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An Alternative Proof of the Lindemann-Weierstrass Theorem

F. BEUKERS, J. P. BEzIvIN, P. RoBBA

Dedicated to the Memory of Philippe Robba

FRITS BEUKERS: born in 1953. University education in Leiden, Netherlands.
Currently teaching at the State University of Utrecht. Research interests are
number theory and arithmetic properties of linear differential equations.

JEAN-PAUL BEzIVIN: educated at the Ecole Normale Supérieure and the
Universities of Paris VI and VII. He currently teaches at the University of
Paris VI. Research interests are p-adic analysis, linear recurrent sequences
and arithmetic properties of formal power series.

PHILIPPE ROBBA: born in 1941, died on October 12, 1988. Doctorate degree
at the University of Paris in 1972, and professor at the University Paris XI
from 1975 until his untimely death. Domain of research: p-adic analysis,
mainly p-adic differential equations with emphasis on p-adic cohomologies.

Introduction. In December 1987 J. P. Bézivin and Ph. Robba found a new proof
of the Lindemann-Weierstrass theorem as a by-product of their criterion of rational-
ity for solutions of differential equations. Let us recall the Lindemann-Weierstrass
theorem, to which we shall refer as LW from now on.

Let ay,...,a,, b,,..., b, be algebraic numbers such that the b; are all nonzero and the
a; are mutually distinct. Then

be®t + bye® + --- +be® + 0.

It is well known that the transcendence of # follows from LW in the following
way. Suppose, on the contrary, that « is algebraic. Then so is m/— 1 and LW now
implies that eVl 41 % 0, which is certainly not true. Thus we conclude that 7 is
transcendental.

The usual proof of LW is essentially due to Hilbert and has been polished by a
number of authors. One such version can be found in [2, Ch. XI] or in [4, Ch. 1], [3].
The new proof of Bézivin and Robba looks totally different. It can be considered as
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a direct consequence of their criterion of rationality for solutions of linear differen-
tial equations.

The Bézivin-Robba criterion is based on a theorem of Polya-Bertrandias, which is
far from easy and relies heavily on p- adic analysis. We refer the interested reader to
[1]. In March 1988 F. Beukers found that the use of the Polya-Bertrandias criterion
is much too heavy and can be avoided in a very elementary way. The result is a new
proof of LW which is elementary. and can compete with the usual one in shortness
and simplicity. There is always a possibility that the similarity between the proofs is
stronger than one would expect at first sight. In fact, very soon after a first draft of
this paper was written (May 1988) Yu. Nesterenko pointed out to us that the
numbers v, (k) which we use are equal to the integrals

t
Y bje"‘ffooe_"x"""’(x —a)¥ - (x - a,) dx
Jj=1 %

which are used in the Hilbert proof. In spite of such similarities we feel that the
arguments of our proof are nice enough to present in front of a wider audience. We
would like to thank the referee for several improvements upon our presentation.

THEOREM. Let by,..., b, ay,...,a, € Q such that b, # 0 Vi and the a; are
mutually distinct. Then

b+ -+ +bhe*# 0.

Proof. Consider the Taylor series expansion

o0 un
bje®* + -+ +he%* = Y —x"
n=0""

where, clearly,

t
u,= Y bal. (1)

Pt (X—a) - (X—0a)=X"—-a X' —--- —a,Clearly, foranyi=1,...,¢
andanyne€Z_,

t+n
i

By taking suitable linear combinations and using (1) it follows that

=gttt 4+ - 4aal.

un+r = Upya + - +arun' (2)

Without loss of generality we may assume that u, € Q, Vn. If not, then consider
the product

I—I(O(bl)ea(m)x + .. +o(bn)e0(a,)x)

(]

taken over all o € Gal(Q(b,,..., b,, ay, ..., a,)/Q), which, after evaluation, again
acquires the form

Y bje,

i

where now the sets {5/}, {a]} are Galois-stable. This implies that the correspond-
ing numbers a/ and u/ are rational. So from now on we assume u, € Q, Vr and
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a;€Q (i=1,...,1). Let D be a common denominator of the a, Put 4 =
max(1, |a,)). After multiplication with a suitable integer, if necessary, we may
assume u,,..., #,_; € Z. Hence, using (2) recursively,
D"u, € Z, (3)
and by (1),
lunl < clAn
for some ¢; >0 and all » > 0. Now suppose that be® + --- +be* =0, or,
equivalently,
X u
Y =0
r=0""
Put
n
ur
v,=n!y —
" r=0 r!
and notice
"oy, © oy, q & A" a™t!
od=nt| £ 5 -n| £ H<t § et @
¢ or! st n+1l o (r=n+ 1) n+1

If we had 4 = D = 1, like in the high school proof of e & Q, inequality (4) gives us
a contradiction since we have both v, € Z and |v,| < ¢,/(n + 1), i.e. v, = 0 for all
sufficiently large n, in other words v, X" is a polynomial. In our general case a
similar principle works.

Claim:

f; v, X" € Q(X).

n=0

Assuming the claim we proceed with the proof. Define
o0
v(X)= Y v, X"
n=0

Notice that

So,
0 oo
E (Un - nvn—l)Xn = z uan' (5)
n=0 n=0
Using (1), the right-hand side of (5) is seen to be
> uxr= ¥
u,X"= Y ———,
n=0 -1 1—aX

whereas the left-hand side equals

d L d
v(X) = X—(Xo(X)) = (1= X)o(X) = X*—0(X).
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So (5) becomes

! b, , d
Lu(X) ,-; = ax’ L= -X'— +}(1 X). (6)
By the claim we know that v(X) € Q(X) and so the non-zero poles of Lv(X)
have order at least two. However, the right-hand side of (6) has only simple poles.
This contradiction proves our theorem, since the assumption be® + --- +b,e* =0
has turned out to be untenable. ]
It now remains to prove our claim. We first observe that, as v is a solution of the
differential equation (6), if v is a rational function then its poles must be at the
points 1/a;. Therefore we expect that there exists an integer k& such that (1 — a; X
— -+ —a, X" (X) is a polynomial.
DEFINITION. For any k, n € Z ,, we define v,(k) as coefficient in the formal
power series

o0
Y oo(k)x"=(1-aX~ - —ax)"
n=0

v, X".

n

X
Lte

For later use we also note that
v,(k+1)=v,(k)—aw, (k) — - —ap,_, (k) foralln>1t, k>0. (7)

LEMMA 1. Let C=1 +|ay| + -+ +|a,]. For all n > kt we have
i) |u,(k)| < c 4"CH
iiy D, (k)€ Z
iii) k! divides D", (k).
Proof. The first two assertions follow easily by induction on k from (3), (4) and
(7). The third assertion can be shown as follows. Write

v,=u,+nu,_;+ - +n(n=1)---(n—k+2u, ., +w,

where w, = n! X% ju,/r!. Notice that D" *w, € Z and k! divides D"~ *w,. Con-
sider the power series

[ore]

v(X)= Y v,X" w(X)= f‘,wnx".
n=0 n=0

Then

v(X) —w(X)= i {u,+nu,_1+ - +n(n—=1) - (n—k+2u, ..} X"

n=0

For any 0 < r < k — 1 we observe that

i nn—1) - (n—r+u, X" = Zt: i r!('})b,-a;'X"
n=0 1=tl n=0
P.(X)
B 1-aX—-—ax)""
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where P (X) is a polynomial of degree < #(r + 1). Hence

P(X)
v(X) —w(X)= s
(1-aX— - —1tX)
where P(X) is a polynomial of degree < tk. Hence v,(k) = w,(k) Vn > kt, where
o0
Yo (k)X =(1-a,X- - —a,Xx")w(X).
n=0

Since k! divides D" *w,, we see that k! divides D"w, (k) = D"v,(k) as asserted.

Proof of the Claim. It is sufficient to prove that ¥%_v,.(k) X" € Q[ X] for some

n=0

k € N. From the Lemma it follows that if v,(k) # 0 and n > kz, then
k! <|D",(k)| < c,(AD)"C*.

Hence, if k! > ¢,(AD)"C* and n > kt then v,(k) = 0. Choose k, so large that
k! > ¢,(AD)"%C* Vk > k,. Then

v,(k) =0 forall k > k,, kt < n < 10kt. (8)
This situation can be pictured as follows: If a point (#n, k) falls in the shaded region,
we have automatically v,(k) = 0 according to (8). So, finally, by (7) and induction
on n — 10kz¢, it follows that v,(k) = O for all (n, k) in the infinite triangular region

ko < k < n/10t. Thus we conclude that uv,(k,) =0 Vr > kst and hence
> _w.(k)X" € Q[ X], which proves our claim.

ko

‘l
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