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An Alternative Proof of the Lindemann-Weierstrass Theorem 

F. BEUKERS, J. P. BtzIvIN, P. ROBBA 

Dedicated to the Memory of Philippe Robba 

FRITs BEUKERS: born in 1953. University education in Leiden, Netherlands. 
Currently teaching at the State University of Utrecht. Research interests are 
number theory and arithmetic properties of linear differential equations. 

JEAN-PAUL BEZIVIN: educated at the Ecole Normale Superieure and the 
Universities of Paris VI and VII. He currently teaches at the University of 
Paris VI. Research interests are p-adic analysis, linear recurrent sequences 
and arithmetic properties of formal power series. 

PHILIPPE ROBBA: born in 1941, died on October 12, 1988. Doctorate degree 
at the University of Paris in 1972, and professor at the University Paris XI 
from 1975 until his untimely death. Domain of research: p-adic analysis, 
mainly p-adic differential equations with emphasis on p-adic cohomologies. 

Introduction. In December 1987 J. P. Bezivin and Ph. Robba found a new proof 
of the Lindemann-Weierstrass theorem as a by-product of their criterion of rational- 
ity for solutions of differential equations. Let us recall the Lindemann-Weierstrass 
theorem, to which we shall refer as LW from now on. 

Let a1, ..., oa,, b1,... ., b, be algebraic numbers such that the bi are all nonzero and the 
ai are mutually distinct. Then 

bleal + b2ea2 + *. +b1e't a 0. 

It is well known that the transcendence of 'u follows from LW in the following 
way. Suppose, on the contrary, that 'r is algebraic. Then so is -rjVZT and LW now 
implies that eV' + 1 * 0, which is certainly not true. Thus we conclude that r is 
transcendental. 

The usual proof of LW is essentially due to Hilbert and has been polished by a 
number of authors. One such version can be found in [2, Ch. XI] or in [4, Ch. I], [3]. 
The new proof of Bezivin and Robba looks totally different. It can be considered as 
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194 F. BEUKERS, J. P. BtZIVIN, AND P. ROBBA [March 

a direct consequence of their criterion of rationality for solutions of linear differen- 
tial equations. 

The Bezivin-Robba criterion is based on a theorem of Polya-Bertrandias, which is 
far from easy and relies heavily on p- adic analysis. We refer the interested reader to 
[1]. In March 1988 F. Beukers found that the use of the Polya-Bertrandias criterion 
is much too heavy and can be avoided in a very elementary way. The result is a new 
proof of LW which is elementary and can compete with the usual one in shortness 
and simplicity. There is always a possibility that the similarity between the proofs is 
stronger than one would expect at first sight. In fact, very soon after a first draft of 
this paper was written (May 1988) Yu. Nesterenko pointed out to us that the 
numbers v,?(k) which we use are equal to the integrals 

X, b1e f e xXn kt(X - ai)k ... (X a)kd 
j=l ek 

which are used in the Hilbert proof. In spite of such similarities we feel that the 
arguments of our proof are nice enough to present in front of a wider audience. We 
would like to thank the referee for several improvements upon our presentation. 

THEOREM. Let b1,..., b,, a?1,..., a aE Q such that bi =AO Vi and the ai are 
mutually distinct. Then 

ble'al+ ... 
+bte't 

= 0 

Proof Consider the Taylor series expansion 
oo u 

biealx + ... +bteatx = n 

n=O 

where, clearly, 

U= E b1a. (1) 
i=l 

Put (X- a1) * - (X - at) = X'- ajXt-1 - -at. Clearly, for any i= 1,..., t 
and any n E Z a o 

at+n = ala t+n-1 + .+ a an 

By taking suitable linear combinations and using (1) it follows that 

Un+t - alUn+t_1 + *. +?atun* (2) 

Without loss of generality we may assume that un Ee Q, Vn. If not, then consider 
the product 

H (a(bj)eU(a1)x + ... +aJ(bn)ea(at)x) 

taken over all a E Gal(Q(bi,..., bt, a1,..., at)/Q), which, after evaluation, again 
acquires the form 

b beaX, 

where now the sets {b'}, {b'a} are Galois-stable. This implies that the correspond- 
ing numbers a' and u' are rational. So from now on we assume un Ee Q, Vn and 
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ai E 0 (i = 1,..., t). Let D be a common denominator of the ai. Put A = 
max(l, Jail). After multiplication with a suitable integer, if necessary, we may 
assume u0,..., u I E Z. Hence, using (2) recursively, 

D'un E Z, (3) 
and by (1), 

lunl < c,An 

for some cl > 0 and all n > 0. Now suppose that bieal + .. b e't O, or, 
equivalently, 

00 u = 0. E r!E= 
r=O 

Put 
n U r 

r=O r! 
and notice 

11u 0 0 U r ci 
0 n+1 

IvnI=n= n! El ! n -< C2' (4) 
O r! =r r! n+ r=n+l (r =n+1)! n +1 

If we had A = D = 1, like in the high school proof of e t 0, inequality (4) gives us 
a contradiction since we have both vn E Z and IvnI < c2/(n + 1), i.e. vn = 0 for all 
sufficiently large n, in other words ?0Xn is a polynomial. In our general case a 
similar principle works. 

Claim: 

00 

E vnXn e Q(X). 
n=O 

Assuming the claim we proceed with the proof. Define 
00 

v(X) = VnX 
n=O 

Notice that 
Vn Vn-1 Un 
-- (n-1)t nt or vn-nvn-l u n! (n-i! n! 

So, 
00 00 

(vn - nvn-)X = E UnX . (5) 
n1=O n=O 

Using (1), the right-hand side of (5) is seen to be 
0 = t b 

U n = 

whereas the left-hand side equals 

V(X) - X- (XV(X)) = (1 - X)V(X) -X2dv(X). 
dX dX 
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So (5) becomes 
t b ~~~d 

YV(X) =T E l i ' =-d + (1 - X). (6) 
i1 1- aXdX 

By the claim we know that v(X) E4 Q(X) and so the non-zero poles of -Fv(X) 
have order at least two. However, the right-hand side of (6) has only simple poles. 
This contradiction proves our theorem, since the assumption bleal + * + btea = 0 

has turned out to be untenable. O 
It now remains to prove our claim. We first observe that, as v is a solution of the 
differential equation (6), if v is a rational function then its poles must be at the 
points l/ai. Therefore we expect that there exists an integer k such that (1 - ajX 
- * - atXXt)kv(X) is a polynomial. 

DEFINITION. For any k, n E 7 >0 we define v"(k) as coefficient in the formal 
power series 

00 00 

Evn(k) Xn (1 -ajX- ***- at ) VE XnX. 

n =0 n=O 

For later use we also note that 

vn(k + 1) = vn(k) - alvn-(k) a,vn-t(k) for all n > t, k > 0. (7) 

LEMMA 1. Let C = 1 + lall + *. ?+atj. For all n > kt we have 
i) Ivn(k)l -< C2A nCk 

ii) Dnv,n (k) E Z 
iii) k! divides Dnvn(k). 

Proof The first two assertions follow easily by induction on k from (3), (4) and 
(7). The third assertion can be shown as follows. Write 

Vn = Un?+ nun-1 + u l? +n(n - 1) n ). (n - k + 2)Un_?kl l + wn 

where wn = n! E' our/r!. Notice that Dn-kwn E Z and k! divides Dn-kwn. Con- 
sider the power series 

00 00 

V( X) =E VnXn W( X) =E WnX n. 

n=O n=O 

Then 
00 

v(X) - w(X) F, {un + nun-1 + *. +n(n - 1) *-- (n - k + 2)Unlk+l}X . 

ni =0 

For any 0 < r < k - 1 we observe that 
00 t oo 

,n(n-1) .. (n - r+1) Un_r" r ,r() ia 
nw=0 i=1 n=O 

t 1 

= E r!bi arXr 
1=1(1 - a1x)r?l 

Pr( X) 

(1 - aX -...-atXt)r+l 
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where Pr(X) is a polynomial of degree < t(r + 1). Hence 

v(X)-w(X)= P(X) 
(1 - a,X 

- tX. ) 

where P(X) is a polynomial of degree < tk. Hence v"(k) = wn(k) 'In > kt, where 
00 

% =(k)X (1 - a,X- - atX )kw(X). 
n=o 

Since k! divides Dn-kwn, we see that k! divides DnWn(k) = Dnvn(k) as asserted. 

Proof of the Claim. It is sufficient to prove that E% o0v(k)Xn EC Q[X] for some 
k E- N. From the Lemma it follows that if v"(k) 0 O and n > kt, then 

k! < |IDnvn (k) I < C2 (AD ) nCk. 

Hence, if k! > c2(AD)nCk and n > kt then v"(k) = 0. Choose ko so large that 
k! > c2(AD)l1ktCk Ik > ko. Then 

v"(k) = 0 for all k > ko, kt < n < lOkt. (8) 

This situation can be pictured as follows: If a point (n, k) falls in the shaded region, 
we have automatically vn(k) = 0 according to (8). So, finally, by (7) and induction 
on n - lOkt, it follows that vn(k) = 0 for all (n, k) in the infinite triangular region 
ko < k < n/lOt. Thus we conclude that vn(ko) = 0 'n > kot and hence 
E?=ov,,(k) Xn E Q[X], which proves our claim. 

knt t 

ko 

n 
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