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A sealed envelope



March 21, 2024, 19h31

The attached manuscript is a pl? cacheté deposited at
the French Academy of Sciences by Paul Appell

in 1923. In accordance with the rules, it has waited
a hundred years and only recently been opened. It
contains the proof that Euler’s constant is algebraic
over the field Q(m,log2). You are a better judge
than I am, but it seems to me, if the proof is
correct, that it’s a nice result that doesn’t seem to
be known. However, the fact that Appell didn’t
publish it leaves some doubt...



Paul Appell (1855-1930)




Pli cacheté 9224 “Sur la constante C d'Euler”
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Euler's constant
1 1
C =lim (1++---+—|ogn>
= 2 n

plays an important role in Analysis. (See, for example, J. Bertrand,
Calcul intégral, intégrales Eulériennes). My goal here is to give
some properties of C, and mainly to prove that C can be

expressed algebraically with the help of 7 and log 2.



Appell's computations rely on the fact that —C is equal to the
derivative of the gamma function

oo
r(z):/ e *x*tdx
0

at z = 1. He uses the notation

1) =Xx=-C
r'1/2)=n
and proves the equality
J
A= —=+42log2
T + 2log

by taking the logarithmic derivative of

M)z + %) — [(22)2y /72",



{7




y ",‘ ,//:,,:.‘ ‘.v‘,';’. ‘ ‘/y"'f{/
= ... -2
for e Lo prisaid

S ald a7 A o
ZF W i o j
25 B

el

7
L, > g e = - vuégé%
77 7 7 2

—— e S ST e s R S

A2 v
Ry L paa




End of the letter

Then (9) gives

W[4(I0g2)2 — 7;2] = 12(1— /7) — 7T32\/7? +8m Iog2(% + 2log?2)

equations expressing (.
We have computed A or —C by (2).






This equality doesn’t hold...

2 3
7(4(log 2)? — %) + (v + log 4)*(V/m — 1) + ”2‘/7? + 87y log2 =0

In [1]: FVSA=pix(4%10g(2)#*2-pi**2/6)+pi*(euler_gamma+1log(4))*+2*(sqrt(pi)-1)+pis+3*sqrt(pi)/2+8+pixlog(2)*euler_gamma

In [3]: gp(FVSA)

Out[3]: 47.759896108845991128993466331306984997
In [4]: pari(FVSA)

Outl4]: 47.7598961088460



Le pli cacheté 9227

Before leaving, | turned the page of the register book...
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A complement to the previous sealed letter, sent a few days later,
has not been opened yet!
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After the exceptional opening...




In the sealed letter
deposited at the meeting
of August 27,
| made a calculation error
at the end
by confusing (1)
with T"(1/2). The equation
doesn’t give C:
it is an identity.

C disappears.
| will write an article
on this point.



The origin of the mistake




The origin of the mistake

In passing from equation
oo
p? = 77/ e “(log u)?du
Jo

—1—4/ e “log udu/2(logcosﬁ+logsin 0)do
0 0

—1—8/2 log cos @ log sin 0d6
0

to equation

s

1 x
u? = ﬂr”(é) + 4)\/2 (log cos @ + log sin 6)d6
0

+8/2 log cos 6 log sin 0d6
0



The origin of the mistake

When we replace (1/2) with its correct value (1) and compute
the integrals, we find

12 = w2 + 81y log 2 + 4n(log2)?,

which is simply the square of the identity ;= /7(—v — 2log 2)
from the beginning.



Quelques intégrales définies se rattachant a la constante
d’Euler, Acta Mathematica 45 (1925), 287-302

The n-th derivative of the gamma function at z =1 is equal to

rin) = /OOO(Iogx)"e_XdX = Pn(7);

where P, € Q(¢(2),...,¢(n))[T] is a polynomial of degree n

satisfying the recurrence relation P/, = —nP,_1. For example,

Pi=—-X, Py=X2+¢(2), P3s=-X3+3¢(2)X —2((3),
Py = X* +6¢(2)X2 + 8¢(3)X + %g(zx), ...
We also have

F("(1/2) = V7 Qn(y + log 4),

where Q, is obtained by replacing (k) with (2% — 1)¢(k) in the
coefficients of Pp,.



Exponential motives



One way to think of the theory of motives is as a
Galois theory for periods [ w

or, more geometrically, for higher dimensional algebraic varieties.

Exponential motives aim to be a Galois theory for integrals

/ e fw
o

or algebraic varieties along with a regular function.



k C C a subfield (e.g. k =Q),
X a smooth algebraic variety over k (e.g. X affine),
f: X— Ak a regular function.

Twisted de Rham cohomology
Hir(X, f) = Hpo0 (X, Ox = @ = Q% — )
w— dw — df Aw
Rapid decay homology
HR(X, F) = lim HE"(X(C), {Re(f) > t};Q)

o= (ot)t, Re(f(x)) >t for x € do;



Exam
ple: HR
1 (A17X5)




There is an integration pairing
Hip (X, f) @ HYY(X, f) — C
[w] ® [o]— / e fw=lim / e fw

t—4-00

which is perfect by results of Bloch—Esnault and Hien—Roucairol.

Variant: for Y C X a simple normal crossing divisor,
HiR(X, Y, f) @ HR(X, Y, f) — C.
When k C Q, the coefficients of this pairing are called

exponential periods.



Following ideas of Kontsevich, and Nori, in joint work with Peter
Jossen, we built a Q-linear neutral tannakian category M*® (k)
of exponential motives over k, with fiber functors

Vecty

M= (k)

Vectg

This category contains objects H"(X, Y, f), which are mapped
by wgqr and wrq to twisted de Rham cohomology and rapid decay
cohomology (=linear dual of rapid decay homology).



For each exponential motive M, there exists an algebraic group
Gm C GL(wra(M))

and an equivalence of categories
(M)® ~ Repg(Gu).

Conjecture (extension of Grothendieck's period conjecture)

trdeg Q(exponential periods of M) = dimg Gp.



The category of exponential motives contains Nori's category of
classical mixed motives over k as a full subcategory

M(k) € M®P(k)

corresponding to f = 0.

However, an object H"(X, f) can be classical for non-zero f.



Example 1: The computation of

/ e_Xz_y2dxdy =

R2

in polar coordinates leads to an isomorphism
H?(A%, X2 +y?) 2 HI({x* +y? = 1}).

Example 2: From the identity of exponential sums

270 Af (x
o e T = pl{f = 0)(F,)|

(x,2)eX(Fp)xFp

we guess that H"(X x Al zf) is always classical.



How to recognize classical motives?

Following Katz and Kontsevich—Soibelman, let
Pervy C Perv(A'(C), Q)

be the full subcategory of perverse sheaves with rational
coefficients A on the complex affine line satisfying Rm,A =0

e.g. £(0) = jiQ[1] for the inclusion j: G,, < Al
There is a projector (left adjoint to the inclusion)

M: Perv(A'(C),Q) — Perv
A— Ax E(0)

where * stands for additive convolution.



There is a rather simple criterion in terms of the perverse
realisation functor

Rperv: M®P(k) — Pervg
H"(X, f) — N("H"(RL.Q))
= Rn+1P*Q[X><A1,Ff]
where p: X x Al — Al is the projection and ¢ the graph of f.

Theorem (with Peter Jossen)

An object of M**P(k) lies in the essential image of M(k) if and
only if its perverse realisation is trivial (=isomorphic to E(0)®°).



Euler's constant



Euler's constant

From the derivative of the gamma function we get the integral
representation

’yz—/oolog( )e “du

[
L[S [ [

(change of variables u = xy and v = y)

/ / “Ydxdy — / / “Ydxdy.



This leads to consider the exponential motive
H?(X,Y,f),
where X = A%Q, Y ={xy(x —1)(y — 1) = 0}, and f = xy.

It turns out to have dimension 3 and period matrix

1] o 7]

0 1/e [“e tdt/t

o] o 27i



The shape of the matrix suggests the existence of a
two-dimensional quotient M(v) with period matrix (g ,7.): it is
the image by the morphism induced by the blow-up map

m: Bl ) A% — A%

by
+
4‘}\\)- - '9\)
1 1 =
75 e s S ——
=0 =0
J J x=1



The motive M(7) is an extension
0 — Q(0) — M(y) — Q(-1) — 0

which is not isomorphic to a classical motive.

Indeed, the perverse realisation of M(+y) is a non-trivial extension
of E(0) by itself, namely jiL[1] where L is the rank 2 local system

on G, with unipotent monodromy (3 1).

(Intuition: the fiber over non-zero z € C* of f: (X,Y) — Al is
the pair (G, {1, z}) which realises the logarithm).



Using this, one can show that the period conjecture implies

Conjecture
Euler’s constant ~ is transcendental over the field generated by all
classical periods.

Indeed, let M be a classical motive. Then

Ga = GRyer (MOM(3)) — ORpere (M) = 0

i !

Gmam(y) Gm

so dim Gpygm() > dim Gy, From the conjecture we deduce

trdeg Q(periods of M)(y) > trdeg Q(periods of M).



Monodromy factors of E-functions



E-functions

(Siegel, 1929) An E-function is a power series
> a
— an_n -0
E(z)=> 12" € Q]
n=0
which solves a non-zero linear differential equation with coefficients
in Q[z] and satisfies the growth condition: there exists C > 0 with
max |o(ap)] < C",

0€Gal(Q/Q)
den(ag,--- ,an) < C".



An example

An example of an E-function is the modified Bessel function

=1 ,z.on 1 z(xqly
lo(z) = Z—:o (n1)?2 (5) = ori =1 e 2T dx,

which is an exponential period function for the family

n

HY (G, 3(x + 1)(1).



Integrating over the rapid decay cycle [0, +oc] instead, we get

Ko(z) = ;/0 e 30 dx
z N1+ 5+ 45 z\on
= —(lOg (5) +’7’)/0(Z)+; 2(”!)2 (5)

a new E-function!



Theorem (with Peter Jossen)

Let X be a smooth affine variety of dimension d and f: X — Al
For each [w] € HiR (X, f) and [0] € H}4(X, f), the function

/ e “w
o

Z(logz)? E(2) (a€Q,b e Zx)
——

E-function

is a linear combination of

with coefficients in the ring

Q(classical periods,~y,(r) for r € Q \ Z<o).



A key point of the proof is that the differential equation solved by

zZ— / e “w
o

has a regular singularity at 0 with quasi-unipotent monodromy and
there is a tensor construction in M(7) and H(A!, x) whose
perverse realisation has the same monodromy.



More on extensions



The computation of extension groups in the category M®P (k) is
out of reach. We can instead work in

DExp(k) C DMgn(Ab),

the full triangulated subcategory of objects satisfying Rm, M =0
for m: AL — Spec(k). There are Tate objects

Q(n) = jy =" 1(n)

and extension groups

HOHlDExp(k)(@(_n)v @(O)D]) EXtJMexp(k (Q(_n)v @(0))



For k a number field, Borel's theorem implies that all extensions
groups in M®P(k) agree with those in M(k) except for

Ext,l\,,exp(k)((@(—l), Q(0)) = EXt]M(k)(Q(_l)a Q(0)) ©Q,
with an extra extension corresponding to M(), and
Exctpen ) (Q(—), Q(0)) = Extiy4y (Q(—n), Q(—1))

with an isomorphism given by cup-product with M(~).



Through Levine's construction, this gives rise to a tannakian
category of exponential mixed Tate motives over Z.

Its fundamental group is U x G, with U pro-unipotent, with
graded Lie algebra u®" with

generators: 01,03,05, -

relations: [01,03] = [01,05] =--- =0

This seems to explain why all exponential iterated integrals that
one can write down, such as Appell’s

rn (1) = / (log x)"e~*dx
0

are always polynomials in Euler's constant v with coefficients in
the algebra generated by multiple zeta value.
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