k,) is not empty, the following estimate holds:

1 _
43 mmon S Tl [HAGLN) = taleik) + Ok ).
PRI e 2 (N) (k)

PROOF. Let d denote the dimension of G, and put 2" = 2Zr(N). For each non-zero integer ¢,
consider the subset R
;= {x € G | Ho(Gg, Ny) # 0}
consisting of those characters x such that N, has non-trivial cohomology with compact support in
degree i. Then the left-hand side of (4.3) is equal to

1 0/ _
2 T [HON) =
XEU”Z( n)
i L S T G N
)||<d
(4.4) 1 , .
S D (DY Tl [HA(GENY)
0<|il<d XE; (k)

_ W Z Tr(Frg, \HS(GE:NX))-

Xea(kn)'%(kn)
By the Grothendieck—Lefschetz trace formula (see (A.4)), the equality
D (=D Tr(Fry, [HUGE N ) = > x(2) Tr(Fry, . |N)
li|<d 2€G (kn)

holds for any character x. Combined with the orthogonality of characters of G(k,,), this shows that
the first summand in (4.4) is equal to

Gkn)| e L
|%( )|TI‘(FI‘kn,e‘N) tN( k)+0(‘kn| )

since the set 2" is generic, so that the estimate “S’,((k"))" =1+ O(|ky|™") holds.

We now turn to bounding the second and the third summands in the right-hand side of (4.4).
Since M is pure of weight zero, the same holds for N and N, by Theorem 3.31. It then follows
from Deligne’s Riemann Hypothesis (see Theorem A.19) that H}(Gz, N, ) is mixed of weights < i
for any i, in particular the eigenvalues of Frj acting on this space have modulus at most |k‘n|’/ 2,
Moreover, using (1.1) and Theorem 1.5 (2), we get
RL(GEy Ny) < eu(Ny) < cu(N)ew (%) < cu(N)
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since the complexity c,(.Zy) is bounded independently of x by Proposition 1.18. Finally, the
Stratified Vanishing Theorem 2.3 applied to N gives the estimate

(4.5) | (k)| < [ |7
We conclude that the second term can be bounded by

Z Z hz Gk’ ’k ‘1/2 Z Z |,I€ |z/2
|3>{

0<| |<d xe;(kn) 0<\ I<d xe;(kn)
(4.6) 1 if2 Ik |d—1/2
L T |71 <
7 Oq%' N FA(S]

Thanks to the estimate |2 (kn)| = |kn|* + O(|k,|?"1), the last term is < |k,| /2 and tends to 0
as n — +00.

Finally, the third term satisfies

! (Glkn) = 2 (k)| _ 1
(4.7) — Tr(Fry, |HY(Gz,Ny)) < < —
RICTIP VI T T

since HY(Gy, N, ) is mixed of weights < 0 and has dimension bounded for all y, and the set 2~ is
generic. This finishes the proof. O

4.3. Equidistribution for characteristic polynomials

Let k be a finite field, with an algebraic closure k, and let G be a connected commutative
algebraic group over k. Let £ be a prime number distinct from the characteristic of k.

Our most general equidistribution result concerns the characteristic polynomials of the uni-
tary Frobenius conjugacy classes for weakly unramified characters. Equivalently, this is about the
conjugacy classes in the ambient unitary group.

THEOREM 4.4. Let M be an (-adic perverse sheaf on G that is arithmetically semisimple and
pure of weight zero. Let r > 0 be the tannakian dimension of M. Let K C G#i(C) C GL.(C)
be a mazimal compact subgroup of the arithmetic tannakian group of M, and denote by v, the
measure on the set U,(C)* of conjugacy classes in the unitary group which is the direct image
of the Haar probability measure i on K by the natural map K — U,(C)t. Then the families of
unitary conjugacy classes (O k, (X))ye 2 (M)(k,) becOme Vep-equidistributed on average in U, (C)*
as n — +00.

REMARK 4.5. (1) To be precise, in terms of Definition 4.1, we consider the equidistribution on
average of pairs (Z,(M)(ky), ©5) with O,(x) = Om .k, (X)-

(2) The set U,.(C)* can be identified with the set of characteristic polynomials of unitary matri-
ces of size r, or equivalently with the quotient toppological space (S1)" /&, (by mapping a matrix to
the set of eigenvalues, with multiplicity) so the statement means that the characteristic polynomials
of the Frobenius automorphisms for weakly unramified characters tend to be distributed like the
characteristic polynomials of random elements of K.

PROOF. Let 2" = 2, (M). It suffices to check the equality (4.1) for f taken in a set of continu-
ous functions on U, (C)* that span a dense subset of the Banach space € (U,.(C)*) of all continuous
complex-valued functions on U,.(C)# (since probability measures on U, (C)* are continuous func-
tionals on € (U,(C)*) by the Riesz representation theorem). Thanks to the Peter-Weyl Theorem,
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it suffices to prove the equality

i Y iy X Te®us(0) = [ Trleo)dnto)

N Ny £ 12 ()| XEZ (kn) K

for any irreducible unitary representation ¢ of U,(C). In fact, we will prove this for any unitary
representation g, not necessarily irreducible.

By the Peter-Weyl Theorem again, the right-hand side is the multiplicity of the trivial repre-
sentation in the representation of G3;' that corresponds to the restriction of ¢ to K. We denote by

N = o(M) the object of (M)* that corresponds to this restriction of .
Let Zn = Zr(N)um be the set of Frobenius-unramified characters for N. We have

) 1 1
NLHJIrloo N E m E Tr(9<@M,kn (X)) =0,
1<n<N XE(Z -2n)(kn)

since 2\ is generic (by Proposition 3.36) and the upper-bound

| Tr(e(On .k, (X)))| < dim(o)
holds for all x € Z (k).
By the definition of Frobenius-unramified characters, we have

1 1
—_— E Tr(o(Omk, (X)) = g Tr(Fry, | H2(Gg, N
XE'lN(kn) X€<¥N(kn)

for n > 1. Since 2~ and ZN are both generic, we have |é§\f(f:))“ =1+ O(W) By Proposition 4.3,

we deduce that
1

|2 (kn)

where e is the identity of G.

Z TI"(Q(@M,kn (x))) = tn(e; kn) + O(’k,n‘—l/z)7
XEAN (kn)

We decompose the semisimple perverse sheaf N as a direct sum
N=D D N
r20 i€l(r)
of pairwise non-isomorphic arithmetically simple perverse sheaves N, ; of support of dimension 7.
For r > 1, we get the pointwise bound
1

tNm.(e; kn) L —F.
|Fn]

(see Proposition 1.11).

The punctual objects Ny, are of the form a?eg ® d,, for some unitary scalars «; and some
points z;. If z; # e, then

tNO,i(e; kn) = 0.
Thus, if we denote by J C I(0) the subset where x; = e (which has cardinality equal to the

multiplicity of the trivial representation in the restriction of p to G§[°), then the formula

1 _
(4.8) 2 0o Z Tr(o(Omk, (X)) = Za? + O(Jkn|71/2)

XEZN (kn) ied
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holds. The subset JO C J where a; = 1 has cardinality equal to the multiplicity of the trivial
representation in the restriction of ¢ to G{}'. Averaging over n and using

NEIEOO N Z a

1<n<N

for i € J—J°, we conclude that

i = Y G X T (0) = [+ Offkl )

N—+o00 N e (kn)| e Tt

which gives the desired result. (|

It is useful to state the following corollary of the proof, which is a diophantine version of Schur’s
Lemma in our context.

COROLLARY 4.6 (Schur’s Lemma). Let M and N be geometrically simple £-adic perverse sheaves
on G which are pure of weight zero and are objects of P21 (G). Let 2 be the set of characters which
are weakly unramified for M ® NY. We have

N—>-i-c>oNZ ’ ‘ Z )SM*thV)

1 if M is arithmetically isomorphic to N,
0  otherwise.

PROOF. Proposition 4.3 applied to the perverse sheaf M & NV and the object Q = Hom(N, M)
of the category (M @ NY)*" (the homomorphisms are in the category P&1(G)) implies that

int

1
a2 S(Qx) =tqleska) + O(lka| %)
[ Ze(Qkn)l 55

for any n > 1, where

S(Qx) = Y, x@tq;kn).

Since 2F(Q) is generic, and since there is a canonical isomorphism Q — M *j,s NV, we deduce

that
1 1 _
sz Z SM*lntN7X Zthk)+O(|k’ 1/2)
n<N e (kn) n<N

for all N > 1. Arguing as in the last part of the proof of Theorem 4.4, we see that the right-hand
side converges to the multiplicity of the trivial representation in the representation corresponding
to Q; by the classical form of Schur’s Lemma, this is either 1 or 0, depending on whether M is
isomorphic to N or not. O

REMARK 4.7. The proof of Theorem 4.4 allows us to see clearly what is involved in the use of
the Cesaro mean in the average equidistribution.

First, we can see that it is necessary in general, unless Gf\ﬁi = G};° (see Section 4.6 for state-
ments under this assumption, in particular Proposition 4.18).

Second, we see that the use of the Cesaro average can be generalized to establish the convergence
to the limit v, of any sequence of average measures of the form

@N
) Z 5@M,kn (x)»

XE€Z (kn)

7



where pn(n) are non-negative coefficients that are bounded and satisfy the equality

. n 0 ifa#1,
(4.9) Ngrfwgwlv(n)a = {

1 ifa=1

for any complex number « of modulus 1. The Cesaro case corresponds to on(n) = 1/N for alln < N
and pn(n) = 0 for n > N, but there are many other possibilities. (In classical terms, as expounded
for instance by Hardy [52], these N define a “summation method”, and it is elementary that the
requirements amounts essentially’ to asking that this summation method gives the “right” sum
1/(1 — a) to the geometric series for |a] =1 and a # 1.)

It is also instructive to view the average probabilistically, interpreting ¢n as the law of a
random variable Xy with values in positive integers. The condition above is the requirement that
the equality

lim E(e?X~) =0
N—+oco

holds for all § € R/27Z — {0} (the expectation E(e®XN) is known as the characteristic function
of XN).

Besides the Cesaro case, where Xy is a random variable uniform on {1,...,N}, consider a
Poisson distribution Xy with parameter Axy > 0, shifted to have support in the positive integers,
i.e., let

-1
v AN
(n—1)!

for any positive integers N and n. The condition above becomes the limit

P(Xn=n)=¢n(n)=¢"

E(eXN) = exp(if + Ax (e — 1)) = 0

as N — +4oo for § € R/2nZ — {0}, which holds provided Ay — +00, since the modulus of the
left-hand side is exp(An(cos(6) — 1)).

Intuitively, this means that if we pick a positive integer n according to a Poisson distribution
with large parameter, then pick uniformly a random x € 2" (k,,), then the Frobenius conjugacy class
Om i, (x) will be distributed like a random U, (C)-conjugacy class of an element of the maximal
compact subgroup K. (A whimsical enough way to do this — according to the Rényi—Turan form of
the Erdés—Kac Theorem, see e.g. [58, Prop. 4.14] — would be to pick a large integer m > 1 and to
take n to be the number of prime factors of m, which corresponds roughly to having Ax = loglog N.)

Note however that are also many cases where the condition (4.9) is not true. The most obvious
is when ¢N(N) = 1 and ¢n(n) = 0 for n # N, corresponding to a limit without extra average at
all. In addition, the condition implies that for any integers ¢ > 1 and a € Z, we have

1 , . 1
P(Xy =a(modq)) = — Z 6—227rab/qE(€2z7rbXN/q) -,

q b (mod q) 4
so there is a strong arithmetic restriction that Xy (modgq) converge to the uniform probability
measure modulo ¢ for all ¢ > 1.

Similar remarks apply in an obvious manner to our other equidistribution statements, e.g. to
Theorem 2.

1 Precisely, we need that the series 3 a,, with a1 = @ and a, = o —a™ " for > 2 has “sum” a+(a—1)/(1—a) =0
for |a| =1 and o # 1.
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4.4. Equidistribution for arithmetic Fourier transforms

We now deduce from Theorem 4.4 the equidistribution of the exponential sums defined by

SOM,x) = Y x(@)tm(w; kn).

$EG(kJn)

In fact, note that these sums make sense for all characters y € @(kn), and we can indeed prove
equidistribution for all of them. This implies Theorem 2 from the introduction. As a final addition,
we prove an equidistribution statement for the arithmetic Fourier transforms of all objects M of
DP(G) which are mixed semiperverse sheaves of weights < 0. This is of interest especially in more
analytic applications, since the condition of being semiperverse and that of being mixed of weights
< 0 are much more flexible, and easier to check, than those of being perverse and pure.

THEOREM 4.8. Let k be a finite field and let G be a connected commutative algebraic group over
k. Let £ be a prime number distinct from the characteristic of k.

Let M be an object of D2(G). Assume that M is semiperverse of weights < 0. Let N be the
perverse subsheaf of weight O of the arithmetic semisimplification of the perverse cohomology sheaf
PoO(M).

Letr > 0 be the tannakian dimension of N. Let K C G¥(C) C GL,(C) be a maximal compact
subgroup of the arithmetic tannakian group of N. Denote by p the Haar probability measure on K
and by v its image by the trace.

The families of exponential sums S(M, x) for x € @(k‘n) become v-equidistributed on average as
n — +00.

ProOF. We first assume that M is perverse and pure of weight 0, so that the object N coincides
with M. We then observe that, by the generic vanishing theorem, it suffices to prove that the families
of exponential sums associated to y € Z,,(M) become v-equidistributed on average, since for any
bounded continuous function f: C — C, we have

Y O, (0] <

G(k, _
IG( )‘xem—%(M))(kn)

(G = 2u(M)(ka)l
G (k)|

because 2, (M) is generic. But since Tr,(v¢p) = v, this equidistribution follows from Theorem 4.4
by considering the composition K — U,.(C)# I c.

We now consider the general case. We denote by My the arithmetic semisimplification of the
perverse sheaf P.7#%(M), and by N’ the perverse sheaf such that My = N @ N’, defined using the
weight filtration on Mg; the perverse sheaf Ng is mixed of weights < —1.

Since M is semiperverse of weights < 0, we have PZ4(M) = 0 for i > 1, and PZ~*(M) is of
weights < —i < —1 for all ¢ > 1 (see [6, Th. 5.4.1]).

>

For any n > 1 and y € é(kn), we have the equality
(4.10) S(M, x) = S(N,x) +S(N',x) + Y (=1)'S(P (M), x).
i>1

By generic vanishing and the trace formula (see Theorem 6.1 below, applied to N'(—1/2) and
P~ (M)(—1/2) for i > 1, which are mixed perverse sheaves of weights < 0), there exists a generic
subset 2" C G such that we have

(4.11) SOV 20 + S-S0 .0 < TaTE
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for all n > 1 and x € 2 (ky). This implies that the sequence (@) of probability measures defined
as averages of delta masses at the points

S(N', x) + Y (=)'~ (M), x)

121

for all x € (A}(kn) converges to zero in probability, i.e., that for any fixed real number ¢ > 0, the
limit
lim w,({t>¢c})=0

n——+oo

holds.

By the first case applied to the perverse sheaf N, the sums S(N, x) become v-equidistributed
on average as n — 400, and the formula (4.10) ensures then that the same holds for the S(M, x)
(see, e.g., [77, Cor. B.4.2] for the simple probabilistic argument that leads to this conclusion). O

REMARK 4.9. (1) As we will see later, it is often of interest to attempt to apply equidistribution
of exponential sums to the test function z — 2™ or z + |z|™ for some integer m > 1. Such functions
are continuous but not bounded on C, so that Theorem 4.8 does not apply, and Theorem 4.4 only
gives the equidistribution for weakly unramified characters. In these attempts, the contribution
of the other characters may therefore need to be handled separately (see for instance the proof of
Theorem 10.10).

(2) See Chapter 8 for an application of this theorem to a question of independence of ¢ of
tannakian groups.

EXAMPLE 4.10. Let k = F)p, and let ¢ be the additive character on k such that ¢(z) = e(z/p)
for x € k. Let X C G be a locally-closed subvariety of G of dimension d > 1, and let f: X — Al
be a non-zero function on X. Then there is a semiperverse sheaf M on G, mixed of weights 0, such
that the trace function of M is given by the formula

(=)~ 2e(Trp,, v, (f(2))/p) if & € X(Fypn)
0 otherwise.

for n > 1 and x € G(ky,), namely
M =51 f*Zy[d](d/2),

where j: X — G is the natural immersion.

Hence Theorem 4.8 implies that the exponential sums

Y ()

{EEX(Fpn)

p

for x € G(Fpn) always satisfy some equidistribution theorem on average.

A similar property holds if we fix a non-trivial multiplicative character n of FJ and an invertible
function g: X — G,, and consider the exponential sums

LY @)

nd/2
P X (F )

(using the object jig*.%,[d](d/2), which is also mixed and semiperverse of weights < 0).
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4.5. Equidistribution for conjugacy classes

We keep the notation of the previous sections. If the object M that we consider is generically
unramified, then we can prove equidistribution at the level of the Frobenius conjugacy classes in
the maximal compact subgroup of the arithmetic tannakian group.

THEOREM 4.11 (Equidistribution on average). Let k be a finite field and let G be a connected
commutative algebraic group over k. Let £ be a prime number distinct from the characteristic of k.

Let M be an £-adic perverse sheaf on G that is arithmetically semisimple, pure of weight zero
and generically unramified. Let 2" = 2 (M) be the set of unramified characters for M. Let K be a
mazximal compact subgroup of the arithmetic tannakian group G%}P(C) of M, and denote by u* the
direct image of the Haar probability measure 1 on K by the projection to the set K of conjugacy
classes of K.

Then the families of unitary Frobenius conjugacy classes (O k,, (X))xe%(kn) become p-equidistri-
buted on average in K as n — +o0.

Precisely, we are considering here the equidistribution on average of the pairs (2 (ky),©y)
where O, (x) = Om,k, (X)-

PROOF. By Theorem 3.28 and the definition of generic sets, we know that |2 (k)| ~ |G (k)]
as n — 400, and hence the sets of unramified conjugacy classes are non-empty for n large enough.

By the Peter-Weyl theorem, any continuous central function f: K — C is a uniform limit of
linear combinations of characters of finite-dimensional unitary irreducible representations of K, and
hence it suffices to prove the formula (4.1) when f is such a character. For the trivial representation,
both sides are equal to 1. If the representation is non-trivial, then the integral on the right-hand
side vanishes, and we are reduced to showing that the limit on the left-hand side exists and is
equal to 0. We thus consider a non-trivial irreducible representation ¢ of K, which we identify
with a non-trivial irreducible algebraic Q,-representation of the arithmetic tannakian group Gﬁji
by Weyl’s unitarian trick (see, e.g., [61, 3.2] for this step); applying the next proposition then
completes the proof. O

PRrROPOSITION 4.12.  With notation as in Theorem 4.11, let ¢ be a non-trivial irreducible unitary
representation of K, identified with a non-trivial irreducible representation of G}

1) If the restriction of o to G§;° is non-trivial, then
M

1

(4.12) 2T

> Te(e(Oup, (X)) € ———

XEZ (kn) ’kn’

for all n such that Z (ky,) is not empty.
(2) If the restriction of o to GY[° is trivial, then

(4.13) i o Y Y Tre(®, (1) = 0.

N—+o00o N SN (kn)| e Z k)
2 (kn )70
PRrROOF. (1) We assume that the restriction of p to the geometric tannakian group is non-trivial.

Let o(M) denote the object of the tannakian category (M)ari corresponding to the representation

o of the arithmetic tannakian group Gi}i; this is a simple perverse sheaf on G.
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We have 2" C 27 (0(M)). Applying Proposition 4.3 to the object N = o(M), we obtain

1 -
T 2 THeOk, (0)) = fag (e k) + Ok )
" xe 2 (kn)
since the conjugacy class Oy, (x) coincides with Oyp g, (x) when x is unramified for M.

Since p(M) is a simple perverse sheaf on G, the classification of [6, Th. 4.3.1 (ii)] shows that there
exist an irreducible closed subvariety s: Y — G of dimension 7, an open dense smooth subvariety
j: U—Y, and an irreducible lisse Q,-sheaf .# on U such that o(M) = s,j1..%[r]. Since the functors
s and j, are weight-preserving, the sheaf % is pure of weight —r.

If r = 0, then Y consists of a closed point of G, which must be different from the neutral
element e, since otherwise o(M) would be geometrically trivial, contrary to the assumption in (1).
In that case, we have therefore t,r)(e; kn) = 0. On the other hand, if r > 1 we get

1

v/ Tkl

(by Proposition 1.11), which concludes the proof of (1).

(4.14) toan) (5 k) <

(2) We assume that the restriction of the representation o to G§[° is trivial. Then p has
dimension 1 since the quotient G3%/Gg[° is abelian (Proposition 3.39).

Let Q be the set of integers n > 1 such that 2 (k,,) is not empty; it contains all sufficiently large
integers. It follows from Proposition 3.39 that there exists an element ¢ of G/ G{[°, generating
a Zariski-dense subgroup of this group, such that o(®w,,(x)) = o(§)" for any n > 1 and any
X € (A}(k:n) unramified for M. Moreover, we have o(§) # 1, since otherwise the representation o

would be trivial. We conclude that

1 1 1
N > 12k > Tr(e(®wmp, (X)) = N > o9
1<n<N e (kn) 1<n<N
X (ken)#0 neqQ
converges to 0 as N — 400 by summing a non-trivial geometric progression.

O

REMARK 4.13. For certain reductive groups G C GL,(C), a conjugacy class in a maximal
compact subgroup K of G is determined by its characteristic polynomial (equivalently, the exterior
powers of the standard representation generate the representation ring of G). If G(C) has
this property, then Theorem 4.4 implies a version of Theorem 4.11, even if M is not generically
unramified.

If G is semisimple, this property holds, for instance, for SL,(C) C GL,(C), for Sp,,(C) C
GL2,(C), and for G2(C) C GL7(C). Indeed, the first two cases are explained by Katz in [61,
Lemma 13.1, Remark 13.2]; in the third case, we note that the second fundamental representation
of G2(C) is virtually /\2 Std — Std (see, e.g., [44, p. 353]) so that the exterior powers of the standard
7-dimensional representation generate the representation ring.

We deduce immediately from Theorem 4.11 a useful corollary, analogue to some classical con-
sequences of the Chebotarev density theorem.

COROLLARY 4.14. Let k be a finite field and let G be a connected commutative algebraic group
over k. Let M be a perverse sheaf on G which is arithmetically semisimple, pure of weight zero and
generically unramified.

Let S be any finite subset of G. The union of the unitary Frobenius conjugacy classes of M
associated to unramified characters in G —S is dense in a mazimal compact subgroup of G{'(C).
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4.6. Equidistribution without average

We continue again with the previous notation. If we make the extra assumption that the
geometric and the arithmetic tannakian groups coincide, then the equidistribution of Frobenius
conjugacy classes holds without averaging over n. We summarize the variants of the previous
theorems in this situation.

THEOREM 4.15 (Equidistribution without average). Let M be an (-adic perverse sheaf on G
that is arithmetically semisimple, pure of weight zero. We assume that the inclusion G3;° C Gf{?
is an equality.

Letr > 0 be the tannakian dimension of M. Let K C G(C) C GL,(C) be a mazimal compact
subgroup of the arithmetic tannakian group of M. Denote by u the Haar probability measure on K,
by vep the direct image by the map K — U, (C), by v the image by the trace, and by ut the image
by the map K — K&,

(1) The families of unitary Frobenius conjugacy classes (O k, (X))ye 2 (M)(k,) become vep-
equidistributed as n — +o0.

(2) The families of exponential sums S(M, x) for x € G(ky) become v-equidistributed as n —
+00.

(3) If M is generically unramified, then the family of conjugacy classes (O k, (X))ye2 (M) (kn)
become pt-equidistributed as n goes to infinity.

ProoFr. This follows from the Weyl Criterion as in the proof of Theorems 4.4, 4.8 and 4.11; in
the case of the last statement, for instance, we use only the first part of Proposition 4.12 (as we
may since a non-trivial irreducible representation of G{}' is a non-trivial irreducible representation

of G§[° under the assumption). 0

REMARK 4.16. There is an obvious further variant of Theorems 4.15 and of the case of mixed
semiperverse objects of weights < 0 of 4.8: if M is mixed semiperverse of weights < 0, with N as in
Theorem 4.8 such that G¥' = G{°, then the discrete Fourier transform becomes equidistributed
towards the measure v without average over n.

There is a converse to Theorem 4.15. In fact, there is a statement which is valid for an individual
representation of the unitary group (this will be useful in Chapter 9).

PROPOSITION 4.17. Let M be an {-adic perverse sheaf on G that is arithmetically semisimple
and pure of weight zero. Let r be the tannakian dimension of M and let 2" = Z,(M) be the set of
weakly unramified characters for M. Let o be a finite-dimensional unitary representation of U,(C).

Assume that the sequence
e S Tr(e(Ous, (1))
I M,k )
|2 (kn)|

XE%(’CH)
defined for all integers n > 1 such that Z (k) is not empty, has a limit. Then this limit is equal
to the multiplicity of the trivial representation in the restriction of ¢ to G%/Ieo.

PROOF. We use the notation in the proof of Theorem 4.4. Taking the equality (4.8) into
account, the assumption of the statement means that the limit
s n
2o
exists, where the complex numbers «; have modulus 1 and the set J has cardinality equal to the
multiplicity of the trivial representation in the restriction of ¢ to Glgjo. We claim that the existence
of this limit implies the equality o; = 1 for all ¢ € J, so that the limit is equal to |J|, as desired.
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Indeed, let L C J be the set of ¢ where «; # 1. The sequence
> of
i€l
converges as well, and its limit must be zero since it converges to 0 on average over n < N. However,
the lower bound

lim sup ‘Z a;’ 1/2
nree el
holds (see, e.g., [57, Lemma 11.41]), so we deduce that L is empty, which proves the claim. O

A more global form of this converse, for generically unramified objects, is the following:

PROPOSITION 4.18. Let M be an £-adic perverse sheaf on G that is arithmetically semisimple
and pure of weight zero. Assume that M is generically unramified. Let r be the tannakian dimension
of M and let Z" = Zw(M) be the set of unramified characters for M. If the sequence of probability

measures
| E : 5®M en (X

XE%

defined when Z (ky) is not empty, converges weakly to some probability measure, then we have the
equality G = G§1°.

PROOF. Suppose that G§[° # Gi/r[i. By Proposition 3.39, there exists an element & # 1 of
Garl / Ggeo which generates a Zariski-dense subgroup of this group, which is abelian. Thus there
exists an irreducible representation g of the quotient G4/ G3;° such that o(&) # 1; for any n > 1
and any y € G(ky) unramified for M, the equality 0(Owm i, (X)) = 0(&)™ holds.

Let 2" be the set of characters unramified for M. Then

|,%(1 Z Tr(0(Owmk, (X)) = o(&)"

k)|

for all n > 1 for which 2"(k,,) is not empty. Since p(§) # 1, this quantity does not converge as
n — +o0o, which implies the proposition by contraposition. ]

4.7. Horizontal equidistribution

The proof of Theorem 4.11 relies crucially on the estimates in the stratified vanishing theo-
rem 2.3. We expect (see Remark 2.4) that the implied constants in these estimates depend only on
the complexity of the perverse sheaf M (as is the case for unipotent groups).

Under the assumption that such a statement is valid, and in fact that this holds for the size of
the set of unramified characters, one can obtain equidistribution statements for finite fields under
the condition that their size tends to infinity (for instance, for F), as p — 4o00; compare with [68,
Ch. 28-29]).

We include a conditional statement of this type, since we expect that there should be progress
soon concerning the underlying uniformity question. We leave to the interested reader the task of
formulating variants similar to Theorems 4.8 and 4.4.

THEOREM 4.19 (Horizontal equidistribution). Let ¢ be a prime number. Let N > 1 be an integer
and let (G, u) be a quasi-projective commutative group scheme over Z[1/¢N] such that, for all primes
p 1IN, the fiber Gy, of G over Fy, is a connected commutative algebraic group for which the estimate

|Gy (Fpn) = 2 (M)(Fyn)| < (M) p(dim(Gp)—1)
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holds for all primes p and n > 1 and all arithmetically semisimple objects M in Pervin (Gp) which
are generically unramified.

Let (My)pine be a sequence of arithmetically semisimple objects in Perving(Gp) which are pure of
weight zero. Suppose that the tannakian dimension r of M, is independent of p, and that for all p,
we have Gf\‘/i = G%dez, and that this common reductive group is conjugate to a fized subgroup G

Of GLT(QZ)'

Let K be a mazimal compact subgroup of G(C) and let u* be the direct image of the Haar
probability measure on K to K.

Let %, be the set of characters x € @p(Fp) which are unramified for the object M,,.

If we have c,(My) < 1 for all p t Nt then the families of conjugacy classes (O, F,(X))xe2,
become pt-equidistributed in K* as p — +oo.

PROOF. The argument follows that of Theorem 4.11; it suffices to prove the estimate

X;K Tr (0(®Owm, r,(¥))) < \;13

for all p  N¢. The proof of this is similar to the first part of Proposition 4.12, noting that, under our
assumptions, the implied constants in the key bounds (4.14), (4.5), (4.6) and (4.7) are independent
of p, since the complexity of M, is bounded independently of p, and hence also that of o(M,)
by [98, Prop. 6.33]. O

REMARK 4.20. (1) For G unipotent, results of this form are unconditional by Proposition 2.7
(the case of G, essentially goes back to Katz [61], whereas the case of an arbitrary power of G,
follows from [98, Th.7.22]). For G = G, a similar statement is proved by Katz in [68, Th. 28.1].

(2) The result is also unconditional in the case of abelian varieties (see Remark 2.4). We
expect that a careful look at the proof of the generic vanishing theorem will also show that it is
unconditional for G,, x G,. The case of tori of dimension > 2 is however not yet known.
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Part 2

Applications






Description of applications

The remainder of the book is devoted to applications of the theoretical results of the first part
of this book. We split these applications in further chapters as follows:

(1)

(2)

(3)

We define in Chapter 5 the analogue of L-functions for the Fourier—-Mellin transforms.
We establish with its help that the arithmetic tannakian group is infinite for many non-
punctual objects on abelian varieties.

We present in Chapter 6 the concrete analytic translation of the stratified vanishing theo-
rem to stratification of estimates for exponential sums, in the spirit of Katz—Laumon [71]
and Fouvry-Katz [34].

We discuss in Chapter 7 a “generic Fourier inversion formula”, which shows that two

semsimple perverse sheaves are isomorphic in the category ?arl(G) if and only if the
associated exponential sums coincide for a generic set of characters.

In Chapter 8, we add a theoretical application of equidistribution in direction of indepen-
dence of £ properties of the tannakian groups associated to a compatible system of /-adic
complexes.

In applications of equidistribution to concrete perverse sheaves, the main issue is to de-
termine the tannakian group. The main tool that we will use for this purpose is Larsen’s
Alternative, and its link with equidistribution. We present this result (and a new variant
for the exceptional group Eg) in Chapter 9.

Then in the following chapters, we present examples of equidistribution and concrete
applications; these involve the following groups:

— the product G,, x G, which (apart from unipotent groups) is probably the simplest
group of dimension > 2 (Chapter 10); this corresponds to rather natural families of
exponential sums parameterized by both an additive character and a multiplicative
character.

— higher-dimensional tori, with applications to the study of the variance of arithmetic
functions on k[t] in arithmetic progressions modulo square-free polynomials (see Chap-
ter 11).

— the jacobian of a curve (Chapter 12); the application we present is a generalization
of an unpublished result of Katz (which answered a question of Tsimerman).

— in the same chapter, we also consider an example where the group under consideration
is the intermediate jacobian of a smooth projective cubic hypersurface of dimension 3,
which is an abelian variety of dimension 5 (see Chapter 12.2).
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CHAPTER 5
Uber eine neue Art von L-Reihen

5.1. L-functions

Let k be a finite field, with algebraic closure k and intermediate extensions k,. We fix as usual
a prime £ different from the characteristic of k. Let G be a connected commutative algebraic group
over k, and let d be its dimension. We denote by e the neutral element of G.

By analogy with algebraic varieties over k, we can define “L-functions” for objects of D2(G),
where suitable characters xy € G play the role of primes in an “Euler product”.

We denote by G* C G the set of characters such that X € @*(kn) if and only if there is no
d | n with d < n such that x = }/ o N, /k,- We say that elements of G* are primitive, and for

X € @*(k:n), we put deg(x) = n. We then denote by [@] the quotient set of G* by the equivalence
relation defined by x1 ~ x2 if and only if deg(x1) = deg(x2) and

= o Fr!
X2 X1 kdcg(x1)

for some integer j € Z. There are deg(x) primitive characters equivalent to a given x € G*.

DEFINITION 5.1 (L-function). Let M be an object of DP(G). The Fourier-L-function, or L-
function, of M is the formal power series
LM, T) = [ det(1— T Fry, | Hi(Gg, M, )" € Q[T]).
x€[C]

This is similar to the definition
LOM,T) = [] det(1 — T Fry,, | M,)™' € Q[T]]
z€[X]
of the L-function of M on an arbitrary algebraic variety X over k, with primitive characters replacing
the set [X] of closed points of X.

Indeed, if G is unipotent of dimension d, and FT(M) denotes the Fourier transform of M on the

[T

(or “a”) Serre dual GY defined with respect to some additive character v, as in Section 2.2, then
we obtain the identity

L(M, T) = L(ET(M), [k[*T),
(e.g. by the formula (5.2) below, since the stalk of FT(M) at the origin is canonically isomorphic
to M by the proper base change theorem, and |G(k,)| = |k|™® in this case).
In general, however, we obtain “new” L-functions. Their fundamental properties, including
rationaliy, are given by the next proposition.

PROPOSITION 5.2. Let M be an object of D2(G). We denote as usual
SML) = Y Xt k)
2€G(kn)
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forn>1 andxeG(k ).
(1) The L-function satisfies

- o) —ep(( Y s000) )

(52) = exp (3 IG k) ina(es ) )

(2) The L -function is a rational function; if M is a mized complex, then the zeros and poles
of LM, T) are |k|-Weil numbers of some weights.
(3) For any x € G(k) the equality L(M ,T) = L(M, T) holds.

PROOF. The proof of the formula (5.1), like in the classical case, is a simple consequence of the
trace formula. Precisely, we apply the operator f(T) — Tdlog f(T) to both sides of this equality.
On the left-hand side, after expressing the determinant as alternating product of the determinants
on the various groups H%(Gj, M), we obtain

Tdlog L(M,T) = > deg(x) Y _ T Te(Ffl, [ HI(GR, My) =

x€[G] m>1
STy Y AT HE (G My).

nzl o dn xe[G)(ka)
On the right-hand side of (5.1), we obtain

DT D S(M.x),

nz1 Xe@(k!n)
and hence the formula is equivalent with the fact that the identity

d *
(5.3) S Y dT(EEH(GR M) = Y S(M.x)
din xe[G](ka) X€G(kn)

holds for any integer n > 1.
Let n > 1. To establish (5.3) for n, we begin with the trace formula (A.4), which implies that

S(M, x) = Tr(Fry, | HX(Gg, My)),
for any y € G(ky,).

There exists a unique divisor d of n and a character xo € a*(kd) such that x = x0 o Ny, /-

The map sending x to the equivalence class of yg in [@] has image the subset of classes [n] of
primitive characters n with degree dividing n, and for any such class [7], there are exactly deg([n])

characters x € @(kn) mapping to [n]. Moreover, there are canonical isomorphisms
HZ(Gj, My) =~ HZ(Gy, My),
with the actions of Fry corresponding to that of Frn/ , so that
S(M, x) = Tr(Frj))" | Hi(Gg. M,))
for all x mapping to [n]. This implies the desired identity (5.3).
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The second formula (5.2) for i(M,T) follows immediately from (5.1), since orthogonality of
characters implies that the formula

D SOM,x) = [G(kn)|ta(e; kn)
X€G (k)
holds for all n > 1

Using next the trace formula and the Riemann Hypothesis to compute |G(k, )| as an alternating
sum of |k|-Weil numbers, it follows that

|G (kn) [t (€5 n) = ) i}
i€l

for some finite set I, some ¢; € {—1, 1}, and some |k|-Weil numbers «;. The second assertion follows
then from the usual power series expansion

a™T" 1
exp(Z n >_1—04T'

n=1

The final assertion is clear either from the definition, or from the above, noting that tyr, (e; k) =
M(e; ky) for any x € G(k) and n > 1. O

REMARK 5.3. To illustrate the differences with L-functions, we note that if G is not unipotent,
then the L-function is very rarely a polynomial or the inverse of a polynomial, and does not satisfy
in general any functional equation of the form

i(M,T) = (simple quantities) x f(Mv,anfl).
as is the case for the standard L-function of M (this is related to the remark of Boyarchenko and

Drinfeld [14, §1.6, Example 1.8]).

To give a concrete example, take G = Gy,,. In this case, we deduce from (5.2) the formula

B T) = exp( (K" — 1) taales ) ) = m

n=>1

where M, is the stalk of M at e (where L(M,, T) is the L-function of the stalk of M at e, viewed as
a complex on {e}). If the L-function L(M,, T) is not constant, then there can never be cancellation
in this quotient to obtain a polynomial or the inverse of a polynomial. If (say) we have

L(M,,T) = (1—-aT)(1 —a 'T),

then

1 — |klaT)(1 — |kla~1T)
(1—-aT)1—a71T)

and this satisfies no simple functional relation.

L(M,T) = (

We conclude with a result that will be useful in the next section when performing induction.

PROPOSITION 5.4. Let G be a semiabelian variety over k. Let S be a tac of Gy defined by a

morphism m: G — G’ over k and a character xo € G(k), and let [S] denote the classes in [G] of
elements of S. Let M be an object of D?(G). We then have

~

I det(n — TN Fry, | HE(GE, M) ™! = L(RmM,,, T).
x€[S]
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PRrROOF. We have x € [S] if and only if x = x¢ - (7*n) for some 7 € [@'], with deg(y) = deg(n).
By the projection formula, we have a canonical isomorphism
H(Gz, M, ) = HX (G, My, ® m°.%) ~ HE(G;;, RmM,, ® £),
from which the identity
det(1 — T9E Fry, | HE(Gg, My)) ™! = det(1 — T8 Fry, | HE (G, (RmMy,)y)) "

follows for any x € [S]. O

5.2. Objects with finite arithmetic tannakian groups on abelian varieties

As a non-trivial application of i—functions, we will show that they lead to a characterization of
objects with finite arithmetic tannakian groups on abelian varieties. This is an analogue of a result
of Katz (sce [68, Th. 6.2], recalled in Theorem B.2, (1)) for G,,, where in fact the L-function appears
implicitly (more precisely, where the logarithmic derivative Td log i(M, T) appears); similar results
appear in a preprint of Weissauer [109].

More generally, inspired by the formulation used by Katz, we can prove a stronger statement.

DEFINITION 5.5 (Quasi-unipotent object). Let G be a connected commutative algebraic group
variety over k. An object M of DP(QG) is said to be quasi-unipotent if it is generically unramified
and if there exists an integer m > 1 such that for any unramified character y € é, the eigenvalues
of Frobenius on H°(Gj, M, ) are roots of unity of order at most m.

REMARK 5.6. (1) Any perverse sheaf M on G with Gt finite is quasi-unipotent. Indeed, first
M is generically unramified by Corollary 3.37. Let then m be the size of G35, For any unramified

character x € C‘r, the Frobenius action on H%(Gy, M, ) is “conjugate” to an element of la\ii, so its

eigenvalues are m-th roots of unity.

(2) If M is a quasi-unipotent perverse sheaf on G, then it follows from the definition that any
object of (M) is also quasi-unipotent.

(3) Let M be a quasi-unipotent object of D2(G). Let go € G(k). Then the translated object
M = [g — ggo]*M is also quasi-unipotent. Indeed, since M’ is canonically isomorphic to the
convolution dg4, *1 M, we obtain for any x € G a canonical isomorphism
HZ(Gy, ML) ~ HE (G, (0,-1)y) @ HE (G, My).
Noting that H} (G, (5961)’() =H%(Gg, (6961)X)’ this shows already that x is weakly-unramified
for M if and only if it is for M.

If x is weakly-unramified for M’; and belongs to @(kn), then the Frobenius automorphism of &,

acts on HO(Gy, ((5951)X) by multiplication by x(g '), which is a root of unity of order bounded by

the order of go in G(k). Since M is quasi-unipotent, the eigenvalues of Frobenius on H°(Gg, M)
are roots of unity of order bounded independently of .

THEOREM 5.7. Let A be an abelian variety over k. Let M be an arithmetically semisimple
perverse sheaf of weight zero in P21 (A) which is non-zero. If M is quasi-unipotent, for instance if
ari

the group Gy}' is finite, then M is punctual.

REMARK 5.8. As proved by Katz in the case of G,,,, one may expect that the conclusion of the
theorem extends to objects with finite geometric tannakian group (see [68, Th. 6.4] or Theorem B.2,
(2)). We do not know how to prove this in general, but we will prove a weaker statement in
Section 9.6 which turns out to be sufficient for many applications, including those of Chapter 12.
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Before giving the proof, we state a useful corollary.

COROLLARY 5.9. Let M be an arithmetically simple perverse sheaf of weight zero on an abelian
variety A over k of dimension g > 1. Let G be the neutral component of G, and let S be the
support of M. The restriction of the standard representation of Gi/? to G is irreducible, unless
there ezists x € A with x # e such that x +S = S.

PROOF. Let P be an object of <M>ari which is a faithful representation of the finite component
group C = Gif[i / G. Its tannakian group is isomorphic to C, and hence the object P is punctual
by Theorem 5.7. The points appearing in the decomposition of P generate a finite subgroup B
of A(k), and each skyscraper sheaf for x € B corresponds to a character y, of Gl trivial on G.

By a simple application of Frobenius reciprocity, a representation o of Gi/? restricts to an
irreducible representation of G unless there exists z € C such that  # e and ¢ ® x, is isomorphic
to o. In terms of perverse sheaves on A, this condition (for the standard representation) means that
M % 6§, is isomorphic to M, and implies therefore that S+ x = S. This establishes the corollary. [J

We will prove Theorem 5.7 in the next two sections. In fact, since this case is somewhat easier,
we will begin by assuming that the abelian variety A is simple (which is in a reasonable sense the
generic case) before handling the general situation. The reader may skip the first case to read
directly the proof of the general result.

We first prove two lemmas that are used in both proofs.
LEMMA 5.10. Let R be a commutative ring with unit and A a non-archimedean valuation on R.
Assume that R is complete with the topology given by A.

Let (;)ie1 be a family of elements of R such that |a;|y < 1 for all i € 1, and let (d;)ie1 be a
family of positive integers such that
li{n d; = +00,

where the limit is along the filter of the complements of finite subsets of 1.
The product
[1a - eiT®)

i€l
converges and is non-zero for T such that |T|y < 1.

PRrROOF. Let J C K be finite subsets of I. Then for |T|y < 1, we compute that
(1

A
‘H(l — a7~ [0 - a1 = ‘H(1 — 0, T%) ( (T @ - i) 1) (A
; i€eK-J

€K ieJ
‘ ] 0 - ar®) - 1‘ ( > (Mo
1€K=-J 0ALCK-J
where
O'L:HOZZ', dL:Zdz
i€l i€l

We note that |oy|y < 1 for all L. Moreover, since the lower-bound

dr, > min d;
iel=J

holds, the assumption that d; — 400 implies that for any integer N > 1, we can choose J so that
> ()Moth| <y
PALCK-J
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for any finite set K containing J. The absolute convergence of the product follows when |T|y < 1
using the Cauchy criterion. In particular, the product can only be zero if some term is zero, and
this is not the case if |T|y < 1. O

The next lemma gives basic structural information on zeros and poles of i(M, T), refining the
last part of Proposition 5.2 in the case of abelian varieties.

DEFINITION 5.11. Let f € Qu(X) be a non-zero rational function, k a finite field and r € Z.
We denote by wty (f) the rational function

11 (1 —aT)v)

« of k-weight —r

where o runs over elements of Q, which are k-Weil numbers of weight —r, and v,, is the order of f
at a.

In other words (note the minus sign), the rational function wty ,.(f) is (up to leading terms)
“the part of f with zeros and poles of weight r”. Below, we will sometimes write wt, when the
finite field k is clear from context.

The definition implies that the identity
Wtgr(f1.f2) = Wt (f1) Wi (f2)

holds for any rational functions f; and fs.

PROPOSITION 5.12. Let M be a complex on an abelian variety A over k of dimension g > 0.
Assume that M is pure of weight zero and that M, has weights in [a,b].

(1) The poles (resp. zeros) of E(M,T) are k-Weil numbers. Their weights are of the form
—w — i for some even (resp. odd) integer i with 0 < i < 2g and some integer w with
a<w<<hb.

If there exists such a zero or pole then there exists an eigenvalue of weight w on M.,
and the formula

Wt o (LM, T)) = Wty _y(det(1 — T Fry, | M,)) !

holds.
(2) If M is an arithmetically simple perverse sheaf, and if e belongs to the open set of the

support of M where M is lisse, then the poles (resp. zeros) ofi(M, T) have k-weights equal
to dim Supp(M) — @ for some integers i with 0 < i < 2g such that

dim Supp(M) = i (mod 2),

and there are poles and zeros of all these possible weights.

ProoF. (1) By Proposition 5.2, we have

n
~

B0V, T) = exp (Y 1A Gn)ltni(e b)),

n=>1

This expression, combined with the purity of M and the structure of the cohomology of A,
shows that L(M, T) has:

(i) Poles of the form



where « is an eigenvalue of Frobenius on the stalk of M at e, and § is an eigenvalue of
Frobenius on H'(Az, Q,) for some even integer i with 0 < i < 2g. Since « is pure of some
weight w where a < w < b, and f is of weight ¢, such a pole is a |k|-Weil number of
weight —w — 1.
(ii) Zeros of the form
1
=35

where « is an eigenvalue of Frobenius on the stalk of M at e, and § is an eigenvalue of
Frobenius on H'(Az, Q,) for some odd integer ¢ with 1 < i < 2¢g — 1. As above, such a
zero is a |k|-Weil number of weight —w — i where a < w < b.

The precise formula for the parts of weight —w follows from the above since 3 = 1 is the unique
eigenvalue of weight 0 on H! (A, Q,).

(2) If M is an arithmetically simple perverse sheaf and e is a point where M is lisse, then the
eigenvalues o above have weight w = — dim(supp(M)), and there is at least one « since the stalk
at e is non-zero. Thus the poles and zeros above have weight dim(supp(M)) — i. O

5.3. Perverse sheaves with finitely many ramified characters

In this section, we prove Theorem 5.7 in the case of an arithmetically semisimple perverse sheaf
of weight zero in Pa“(A) which has the property that the set of ramified characters for M is finite.
This applies in particular, for instance, if the abelian variety A is simple, since the set of ramified
characters is a finite union of tacs of A (see Remark 3.27), and each tac is reduced to a single
character if A is simple.

Let M be an arithmetically semisimple perverse sheaf of weight zero such that the set .7 of
ramified characters for M is finite. We assume that M is quasi-unipotent and non-punctual, and
we will deduce that M is negligible, which will establish the theorem in the present case.

After a finite extension of k, we may assume that each x € .% is in A(k).

One reduces using Lemma 1.28 to the case of M geometrically simple. We denote by S the
support of M and by r its dimension; we have » > 1 since M is not punctual. We denote by U a
smooth open dense subset of S such that M 