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1. Introduction

These are the notes for a course given at Monte Verità (Ascona) during the

summer school “Motives and Complex Multiplication”, organized by ETH in

the summer of 2016. The course was intended as an introduction to the paper

“Faltings Heights of Abelian Varieties with Complex Multiplication” [2] by

Eyal Goren, Ben Howard, Keerthi Madapusi Pera, and myself. No original

results appear, but I hope that the simplified presentation will help under-

standing the main ideas behind the paper.

Let us first specify what the objects mentioned in the title are. The

Shimura varieties we will consider are those associated to GSpin groups.

These will provide the ambient spaces where we will compute the arithmetic

intersection between suitable special cycles: the Heegner (arithmetic) divisors

and certain CM cycles, called big CM cycles in [5].

The significance of this computation stems from Kudla’s programme

that, in this specific case, incarnates in very precise conjectures by Bruinier,

Kudla, and Yang [5, Conj. 5.4 & 5.5]. These provide conjectural formulas for

the intersection numbers that have been proven in many cases in [2], enough

to deduce an averaged form of a conjecture of Colmez [7] leading Tsimer-

man [18] to provide an unconditional proof of the André–Oort conjecture

for Shimura varieties of Hodge type. We refer to [2] for a more systematic

introduction to this side of the story.
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It is not known that GSpin-Shimura varieties represent a moduli prob-

lem, in general. This makes it difficult to construct reasonable integral mod-

els over Z that we need in order to define a meaningful intersection theory.

On the other hand, they have a very rich structure, exploited already by

Borcherds [3] and Bruinier [4], namely they are endowed with a large supply

of Heegner divisors {Z(s)}s indexed by positive integers s ∈ N.

Given a big CM cycle Y, the conjecture [5, Conj. 5.4] of Bruinier, Kudla,

and Yang predicts, loosely speaking, that the generating series∑
s≥1

log(]Y ∩ Z(s))qn,

with q = e2πτ , is of arithmetic significance, namely it is the non-constant part

of the formal Fourier expansion of the diagonal restriction of the derivative

of a weight 1 Hilbert modular Eisenstein series. That is to say, the conjecture

predicts a way to compute the intersection numbers we are interested in in

terms of automorphic forms associated to the reflex field E of Y. We will not

discuss this connection further. Here, it suffices to say that the computation

of the coefficients on the automorphic side is usually easier and, in our case,

has been done essentially by Yang [19] and Kudla–Yang [13] (except at the

prime p = 2 discussed in [2]). Our goal is to prove that the numbers predicted

via automorphic forms indeed match the intersection numbers arising from

geometry. In fact, these numbers will decompose on both sides (automorphic

and geometric) into factors that geometrically correspond to

• the primes where the intersection is supported;

• for any such prime, the number of points in the intersection;

• for every point of intersection, the length of the Artinian ring defining

the intersection.

The key point in [2] that we want to discuss is the computation of the

local multiplicities. In order to keep the presentation as simple as possible in

these notes we will consider only primes, where the intersection is supported,

unramified in E. We refer to the text for a discussion of the issues involved

in dealing with more general primes.

The plan of the paper, following closely the plan of the lectures, is

the following. We first introduce the group GSpin and the relevant Shimura

varieties associated to it both as complex analytic varieties and, especially, as

schemes (better, stacks) over Spec(Z). Here, we rely on recent developments

due to Vasiu and Kisin (see [12]) and, in the case of primes of bad reduction,

to Madapusi Pera [15].
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Second, we introduce the Heegner divisors Z(s), indexed by positive

integers s, and the big CM cycles Y, both complex analytically and arith-

metically.

Finally, we will determine the primes of Z where the intersection Z(s)∩Y
is supported and, for almost all such primes, the length of the intersection

supported at the given prime, proving that it agrees with the automorphic

expectations of [5].

1.1. What is not in this paper

First of all, we will not explain how the automorphic coefficients (of the

formal Fourier expansion, constructed from the Hilbert modular Eisenstein

series defined above) are computed as the computation involves techniques,

typically orbital integrals, that go beyond the scope of these notes.

Another aspect of the theory that will not be considered here is the

fact that the divisors Z(s) are naturally endowed with a metric at infinity,

giving rise to arithmetic divisors Ẑ(s). This is one of the most fascinating

parts of the subject and ties up tightly with Borcherds’ theory. It is one of

the reasons of the richness of the arithmetic of GSpin-Shimura varieties. In

conjunction with computations of Bruinier–Kudla–Yang of the contribution

at infinity, our computation of the intersection numbers Z(s) ∩ Y provides

the value of the arithmetic intersection numbers Ẑ(s) ∩ Y as predicted by

[5, Conj. 5.5]. It is in this context that also the constant term of the formal

Fourier expansion mentioned above acquires meaning. This is essentially the

special value at 0 of the logarithmic derivative of the complete L-function

associated to the quadratic character defining the totally real subfield of the

reflex field E of Y. This provides the key tool in proving the averaged version

of Colmez’s conjecture relating Faltings’ height of abelian varieties with CM

by OE (and varying CM type) with special values of L-functions and their

derivatives. We refer to [2] for a more systematic account.

Finally, in the computation of the local multiplicities of the intersections

Z(s) ∩ Y one is naturally led to study the deformation theory of endomor-

phisms of Lubin–Tate formal groups at a prime p. As mentioned above, we

will consider only primes p unramified in E. For the general case, needed

for the application to Colmez’s conjecture, one has to consider also ramified

primes. In this case one uses the theory of Kisin modules, see [2, §2], that is

neither discussed nor used in these notes.

1.2. GSpin-Shimura varieties

Let V be a Q-vector space of dimension n + 2 with n ≥ 0, and a quadratic

form Q : V → Q which is non degenerate, of signature (n, 2). Consider the
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associated bilinear form

[·, ·] : V × V → Q, [x, y] = Q(x+ y)−Q(x)−Q(y).

1.2.1. Clifford algebras. To V and Q one associates the Clifford algebra

C(V ) = C(V,Q). It is a Q-algebra, with an inclusion

V ↪→ C(V )

as Q-vector spaces satisfying the following universal property: for any Q-

algebra R with a Q-linear map j : V → R such that

j(v)j(v) = Q(v),

there exists a unique homomorphism of Q-algebras

C(V )→ R

such that the composite with the inclusion V ⊂ C(V ) is j. In particular, for

any v and w ∈ V , we have

v · w + w · v = [v, w] ∈ C(V ),

where v · w (and w · v) is the product in C(V ).

The construction of the Clifford algebra is quite straightforward. In fact,

C(V ) :=
( ∞⊕
n=0

V ⊗m
)
/(v ⊗ v −Q(v) | v ∈ V )

is the quotient of the tensor algebra of V by the two-sided ideal generated

by the elements v ⊗ v − Q(v) for all v ∈ V . As such ideal is generated

by elements lying in even degree (in the tensor algebra considered with its

natural grading), the Z/2Z-grading on the tensor algebra (into even and odd

tensors) induces a Z/2Z-grading on the Clifford algebra that correspondingly

splits into a direct sum

C(V ) = C+(V )⊕ C−(V ).

Note that C+(V ) is a Q-subalgebra of C(V ) while C−(V ) is just a two-sided

module for C+(V ). Furthermore we have the following formulas:

dimQ(C(V )) = 2n+2, dim+
Q (C(V )) = dimQ(C−(V )) = 2n+1.

If L ⊂ V is a lattice on which Q is integral-valued, one has variants of the

constructions above and one can similarly define the Z-algebras C(L) and

C+(L) with the inclusion L ⊂ C(L).
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1.2.2. The group GSpin. Next we construct the algebraic group GSpin(V,Q)

over Q. Given a commutative Q-algebra R, its R-valued points are

GSpin(V )(R) := {x ∈ (C+(V )⊗Q R)∗ | x(V ⊗Q R)x−1 ⊂ V ⊗Q R}.

In particular, any x ∈ GSpin(V )(R) acts on V ⊗Q R and, since the equality

Q(y) = Q(xyx−1)

holds for any y ∈ V ⊗Q R, this action factors through the orthogonal group

O(V,Q)(R). Notice that the units of R form a subgroup of the center of

GSpin(V )(R), in particular they act trivially on V ⊗Q R. Furthermore, one

can prove that the action of GSpin(V,Q) on V factors through the special or-

thogonal group SO(V,Q) and one gets an exact sequence of algebraic groups:

0 −→ Gm −→ GSpin(V ) −→ SO(V,Q) −→ 0. (1.1)

1.3. Examples of GSpin groups

1.3.1. Example 1: the case n = 0. In this case, V = Qe1 ⊕ Qe2 so that

C−(V ) = V and C+(V ) is an algebra of dimension 2. We have

C+(V ) = Q⊕Qe1 · e2

as a Q-vector space. Denote x = e1 · e2, let a1 = Q(e1) and a2 = Q(e2). They

are negative rational numbers and, if we write b = [e1, e2] ∈ Q, we have

x2 = e1e2e1e2 = −e2
1e

2
2 + [e1, e2]e1e2 = −a1a2 + bx,

so we have

x2 − bx+ a1a2 = 0.

As an algebra, this gives

C+(V ) = Q[x]/(x2 − bx+ a1a2),

which is an imaginary quadratic field K, and we see that

GSpin(V ) = C+(V )× = ResK/QGm.

In particular, its base change to R is the Deligne torus ResC/RGm,R.

1.3.2. Example 2: the case n = 1. Consider the Q-vector space

V ⊂M2×2(Q) = {x ∈M2×2 | Tr(v) = 0}.

Fix some N ∈ N such that N ≥ 1 and let QN be the quadratic form

A 7→ N · detA.

Then

GSpin(V ) ∼= GL2,

where GL2 acts on V by conjugation.
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1.3.3. Embedding into symplectic groups. Contrary to SO(V,Q) the alge-

braic group GSpin(V,Q) admits a natural embedding into a symplectic group.

Consider the embedding

GSpin(V ) ⊂ C+(V )× ⊂ GL(C(V )),

where the second map is given by left multiplication of elements of C+(V )

on C(V ). One can prove that there exists a symplectic form δ on C(V ), not

canonical, such that the inclusion factors through the GSp(C(V ), δ), namely

GSpin(V,Q) ↪→ GSp(C(V ), δ). (1.2)

We refer to [17, Prop. 3, Prop. 4 & Ex. 3] where all possible such δ’s are

constructed, up to equivalence. It is the existence of these embeddings that

makes GSpin-Shimura varieties better behaved than the orthogonal ones.

Indeed the former admit an embedding into Siegel modular varieties, i.e.,

they are Hodge type Shimura varieties, while the latter do not, in general.

See the discussion in [8, §3 & 4] for a Hodge theoretic discussion. This is very

important for the construction of integral models.

1.3.4. Hermitian symmetric spaces. Fix the algebraic group

G := GSpin(V,Q).

As a first step in order to construct a Shimura variety, we provide several

descriptions of the Hermitian symmetric space associated to G. We refer to

[14, §3.4] for details. Here, we simply provide several realizations that will be

used in the sequel:

1. as a complex manifold

DC = {z ∈ VC\{0} | Q(z) = 0, [z, z] < 0}/C∗ ⊂ P(VC);

2. as a Riemannian manifold

DR = {Negative definite oriented planes H ⊂ VR};

3. using the Deligne torus S = ResC/RGm,R,

D = G(R) conjugacy class of h : S→ GR.

Let us explain how we can go back and forth between these incarnations.

Given an H = Re1 ⊕ Re2 in DR, we let z = e1 + ie2 ∈ VC and we take

the line [z] to get the realization in DC. Vice versa giving a line [z] ∈ DC we

get a negative definite oriented plane in VR by taking the R-span of the real

and imaginary parts Re(z), Im(z) of z.

To get the realization (3), given an oriented, negative definite plane

H ⊂ VR we can identify S ∼= GSpinH and simply take h : S ∼= GSpinH ↪→ GR
to be the morphism induced by the inclusion H ⊂ VR.
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Example 1. The Hermitian space

DR = {two possible orientations on VR = Re1 ⊕ Re2}

consists of two points.

Example 2. We have DR ∼= H+ tH− ⊂ C which are the Poincaré upper and

lower half planes. The inverse of the map is given as

R ·Re
(
z −z2

1 −z

)
⊕ R · im

(
z −z2

1 −z

)
← z = x+ iy.

1.3.5. The dimension of the Hermitian symmetric space. Pick [z] ∈ DC, then

VC = Cz ⊕ (Cz ⊕ Cz)⊥ ⊕ Cz

and the tangent space of Q in P(VC) at [z] can be computed as the Zariski

tangent space at [z], namely the set of lines [z+δε+γεz], with δ ∈ (Cz⊕Cz)⊥
and ε a formal variable with square ε2 = 0, such that Q([z + δε+ γεz]) = 0,

i.e, if and only if γ = 0. Thus the tangent space of DC at [z] is isomorphic to

(Cz ⊕ Cz)⊥ and dimDC = n.

1.4. GSpin-Shimura varieties

Given V and Q, the algebraic group G := GSpin(V,Q) and the Hermitian

symmetric space D as in the previous section, define the complex manifold:

MK(C) = G(Q)\D ×G(Af )/K

for some compact open K subgroup of the adelic points G(Af ) of G. For

every class g ∈ G(Q)\G(Af )/K, we let Γg be the arithmetic subgroup of

G(Q) defined by Γg := G(Q)∩ (gKg−1). Then, we also have the set theoretic

decomposition

MK(C) = qg∈G(Q)\G(Af )/KΓg\D.
It is the second description of MK(C) that endows it with the structure of a

complex manifold coming from the one on D; see [14, §2.2].

Given a quadratic lattice L ⊂ V , i.e., a lattice on which Q is inte-

gral-valued, one can construct a compact open subgroup KL by taking

KL = G(Af ) ∩ C+(L̂)× ⊂ C+(V )×(Af )

where L̂ := L ⊗Z Ẑ. We will be especially interested in the case that L is

maximal among the integral lattices. This will guarantee the existence of

good integral models over Z for the Shimura variety MKL(C). If the compact

open subgroup is of the type KL for some lattice L, we simply write ML(C)

for MKL(C). It follows from [2, Prop. 4.1.1] that, for L maximal, ML(C) is

connected if n ≥ 2 or the order of the finite group L∨/L is square free.

Looking at the examples again, we have:
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Example 1. M(C) consists of finitely many points.

Example 2. We have V = M2×2(Q)Tr=0, and QN makes GSpin(V ) ∼= GL2.

Take

L :=

{(
a −b

N

c −a

)
| a, b, c ∈ Z

}
.

One can check that

KL
∼= ΠpK̃p

where

K̃p =

{(
α β

γ δ

)
∈ GL2(Zp) | γ ∈ NZp

}
.

In this case one sees that

M2(C) ∼= Y0(N)(C)

which is the modular curve of level Γ0(N), classifying cyclic isogenies of

elliptic curves ρ : E → E′ of degree N .

Warning. The case of elliptic curves is misleading as it might appear that

ML(C) could have a natural moduli interpretation as a Shimura variety of

PEL type in the sense of [8, §4], i.e., a moduli space of abelian varieties with

prescribed polarization, endomorphisms and level structures. If this were the

case, one could use the moduli definition to provide integral models. Indeed

for small values of n, namely n ≤ 6, this is the case and one gets instances

of well known modular varieties: modular and Shimura curves for n = 1,

Hilbert modular surfaces and quaternionic variants for n = 2, Siegel three-

folds and quaternionic variants for n = 3, etc. Also for n = 19 one has a

natural interpretation as the moduli of periods of K3 surfaces, see [9, §6].

On the other hand, if the dimension n + 2 of V is large there is no such

moduli interpretation of ML(C) as the moduli space for a PEL type moduli

problem. As we will see, this is the source of complications when one attempts

to provide integral models for ML(C).

2. Special Cycles on GSpin-Shimura Varieties

2.1. Extra structures on GSpin-Shimura varieties

Recall the notation. We fixed a vector space V over Q of dimension n+2, and

a quadratic form Q : V → Q of signature (n, 2), with a maximal quadratic

lattice L ⊂ V . We let G = GSpin(V ), and then define

ML(C) = M(C) = G(Q)\D ×G(Af )/KL

for a particular choice of compact open subgroup KL associated to L.
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We have a natural functor{
Algebraic

Representations of G

}
−→

{
Local Systems of

Q-vector spaces on M(C)

}
given by associating to a representation G→ GL(W ) with W a finite dimen-

sional Q-vector space the local system of Q-vector spaces WBetti,Q over M(C)

where

WBetti,Q := G(Q)\(W ×D)×G(Af )/KL.

Note that this gives us a unique locally free OML(C)-module with inte-

grable connection (WdR,∇). Namely WdR := WBetti,Q ⊗Q OML(C) with the

connection ∇ = 1 ⊗ d. Then (WdR,∇) is characterized as the vector bundle

with integrable connection such that

W∇=0
dR = WBetti,Q ⊗Q C.

One deduces the following two extra properties

a. For any z in the symmetric space D, the map

hz : S→ GR → GL(WR)

induces a map

S(C) = C∗ × C∗ → GL(WR ⊗R C) = GL(WC)

and the fiber WdR,z at z has a bigrading ⊕p,qW p,q
dR,z obtained by the

decomposition of WC according to the decomposition into eigenspaces

for the action of C∗ × C∗.
b. WdR is endowed with a decreasing filtration FilJ(WdR) ⊂WdR by holo-

morphic sub-bundles of WdR, defined pointwise by

FilJ(WdR,z) := ⊕p≥JW p,q
dR,z

such that the connection ∇ satisfies Griffith’s transversality, namely

∇(FilJ+1(WdR)) ⊂ FilJ(WdR)⊗OML(C) ΩML(C).

A Q-local system on ML(C) with properties (a) and (b) is called a vari-

ation of Q-Hodge structures. In particular, we deduce that for any G-repre-

sentation W the local system WBetti,Q is a variation of Q-Hodge structures.

2.1.1. The Kuga–Satake construction. Consider the representation W of G

given by W := C(V ) viewed as a representation of G through the inclusion

G = GSpin(V,Q) ⊂ C+(V )∗ and the map C+(V )∗ ⊆ GL(C(V )) provided by

sending an element u ∈ C+(V )∗ to the automorphism of C(V ) given by left

multiplication by u.

In this case, for any z ∈ D, we have the following decomposition

C(V )dR,z = C(V )
(−1,0)
dR,z ⊕ C(V )

(0,−1)
dR,z
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which is equivalent to giving a complex structure on C(V )Betti,Q,z⊗R. In par-

ticular, choosing a maximal quadratic lattice L ⊂ V so that ML(C) = Γ\D
with Γ := G(Q) ∩KL (al least for n ≥ 2 or L∨/L of square free order), this

gives a complex structure on the torus C(V )Betti,Q,z/C(L) and via (1.2) a

complex abelian variety

Az := C(V )Betti,Q,z ⊗ R/C(L);

the choice of polarization in (1.2) will not be relevant for us and is used simply

to guarantee that Az has the structure of an abelian variety, and not simply

of a complex torus, called the Kuga–Satake abelian variety defined by z. We

then get an abelian scheme

π : A −→ML(C)

such that

C(V )Betti,Q = R1π∗Q

as variations of Q-Hodge structures.

Warning. To make sense of this descent we should systematically work with

stacks as in [2] as the action of Γ on D is not free in general, i.e., Γ is not a

neat subgroup of G(Q) or equivalently KL is not neat subgroup of G(Af ) in

the terminology of [14, §2.2]; we ignore this issue in the sequel for simplicity.

We also get a variation of Z-Hodge structures

C(V )Betti = R1π∗Z.

The associated vector bundle with connection C(V )dR is the relative de Rham

homology

C(V )dR = H1,dR(A)

and the connection discussed above is the so called Gauss–Manin connection.

The filtration is given by the Hodge filtration

0→ R1π∗(OA)∨ → H1,dR(A)→ π∗(ω
1
A)∨ → 0

(notice that we are working with H1,dR(A) the vector bundle dual to the

de Rham cohomology H1
dR(A) that one usually uses). We also have a right

action of C+(V ) on C(V ), which defines canonically C+(V ) ⊂ End0(A).

Example 1. Recall that n = 0 and C+(L) ⊂ C+(V ) = K is an order in the

quadratic imaginary field K. In this case

Az = A+
z ×A−z

where A+
z is an elliptic curve with complex multiplication by C+(L) and

A−z = A+
z ⊗C+(L) L.
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Example 2. In this case V = M2×2(Q)Tr=0, we have

M(C) ∼= Y0(N)(C).

If z ∈M(C) corresponds to the cyclic isogeny [Ez → E′z], then Az = A+
z ×A−z

with

A+
z = A−z = Ez × E′z.

2.1.2. Another important VHS. Recall that we also have a natural homo-

morphism

G→ SO(V )

given by sending x ∈ G to the orthogonal transformation

V → V, y 7→ xyx−1.

Consider ` : W = V ↪→ End(C(V )) given by

v 7→ `v := {left multiplication by v on C(V )}.

Notice that this is a morphism on the category of representations of G, where

the action of G on End(C(V )) is defined through its action on C(V ) described

above.

Now, we get as before a variation of Q-Hodge structures VBetti,Q. Let

π : A → ML(C) be the Kuga–Satake abelian scheme. Using the description

ML(C) = Γ\D, the lattice L and the inclusion L ⊆ End(C(L)) given by left

multiplication, define a variation of Z-Hodge structures VBetti and a mor-

phism of Z-Hodge structures

`Betti : VBetti ↪→ End(C(V )Betti) = End(R1π∗Z). (2.1)

Consider the inclusion L ⊂ C(L). For every v ∈ L we have the equality

[v, v] = 2Q(v) = 2v · v, where [v, v] is the value of the bilinear form [− ,−]

on L and the multiplication v · v is the multiplication in C(V ). This implies

that the bilinear form [·, ·] induces a pairing [·, ·] on VBetti as variations of Z-

Hodge structures. It has the property that for every local section α ∈ VBetti

we have [α, α] = 2`Betti(α)◦ `Betti(α) where `Betti(α)◦ `Betti(α) stands for the

composition of elements in End(R1π∗Z) and [α, α] is an integer that we view

in End(C(V )Betti) via the natural embedding Z ⊂ End(C(V )Betti).

Also, we have a morphism of vector bundles with connections

`dR : VdR ↪→ End(C(V )dR) = End(H1,dR(A)). (2.2)

We now compute the fibers.

For any z ∈ DC, where DC is the incarnation of the symmetric space as

the isotropic lines in VC, the morphism hz defines a decomposition

VC = Cz ⊕ (Cz ⊕ Cz)⊥ ⊕ Cz ⊂ End(H1,dR(Az)).
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The filtration is given by

Fil1(VdR,Z) = Cz,

Fil0(VdR,Z) = Cz ⊕ (Cz ⊕ Cz)⊥,

Fil−1(VdR,Z) = Cz ⊕ (Cz ⊕ Cz)⊥ ⊕ Cz.

Notice that

FiljEnd(H1,dR(A))

=
{
f ∈ End(H1,dR(A))|f(FiliH1,dR(A) ⊂ Fili+jH1,dR)(A)

}
is a three step filtration on End(H1,dR(A) inducing the filtration on VdR

described above.

By Griffith’s transversality the connection ∇ on VdR defines a linear

map

Fil1VdR → Gr0VR ⊗ Ω1
M(C)

giving rise to the Kodaira–Spencer isomorphism

TM(C) → HomM(C)(Fil1VdR, Gr
0VdR)

that provides a more conceptual approach to the computation of the tangent

space (and bundle) to ML(C) (compare with 1.3.4).

2.2. Heegner divisors

In this section we will show how, given an element λ ∈ V with Q(λ) > 0, we

can construct a divisor in ML(C) as a Shimura subvariety. These will give

the Heegner divisors mentioned in the introduction. The fact that we have

such a large supply of easily constructed divisors, and in general of cycles of

higher codimension obtained by intersecting such divisors, makes the theory

of GSpin-Shimura varieties extremely rich.

Given λ as above, set Vλ := λ⊥ ⊂ V . This is a dimension (n − 1) + 2

subspace of V and Qλ := Q|Vλ is a quadratic form of signature (n − 1, 2).

Then we get a subgroup

Gλ = GSpin(Vλ, Qλ) ⊂ GSpin(V ) = G.

The symmetric space Dλ for Gλ is identified with

Dλ =
{

[z] ∈ DC ⊂ VC\{0} : z ∈ Vλ,G = λ⊥
}
/C∗.

Let Kλ := Gλ(Af ) ∩K. We get a GSpin-Shimura variety

Mλ(C) = Gλ(Q)\Dλ ×Gλ(Af )/Kλ

together with a homomorphism

Mλ(C)→MK(C) = G(Q)\D ×G(Af )/K.
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Notice that such map is in general not an injection but the image of

this map consists of divisors of MK(C). The discrepancy between Mλ(C)

and its image in MK(C) makes the intersection theory of Heegner divisors

more involved. We will ignore this issue here for the sake of simplicity and

pretend that we can identify Mλ(C) and its image. We refer to [2] for the

correct treatment using stacks.

Consider now K = KL, so that MK(C) = ML(C), for a maximal lat-

tice L and assume that ML(C) = Γ\D with Γ = G(Q) ∩ KL. Here is an

intrinsic characterization of the image of Mλ(C) in ML(C). Take z ∈ D and

consider the corresponding element `λ,Betti ∈ End(H1,Betti(Az)) of (2.1) and

`λ,dR ∈ End(H1,dR(Az)) of (2.2). Then,

Proposition 2.1. We have z ∈ Dλ if and only if `λ,Betti is the Betti realiza-

tion of an endomorphism `λ ∈ End(Az) if and only if `λ,dR is the de Rham

realization of an endomorphism `λ ∈ End(Az).

Proof. We have z ∈ Dλ if and only if

λ ∈ z⊥ = Fil0VdR,z ⊂ VdR,z.

This happens if and only if the element `λ,dR ∈ End(H1,dR(Az)) of (2.2) lies in

Fil0End(H1,dR(Az)), i.e., `λ,dR preserves the Hodge filtration of H1,dR(Az).

This is equivalent to require that the element `λ,Betti defines an endomor-

phism of Az. �

Definition 2.2. For any m ∈ N>0, let Z(m)(C) → M(C) be Γ\(qλMλ(C))

where the union is taken over all λ ∈ L such that Q(λ) = m.

The proposition says that the image of Z(m)(C) singles out points z of

ML(C) where the Kuga–Satake abelian variety Az acquires an extra endomor-

phism, f , whose Betti realization (resp. de Rham realization) lies in VBetti,z

(resp. VdR,z) and such that f ◦ f = [m] (multiplication by m on Az). In fact

f will be an endomorphism of type `λ as in loc. cit. for some λ ∈ L such that

Q(λ) = m. The advantage of this reinterpretation of Z(m) is that it is intrin-

sic on the Kuga–Satake abelian scheme as we will see later, and hence it can

be given also over Z providing integral models of the given Heegner divisor;

see §2.5.1. This is why we work with Z(m)(C) instead of the single Mλ(C).

2.3. The big CM points

Our next task is to introduce the CM cycles that intersected with the Heegner

divisors will give arithmetically significant numbers. Such cycles are associ-

ated to the data of a CM field E of degree 2d + 2 = n + 2 with totally real

subfield F , the choice of one field homomorphism

σ0 ∈ HomQ(F,R) = {σ0, σ1, . . . , σd}
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and the choice of λ ∈ F such that σ0(λ) < 0 and σi(λ) > 0 for i ≥ 1. For

each 0 ≤ i ≤ d we also choose extensions σi and σi : E → C of σi : F → C.

With the data above we take V := E as a Q-vector space, the F -qua-

dratic form QF : V → F given by x 7→ λ · x · x and the Q-quadratic form

Q : V → Q given by TrF/Q(QF ). Note that (V,Q) has signature (n, 2) thanks

to our choice of λ with n = 2d even.

We also have the decomposition

V ⊗Q R =

d⊕
i=0

(V ⊗σiF R) =

d⊕
i=0

Vσi

where Vσi := V ⊗σiF R = C. On each vector space Vσi we have the quadratic

form Qi(x) := σi(λ)xx, so this gives a quadratic form on V ⊗Q R making

V0 := Vσ0
⊂ V ⊗Q R a negative definite plane. The choice of σ0 : E → C

provides an identification Vσ0
∼= C so that the real plane Vσ0 acquires a

natural orientation providing a point z0 ∈ DR. Fixing a quadratic lattice

L ⊂ V we will get the Shimura variety ML(C).

The next goal is to define a torus T of dimension d + 1 and a ho-

momorphism of algebraic groups T → G = GSpin(V,Q) so that, setting

KT := KL ∩ T (Af ), we can define the Shimura variety

YL(C) = T (Q)\{z0} × T (Af )/KT

which consists of finitely many points, and a natural map

YL(C)→ML(C) = G(Q)\D ×G(Af )/KL,

whose image is called the big CM cycle associated to (E, σ0, λ).

Remark 2.3. The word big suggests the existence of a small CM cycle. This is

the case and it is constructed starting from a quadratic imaginary extension

of Q instead of a CM field extension of degree 2(d + 1) = n + 2. There

are interesting conjectures in this setting as well in the spirit of Kudla’s

programme, elaborated by Bruinier and Yang in [6]. These conjectures have

been proven under some mild assumptions in [1, Thm. A].

The torus T above is defined as the quotient TE/T
Nm=1
F of the tori

TE = ResE/Q(Gm,E) by the norm 1 elements of TF = ResE/Q(Gm,F ) over Q.

The map T → G arises from a homomorphism of algebraic groups TE → G

over Q that for simplicity we will simply describe over R. Note that

TE(R) = (E ⊗Q R)
∗

=

d∏
i=0

(E ⊗σiQ R)
∗

=

d∏
i=0

GSpin(Vσi , Qi)
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so that we get a group homomorphism to GSpin(VR) = G(R) via the map of

multiplicative monoids

d∏
i=0

GSpin(Vσi , Qi) =

d∏
i=0

C+
R (Vσi)

mult−−−→
d⊗

R,i=1

C+
R (Vσi) −→ C+(VR).

We refer to [2] for the definition of the morphism TE → G over Q: this is

defined directly over a Galois closure F ′ of F as above and one then uses a

Galois descent argument.

More concretely, given x ∈ TE(R) = (E ⊗Q R)
∗

its image on SO(VR)

is defined by the action of x on VR = E ⊗Q R provided by xx−1 (using the

multiplicative structure of E and complex conjugation on E).

We have a natural map TF ⊂ TE and the elements of TF (R) act trivially

on VR so that TF maps trivially onto SO(V,Q). The induced map to Gm (the

kernel of the morphism G → SO(V,Q) given in (1.1)) is the Norm map

Nm. In particular, TNm=1
F maps trivially to G so that we get the sought-for

morphism

T = TE/T
Nm=1
F −→ G.

Notice that V has the extra structure of E-vector space that defines

endomorphisms of VBetti|Y (C) as Q-Hodge structure. In fact, for any z ∈ Y (C)

the E action on VBetti,Q,z induces a decomposition

VBetti,Q,z ⊗Q C = VdR,z =

d⊕
i=0

VdR,z(σi)⊕ VdR,z(σi),

where VdR,z(σ) is the 1-dimensional C-vector space on which E acts via

σ : E → C. Then

Fil1VdR,z = VdR,z(σ0), Gr−1VdR,z = VdR,z(σ0)

and

Gr0VdR,z =

d⊕
i=1

VdR,z(σi)⊕ VdR,z(σi).

Let now λ ∈ V be an element with Q(λ) > 0. The next lemma shows

that the images of Y (C) and Mλ(C) in ML(C) do not intersect. This will

imply that for the associated arithmetic objects, i.e. the associated objects

over Z, we have proper intersection. This is not at all the case for the small

CM points of Remark 2.3 where we have improper intersection; see [1] for a

discussion.

Lemma 2.4. The intersection of the images of Y (C) and Mλ(C) in ML(C) is

empty.
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Proof. Assume that we have an element z ∈ Dλ whose image on ML(C) lies

in the image of Y (C). This is equivalent to saying that λ ∈ VBetti,Q,z satisfies

λ ∈ (Cz⊕Cz)⊥. But VBetti,Q,z = V = E as a Q-vector space and we get that

V = E · λ ⊂ (Cz ⊕ Cz)⊥

as the pairing on V is E-hermitian. As (Cz ⊕ Cz)⊥ ⊕ (Cz ⊕ Cz) = VC, this

is clearly a contradiction �

2.4. Integral models

In order to proceed with the computation of the intersections numbers we

want, we need models for ML(C), the Heegner divisors Z(m) and the CM

cycle Y (C) over Z
Thanks to [8] we know that ML(C) is the complex analytic space as-

sociated to a quasi-projective variety ML over a number field K called the

reflex field; see also [14, Thm. 2.4.3]. In the case of GSpin, for n ≥ 1, the

reflex field is Q. For n = 0 it is the quadratic imaginary field K = C+(V ).

We assume next that n ≥ 1. Let ∆L := L∨/L be the discriminant

group, where L∨ is the Z-dual of L and the inclusion L ⊂ L∨ is defined by

the bilinear form [·, ·] associated to Q. By work of Vasiu and Kisin [12] ML

admits a canonical integral model, smooth over Z[2−1|∆L|−1]. The techniques

of loc. cit. do not apply at p = 2 or at primes at which L is not self-dual.

Under the assumption that L is maximal among the quadratic lattices of V

and is self-dual at 2, Madapusi Pera [15] constructed a canonical integral

model

M→ SpecZ
which has singular fibers at the primes dividing |∆L|. He also shows that the

Kuga–Satake abelian scheme π : A→M(C) extends to an abelian scheme

A→M.

Furthermore over M[2−1|∆L|−1] we have two motives. Here, for the notion

of motive we use the one introduced by Deligne [10, §1], i.e., it is a collection

of realizations: Betti, de Rham, `-adic étale for every prime ` and crystalline

at every prime p not dividing 2|∆L| with various comparison isomorphisms

among them. First of all, we have the motive H1(A) associated to A and

consisting of

i. a Betti realization over MC given by C(V )Betti = R1π∗Z;

ii. a de Rham realization H1,dR(A) which is a locally free OM[2−1|∆L|−1]-

module, endowed with a two step descending filtration by locally free

submodules, the Hodge filtration, Fil•H1,dR(A) and an integrable con-

nection satisfying Griffith’s transversality;
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iii. for every prime `, an `-adic étale realization H1,ét(A,Z`) which is the

`-adic lisse local system over M[`−12−1|∆L|−1] given simply by the

`-adic Tate module of A;

iv. for every prime p not dividing 2|∆L|, a crystalline realization H1,cris(AFp)

overMFp , identified with the covariant Dieudonné module of AFp/MFp
and endowed with a Frobenius action.

Then we have a submotive V ⊂ End(H1(A)) ∼= H1(A) ⊗ H1(A)∨ that

we define through its realizations:

i. a Betti realization over MC given by VBetti ⊂ End(C(V )Betti);

ii. a de Rham realization VdR which is a locally free OM[2−1|∆L|−1]-

module, endowed with a descending filtration Fil•VdR by locally free

submodules and an integrable connection satisfying Griffith’s transver-

sality. We also have an embedding VdR ↪→ End(H1,dR(A)) as locally a

direct summand, strictly compatible with the filtrations and compatible

with the connections;

iii. for every prime `, an étale `-adic realization given by a lisse `-adic

subsheaf Vét,` ↪→ End(H1,ét(A,Z`)) over Z[`−12−1|∆L|−1].

iv. for every prime p not dividing 2|∆L|, a crystalline realization given by

a subcrystal, locally a direct summand, Vcrys,p ↪→ End(H1,cris(AFp))

over MFp . Moreover, the Frobenius on End(H1,cris(AFp)), defined after

inverting p, induces a Frobenius on Vcrys,p[p
−1].

As mentioned above there are various comparison isomorphisms between

these realizations namely Betti-étale, Betti-de Rham, de Rham-crystalline,

crystalline-étale and the inclusion V ⊂ End(H1(A)) is compatible with these

isomorphisms.

Also, the motive V is endowed with a quadratic form V→ 1. Here 1 is

the unit object in each of the categories considered above, the structure sheaf

with the usual differentiation in the de Rham case, the constant sheaf Z` in

the `-adic étale case and the structure sheaf in the crystalline case. Further-

more for every local section v ∈ V (meaning in one of the realizations) we have

Q(v) = v ◦ v where the composition ◦ is taken in End(H1(A)) (where H1(A)

is the appropriate realization of A).

Remark 2.5. In order to prove the average Colmez conjecture one needs to

deal also with primes dividing 2|∆L|. The trick used in [2] is, for any such

prime p, to embed isometrically (L,Q) into a quadratic lattice (L�, Q�) that

is self-dual at p. We then work consistently with the Shimura variety, its

integral model and various motives associated to L� over Z(p). We omit these

extra complications in these notes.
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2.5. Models of Heegner divisors and big CM points

We next define the integral models of the Heegner divisors and of the big CM

cycle.

2.5.1. Models of Heegner divisors. For any n ∈ Z≥1, define Z(n)→M over

SpecZ[2−1|∆L|−1] as the functor representing pairs (ρ : S →M, f) such that

f ∈ End(A×M S) and we have, for all realizations above:

• RdR(f) ⊂ ρ×(VdR);

• Rét,`(f) ⊂ ρ×(V`);
• Rcris,p(f) ⊂ ρ×(Vcris,p).

Here, ρ×(V?) is the base change of V? to S, in the appropriate cate-

gory. Moreover, the de Rham realization RdR(f) of f is the map induced

by f on the de Rham homology of A ×M S relative to S, the étale `-adic

realization Rét,`(f) of f is the map induced by f on the `-adic Tate module

of A×M S and the crystalline realization Rcris,p(f) of f is the map induced

on the (covariant) Dieudonné module of A×M S ⊗ Fp.

2.5.2. Integral models of big CM cycles. Consider the integral model of Y (C).

It is a scheme over the reflex field E. Define Y to be the normalization of

SpecOE in Y . The morphism Y (C) → M(C) gives a map Y → M , which

induces a morphism

J : Y −→M.

Then define VY = J∗(V). Let

O′E = E ∩ End(L) ⊂ OE

which is an order in OE .

The fact that O′E acts on VBetti,Z|Y (C) (as a Z-Hodge structure) implies

that O′E acts on VY through endomorphisms (in the category of realizations

we are considering).

2.6. The Bruinier–Kudla–Yang conjecture

We can finally compute the intersection number of Z(n)×M Y via the mor-

phism Y ↪→M and Z(n) ↪→M[2−1|∆L|−1] defined in the previous section.

We remark that in [2] we take care of defining these objects and computing

the intersection also for (some of the) primes dividing 2|∆L|.
One can also refine the divisors Z(n) writing them as a sum

∑
µ∈∆L
Zµ(n)

and one is reduced to compute the intersection numbers of the Zµ(n)’s. We

refer to cit. for a more thorough discussion. For simplicity of the exposition we

will assume here that L is unimodular, i.e., ∆L = 0 or equivalently L = L∨.
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The conjecture of Bruinier–Kudla–Yang [5, Conj. 5.4] provides a formula

for

a(m) := #(Z(m)×M Y).

We will not discuss how the formula is obtained but here are some conse-

quences that one can draw from it:

i. a(m) can be written as a sum
∑
α∈F+,TrF/Q(α)=m a(α) over the totally

positive elements α ∈ F of trace m;

ii. for any α as in (i) we have a(α) 6= 0 if and only there exists a unique

prime P of OF either inert or ramified in OE such that α is not a norm

of E ⊗F FP , but for any other prime Q of OF it is.

iii. for any α as in (i) with a(α) 6= 0 and with associated prime P as in (ii),

if P is unramified then we have

a(α) =
ordP(α) + 1

2
· log NormF/Q(α).

Recall that these are consequences of the computations, involving au-

tomorphic techniques, of the a(m)’s using their interpretation as coefficients

a formal q-expansion via [5, Conj. 5.4]. The goal of this section is to prove

that (i), (ii) and (iii) have a geometric explanation using their definition, as

an intersection number #(Z(m)×M Y).

Remark 2.6. The Bruinier–Kudla–Yang conjecture does not make any as-

sumption on L being unimodular or even being maximal (as a quadratic lat-

tice) and provides an analogue of (iii) also for ramified primes. Indeed its pre-

dictions come from computations of the coefficients of a formal q-expansion

constructed from a weight 1 Hilbert modular Eisenstein series associated

to L. On the other hand, to relate the conjecture to geometry, we need at

least the existence of good integral models, and thus we need that (L,Q) is a

maximal quadratic lattice. Then assertions (i) and (ii) of the conjecture hold

true and do not require any extra assumption. It is for the proof of (iii) that

the assumption that L is self-dual is crucial. In [2, Def. 5.3.3] we will further

require that the prime p is good for L, meaning that:

• For every prime P of F over p unramified in E, the Zp-lattice LP is

OE,P -stable and self-dual.

• For every prime P of E over p ramified in E, the Zp-lattice LP is

maximal for the induced Zp-valued quadratic form, and there exists an

OE,P -stable lattice ΛP ⊂ VP such that

ΛP ⊂ LP ( Different−1
EP/FP

ΛP .

Notice that, given L, the set of bad primes for L is finite and that we are

also allowing cases where P is ramified. It is this flexibility that allows us to

prove in [2, Thm. 6.4.2] sufficiently many cases of the conjecture by Bruinier,
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Kudla and Yang to get the application to Colmez’s conjecture mentioned in

the introduction.

In Sections 2.9 and 2.10 we will make the much stronger assumption

that p is unramified in E. Assertion (iii) predicts how much we can lift a given

special endomorphism of the Kuga–Satake abelian variety at a point of Y in

characteristic p. This can be phrased in terms of the Grothendieck–Messing

theory of deformation of endomorphisms of p-divisible groups. If p is unram-

ified one can use directly crystalline theory. If p is ramified we have to resort

in [2] to the theory of Kisin modules to make this deformation theory problem

computable.

2.7. The decompositions a(m) =
∑
α∈F+,TrF/Q(α)=m a(α)

Let κ be a perfect field of characteristic p and let y : Specκ→ Y be a κ-valued

point. Let Ay be the base change of the Kuga–Satake abelian scheme overM.

Let Wy ⊂ End0(Ay) be the Q-vector space of special endomorphisms of Ay,

i.e., of those endomorphisms whose realizations (étale `-adic realizations for

` different from p and crystalline) lie in the base change to y of the motive

Vy ⊗Z Q ⊂ End(H1(Ay))⊗Z Q. One can prove the following

Lemma 2.7. There exists a unique structure of E-vector space on Wy and a

unique positive definite hermitian form Qy : Wy → Q such that the realization

morphism Wy → Vy⊗ZQ is E-linear and compatible with the given quadratic

form on Vy ⊗Z Q.

Moreover, if Wy 6= {0} then Wy is an E-vector space of dimension 1.

Proof. We refer to [2] for a proof of this result. We just provide some hints. Us-

ing the construction of Y (C) one sees that for every z ∈ Y (C) the torus T (Q)

acts via automorphisms on the Hodge structures VBetti,Q,z and H1(Az,Q) of

Section 2.3. This is the action that by dévissage one proves to extend to an

action on the Kuga–Satake abelian scheme A|Y and on the motive V⊗Q|Y .

We then get an action of T (Q) on Wy and on its realizations. If Wy is non

zero, using the realizations one checks that the Q-span of T (Q) in End(Wy)

is E, making Wy into a 1-dimensional E-vector space. The fact that Qy
is positive definite follows from the existence of a Rosati involution on Ay
fixing Wy (see [1, Prop. 2.6.3]). �

The quadratic formQy : Wy → Q can be uniquely written as TrF/QQy,F
for a unique F -quadratic form Qy,F : Wy → F that is positive definite for

every real embedding of F .

As Qy is positive definite, for every positive integer m the fiber of Z(m)

over y consists of the set f ∈ Wy ∩ End(Ay) such that Qy(f) = m. The

latter decomposes as the disjoint union over all positive α ∈ F of trace m of
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the sets f ∈Wy ∩ End(Ay) such that Qy,F (f) = α. This explains the first

consequence of the conjecture by Bruinier, Kudla and Yang.

2.8. On the support of Z(m)×M Y

We continue the discussion of the previous section. We fix a κ-valued point y

of Y such that Wy 6= {0}. We then have two E-vector spaces, endowed with

a hermitian quadratic form, namely (V,Q) and (Wy, Qy). We have

• for ` 6= p, the `-adic realization functor defines an isomorphism of

Q`-quadratic spaces Wy ⊗Q Q` ∼= Vét,`,y ⊗Z Q ∼= V ⊗Q`;
• let K0 := Frac(W(κ)). The crystalline realization functor defines an

isomorphism of K0-quadratic spaces Wy ⊗W(κ) K0
∼= Vcris,p,y ⊗Z Q;

• the signature of (V ⊗Q R, Q) is (2, n) and (Wy ⊗Q R, Qy) has signa-

ture (0, n+ 2).

Consider V as F -vector space with quadratic form QF : V = E → F

given by x 7→ λ ·x ·x. For every place v of F consider the invariants εv(V,QF )

and εv(Wy, Qy,F ) in F ∗v /(F
∗
v )

2
. Let P0 be the prime determined by the image

of y ∈ Y(κ) via the structural morphism Y → Spec(OE). Then it follows from

the above, and some extra analysis at primes above p provided in Lemma 2.10,

that:

Proposition 2.8. The invariants εv(V,QF ) and εv(Wy, Qy,F ) are the same if

and only if v is a finite place different from P0 or if v is a place at infinity

different from σ0 : F → R.

In particular, if we have f ∈Wy of norm Qy,F (f) = α ∈ F , then the

difference of invariants characterizes the prime P0 over which y is supported

as the only finite place where α is not in the image of QF : VP0 → FP0 . This

is in agreement with automorphic expectation (ii).

2.9. The Newton polygon

As in the previous section, let κ be a perfect field of positive characteristic p

and let y ∈ Y(κ). Let K0 be the fraction field of W(κ). Consider the K0-vector

spaces Vcris,y⊗Q ⊂ End(H1,cris(Aκ))⊗K0. They are endowed with Frobenius

semilinear, bijective maps ϕ. Here, H1,cris(Aκ) is the covariant Dieudonné

module of Aκ.

The category of finite dimensional K0-vector spaces endowed with a bi-

jective, Frobenius semilinear map is called the category of Frobenius isocrys-

tals. For each of them one can construct a Newton polygon, see [11]. In our

case we get a convex polygon in the plane with leftmost endpoint (0, 0),

integral break points and rightmost endpoint (2d+ 2, 0) that looks like
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0
1

−1

2d 2d+ 2

η1 ηi ηd+1

ηd+2

We refer to these Newton polygons as η1, . . . , ηd+2, where the Newton

polygon ηi starts at (0, 0), ends at (2d + 2, 0) and has break points (i,−1)

and (2d + 2 − i,−1), except for ηd+2 which is the straight line from (0, 0)

to (2d+ 2, 0).

Definition 2.9. We say that Vcris,y⊗Q is supersingular if its Newton polygon

is a straight line from (0, 0) to (2d+ 2, 0).

Using the structure of F -vector space we can decompose

Vcris,y ⊗Q = ⊕vV(v)

according to the places v of F over p. For every such v the Fv⊗QpK0-module

V(v) is of rank two and is stable under Frobenius. Recall that we can single

out one place v0, namely the one defined by the image of y ∈ Y(κ) via the

structural morphism Y → Spec(OE). In [2, §5] one proves the following:

Proposition 2.10. For every v 6= v0 the slope of V(v) is 0.

The slope of V(v0) is not 0 if and only if v0 splits in E.

In particular, Vcris,y ⊗Q is not supersingular if and only if the place v0

of F splits in E.

Assuming that p is unramified in Y, that the order O′E is maximal at p

and that κ contains all the residue fields at primes of OE at primes above p

we prove the following weaker version of the Proposition:

Claim. The slope of V(v0) is 0 if and only if v0 is inert in E.

First of all, the map y : Spec(κ) → Y lifts uniquely to a morphism

ỹ : Spec(W(κ))→ Y and, due to our hypothesis that p is unramified, the crys-

tal Vcris,y can be identified as W(κ)-module with VdR,ỹ via the crystalline-de

Rham comparison isomorphism of Deligne’s formalism [10, §1]. Using these

two structures we get a W(κ)-module Vỹ with:

• a Frobenius semilinear morphism ϕ;

• an action of O′E ⊗Z Zp = OE ⊗Z Zp commuting with ϕ;

• a three step filtration Fil•Vỹ commuting with the action of OE ⊗Z Zp.
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Using the OE ⊗Z Zp action and the fact that OE ⊗Z W(κ) splits com-

pletely into a product of copies of W(κ), we get a decomposition

Vỹ =
⊕
τ

Vỹ(τ),

where the decomposition is taken over all embeddings τ : OE →W(κ) and for

each τ the factor Vỹ(τ) is a W(κ)-module of rank 1 on which OE acts via τ .

Frobenius on Vỹ sends each factor Vỹ(τ) to the factor Vỹ(στ) where σ is the

Frobenius automorphism on W(κ). Moreover given a place v the W(κ)-module

V(v) is the sum Vỹ(τ) of all τ ’s inducing the place v.

In particular, the rank 1 submodule Fil1Vỹ will correspond to a factor

Vỹ(τ0) and Gr−1Vỹ will correspond to a factor Vỹ(τ0). A result of Mazur, see

[11, Thm. 1.6.1], guarantees that the Newton polygon lies above the Hodge

polygon

0
1

−1

2d 2d+ 1

η1

and that the Newton polygon touches the Hodge polygon at a breaking point

of the Newton polygon. This implies that if τ0 and τ0 lie in different orbits

for the action of σ, the Newton polygon can not be horizontal and hence

Vcris,y ⊗Q cannot be supersingular.

Assume next that τ0 and τ0 lie in the same orbit. Let f0 be the length

of the orbit {σiτ0} or equivalently the inertia degree of the prime defined

by v0. Write the matrix of Frobenius on V(v0) as a subdiagonal matrix

[ϕ0] :=



0 ϕ(τ0)

ϕ(i, σ ◦ τ0) 0

ϕ(i, σ2 ◦ τ) 0
. . .

0

ϕ(i, σf0−1 ◦ τ0) 0


.

The entry ϕ(σj ◦ τ0) of this matrix lies in K0. Then ϕf00 is the diagonal

matrix diag(β1, . . . , βf0) with βj ∈ K0 having all the same p-adic valua-

tion a0, which is the sum of the p-adic valuations of ϕ(τ0), . . . , ϕ(σfi−1 ◦ τ0).

Hence, [ϕ0]f0 is diagonal with entries having all the same p-adic valuation a0

which implies that the Newton polygon of ϕ0 has only one slope, namely a0.
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Together with the cited result of Katz, we conclude that a0 = 0 proving the

Claim in this case.

We are now ready for the following Proposition that, together with

Proposition 2.10, proves geometrically the second expectation of the Bru-

inier–Kudla–Yang conjecture.

Proposition 2.11. Let y be a κ-valued point of Y as before. Then Vcris,y ⊗Q
is supersingular if and only if Wy is non zero.

Proof. If Wy is non zero the crystalline realization provides an isomorphism

Wy ⊗Q Qp ∼= (Vcris,y ⊗Q)
ϕ=1

. This forces the Newton polygon of Vcris,y ⊗Q
to be constant of slope 0.

Vice versa if Vcris,y⊗Q is supersingular one can prove that the associated

Kuga–Satake abelian scheme is supersingular. In particular, the crystalline

realization functor provides an isomorphism

End0(Ay)⊗Q Qp ∼= End0(Ay[p∞]) ∼= End0(H1,cris(Ay))
ϕ=1

.

In particular, (Vcris,y ⊗Q)
ϕ=1

is realized within the space End0(Ay)⊗Q Qp.
The same applies for a prime ` 6= p. An argument of [15] guarantees that all

these spaces arise from a Q-vector space of End0(Ay) that must be Wy. �

2.10. Deformation theory

To conclude the proof of the conjecture of Bruinier–Kudla–Yang in the setting

of the previous section, we are left to compute the length of the complete local

ring of Z(m)×MY at a point y ∈ Y(κ) associated to a special endomorphism

f ∈Wy of norm Qy,F = α ∈ F+. Assertion (iii) in Section 2.6 is equivalent

to requiring that such length is
valP0

(α)+1

2 .

Here, κ is a perfect field of characteristic p > 0 with p a prime unramified

in OE and such that O′E⊗ZZp = OE⊗ZZp. Recall that y : Spec(κ)→ Y lifts

uniquely to a morphism ỹ : Spec(W(κ)) → Y. Let R := W(κ) and let P0 be

the prime of F associated to the place v0 as in the previous section. We are

then left to show the following:

Proposition 2.12. Let f be a special endomorphism of Ay of norm α :=

QF (f) ∈ F+. Then f deforms to a special endomorphism of AR/pn if and

only if n ≤ valP0
(α)+1

2 .

Proof. We have R?(f) ∈ V?(Ay) for ? = cris or dR (mod P)0. Since f is an

endomorphism, it preserves the Hodge filtration on H1,dR(Ay), i.e., RdR(f)

lies in Fil0End(H1,dR(Ay)) so that RdR(f) ∈ Fil0(VdR(Aκ)).

On the other hand, recalling that K0 := Frac(R) and using the decom-

position VdR(Aκ) =
⊕

τ : E→K0
VdR(τ) into 1-dimensional κ-vector spaces
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according to the homomorphisms τ : E → K0 we have that there exists

τ0 : E → K0 such that Fil1(VdR(AR)) = VdR(τ0) and, denoting by τ̄0 its

complex conjugate, Fil0(VdR(AR)) =
⊕

τ : E→K0,τ 6=τ̄0 VdR(τ).

Recall from the discussion after Proposition 2.10 that we may canoni-

cally identify Vcris,y as W(κ)-module with VdR,ỹ. Using these two structures

we get a W(κ)-module V that we can decompose as
⊕

v V(v) according to

the places of F over p.

As pR has nilpotent divided powers structure, Grothendieck–Messing

theory [16] gives that f lifts to a special endomorphism of R/pnR (and if so,

uniquely) if and only if Rcris(f) ∈ Fil0(V/pn) if and only if the v0-component

Rcris(f)v0 ∈ V(v0) of Rcris(f) satisfies

Rcris(f)v0 ∈ Fil0(V(v0)/pn).

Using [15, (4.8.2)] one gets a basis for V(v0) such that the matrix of

Frobenius ϕ(0) is given by

[ϕ(0)] :=



0 u

p 1
. . .

1

p−1

1
. . .

1 0


,

where u is a unit.

The first remark is that Rcris(f)v0 is fixed by ϕ(0). We may therefore

calculate the ϕ(0) invariant elements:

(V(v0))ϕ=1 =

{( x1

...
xf0

)
| ϕ(0)

( x1

...
xf0

)
=

( x1

...
xf0

)}

=

{( x1

...
xf0

)
| x2 =pxσ1 , x3 =xσ2 , . . . , xr+1 =p−1xσr , . . . , x1 =uσxσf0

}
=
{
t(α, pασ, . . . , pασ

r

, ασr+1 , . . . , ασ
f0−1

) | α = uσασ
f0
}
.

(2.3)

In particular,

Rcris(f)v0 ∈ {(β, pβσ, . . . , βσ
f0−1

)},
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where the τ0 component is β for some β and the τ̄0 component is pβσ
r

. Let

α = QF (f), α ∈ F+ ⊆ F ⊆
∏

γ : F→K0

K0.

The image of α in the component K0 corresponding to the embedding

γ = τ0|FF → K0 is pββσ
r

. This implies that

valv0(α) = 2valv0(β) + 1.

As

Rcris(f)v0 ∈ Fil0(V(v0)/pn) ⇐⇒ pβσ
r

≡ 0 (mod pn),

we have valv0(β) ≥ n− 1, which is equivalent to

n ≤ valv0(α) + 1

2
.

�
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[18] J. Tsimerman. The André-Oort conjecture for Ag. Ann. of Math. (2),

187(2):379–390, 2018.

[19] T. Yang. CM number fields and modular forms. Pure Appl. Math. Q., 1(2,

Special Issue: In memory of Armand Borel. Part 1):305–340, 2005.

Fabrizio Andreatta

Dipartimento di Matematica “Federigo Enriques”

Università di Milano

via C. Saldini 50

Milano

ITALIA

e-mail: fabrizio.andreatta@unimi.it


	1. Introduction
	1.1. What is not in this paper
	1.2. GSpin-Shimura varieties
	1.2.1. Clifford algebras
	1.2.2. The group GSpin

	1.3. Examples of GSpin groups
	1.3.1. Example 1: the case n = 0
	1.3.2. Example 2: the case n = 1
	1.3.3. Embedding into symplectic groups
	1.3.4. Hermitian symmetric spaces
	1.3.5. The dimension of the Hermitian symmetric space

	1.4. GSpin-Shimura varieties

	2. Special Cycles on GSpin-Shimura Varieties
	2.1. Extra structures on GSpin-Shimura varieties
	2.1.1. The Kuga–Satake construction
	2.1.2. Another important VHS

	2.2. Heegner divisors
	2.3. The big CM points
	2.4. Integral models
	2.5. Models of Heegner divisors and big CM points
	2.5.1. Models of Heegner divisors
	2.5.2. Integral models of big CM cycles

	2.6. The Bruinier–Kudla–Yang conjecture
	2.7. The decompositions a(m)=F+,TrF/Q() = ma()
	2.8. On the support of Z(m)MY
	2.9. The Newton polygon
	2.10. Deformation theory
	Acknowledgments

	References

