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A non-hypergeometric E-function

By Javier Fresán and Peter Jossen

Abstract

We answer in the negative Siegel’s question whether all E-functions are

polynomial expressions in hypergeometric E-functions. Namely, we show

that if an irreducible differential operator of order three annihilates an

E-function in the hypergeometric class, then the singularities of its Fourier

transform are constrained to satisfy a symmetry property that generically

does not hold. The proof relies on André’s theory of E-operators and Katz’s

computation of the Galois group of hypergeometric differential equations.
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Introduction and overview

With the goal of generalizing the theorems of Hermite, Lindemann, and

Weierstrass about transcendence of values of the exponential function, Siegel

introduced the notion of E-function in his landmark 1929 paper [26]. An

E-function is a power series with algebraic coefficients that satisfies a linear

differential equation and certain growth conditions. A paradigmatic example

besides the exponential is the classical Bessel function J0(z), for which Siegel

achieved his goal by proving that the values of J0(z) and J ′0(z) at all non-zero

Keywords: E-function, hypergeometric series, differential Galois theory, Fourier-Laplace

transform

AMS Classification: Primary: 11J91, 33C20, 34M35.

The research of J. F. was partially supported by the grant ANR-18-CE40-0017 of Agence

Nationale de la Recherche.

© 2021 Department of Mathematics, Princeton University.

903

This content downloaded from 
������������129.104.78.146 on Sun, 07 Nov 2021 15:58:10 UTC������������� 

All use subject to https://about.jstor.org/terms

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2021.194.3.7


904 JAVIER FRESÁN and PETER JOSSEN

algebraic numbers are algebraically independent. Siegel’s methods were in

principle suited for all E-functions satisfying a certain “normality” property,

but its actual verification remained elusive in new examples. In removing this

assumption in 1959, Shidlovskii [29] took a decisive step in the understanding

of E-functions. Further amendments to what quickly became known as the

Siegel–Shidlovskii theorem were later given by André [3] and Beukers [4].

A rich class of E-functions, including the motivating examples of the ex-

ponential and the Bessel function, is given by the series

F

Å
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ λzq−pã =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

λnzn(q−p)

for integers 0 6 p < q, rational parameters a1, . . . , ap ∈ Q, b1, . . . , bq ∈ Q\Z60,

and an algebraic scalar λ. Here and throughout, (x)n = x(x+ 1) · · · (x+n−1)

denotes the rising Pochhammer symbol of a rational number x. We call these

series hypergeometric E-functions of type (p, q). After having proved that

any polynomial expression with algebraic coefficients in E-functions is again

an E-function, Siegel observed that it would not be without interest to find an

example of an E-function that does not come from hypergeometric E-functions

in this way [26, p. 225]. The question was still open twenty years later when he

published his lecture notes on transcendental numbers [27, p. 58], and appears

in Shidlovskii’s book [25, p. 184] as well. We reformulate it as follows:

Does the Q[z]-algebra generated by hypergeometric E-functions contain all

E-functions?

According to a theorem of Gorelov [16], [17], [24], E-functions satisfying a

differential equation of order at most two are indeed polynomial expressions in

hypergeometric E-functions. However, compelling evidence against a general

positive answer was recently given by Fischler and Rivoal [13]. They show

that any special value of the closely related class of G-functions arises as a

coefficient in the asymptotic expansion at infinity of an E-function. Since

those of hypergeometric E-functions are of a very special nature, a positive

answer would yield an inclusion of the set of such values into a rather small

set, which is then seen to contradict a form of Grothendieck’s period conjecture.

A priori, there is no lack of examples of E-functions beyond those coming from

hypergeometric functions. Given an algebraic variety X over Q together with

a regular function f : X → A1, one looks at exponential period functions

P (z) =

∫
γ

e−zfω

in the complex variable z, where ω is an algebraic differential form on X and

γ is a topological cycle on a compactification of X(C) that goes to infinity

only in the directions where the real part of f is positive, to ensure that the
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A NON-HYPERGEOMETRIC E-FUNCTION 905

integral converges on a half-plane. Such functions are expected to be com-

plex linear combinations of functions of the form za log(z)bE(z), with a ∈ Q,

b ∈ Z>0, and E an E-function, and one might even speculate, in the spirit of

the Bombieri–Dwork conjecture, that all E-functions arise from geometry in

this manner. The one given in the following theorem was produced by taking

the polynomial f(x) = x4 − x2 + x, viewed as a regular function on X = A1,

the differential form ω = dx, and the real line as γ.

Theorem. The answer to Siegel ’s question is negative. For example,

∞∑
n=0

Åb2n/3c∑
m=0

(1
4)n−m

(2n− 3m)!(2m)!

ã
zn

is an E-function that is transcendental over the Q[z]-algebra generated by

hypergeometric E-functions.

Let us outline the main ideas of the proof. Every E-function is annihilated

by a special type of differential operator called E-operator. For hypergeometric

E-functions, such an operator can be obtained by appropriately modifying a

classical hypergeometric differential equation. Let us write E for the differential

C-algebra generated by all solutions of E-operators and H for the subalgebra

generated by all solutions of hypergeometric E-operators. Our goal is to show

that the inclusion H ⊆ E is strict and, more precisely, that the above function

belongs to E but not to H. As a first step, we reformulate this inclusion of

algebras in terms of an inclusion of certain categories of D-modules on Gm,

namely, the categories H and E of those having a basis of solutions in the

differential algebras H and E respectively. By André’s fundamental results on

E-operators [2], these are tannakian subcategories of the category of vector

bundles with connection on Gm, and every E-function is a solution of some

module in E. Our updated goal is then to show that the inclusion of categories

H ⊆ E is not an equivalence and that the given power series is a solution of

some object of E but not of any object of H.

Given a DGm-module M in E, we can pushforward it via the inclusion

j : Gm → A1 and then take its Fourier transform. It turns out that the so

obtained DA1-module A = FT(j∗M) is regular singular at each of its finitely

many singularities, including infinity, and has vanishing de Rham cohomology.

Such D-modules form a tannakian category, the role of tensor product being

played by additive convolution, and the tannakian Galois group of A is isomor-

phic to the differential Galois group of M . The key observation at this stage is

that, if M belongs to H, the singularities of A tend to form a rather particular

configuration. For instance, if M is the module associated with the differential

equation for a hypergeometric E-function of type (p, q), then A has dimension

q and its non-zero singularities lie on a regular (q − p)-gon. If, moreover, M is
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906 JAVIER FRESÁN and PETER JOSSEN

simple, its Galois group is well understood by a theorem of Katz [20]. Com-

bining this result with some tannakian shenanigans, we reach the conclusion

that if M is a three-dimensional object of H whose Galois group contains SL3,

then the singularities of A are either collinear or form an equilateral triangle.

With these preparations in place, we construct a rich family of objects

of E by considering the DGm-module M that is naturally associated with the

parameter integral

P (z) =

∫
R
e−zf(x)dx,

where f is a monic polynomial of degree four with algebraic coefficients. The

function P satisfies a differential equation of order three, so M has rank three.

A computation reveals that A = FT(j∗M) is the DA1-module whose solutions

are the algebraic functions u(z) satisfying the equation f(u(z)) = z, from which

it follows that M belongs to E and that the singularities of A are the critical

values of f . For most choices of the polynomial f (in particular, we can verify

this for f(x) = x4−x2+x), the module M is simple with Galois group GL3 and

the three singularities of A are neither collinear nor do they form an equilateral

triangle. We conclude that M does not belong to H and that every non-zero

solution of M (in particular, the function P ) is transcendental over H. It is

then not hard to check that the same holds for the E-functions E0 and E2

uniquely determined by the monodromy decomposition

P (z) =

∫
R
e−z(x

4−x2+x)dx = 1
2Γ
(

1
4

)
z−1/4E0(z) + 1

2Γ
(
−1

4

)
z1/4E2(z).

Indeed, since z−1/4 and z1/4 are linearly independent over the field of Laurent

series, any differential operator with polynomial coefficients that annihilates

P must also annihilate z−1/4E0(z) and z1/4E2(z), and if those functions are

transcendental over H, then so are E0 and E2. The function E0 is the one

given in the theorem. Although our method provides a host of examples of

non-hypergeometric E-functions, we do not yet fully understand their struc-

ture. In particular, finding a set of necessary and sufficient conditions for a

three-dimensional simple object of E to belong to H remains an open question.

Acknowledgements. Our interest in Siegel’s question was aroused by

Rivoal’s survey [23] and his joint work with Fischler; it is our pleasure to

thank them both for inspiration and useful discussions. Many thanks as well

to Erik Panzer for explaining to us how to perform the computations of Sec-

tion 5.4, and to Boris Adamczewski, Yves André, Daniel Bertrand, Thomas

Preu, and the anonymous referees for their comments on previous versions.
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A NON-HYPERGEOMETRIC E-FUNCTION 907

1. On E-functions and their differential equations

In this section, we recall the notions of E-function and G-series, as well

as some theorems concerning the differential equations they satisfy, due to

André, Chudnovsky, and Katz. Throughout, Q denotes the algebraic closure

of Q in C.

1.1. As outlined in the introduction, we will deal with differential algebras

generated by solutions of various classes of differential operators. All these

algebras will be contained in the differential algebra of convergent Laurent

series with monodromy

M = C{{z}}[(za)a∈C, log(z)],

which is an integral domain and contains an algebraic closure of the field C(z)

of rational functions. Its elements can be written as

f(z) =
n∑
i=1

zai log(z)biFi(z),

where the Fi are Laurent series with positive radius of convergence, ai ∈ C,

and bi ∈ Z>0. This representation is unique if one further imposes the con-

straint 0 6 Re(ai) < 1. We can interpret f as a holomorphic function on a

sector {z ∈ C | Re(z) > 0 and |z| < r} for some small r > 0.

By a differential operator we generally understand an element of the Weyl

algebra Q[z, ∂] or occasionally of Q(z)[∂]. Fuchs’s criterion and Frobenius’s

method show that a differential operator L ∈ Q(z)[∂] has a regular singularity

at z = 0 if and only if L admits a basis of solutions inM. Given a non-constant

rational function h ∈ Q(z), we write

[h]∗ : Q(z)[∂]→ Q(z)[∂]

for the ring homomorphism determined by [h]∗(z) = h(z) and [h]∗(∂) = 1
h′(z)∂.

If L ∈ Q(z)[∂] is regular singular at 0 and h(0) = 0, then [h]∗L is again regular

singular at 0, and the solutions of [h]∗L are all of the form f ◦ h for a solution

f of L. Note that a determination of the logarithm needs to be chosen in order

to interpret f ◦ h as a Laurent series with monodromy.

We call Fourier transform for differential operators the Q-linear ring au-

tomorphism

(1.1.1) FT: Q[z, ∂]→ Q[z, ∂]

determined by FT(z) = −∂ and FT(∂) = z, and adjunction the Q-linear map

(−)∗ : Q[z, ∂]→ Q[z, ∂]
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908 JAVIER FRESÁN and PETER JOSSEN

defined on monomials by (zn∂m)∗ = (−∂)mzn. The latter is an involution,

in the sense that the equalities (L∗)∗ = L and (L1L2)∗ = L∗2L
∗
1 hold for all

differential operators L,L1, L2.

Definition 1.2. An E-function E(z), respectively a G-series G(z), is a

formal power series with algebraic coefficients of the form

E(z) =
∞∑
n=0

an
n!
zn, respectively G(z) =

∞∑
n=0

anz
n,

that is annihilated by some non-zero differential operator L ∈ Q[z, ∂], and

whose coefficients an satisfy the following growth condition: letting dn > 1

denote, for each n > 0, the smallest integer such that dna0, . . . , dnan are al-

gebraic integers, there exists a real number C > 0 such that the inequalities

|σ(an)| 6 Cn and dn 6 Cn hold1 for all n > 1 and all σ ∈ Gal(Q/Q).

1.3. Setting all coefficients an equal to 1 yields the exponential series

as an example of an E-function and the geometric series as an example of a

G-series, thus the names. According to a theorem of Eisenstein [11], if a power

series
∑
anz

n ∈ Q[[z]] is algebraic over Q(z), then there exists an integer d > 1

such that dnan is an algebraic integer for all n > 1; since such series also have

a positive radius of convergence and satisfy a differential equation, they are

examples of G-series. The set of E-functions contains the ring of polynomials

Q[z] and is stable under sums, products, and derivation, so E-functions form

a differential subalgebra of Q[[z]]. The existence of a non-trivial differential

equation annihilating the series E(z) implies that the coefficients an generate

a finite field extension of Q, a fact that can be used to show that any E-function

is a Q-linear combination of E-functions with rational coefficients; the same is

true for G-series as well. It follows from the growth condition on the coefficients

and their denominators that E-functions have infinite radius of convergence,

so they can be interpreted as entire functions, whereas G-series have a posi-

tive but finite radius of convergence unless they are polynomials. In fact, the

intersection of E-functions and G-series is the ring of polynomials with alge-

braic coefficients. If G(z) is a G-series and h(z) ∈ Q(z) is a rational function

with h(0) = 0, then the composite G(h(z)) is again a G-series. In contrast, if

E(z) is an E-function, then so is E(λz) for λ ∈ Q, but not E(zn) for n > 2

unless E is a polynomial.

1In Siegel’s original definition of E-functions [26, p. 223], the coefficients and their denom-

inators are required to grow at most as (n!)ε for any ε > 0. In the presence of a differential

equation, this condition is believed to be equivalent to the more restrictive one from Defi-

nition 1.2, but this is still unknown. At any rate, our example also answers in the negative

Siegel’s question for his a priori larger class of E-functions.
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A NON-HYPERGEOMETRIC E-FUNCTION 909

1.4. Following André [2], we consider the differential subalgebras E and

G of M consisting of those functions

(1.4.1) f(z) =
n∑
i=1

ciz
ai log(z)biFi(z)

with rational exponents ai ∈ Q, integers bi > 0, complex coefficients ci, and

where the Fi are E-functions and G-series respectively. In [2], elements of E
are called holonomic arithmetic Nilsson–Gevrey series of order −1, the word

order referring to the power (n!)−1 in the definition of E-functions; accord-

ingly, elements of G are called holonomic arithmetic Nilsson–Gevrey series of

order 0. Algebraic functions over Q(z) can be viewed as elements of G, in the

sense that every convergent Laurent series with monodromy that is algebraic

over Q(z) belongs to G. Lemma 1.5 below shows that any C-linear combina-

tion of E-functions that has algebraic coefficients is itself an E-function, and

similarly for G-series. Hence, the expression (1.4.1) is unique up to the obvious

modifications.

Lemma 1.5. Let K be a subfield of C and V ⊆ K[[z]] a K-linear subspace.

The equality

(C⊗K V ) ∩K[[z]] = V

holds, the intersection taking place in C[[z]].

Proof. The inclusion ⊇ is obvious. Conversely, each f ∈C ⊗K V ⊆ C[[z]]

can be written as

f = λ0f0 +
N∑
n=1

λnfn,

where λ0 = 1, λ1, . . . , λN are K-linearly independent complex numbers, and

f0, . . . , fN are elements of V . Denote by ck and by cnk the coefficients of zk

in f and fn respectively. If we now assume that f lies in K[[z]], we obtain

K-linear relations

0 = λ0(c0k − ck) +
N∑
n=1

λncnk,

from which the equalities c0k = ck and cnk = 0 for n > 1 follow. Hence, f = f0

lies in V . �

Definition 1.6. A differential operator L∈Q(z)[∂] is said to be aG-operator

if L admits a basis of solutions in the algebra G. A differential operator

L ∈ Q[z, ∂] is said to be an E-operator if its Fourier transform FT(L) is a

G-operator.

1.7. We should explain why this definition of G-operators is equivalent to

other definitions found in the literature. First of all, since G contains the field

of rational functions Q(z), an operator L is a G-operator if and only if PLQ

is a G-operator for all non-zero rational functions P,Q ∈ Q(z). In particular,
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910 JAVIER FRESÁN and PETER JOSSEN

we can multiply any G-operator L ∈ Q(z)[∂] with an appropriate polynomial

on the left in order to obtain a G-operator with polynomial coefficients, whose

Fourier transform is then an E-operator. SinceG-series are stable under deriva-

tion, every left or right factor of a G-operator is again a G-operator. From

Fuchs’s criterion, it follows that a G-operator is at most regular singular at

z = 0 with rational exponents, and hence admits at least one non-zero solution

of the form zaf(z) with a ∈ Q and a power series f ∈ Q[[z]] ∩ G, which is then

a G-series by Lemma 1.5.

A commonly used definition, for instance by André [1, IV 5.2, p. 76], is that

L ∈ Q(z)[∂] is a G-operator if it satisfies Galochkin’s condition, or equivalently

Bombieri’s condition

Galochkin : σ(L) <∞ ⇐⇒ Bombieri : ρ(L) <∞.

The size σ(L) ∈ R>0∪{∞} measures the growth in height of the coefficients of

formal solutions of L, whereas the radius ρ(L) ∈ R>0∪{∞} measures the radii

of convergence of p-adic solutions. The equivalence of these two conditions is

a difficult theorem in itself; see [1, IV, Th. 5.2] or [10, VII, Th. 2.1]. If L has

finite size, it admits a basis of solutions in the algebra G by [1, V 6.6, Cor.],

and hence is a G-operator in our sense too.

Conversely, a theorem of Chudnovsky [8, Th. III] says that an operator

of minimal order that annihilates a given non-zero G-series has finite size; see

[10, VIII, Th. 1.5]. In particular, all irreducible G-operators have finite size.

Taking into account that the size of a product of operators is bounded by

the sizes of the factors ([1, IV 4.1, Lem 2 and IV 4.2, Prop.]), it follows that

all G-operators have finite size. Both definitions are therefore equivalent.

Theorem 1.8 (André, Chudnovsky, Katz). G-operators satisfy the fol-

lowing properties :

(1) Every G-series, and more generally, every element of G is annihilated by

a G-operator.

(2) Products and adjoints of G-operators are G-operators, and every left or

right factor of a G-operator is a G-operator.

(3) G-operators have regular singularities on P1, all with rational local expo-

nents.

(4) If L is a G-operator, then so is [h]∗L for any non-constant rational function

h ∈ Q(z).

Proof. Once we know that the various definitions of G-operators are equiv-

alent, statement (1) for G-series is due to Chudnovsky; it extends to all ele-

ments of G since za log(z)b is a solution of a G-operator for a ∈ Q and b ∈ Z>0,

and sums and products of solutions of G-operators are again annihilated by

G-operators [2, Lem. 3.6.1]; see the case s = 0 of André’s purity theorem
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A NON-HYPERGEOMETRIC E-FUNCTION 911

[2, p. 706]. More precisely, any non-zero operator of minimal order annihilat-

ing a given element of G is a G-operator.

Statement (2), but formulated in terms of radii of differential modules, is

[1, IV 3.3, Lem. 2]. To translate from modules to operators, we first notice that

the size of an operator is defined in loc. cit. as the size of the associated module.

With that in mind, it suffices to observe that with any product of operators

L = L1L2 is associated a short exact sequence of differential modules, and that

if the generic fibre of a DA1-module is given by an operator L ∈ Q[z, ∂], then

the generic fibre of its dual is given by the adjoint operator L∗; see [19, 1.5].

Statement (3) relies on Katz’s global nilpotence theorem [10, III, Th. 6.1],

which says that a differential operator with nilpotent p-curvature for almost all

p has regular singularities with rational exponents. To apply it, one first shows

using Bombieri’s condition that the generic radius of convergence of solutions

of a G-operator at a place dividing p is bigger than p−1/(p−1) for almost all p,

and then that this bound implies the nilpotence of p-curvature; see [1, IV 5.3].

As to statement (4), let L be a G-operator and first suppose that the

rational function h satisfies h(0) = 0. The composite of any G-series with h

is again a G-series, and we can interpret log(h(z)) and h(z)a as elements of G.

Hence, if g ∈ G is a non-zero solution of L, then the composite g(h(z)) ∈ G is

a non-zero solution of [h]∗L, so [h]∗L admits indeed a basis of solutions in G.

To conclude, it suffices to show that statement (4) also holds for h(z) = z−1

and h(z) = z−a with a ∈ Q. Since in these cases h is invertible and in view of

statement (2) we can suppose that L is irreducible, this follows from André’s

permanence theorem [2, p. 706]. �

1.9. In the introduction to [10], Dwork et al. define G-operators as those

L ∈ Q(z)[∂] that admit a basis of solutions consisting of G-series around some

algebraic point. In view of statement (4) of Theorem 1.8, this is coherent with

the previous definitions. Besides, the statement for the map h(z) = z−1 can be

rephrased as follows. Pick g ∈ G, and regard g◦h as a holomorphic function on

the half-plane {z ∈ C |Re(z) > C} for some sufficiently large C > 0. Let L be a

G-operator annihilating g, so that [h]∗L annihilates g◦h. The function g◦h can

be analytically continued to any simply connected open subset of C that avoids

the finitely many singularities of [h]∗L. In particular, once we decide how to

circumvent them, we can extend g◦h to a sector {z ∈ C|Re(z) > 0 and |z| < r}
for some sufficiently small r > 0. Statement (4) of Theorem 1.8 implies that

this analytic continuation of g ◦ h belongs to G.

Theorem 1.10 (André). E-operators satisfy the following properties :

(1) Every E-function, and more generally, every element of E , is annihilated

by an E-operator. Conversely, every E-operator admits a basis of solutions

in E .
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912 JAVIER FRESÁN and PETER JOSSEN

(2) Products and adjoints of E-operators are again E-operators.

(3) The non-trivial singularities of an E-operator are contained in {0,∞}, and

0 is at worst a regular singularity, whereas ∞ is in general irregular with

slopes in {0, 1}.

Proof. The first part of statement (1) is [2, Th. 4.2] and the second one

is the case s = −1 of André’s purity theorem [2, Th. 4.3(iii)]. Statement (2)

follows from the analogous one of Theorem 1.8, since Fourier transform is a

ring morphism, which is compatible with adjoints in that the equality

FT(L)∗ = [−z]∗FT(L∗)

holds. Finally, statement (3) is [2, Th. 4.3(i), (ii), (iv)]. Recall that a singularity

of an operator L is said to be trivial whenever L admits a basis of holomorphic

solutions around the point in question. �

1.11. We now explain the relation between the Fourier transform of differ-

ential operators and the Laplace transform. Classically, the Laplace transform

of a suitable holomorphic function f is the complex-valued function L f given

by the integral

(1.11.1) (L f)(z) =

∫ ∞
0

f(w)e−zwdw,

which is assumed to converge on the half-plane Re(z) > C for some large

enough real number C. The inverse Laplace transform of a holomorphic func-

tion g on Re(z) > C is given by

(L −1g)(z) =
1

2πi

∫ C′+i∞

C′−i∞
g(w)ezwdw

for any C ′ > C, again under appropriate convergence conditions. Using in-

tegration by parts and differentiating under the integral sign, we obtain the

relations

L (zf) = −∂L (f) and L (∂f) = zL (f)− f(0),

provided the constant term f(0) = limz→0 f(z) exists. The integral (1.11.1)

converges for functions f ∈ E of the form f(z) = za log(z)bF (z) for some

E-function F =
∑∞

n=0 anz
n/n! and a > −1, with the same constant C as in

Definition 1.2, and is explicitly given by

(L f)(z) = z−a−1
b∑

k=0

Ç
b

k

å
log(z−1)k

∞∑
n=0

anΓ(b−k)(a+ n+ 1)

n!
z−n,

where Γ(m) stands for the m-th derivative of the gamma function. Since the

inner sum in this expression is a C-linear combination of G-series in the variable

z−1, taking the permanence property discussed in 1.9 into account, we may
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A NON-HYPERGEOMETRIC E-FUNCTION 913

regard L as a C-linear map from the subspace of E spanned by functions as

above to G.

1.12. We wish to extend the Laplace transform to a linear map defined

on the whole of E . To do so, we need to define it on the differential ring R ⊆ E
formed by C-linear combinations

h =
n∑
i=1

ciz
ai log(z)bi

with rational ai and non-negative integers bi, in a consistent way with (1.11.1)

whenever the integral converges. For this, we introduce primitives on R by

setting

S(za log(z)b) =


za+1

a+ 1

b∑
k=0

b!

(b− k)!

(−1)k

(a+ 1)k
log(z)b−k if a 6= −1,

log(z)b+1

b+ 1
if a = −1,

and extending S to a linear map S : R → R. We then define a Laplace

transform on R as

(1.12.1)
L : R −→ R

h 7−→ znL (Snh),

where n is any sufficiently large integer. The right-hand side of (1.12.1) is

indeed independent of the choice of n. In [2, 5.3], André gives a slightly different

definition, which agrees with ours up to polynomials. Direct computation

shows that the map L satisfies the relations

L (zh)(z) =−∂L h(z) + P (z),(1.12.2)

L (∂h)(z) = zL h(z)− h(0),(1.12.3)

where P ∈ C[z] is a polynomial depending on h, and h(0) stands for the

coefficient of z0 log(z)0.

1.13. The combination of (1.11.1) and (1.12.1) now yields a C-linear map

L : E → G by z-adic formal completion [2, 5.4]. Namely, each element of E can

be written as a formal sum

f =
∑
a∈Q
b∈Z>0

ca,bz
a log(z)b,
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914 JAVIER FRESÁN and PETER JOSSEN

where ca,b are complex numbers, all zero except for finitely many values of b

and finitely many classes of a modulo Z, and one sets

(1.13.1) L (f) =
∑
a∈Q
b∈Z>0

ca,bL (za log(z)b).

A degree inspection reveals that this map is injective, but not surjective; a

C-linear complement to its image is given by the space of polynomials C[z] ⊆ G,

which is clearly a C[z, ∂]-submodule. It is thus convenient to view the Laplace

transform as a C-linear bijection taking values in

G0 = G/C[z].

As such, our construction of L : E → G0 agrees with André’s. The inverse

of L is described explicitly in [12, 2.2] as a surjective map R∞ : G → E with

kernel C[z]. Another advantage of taking G0 as target of the Laplace transform

is that the polynomial terms in (1.12.2) and (1.12.3) disappear, as summarised

in the following proposition.

Proposition 1.14. The Laplace transform (1.13.1) induces an isomor-

phism of complex vector spaces L : E → G0 satisfying

(1.14.1) L (Lf) = FT(L)L (f)

for every f ∈ E and every differential operator L ∈ C[z, ∂].

1.15. If the equality (1.14.1) were to hold in G rather than G0, then the

Laplace transform of an element of E annihilated by an operator L ∈ Q[z, ∂]

would be a solution in G of the operator FT(L) and vice versa, and we could

have defined E-operators simply as those admitting a basis of solutions in the

algebra E . By some miracle, L and FT(L) would then have the same order.

We can of course not just wish the polynomial correction terms away. An

example of an operator that admits a basis of solutions in E without being

an E-operator is given in [2, Rem., p. 721]. The operator L = (z − 1)∂ − z
admits the E-function E(z) = (z − 1)ez as a basis of solutions, but its Fourier

transform

FT(L) = (1− z)∂ − (z + 1)

is not a G-operator since it has an irregular singularity at infinity. A solution

of FT(L) is given by the function (z− 1)−2e−z, which is clearly not a G-series.

The Laplace transform of E(z) is the G-series G(z) = (2− z)(z − 1)−2, which

is however not a solution of FT(L). The reason for this annoying behavior can

be traced back to the constant term h(0) in (1.12.3). The Fourier transform of

zL = (z−1)z∂−z2 annihilates that constant, and hence also the G-series G(z),

but it annihilates (z − 1)−2e−z as well, so zL is still not an E-operator.
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A NON-HYPERGEOMETRIC E-FUNCTION 915

2. Differential modules associated with E-operators

In this section, we recast the previous results about differential operators

in terms of differential modules, and mitigate the problems raised in 1.15. To

this end, we introduce following Katz [20] two Q-linear tannakian categories

Conn0(Gm) and RS0(A1) that are equivalent via Fourier transform. The

former contains a category E of DGm-modules associated with E-functions,

and the latter a category G0 of DA1-modules associated with G-series. These

categories also play an important role in the study of exponential motives [14].

2.1. All D-modules will be defined over the affine line A1 = SpecQ[z]

or the multiplicative group Gm = SpecQ[z, z−1]. They are thus differential

modules over the ring Q[z] or Q[z, z−1], or in other words, left modules for one

of the Weyl algebras

(2.1.1) DA1 = Q[z, ∂] ⊆ DGm = Q[z, z−1, ∂].

We will tacitly suppose that D-modules are finitely generated holonomic left

D-modules. We call a D-module simple if it has no submodules other than

itself and the trivial module. Associated with the inclusion j : Gm ↪→ A1, there

is a pair of adjoint functors

j∗ : DGm-Mod→ DA1-Mod and j∗ : DA1-Mod→ DGm-Mod,

where j∗ is the transport of structure via the inclusion (2.1.1), and j∗ is the

localization in z. The generic fibre of a D-module M is the Q(z)[∂]-module

Q(z) ⊗Q[z] M , on which the action of ∂ on M is extended through Leibniz’s

rule, and its rank is the dimension of the generic fibre as a Q(z)-vector space.

The Fourier transform of a DA1-module M is the DA1-module FT(M) with the

same underlying vector space M , on which DA1 acts via the ring automorphism

(1.1.1). Given a differential operator L, the identity map on DA1 induces a

canonical isomorphism

(2.1.2) FT(DA1/DA1L) ∼= DA1/DA1FT(L).

2.2. Let A be a differential Q(z)-algebra with field of constants K. As-

sume A is an integral domain. A solution of a differential module M in A is a

morphism of differential modules s : M → A. If M is of the form M = D/DL
for some operator L, solutions of M correspond to solutions of the differential

equation Ly = 0 by evaluating at the class of 1. The set HomD(M,A) of

solutions of M in A is a K-vector space of dimension at most the rank of M ,

and we say that M admits a basis of solutions in A if the equality

dimK HomD(M,A) = rank(M)

holds. If that is the case, we may choose a Q(z)-basis m1, . . . ,mn of the

generic fibre of M and a K-basis s1, . . . , sn of the space of solutions, and form
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916 JAVIER FRESÁN and PETER JOSSEN

the square matrix

F = (si(mj))16i,j6n,

which is called a fundamental matrix of solutions of M . The determinant of F

is non-zero, and the subalgebra of the fraction field of A spanned by the entries

of F and det(F )−1 is a Picard-Vessiot extension for M ; its automorphisms

are the K-points of the differential Galois group of M ; see [22, 1.4]. Given

D-modules M1 and M2, solutions of their sum and tensor product can be

understood in terms of solutions of M1 and M2. For instance, the map

(2.2.1) HomD(M1,A)⊗K HomD(M2,A)→ HomD(M1 ⊗M2,A)

that sends s1 ⊗ s2 to m1 ⊗m2 7−→ s1(m1)s2(m2) is well defined and injective;

if M1 and M2 admit a basis of solutions in A, then this map is bijective by

dimension count, and thus M1 ⊗M2 also admits a basis of solutions in A.

Proposition 2.3 (Katz). Let M be a DGm-module such that FT(j∗M)

has regular singularities, including at infinity. Then M is non-singular on Gm,

and FT(j∗M) has vanishing de Rham cohomology. Moreover, M and FT(j∗M)

have the same rank.

Proof. It follows from [20, Rem. 12.3.2] that M is non-singular on Gm.

Alternatively, one can show by direct computation that if L ∈ Q[z, ∂] is regular

singular, then the only singularities of FT(L) are 0 and∞; one can deduce the

first statement from that. The de Rham cohomology of FT(j∗M) is computed

by the complex ∂ : FT(j∗M)→ FT(j∗M), but since z acts bijectively on j∗M ,

so does ∂ on FT(j∗M), hence the second statement. Finally, the statement

about ranks is [20, Prop. 12.4.4]. �

2.4. After Katz [20, 12.4], consider the category RS(A1) of regular sin-

gular DA1-modules and the full subcategory RS0(A1) of those with vanishing

de Rham cohomology. We write Conn(Gm) for the category of non-singular

DGm-modules, and Conn0(Gm) for the full subcategory consisting of those

modules M such that FT(j∗M) is regular singular. According to Proposi-

tion 2.3, the functors

Conn0(Gm) −→ RS0(A1) RS0(A1) −→ Conn0(Gm)

M 7−→ FT(j∗M) A 7−→ j∗FT−1(A)

are mutually inverse equivalences of categories. As non-singular DGm-modules

can be identified with vector bundles with connection on Gm, the category

Conn(Gm) with the usual tensor product structure is a Q-linear neutral tan-

nakian category; a fibre functor is provided by sending a vector bundle with

connection to the fibre at 1 of the underlying vector bundle. The subcategory

Conn0(Gm) consists of objects that are regular singular at 0 and whose slopes

at ∞ lie in {0, 1}. It is stable under tensor products, duals, and extraction of
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A NON-HYPERGEOMETRIC E-FUNCTION 917

subquotients, and hence a tannakian subcategory as shown in [20, Th. 12.3.6].

The above equivalences of categories exchange the tensor product of vector

bundles with connection and the additive convolution, defined as

A ∗B = sum∗(pr∗1A⊗ pr∗2B)

for objects A and B of RS0(A1), where sum, pr1, pr2 : A2 → A1 stand for

summation and projections. The category RS0(A1) is thus tannakian with

respect to additive convolution.

Example 2.5. Given an algebraic number s ∈ Q, we set

E(s) = DGm/DGmz(∂ − s).

Since solutions of ∂ − s are scalar multiples of the exponential function esz,

the rank-one DGm-module E(s) is non-singular at 0 and has an irregular sin-

gularity at ∞ unless s = 0, in which case E(0) is equal to OGm . The Fourier

transform FT(j∗E(s)) is the DA1-module DA1/DA1∂(z − s), which has rank

one and regular singularities at ∞ and s; solutions are scalar multiples of the

meromorphic function (z − s)−1. There is a canonical isomorphism

(2.5.1) E(s1)⊗ E(s2) = E(s1 + s2)

for all s1, s2 ∈ Q. For any additive subgroup Λ ⊆ Q, the family {E(s)}s∈Λ

of objects of Conn0(Gm) hence additively generates a tannakian subcategory,

which is equivalent to the category of Λ-graded vector spaces. Twisting mod-

ules by E(s) corresponds via Fourier transform to translation by s, in the sense

that there is a natural isomorphism

(2.5.2) FT(j∗(M ⊗ E(s))) = [z − s]∗FT(j∗M)

for every object M of Conn0(Gm).

Another family of one-dimensional objects of Conn0(Gm) is given by the

Kummer modules

K(a) = DGm/DGm(z∂ − a)

for a ∈ Q. Solutions of z∂ − a are scalar multiples of za, and K(a) is isomor-

phic to K(a + 1) through multiplication by z. The module K(a) has regular

singularities at 0 and ∞, and its Fourier transform is given by

FT(j∗K(a)) = DA1/DA1(z∂ + a).

In fact, every one-dimensional object of Conn0(Gm) is isomorphic to E(s) ⊗
K(a) for some unique s ∈ Q and a ∈ Q/Z. This follows from the fact that

giving a connection on a rank-one vector bundle on Gm amounts to giving a

differential form ω ∈ Q[z, z−1]dz and that having a regular singularity at 0 and

slopes in {0, 1} at ∞ implies that ω is of the form adz/z + sdz.
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918 JAVIER FRESÁN and PETER JOSSEN

2.6. As this will become important later, we now show a remarkable

property of the tannakian category Conn0(Gm), namely, the existence of a

monoidal functor

(2.6.1) Ψ: Conn0(Gm) −→ {Q-graded vector spaces}

that yields a fibre functor after forgetting the grading. To construct it, we start

by localising at infinity. Let M be an object of Conn0(Gm), and define M∞
as the Q((w))-differential module

M∞ = Q((w))⊗Q[z] M,

where the algebra structure Q[z] → Q((w)) is given by sending z to w−1. By

[19, Prop. 2.3.4], there is a natural decomposition ofM∞ into a regular singular

part and a complementary part of slope 1. We obtain from this decomposition

a natural morphism

(2.6.2)
⊕
s∈Q

M (s)
∞ ⊗ E(s)∞ −→M∞,

where M
(s)
∞ denotes the regular singular part of (M ⊗ E(−s))∞. Before we

continue with the construction of the functor Ψ, we verify the following:

Lemma 2.7. The natural morphism of differential Q((w))-modules (2.6.2)

is an isomorphism, which is compatible with tensor products and duals.

Proof. In order to check that (2.6.2) is an isomorphism, it suffices to show

that for every irreducible differential Q((w))-module M of slope 0 or 1, there

exists a unique s ∈ Q such that M ⊗ E(−s)∞ is of slope 0. The existence

of such an s implies surjectivity, and injectivity follows from its uniqueness.

Compatibility with tensor products and duals is obvious from (2.5.1) and the

fact that E(s) has slope 0 if and only if s = 0. Thus, let M be an irreducible

Q((w))-module of slope 0 or 1. The Levelt–Turrittin decomposition [19, 2.2]

shows that M has rank one and is given by a differential operator L = w∂w−f
with

f(w) =
t

w
+ a+ wh(w)

for some t, a ∈ Q and h ∈ Q[[w]]. By definition, the slope of M is equal to

max(−ordw(f), 0), so M is of slope 0 if and only if t = 0. A non-zero solution

of L is given by e−t/w ·wa ·H(w), where H is the exponential of a primitive of h,

whereas a non-zero solution of E(−s)∞ is given by the function e−sz = e−s/w.

A non-zero solution of M ⊗ E(−s)∞ is hence e−(s+t)/w · wa · H(w), and our

claim follows on noting that this function belongs to the algebra of convergent

Laurent series with monodromy in the variable w if and only if s = −t. �
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A NON-HYPERGEOMETRIC E-FUNCTION 919

2.8. We now have obtained a natural decomposition of M∞, compati-

ble with tensor products and duals. Besides, the category of regular singu-

lar Q((w))-differential modules is equivalent, as a tannakian category, to the

category of Q-vector spaces equipped with an automorphism. Choose a fiber

functor ω on it, and then set

(2.8.1) Ψs(M) = ω
(
M (s)
∞
)

and Ψ(M) =
⊕
s∈Q

Ψs(M).

By forgetting the grading, Ψ yields a fibre functor on Conn0(Gm). A re-

markable consequence of this is that the Galois group of every object M with

respect to Ψ canonically contains the torus with character group the subgroup

of Q generated by those s ∈ Q with Ψs(M) 6= 0.

We write Z[Q] for the group ring of the additive group Q, that is, the

free Z-module generated by symbols [s], one for each s ∈ Q, together with the

multiplication uniquely determined by distributivity and [s1] ∗ [s2] = [s1 + s2]

for all s1, s2 ∈ Q. We define group homomorphisms called degree, inversion,

and evaluation on generators as follows:

deg : Z[Q] −→ Z, inv : Z[Q] −→ Z[Q], ev : Z[Q] −→ Q.
[s] 7−→ 1 [s] 7−→ [−s] [s] 7−→ s

Note that the degree and the inversion maps are ring homomorphisms as well.

We call

div(M) =
∑
s∈Q

dim(Ψs(M))[s]

the divisor of the object M of Conn0(Gm). Since Ψ is a fibre functor, and

hence preserves dimensions, the equality dimM = deg(divM) holds. Exact-

ness and compatibility with tensor products of Ψ implies the relations

div(M) = div(M1) + div(M2) and div(M1 ⊗M2) = div(M1) ∗ div(M2)

for every short exact sequence 0→M1 →M →M2 → 0 and all objectsM1 and

M2 of Conn0(Gm) respectively. The compatibility of Ψ with duals amounts to

div(M∨) = inv(div(M)), and the relation div(det(M)) = [ev(div(M))] holds.

We can express the divisor of an object of Conn0(Gm) in terms of its

Fourier transform as follows. Given an object A of RS(A1), let Φz−s(A) denote

the vector space of vanishing cycles of A with respect to the function z − s. If

A is torsion free, this is the space of solutions of [z − s]∗A in M modulo the

space of holomorphic solutions. We set

sing(A) =
∑
s∈Q

dim(Φz−s(A))[s].
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920 JAVIER FRESÁN and PETER JOSSEN

If A is of the form FT(j∗M) for some object M of Conn0(Gm), then the

dimension of the regular singular part of M∞ equals the dimension of Φz−0(A)

by [20, Cor. 2.11.7], and hence the equality

(2.8.2) sing(A) = div(M)

follows from (2.5.2). We can combine the functors Φz−s to form a total van-

ishing cycles functor Φ from RS0(A1) to Q-graded vector spaces. As one

might guess, there exist natural isomorphisms Φ(A ∗ B) ∼= Φ(A) ⊗ Φ(B) and

Φ(A∨) = Φ(A)∨, which may be interpreted as some type of global Thom-

Sebastiani isomorphism. We found it harder than expected to write down such

isomorphisms and verify their compatibility with associativity and commuta-

tivity constraints. Fortunately, the numerical identity (2.8.2) is all we need.

Definition 2.9. A DA1-module M is said to be of type G if its generic fibre

is of the form Q(z)[∂]/Q(z)[∂]L for some G-operator L. A DGm-module M is

said to be of type E if its Fourier transform FT(j∗M) is of type G. We write

G ⊆ RS(A1) and E ⊆ Conn0(Gm)

for the full subcategories of DA1-modules of type G and DGm-modules of type E

respectively, and G0 ⊆ G for the full subcategory consisting of those modules

with vanishing cohomology.

2.10. The definition of DA1-modules of type G is due to André [2, 3.6].

In the same paper, modules of type E are defined on A1 as those whose Fourier

transform is of type G; see [2, 4.9]. Our definition and his are compatible in

that the functors j∗ and j∗ preserve D-modules of type E. Indeed, this is

obviously true for j∗, and it follows from Theorem 2.12 below for j∗. There

are, however, many DA1-modules of type E that are not of the form j∗M . We

prefer to work with modules on Gm in order to ensure that the equivalent

characterizations of being of type E from Proposition 2.13 below hold.

Example 2.11. The exponential modules E(s) for s ∈ Q and the Kummer

modules K(a) for a ∈ Q belong to E and have divisors

div(E(s)) = [s] and div(K(a)) = [0].

To give a more interesting example, let f ∈ Q[t] be a polynomial of degree

n > 2, which we regard as a morphism A1 → A1. The D-module f∗OA1

is the Q[z]-module Q[z, u]/(f(u) − z), equipped with the unique derivation

extending ∂ on Q[z]. As a Q[z]-module, it is free of rank n, a basis being

given by the classes of 1, u, u2, . . . , un−1. A basis of solutions of f∗OA1 is

given by the set of Q[z]-algebra morphisms Q[z, u]/(f(u) − z) → G sending

u to an algebraic function u(z) satisfying f(u(z)) = z, which indeed can be

found in G since f has algebraic coefficients. The module f∗OA1 is thus of
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A NON-HYPERGEOMETRIC E-FUNCTION 921

type G. The adjunction map OA1 → f∗OA1 sends 1 to the class of 1 and

induces an isomorphism in cohomology, so A = (f∗OA1)/OA1 belongs to G0,

and M = j∗FT−1(A) belongs to E. Moreover, we can retrieve A from M by

means of the isomorphism A ∼= FT(j∗M). The divisor of M is given by the

critical values of f , namely,

div(M) = sing(A) =
∑

f ′(α)=0

[f(α)],

where the sum runs over all zeroes α of f ′, counted with multiplicity.

Theorem 2.12 (André). Modules of type G satisfy the following :

(1) A DA1-module is of type G if and only if it admits a basis of solutions in G.

(2) The class of modules of type G is stable under extensions, tensor product,

and duals, and every submodule and quotient of a module of type G is

again of type G.

Proof. By Theorem 1.8, G-operators are regular singular, thus the inclu-

sion G ⊆ RS(A1). Since the generic fibre of a DA1-module A is isomorphic to

Q(z)[∂]/Q(z)[∂]L for some operator L, the module A admits a basis of solu-

tions in G if and only if the operator L does, so statement (1) follows directly

from the definitions.

That modules of type G are stable under extensions, extraction of sub-

quotients, and duality is shown in [1, IV 3, Lem. 2]. Were it not a circular ar-

gument, we could of course deduce this from statement (2) of Theorem 1.8 and

the observation that any short exact sequence of Q(z)[∂]-modules is isomor-

phic to an exact sequence associated with a product of differential operators.

It remains to show that if A1 and A2 are of type G, then so is A1 ⊗ A2. This

follows from (1) and the general fact that solutions of A1⊗A2 can be expressed

in terms of products of solutions of A1 and A2, as shown in (2.2.1). �

Proposition 2.13. Let M be a DGm-module. The following statements

are equivalent :

(1) The module M is of type E; i.e., the module A = FT(j∗M) is of type G.

(2) The module M belongs to Conn0(Gm) and admits a basis of solutions in E .

(3) There exists an E-operator L ∈ Q[z, ∂] such that M is isomorphic to

DGm/DGmL.

Proof. (1) ⇐⇒ (2) Let M be a DGm-module, and set A = FT(j∗M). To

say that M is of type E is to say that A admits a basis of solutions in G. Since

modules of type G are regular singular, taking Proposition 2.3 into account, all

that remains to prove is that M admits a basis of solutions in E if and only if

A admits a basis of solutions in G. To do so, we will use the Laplace transform

L : E → G0 as described in Proposition 1.14. The vector space underlying A

This content downloaded from 
������������129.104.78.146 on Sun, 07 Nov 2021 15:58:10 UTC������������� 

All use subject to https://about.jstor.org/terms



922 JAVIER FRESÁN and PETER JOSSEN

is the same as that of M , and we write a = “m ∈ A for the clone of m ∈ M .

For every L ∈ Q[z, ∂], the identity L̂m = FT(L)“m holds by definition. By

requiring the diagram

M E

A G0

��“− //s

�� L
//t

∂̂m = −z“m, L (∂f) = −zL (f),”zm = −∂“m, L (zf) = −∂L (f)

to commute, every Q[z, ∂]-linear map s : M → E determines a Q[z, ∂]-linear

map t : A→ G0 and vice versa. Since the operator ∂ acts bijectively on A and

nilpotently on C[z], the vanishing HomD(A,C[z]) = Ext1
D(A,C[z]) = 0 holds.

Hence, the exact sequence

0→ HomD(A,C[z])→ HomD(A,G)
∼=−→ HomD(A,G0)→ Ext1

D(A,C[z])→ · · ·

degenerates to an isomorphism as indicated and we obtain a linear bijection

HomD(M, E) ∼= HomD(A,G).

The modules A and M have the same rank by Proposition 2.3, hence A admits

a basis of solutions in G if and only if M admits a basis of solutions in E.
(1) =⇒ (3): Being non-singular on Gm, the module M is isomorphic to

DGm/DGmL for some operator L ∈ Q[z, ∂]. We claim that L is an E-operator.

Indeed, letting δ0 = DA1/DA1z denote the Dirac module supported at 0, there

is an exact sequence of DA1-modules

0→ δa0 → DA1/DA1L→ j∗M → δb0 → 0

for some integers a, b > 0, which after Fourier transform yields an exact se-

quence

0→ OaA1 → DA1/DA1FT(L)→ A→ ObA1 → 0.

By assumption, A is of type G, as well as OA1 , and hence DA1/DA1FT(L) is of

type G by part (2) of Theorem 2.12. This means that FT(L) is a G-operator,

and thus L an E-operator.

(3) =⇒ (2): Given an E-operator L ∈ Q[z, ∂], set M = DGm/DGmL

and M0 = DA1/DA1L, so that M = j∗M0. By Theorem 1.10, the operator

L, and hence the module M , admits a basis of solutions in E . It remains to

check that FT(j∗M) is regular singular. By assumption, the module FT(M0)

is of type G, and hence regular singular. The kernel and the cokernel of the

adjunction map M0 → j∗M are torsion modules supported at 0, and hence

the kernel and the cokernel of FT(M0)→ FT(j∗M) are powers of OA1 . Since

submodules, quotients, and extensions of regular singular modules are regular

singular, FT(j∗M) is regular singular. �
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A NON-HYPERGEOMETRIC E-FUNCTION 923

Theorem 2.14. The category E is an abelian subcategory of Conn0(Gm),

which is stable under extensions, tensor product, duality, and extraction of

subquotients. In other words, it is a tannakian subcategory.

Proof. Stability of E ⊆ Conn0(Gm) under extensions and extraction of

subquotients follows from the corresponding statements for the category G,

which we deduce from Theorem 2.12. The characterization (2) in Proposi-

tion 2.13 combined with (2.2.1) shows that modules of type E are stable under

tensor product. Finally, stability of E under duality follows from Theorem 2.12

and compatibility of the Fourier transform with duals, in the sense that

M∨ = j∗FT−1([−z]∗A∨)

holds for every object M = j∗FT−1(A) of Conn0(Gm). �

Corollary 2.15. The category G0 is stable under additive convolution.

Proof. The equivalence of categories FT(j∗−) : E→ G0 carries the tensor

product in E to additive convolution in G0. �

3. Hypergeometric E-functions and their associated D-modules

In this section, we introduce a category of DGm-modules H ⊆ E whose

solutions contain all polynomial expressions in hypergeometric E-functions.

Due to the historic nature of the subject, several competing conventions for

hypergeometric functions and their differential equations can be found in the

literature. To avoid confusion, we start by briefly reviewing them.

3.1. Throughout, we adopt the notation ϑ = z∂. For each integer n > 0,

the n-th rising Pochhammer symbol of a complex number x is defined as

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1),

with the convention (x)0 = 1. Given integers 0 6 p 6 q and rational numbers

a1, . . . , ap ∈ Q and b1, . . . , bq ∈ Q \ Z60, we call the formal power series

(3.1.1) F

Å
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ zã =
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

a hypergeometric function of type (p, q). The function classically denoted by

pFq−1 corresponds to the case where the last parameter bq is equal to 1, and

hence an n! appears in the denominator. The radius of convergence of this

series is equal to 1 if p = q, and infinite if p < q. Given non-zero polynomials

P,Q ∈ Q[t] with rational roots of degrees p and q and leading coefficients λP
and λQ respectively, we call

(3.1.2) Hyp(P,Q) = Q(ϑ)− zP (ϑ)
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924 JAVIER FRESÁN and PETER JOSSEN

a hypergeometric differential operator of type2 (p, q). The condition p 6 q

implies that the operator Hyp(P,Q) has order q. Its singularities are {0,∞} if

p < q, and {0, λQ/λP ,∞} if p = q. In both cases, z = 0 is a regular singularity

with indicial polynomial Q, and hence every hypergeometric differential oper-

ator as above admits a basis of solutions in the differential algebra M. The

adjoint of a hypergeometric operator is again hypergeometric, as it is given by

the formula (see [20, (3.1)])

(3.1.3) Hyp(P (t), Q(t))∗ = Hyp(P (−2− t), Q(−1− t)).

3.2. Let L = Hyp(P,Q) be a hypergeometric operator of type (p, q). For

the sake of completeness, we recall how to produce a basis of solutions of the

equation Lu = 0 using Frobenius’s method; see, for example, [18, Ch. 16]. The

procedure starts with an expression

(3.2.1) w(z, t) = zt ·
∞∑
n=0

cn(t)zn,

where t is an auxiliary complex parameter and cn a rational function of t.

While c0(t) is left undetermined for the time being, we set

cn(t) =
P (t+ n− 1)

Q(t+ n)
cn−1(t) = c0(t)

n−1∏
k=0

P (t+ k)

Q(t+ k + 1)

for each n > 1. With this definition, applying L to w yields

Lw(z, t) = zt ·
∞∑
n=0

cn(t)
(
Q(t+ n)− zP (t+ n)

)
zn = zt · c0(t)Q(t).

Thus, if β is a root of the indicial polynomial Q satisfying Q(β + n) 6= 0 for

all integers n > 1, then we can set c0(t) = 1, specialise t = β, and obtain the

solution

(3.2.2) zβ · F
Å

β − α1, . . . , β − αp
β − β1 + 1, . . . , β − βq + 1

∣∣∣∣ λzã,
where P (t) = λP (t − α1) · · · (t − αp) and Q(t) = λQ(t − β1) · · · (t − βq) and

λ = λP /λQ. In the non-resonant case, that means if the roots of Q are

simple and distinct modulo Z, a basis of solutions of L is obtained this way.

In general, we organise the roots of Q, always counted with multiplicity, into

congruence classes modulo Z. After ordering the r+ 1 roots in a chosen class,

say β0, β1, . . . , βr, so that Re(βr) 6 · · · 6 Re(β0) holds, we set d = β0−βr and

c0(t) = Q(t+ 1)Q(t+ 2) · · ·Q(t+ d).

2Note that the roles of P and Q seem to be reversed with respect to Katz’s notation

in [20, Ch. 3]. Behind this reversal is the change of variables z 7−→ z−1, which transforms

Hyp(P (t), Q(t)) into −z−1Hyp(Q(−t), P (−t)) and ensures that the irregular singularity is at

infinity if p < q.
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A NON-HYPERGEOMETRIC E-FUNCTION 925

With this choice of c0, the rational function cn is regular at βk for all n > 0

and r > k > 0. Moreover, βk is a root of c0(t)Q(t) of order > k + 1. It follows

that the functions (
∂kt w(z, t)

)∣∣∣
t=βk

k = 0, 1, 2, . . . , r

are solutions of L. Their linear independence is straightforward to check, since

in the expression

(
∂kt w(z, t)

)∣∣∣
t=βk

=
k∑
j=0

zβk log(z)k−j ·
Ç
k

j

å ∞∑
n=0

c(j)
n (βk)z

n

the term with the highest power of the logarithm is, up to a non-zero scalar,

zβk log(z)kF (λz), where F is the hypergeometric series given in (3.2.2). It is

worth noting that
∞∑
n=0

c(j)
n (βk)z

n

is in general not a hypergeometric series. Its coefficients resemble polynomial

expressions of harmonic numbers in various guises; see [28, (2.1), (2.4), (2.5)].

It is a natural question whether these series are polynomial expressions in hy-

pergeometric functions. For example, for P = −1 and Q = t2/4, the resulting

series
∑∞

n=1

(∑n
m=1

1
m

)
zn

n! is indeed a product of hypergeometric functions as

shown in [13, p. 2]. It seems however doubtful that this is always the case.

Theorem 3.3. Let P,Q ∈ Q[t] be non-zero polynomials with rational

roots. If P and Q have the same degree, then the hypergeometric operator

Hyp(P,Q) is a G-operator.

Proof. This is well known and can be proved in several ways. A first

possibility is to show that Hyp(P,Q) comes from geometry, in the sense that

it is a factor of some Picard-Fuchs differential operator over Q, as is done for

example in [1, I 4.4, p. 31] or [20, Th. 5.4.4]. The theorem then follows from

the fact that those are G-operators, which is proved in [1, V App.]. A more

elementary approach is to check that all solutions constructed in (3.2) belong

to the algebra G, which in the non-resonant case amounts to checking that

hypergeometric series with an equal number p = q of rational parameters are

G-series; see, for example, [1, I 4.4, p. 24]. A third possibility is to use that

factors of hypergeometric differential operators are either hypergeometric with

the same q − p or Kummer operators to reduce to the case where Hyp(P,Q)

is irreducible, and then deduce the result from Chudnovsky’s theorem stated

in 1.7. �
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926 JAVIER FRESÁN and PETER JOSSEN

3.4. Let 0 6 p < q be integers. Siegel showed that for any choice of

a1, . . . , ap ∈ Q, b1, . . . , bq ∈ Q \ Z60 and λ ∈ Q, the function

(3.4.1) F

Å
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ λzq−pã
is an E-function; see [26, p. 224] and [27, II.9]. Following Siegel, we call it

a hypergeometric E-function. The series (3.1.1) also makes sense for alge-

braic or even complex parameters, but it is then only in very special cases an

E-function, and in that case always a Q-linear combination of hypergeometric

series with rational parameters; the precise conditions have been worked out

by Galoshkin [15].

3.5. By changing the variable z in the classical hypergeometric differen-

tial operator to zq−p, we obtain an operator annihilating (3.4.1). The main

theorem 3.7 of this section implies that such a modified operator admits a

basis of solutions in the algebra E . We shall use the following standard nota-

tion for Kummer pullback and Kummer induction of DGm-modules. Given a

non-zero integer m, we let [m] : Gm → Gm denote the étale cover z 7−→ zm

and [m]∗ the induced Kummer pullback map on DGm-modules. For example,

if M corresponds to a differential operator L(z, ϑ), then [m]∗M corresponds

to the operator L(zm, 1
mϑ). The functor [m]∗ has a right adjoint [m]∗ called

Kummer induction, and we say that a DGm-module is Kummer induced if it is

of the form [m]∗M for some DGm-module M and some m > 2.

Definition 3.6. Let 0 6 p < q be integers, and set m = q − p. Given non-

zero polynomials with rational roots P,Q ∈ Q[t] of degrees p and q respectively,

we call

H(P,Q) = DGm/DGmHyp(P,Q) and HE(P,Q) = [m]∗H(P,Q)

a hypergeometric DGm-module and an E-hypergeometric DGm-module of type

(p, q) respectively. We shall also refer to

[m]∗Hyp(P,Q) = Q( 1
mϑ)− zmP ( 1

mϑ)

as an E-hypergeometric operator.

Theorem 3.7. Let 0 6 p < q be integers, and set m = q − p. Let

P,Q ∈ Q[t] be non-zero polynomials with rational roots of degrees p and q and

leading coefficients λP and λQ respectively. The DGm-module M = HE(P,Q)

is of type E and has divisor

div(M) = p[0] +
m−1∑
k=0

[m · ρ · e2πik/m],

where ρ is an m-th root of λP /λQ.
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A NON-HYPERGEOMETRIC E-FUNCTION 927

Proof. The essential part of the proof is a calculation due to Katz; see

[20, proof of Th. 6.2.1]. We set R(t) = (mt + 1)(mt + 2) · · · (mt + m)P (t),

define operators L and K as

L = [m]∗Hyp(P,Q) and K = Hyp
(
Q(−t− 1

m), R(−t− 1
m)
)
,

and consider the DA-modules

M0 = DA1/DA1L, M1 = DA1/DA1∂mL, and A0 = DA1/DA1K.

The E-hypergeometric module M is given by M = j∗M0. Since K is a hy-

pergeometric operator of type (q, q), it follows from Theorem 3.3 that A0 is

of type G. Its singularities are located at 0, at mmλP /λQ, and at ∞. By

statement (4) of Theorem 1.8, the module [m]∗A0 is of type G as well. We

claim that there is an isomorphism of DA1-modules

(3.7.1) FT(M1) ∼= [m]∗A0.

To show this, recall that the Fourier transform of an operator is obtained from

it by replacing ∂ with z and z with −∂, and thus ϑ = z∂ with −∂z = −ϑ− 1.

Hence,

FT(∂mL) = FT(∂mQ( 1
mϑ)− ∂mzmP ( 1

mϑ))

= zmQ
(
− 1

mϑ−
1
m

)
− (−1)mzm∂mP

(
− 1

mϑ−
1
m

)
= zmQ

(
− 1

mϑ−
1
m

)
−R

(
− 1

mϑ−
1
m

)
= [m]∗

(
zQ
(
− ϑ− 1

m

)
−R(−ϑ− 1

m)
)
,

where we have used the elementary identity zm∂m = ϑ(ϑ− 1) · · · (ϑ−m + 1)

to pass from the second equality to the third. This calculation shows that the

operators FT(∂mL) and [m]∗K are equal up to a sign, and hence that there is

an isomorphism of DA1-modules as claimed.

Pochhammer’s theorem [5, Prop. 2.8] states that the dimension of the

space of vanishing cycles of A0 at its non-zero singularity is one-dimensional.

Since the map z → zm is étale away from zero, the vanishing cycles of FT(M1)

at any point z 6= 0 are isomorphic to the vanishing cycles of A0 at the point

zm, hence the equality

(3.7.2) sing(FT(M1)) = sing([m]∗A0) = c[0] +
m−1∑
k=0

[m · ρ · e2πik/m]

for some integer c. Besides, the kernel and the cokernel of the adjunction map

M1 → j∗j
∗M1 are Dirac modules supported at 0. After Fourier transform, this

yields an exact sequence

0→ OaA1 → FT(M1)→ FT(j∗j
∗M1)→ ObA1 → 0
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928 JAVIER FRESÁN and PETER JOSSEN

for some integers a and b. Theorem 2.12 shows that FT(j∗j
∗M1) is of type G,

so that j∗M1 is of type E. Moreover, the equality

sing(FT(M1)) = sing(FT(j∗j
∗M1)) = div(j∗M1)

follows from this exact sequence. Next, there is a short exact sequence

0→ OmGm
→ j∗M1 →M → 0

of DGm-modules, which shows that M is of type E as claimed, and that

its divisor is equal to div(M) = div(j∗M1) − m[0]. Finally, the formula

for div(M) follows from the equality p = c−m, which can be deduced from

deg(sing(FT(j∗M))) = dimM = q. �

Definition 3.8. We denote by H the tannakian subcategory of E gener-

ated by all E-hypergeometric DGm-modules as in Definition 3.6, and by H the

subalgebra of E generated by all solutions of E-hypergeometric operators.

3.9. The category H contains the Kummer modules K(a) for a ∈ Q, as

well as the module DGm/DGmϑ
2 annihilating the logarithm function, and hence

the algebra H contains za and log(z). Indeed, these functions are solutions of

the hypergeometric operators

Hyp(t− a, t2 − at) = (ϑ− z)(ϑ− a) and Hyp(t2, t3) = (ϑ− z)ϑ2

respectively. The fact (3.1.3) that the adjoint of a hypergeometric operator

is again hypergeometric implies that the dual of an E-hypergeometric module

is again an E-hypergeometric module. Each object of H can thus be written

as a subquotient of some tensor construction on the given generators without

involving duals. The subcategory H ⊆ E and the subalgebra H ⊆ E determine

each other, in the sense that an object M of E belongs to H if and only if M

admits a basis of solutions in H, and conversely, H can be retrieved from H as

(3.9.1) H = {s(m) |M ∈ H, m ∈M, s ∈ HomD(M, E)}.

In particular, the algebra H contains all polynomial expressions in hyperge-

ometric E-functions, and our ultimate goal is to produce an E-function that

does not belong to H. Lemma 5.6 states that an irreducible object M ∈ E

belongs to H as soon as just one of the entries of a fundamental matrix of

solutions of M belongs to H.

Proposition 3.10. The tannakian subcategory of H generated by Kum-

mer modules K(a) and by E-hypergeometric modules HE(P,Q) = [m]∗H(P,Q)

such that the hypergeometric module H(P,Q) is simple and not Kummer in-

duced contains every semisimple object of H.

Proof. Let M ∈ H be a simple object. By definition of H, the object M is

a subquotient of a tensor construction made from E-hypergeometric modules.
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A NON-HYPERGEOMETRIC E-FUNCTION 929

We need to establish A as a subquotient of a tensor construction made from

Kummer modules and E-hypergeometric modules of the given special type.

To do so, we can without loss of generality suppose that M is a subquotient

of some E-hypergeometric module HE(P,Q) = [m]∗H(P,Q) of type (p, q). By

[20, Cor. 3.7.5.2], the semisimplification of H(P,Q) is given by

H(P,Q)ss ' H(P0, Q0)⊕
r⊕
i=1

K(ai)

for some r > 0 and ai ∈ Q, where H(P0, Q0) is simple of type (p−r, q−r). Since

M is simple, it is either one of the Kummer modules [m]∗K(ai) = K(mai), in

which case we are done, or a subquotient of HE(P0, Q0) = [m]∗H(P0, Q0). We

can thus assume from now on that H(P,Q) is simple. If H(P,Q) is Kummer in-

duced, let d > 2 be the largest integer such that H(P,Q) is in the image of [d]∗.

By Katz’s Kummer induction formula [20, (3.5.6.1)], the module H(P,Q) is

then of type (p1d, q1d), and there is an isomorphism

H(P,Q) ∼= [d]∗H(P1, Q1),

where H(P1, Q1) is a hypergeometric D-module that is not Kummer induced.

Since H(P,Q) is simple, H(P1, Q1) is simple as well. Set m = m1d with

m1 = q1 − p1. There is an isomorphism

HE(P,Q) = [m1]∗[d]∗[d]∗H(P1, Q1)

=
⊕
ζd=1

[m1]∗H(ζP1, Q1) =
⊕
ζd=1

HE(ζP1, Q1),

on noting the identity [ζz]∗H(P1, Q1) = H(ζP1, Q1). Since z 7−→ ζz is invert-

ible, the hypergeometric modules H(ζP1, Q1) are all simple, none of them is

Kummer induced, and A is a subquotient of one of the associated E-hyper-

geometric modules. �

4. Galois theory of hypergeometric D-modules

The Galois theory of hypergeometric differential equations is largely un-

derstood thanks to the work of Katz [20]. In this section, we explain how this

can be used to find constraints on the singularities of the Fourier transforms

of certain D-modules in the category H.

Theorem 4.1 (Katz). Let 0 6 p < q be integers, and set m = q − p.

Consider an E-hypergeometric D-module HE(P,Q) = [m]∗H(P,Q) of type

(p, q) such that H(P,Q) is simple and not Kummer-induced. Let G ⊆ GLq
denote its differential Galois group. Then G is reductive, and its determinant

det(G) ⊆ Gm is finite if and only if q > p + 1. The derived group of the
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930 JAVIER FRESÁN and PETER JOSSEN

connected component G◦ of G satisfies

G◦ =

{
G◦,der if det(G) is finite,

Gm ·G◦,der if det(G) = Gm.

Up to conjugation, the possibilities for G◦,der ⊆ SLq are the following :

(1) If p− q is odd, then G◦,der = SLq .

(2) If p− q is even, then G◦,der is SLq , SOq or, if q is even, Spq .

(3) If (p, q) = (1, 7), then G◦,der can as well be the exceptional group G2 inside

SL7 via its standard representation of dimension 7.

(4) If (p, q) = (2, 8), then G◦,der can as well be Spin7 inside SL8 via its stan-

dard representation of dimension 8, or PSL3 as the image of SL3 in its

adjoint representation, or (SL2)3 in the tensor product of the standard

representations of each factor.

(5) If (p, q) = (3, 9), then G◦,der can as well be the image of SL3×SL3 in the

tensor product of the standard representations of each factor.

Proof. The Galois group of HE(P,Q) is a subgroup of finite index of the

differential Galois group of H(P,Q), as is the case for any pullback of a vector

bundle with connection by an étale cover according to [19, Prop. 1.4.5]. It thus

suffices to prove the theorem when G is the differential Galois group of the

simple and non-Kummer induced hypergeometric D-module H(P,Q) instead.

The result is then the combination of [20, Th. 3.6], which in addition to all

the above statements lists two more possibilities for G◦,der that could a priori

occur for (p, q) = (2, 8), and [20, Prop. 4.0.1], which says that those do not

actually occur. �

4.2. To get a hold on the Galois groups of more general objects of H,

we use a version of Goursat’s lemma that is valid in any tannakian category.

Let T be a neutral tannakian category with unit object 1 over some field

of characteristic zero, equipped with a fixed fibre functor, and let A and B

be objects of T with Galois groups GA and GB. The Galois group GA⊕B
of A⊕B is then a subgroup of the product GA × GB with the property that

the projection maps pA : GA⊕B → GA and pB : GA⊕B → GB are surjective, and

similarly for the Lie algebras gA⊕B ⊆ gA×gB. The object A is contained in the

tannakian category generated by B if and only if the map pB : GA⊕B → GB is

an isomorphism, in which case we say that A is generated by B. Since we are

in characteristic zero, A⊗A∨ = End(A) canonically splits as

End(A) = End0(A)⊕ 1,

where End0(A) ⊆ End(A) is the kernel of the evaluation map A⊗A∨ → 1, and

1 sits inside the endomorphisms as the image of the counit map 1→ A⊗A∨.
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Definition 4.3. Let A and B be objects of a tannakian category T. Write

gB and gA⊕B for the Lie algebra of the Galois group ofB and A⊕B respectively.

We say that A is Lie-generated by B if the projection map gA⊕B → gB is an

isomorphism.

4.4. Here are two illustrations of this definition. First, consider an arbi-

trary object B and an object C with finite Galois group. The Galois group of

B⊕(B⊗C) is a finite cover of both the Galois group of B and the Galois group

of B ⊗C. It follows that an object A is Lie-generated by B if and only if it is

Lie-generated by B⊗C. This applies, in particular, to the case where T is the

category of connections on Gm and C a Kummer module. Second, consider

objects B and C, and suppose that det(C) has a finite Galois group. Then,

the Galois group of B ⊕ C is a finite cover of the Galois group of B ⊗ C, and

hence A is Lie-generated by B⊕C if and only if A is Lie-generated by B⊗C.

Lemma 4.5. Let T be a tannakian category generated by a family of ob-

jects B. Let A be an object of T such that the Lie algebra of the Galois group of

A is simple and non-commutative. Then A is Lie-generated by a single object

of the family B.

Proof. The object A is isomorphic to a subquotient of some tensor con-

struction of objects of the family B. As any such tensor construction involves

only finitely many objects, we can suppose without loss of generality that B
consists of finitely many objects. In particular, A is Lie-generated by a finite

sum of objects of B, say by B = B1⊕ · · · ⊕Bn, where n > 1 is chosen minimal

for this property. If n = 1, we are done. If n > 2, it is enough to show that A

is Lie-generated by B1 or by B2 ⊕ · · · ⊕Bn, so we can assume n = 2.

Writing g1, g2, gA, gB for the Lie algebras of the Galois groups of B1, B2, A,

and B = B1 ⊕B2 respectively, there are canonical morphisms of Lie algebras

gB g1 × g2

gA gi.
��

pA

//⊆

��
proji

Let ki E gB denote the kernel of the canonical projection pi : gB → gi. Since

the image of ki in gA is an ideal, it is either zero or the whole gA. In case one

of the ki maps to zero in gA, the projection pA factors over gi, and hence A is

Lie-generated by Bi. Suppose then that both ideals k1 and k2 surject onto gA.

In the product g1 × g2, the ideals {0} × g2 and g1 × {0} commute. Thus, k1
and k2 commute in gB, and hence gA is commutative. �

Lemma 4.6. Let A and B be three-dimensional objects of a tannakian

category. Suppose that the Galois group of A is isomorphic to SL3 and that A is

Lie-generated by B. Then, there exists an isomorphism End0(A) ∼= End0(B).
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932 JAVIER FRESÁN and PETER JOSSEN

Proof. Let G be the Galois group of A ⊕ B. For our purposes, we can

assume that the ambient tannakian category is the category of representations

of G. The objects A and B correspond to three-dimensional representations

ρA : G→ GL(VA) ' GL3 and ρB : G→ GL(VB) ' GL3,

whose images GA = ρA(G) and GB = ρB(G) are the Galois groups of A and B.

By Goursat’s Lemma [21, p. 75], there exist normal subgroups NA ⊆ GA and

NB ⊆ GB and an isomorphism

α : GA/NA
∼−→ GB/NB

such that the image of the injective morphism G → GA × GB consists of

those pairs (gA, gB) satisfying α(gANA) = gBNB. Since A is Lie-generated by

B, the subgroup NA is finite, and since GA is isomorphic to SL3, the group

GA/NA is isomorphic to either SL3 or PSL3. The group GB ⊆ GL3 is therefore

isomorphic to GL3 or to µn SL3 for some integer n > 1. Either way, the image

GA of GA in the representation End0(VA) is isomorphic to PSL3, and so is the

image GB of GB in the representation End0(VB). The image G of G in the

representation

End0(VA)⊕ End0(VB)

is the graph of the isomorphism α : GA → GB induced by α. In particular, G

is isomorphic to PSL3 as well. The representations End0(VA) and End0(VB) of

G are both irreducible and of dimension 8. Since PSL3 has up to isomorphism

only one such representation, we conclude that there exists an isomorphism of

G-representations, and therefore of G-representations End0(VA) ∼= End0(VB)

as claimed. �

Theorem 4.7. Let M be an object of E whose Galois group is isomorphic

to SL3. If M is Lie-generated by objects of H, then M is Lie-generated by a

single E-hypergeometric D-module of type (p, 3) with Galois group equal to SL3

if p ∈ {0, 1}, and to GL3 if p = 2.

Proof. The object M is semisimple. By Proposition 3.10 and Lemma 4.5

applied to the category of all semisimple objects of H, the module M is

Lie-generated by some E-hypergeometric module N = [m]∗H(P,Q) such that

H(P,Q) is simple and not Kummer induced. The Lie algebra of the Galois

group of N surjects onto the Lie algebra sl3. By Theorem 4.1, N is thus

an E-hypergeometric module of type (p, q) with Galois group G ⊆ GLq of the

following kind:

(1) q = 3 and G◦ = SL3 if p ∈ {0, 1}, or G = GL3 if p = 2;

(2) (p, q) = (2, 8) and G◦ = PSL3 as the image of SL3 in its adjoint represen-

tation;
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(3) (p, q) = (3, 9) and G◦ is the image of SL3×SL3 in the tensor product of

the standard representations of each factor.

In the first case, if p ∈ {0, 1}, we can twist N by a Kummer module to ensure

that G is equal to SL3. It remains to explain why the exceptional cases of type

(2, 8) or (3, 9) are not needed.

Case (2, 8). Suppose that N = [6]∗H(P,Q) is of type (2, 8) and that

the connected component of the identity in its Galois group is PSL3. After

replacing H(P,Q) with an appropriate Kummer twist, we may assume G is

contained in O8. By [20, Lem. 4.3.2], there exists then a hypergeometric module

H(P0, Q0) of type (0, 3) with Galois group SL3 and an isomorphism

[2]∗H(P,Q) ∼= End0(H(P0, Q0)).

Pulling back by z 7−→ z3, it follows that N belongs to the tannakian category

generated by the E-hypergeometric module [3]∗H(P0, Q0), and hence M is

Lie-generated by HE(P0, Q0).

Case (3, 9). Suppose that N = [6]∗H(P,Q) is of type (3, 9) and that

the connected component of the identity in its Galois group is the image of

SL3×SL3 in GL9. By [20, Lem. 4.6.1 and 4.6.3], after replacing H(P,Q) with

a suitable Kummer twist, there exist hypergeometric modules H(P1, Q1) and

H(P2, Q2) of type (0, 3) and Galois group SL3 and an isomorphism

[2]∗H(P,Q) ∼= H(P1, Q1)⊗H(P2, Q2),

which yields N ∼= HE(P1, Q1) ⊗ HE(P2, Q2) after pullback by z 7−→ z3.

Since M cannot be Lie-generated by a Kummer module, it is Lie-generated

by HE(P1, Q1) or by HE(P2, Q2) thanks to Lemma 4.5. This concludes the

proof. �

Lemma 4.8. Let s1, s2, s3 be complex numbers whose differences si − sj ,
for i 6= j, are the vertices of a regular hexagon. Then s1, s2, s3 are the vertices

of an equilateral triangle.

Proof. Since the elements of S = {si − sj | i 6= j} sum to zero, if they are

the vertices of a regular hexagon, then this hexagon is centered at 0 ∈ C, and

each vertex is equidistant from 0. Then |s1 − s2| = |s1 − s3| = |s2 − s3| holds,

so s1, s2, s3 indeed form an equilateral triangle. �

Theorem 4.9. Let M be a three-dimensional object of E whose Galois

group contains SL3. If M is Lie-generated by objects of H, then the singulari-

ties of FT(j∗M) are either collinear or form an equilateral triangle.

Proof. We assume, as we may, that the Galois group of M is equal to SL3.

Indeed, det(M) takes the form E(s)⊗K(a) for some s ∈ C and a ∈ Q by the
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934 JAVIER FRESÁN and PETER JOSSEN

classification of rank-one objects of E. Twisting M by E(−s/3) ⊗ K(−a/3)

yields an object with trivial determinant and only changes by translation

the singularities of the Fourier transform. Set div(M) = [s1] + [s2] + [s3].

Since det(M) is trivial, the relation s1 +s2 +s3 = 0 holds. By Theorem 4.7, the

object M is Lie-generated by an E-hypergeometric D-module N = HE(P,Q)

of type (p, 3) with Galois group SL3 if p ∈ {0, 1}, and GL3 if p = 2. By

Lemma 4.6, there is an isomorphism

End0(M) ∼= End0(N).

Writing div(N) = [t1] + [t2] + [t3], the existence of this isomorphism and the

formulas for divisors given in 2.8 show that the equality

(4.9.1) 2[0] +
∑
i 6=j

[si − sj ] = 2[0] +
∑
i 6=j

[ti − tj ]

holds in Z[Q]. In the remainder of the proof, we discuss the three values of p

separately.

Case p = 0. In that case, div(N) = [λ] + [λζ2] + [λζ4] holds for some

λ ∈ Q× and ζ = e2πi/6 by Theorem 3.7. We deduce the equality

∑
i 6=j

[si − sj ] =
5∑

k=0

[
√
−3 · λ · ζk]

from (4.9.1). Since the right-hand side divisor is supported on a regular

hexagon, s1, s2, s3 lie on an equilateral triangle by Lemma 4.8.

Case p = 1. In that case, div(N) = [−λ]+[0]+[λ] holds for some λ ∈ Q×,

again by Theorem 3.7. The equality (4.9.1) then reads∑
i 6=j

[si − sj ] = [−2λ] + 2[−λ] + 2[λ] + [2λ],

which is only possible if [s1] + [s2] + [s3] = [−λ] + [0] + [λ]. Thus, s1, s2, s3 lie

on the line Rλ.

Case p = 2. In that case, N is a hypergeometric module with divisor

div(N) = 2[0] + [λ] for some λ ∈ Q×. The equality (4.9.1) reads∑
i 6=j

[si − sj ] = 2[−λ] + 2[0] + 2[λ],

which is only possible if [s1]+[s2]+[s3] = 2[−µ]+[2µ] for µ = λ/3 or µ = −λ/3.

In either case, s1, s2, s3 lie on the line Rλ. �
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5. A non-hypergeometric E-function

Armed with the symmetry constraint from Theorem 4.9, it remains to

write down a concrete example of an E-function that is not a polynomial

expression in hypergeometric E-functions. For this, we shall consider a family

of DGm-modules attached to polynomials of degree four.

Proposition 5.1. Let n > 1 be an integer, and set ζ = exp(2πi/(n+1)).

Let f ∈ Q[t] be a monic polynomial of degree n + 1, which we view as a

morphism f : A1 → A1. Consider the D-modules A on A1 and M on Gm

defined as

A = f∗OA1/OA1 and M = j∗FT−1(A).

The DGm-module M is of type E. With respect to appropriate bases, the n-by-n

matrix of functions F = (Fa,b)16a,b6n defined for Re(z) > 0 by the convergent

integrals

Fa,b(z) =

∫ ∞
0

exp(−zf(x))xb−1dx− ζab
∫ ∞

0

exp(−zf(ζax))xb−1dx

is a fundamental matrix of solutions of M . In particular, all the functions Fa,b
belong to E .

Proof. It was already proved in Example 2.11 that M is a DGm-module of

type E and that the identity A = FT(j∗M) holds. By the equivalence between

conditions (1) and (2) in Proposition 2.13, the module M admits a basis of

solutions in E , and hence a fundamental matrix of solutions with respect to

any choice of bases has entries in E .

Let S be the set of critical values of f . Elements of the D-module

f∗OA1 = Q[z, u]/(f(u)− z)

can be thought of as algebraic functions in the complex variable z, defined on

a small open disk around a point in C\S. Concretely, fix z0 ∈ C\S and choose

a root u0 of the polynomial f(x)− z0. By the implicit function theorem, there

exists a unique holomorphic function u(z) defined in an open neighbourhood

of z0 satisfying u(z0) = u0 and f(u(z))− z = 0 for all z ∈ U . This function u

and its powers are explicitly given by

up(z) =
1

2πi

∫
γ

xpf ′(x)

f(x)− z
dx,

where the contour γ is a simple loop around u0 not enclosing any roots of

f(x)− z0 other than u0. For a polynomial g ∈ Q[x], define

Gγ(g, z) =
1

2πi

∫
γ

g(x)

f(x)− z
dx
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936 JAVIER FRESÁN and PETER JOSSEN

and observe the relations

Gγ(g′, z) =
1

2πi

∫
γ

g′(x)

f(x)− z
dx =

1

2πi

∫
γ

g(x)f ′(x)

(f(x)− z)2
dx =

∂

∂z
Gγ(gf ′, z)

obtained by integration by parts and by differentiating under the integral.

We now have two C[z]-bases of f∗OA1 at hand, the first one given by the

functions up = Gγ(xpf ′, z), and the second one by the functions Gγ(xp, z)

for p = 0, 1, . . . , n − 1. In particular, Gγ(f ′, z) is the constant function with

value 1, which generates the image of the adjunction map OA1 → f∗OA1 .

The D-module A has therefore the following presentation: it is generated by

symbols G(g, z), one for each g ∈ Q[x], subject to the following relations:

(1) Linearity: G(ag+ bh, z) = aG(g, z) + bG(h, z) for a, b ∈ Q and g, h ∈ Q[x].

(2) Multiplication rule: zG(g, z) = G(fg, z) for all g ∈ Q[x].

(3) Derivation rule: ∂G(gf ′, z) = G(g′, z) for all g ∈ Q[x].

(4) G(f ′, z) = 0.

The inverse Fourier transform FT−1(A) has the following dual presentation,

obtained by replacing ∂ with z, and z with −∂ in the above: it is the D-module

generated by symbols E(g, z), one for each g ∈ Q[x], modulo the relations:

(1) Linearity: E(ag+ bh, z) = aE(g, z) + bE(h, z) for a, b ∈ Q and g, h ∈ Q[x].

(2) Derivation rule: ∂E(g, z) = −E(fg, z) for all g ∈ Q[x].

(3) Multiplication rule: zE(gf ′, z) = E(g′, z) for all g ∈ Q[x].

(4) E(f ′, z) = 0.

Let A denote the differential algebra of holomorphic functions on the half-

plane Re(z) > 0. To give a solution FT(A) → A amounts to specifying, for

each generator E(g, z), an element of A compatible with relations. To do so,

let γa : R→ C be the path defined by γa(t) = −tζa for t 6 0 and γa(t) = t for

t > 0, and set

Eγa(g, z) =

∫
γa

e−zf(x)g(x)dx

for polynomials g ∈ Q[x]. For g = xb−1, this yields the function Fa,b in

the statement of the proposition. The integral converges, and there is indeed

no problem in exchanging differentiation with respect to z and integration,

due to the exponential decay of e−zf(ζax) as x → ∞, which follows from the

assumption that f is monic and Re(z) > 0. The expression Eγa(g, z) is linear

in g, and the derivation rule is obtained by differentiating under the integral

sign. The multiplication rule follows from integration by parts,∫
γa

e−zf(x)g′(x)dx = z

∫
γa

e−zf(x)f ′(x)g(x)dx,

on noting that e−zf(x)g(x) tends to 0 as x→ 1∞ or x→ ζa∞. Setting g = 1,

we find zEγa(f ′, z) = 0, and hence Eγa(f ′, z) = 0 as needed. Each column of
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A NON-HYPERGEOMETRIC E-FUNCTION 937

the matrix F (z) is indeed a solution vector for M with respect to the basis

E(xp, z) for p = 0, 1, . . . , n−1. That F (z) is a fundamental matrix of solutions

means that its determinant does not vanish. This follows from the fact that,

for fixed z with positive real part, the paths γ1, . . . , γn form a basis of the rapid

decay homology Hrd
1 (A1, zf), the differential forms dx, xdx, . . . , xn−1dx form

a basis of the twisted de Rham cohomology H1
dR(A1, zf), and the integration

(γ, ω) 7−→
∫
γ e
−zfω induces a perfect pairing between these spaces by a the-

orem of Bloch–Esnault [7, Th. 0.1]. This special case actually goes back to a

1976 letter from Deligne to Malgrange [9, p. 17], and one can even show the

equality detF (z) = βe−zα, where β is some non-zero complex number and α

is the sum of the critical values of f ; see [6, Prop. 5.4]. �

Lemma 5.2. Let f ∈ Q[t] be a polynomial of degree n+ 1. If f : A1 → A1

has n distinct critical values, then the DA1-module A = f∗OA1/OA1 is simple.

Proof. Let S be the set of critical values of f , set U = C \ S, and choose

a base point x ∈ U . The monodromy of the étale covering of U given by f

is generated by n non-trivial permutations τ1, τ2, . . . , τn acting on the set of

n+1 elements f−1(x), which can moreover be arranged in such a way that the

product τ−1
∞ = τ1τ2 · · · τn is an (n+ 1)-cycle. Let 1 6 ci 6 n be the number of

cycles in the permutation τi, and set c∞ = 1. Hurwitz’s genus formula for f ,

now viewed as a ramified covering f : P1 → P1 of degree n+ 1, reads

2 = 2(n+ 1)− (n+ 1− c∞)−
n∑
i=1

(n+ 1− ci),

which can only hold if ci = n for i = 1, 2, . . . , n. In other words, τ1, . . . , τn are

all transpositions. Since a transitive subgroup of a symmetric group generated

by transpositions is the whole group, the monodromy representation of the

local system f∗Q on U is the standard representation of the symmetric group

on n+1 elements, which is well known to split into a trivial factor of dimension 1

and a simple factor of dimension n. Via the Riemann-Hilbert correspondence,

this decomposition yields f∗OA1 = OA1 ⊕A, and hence A is simple. �

Lemma 5.3. Let f ∈ Q[t] be a polynomial of degree four. If the critical

values of f are not collinear, then the differential Galois group of the module

M = j∗FT−1(f∗OA1/OA1) contains SL3.

Proof. The polynomial f must have three distinct critical values in or-

der for them not to be collinear. Together with the equivalence of categories

explained in 2.4, Lemma 5.2 shows that the D-module M ∈ Conn0(Gm) is

simple. Hence, its differential Galois group is a reductive subgroup of GL3. By

the discussion at the beginning of 2.8, this group contains the torus with char-

acter group the subgroup of Q generated by the critical values of f , which by
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938 JAVIER FRESÁN and PETER JOSSEN

assumption has rank at least two. Any reductive subgroup of GL3 of rank > 2

whose three-dimensional standard representation is simple contains SL3. �

5.4. Let f be a monic polynomial of degree four with algebraic coeffi-

cients, say given in the form f(x) = x4 − a3x
3 − a2x

2 − a1x− a0. We wish to

compute the integral

P (z) = F2,1(z) =

∫
R
e−zf(x)dx,

which defines a holomorphic function on the half-plane Re(z) > 0. This func-

tion can be analytically continued to any simply connected domain in C \ {0},
but not across 0, since it has finite monodromy of order four around this point.

In other words, P (z4) is a meromorphic function with a single pole at z = 0,

as the following computation shows:

P (z4) =

∫
R
e−z

4(x4−a3x3−a2x2−a1x−a0)dx

=
1

z

∫
zR
e−s

4
ea3zs

3
ea2z

2s2ea1z
3sea0z

4
ds

=
1

z

∑
k0,k1,k2,k3>0

(a3z)
k3(a2z

2)k2(a1z
3)k1(a0z

4)k0

k3!k2!k1!k0!

∫
zR
e−s

4
s3k3+2k2+k1ds

=
∑

k0,k1,k2,k3>0
k1+k3 even

ak33 a
k2
2 a

k1
1 a

k0
0

2k3!k2!k1!k0!
Γ
(

3k3+2k2+k1+1
4

)
zk3+2k2+3k1+4k0−1.

We made the change of variables s = zx, expanded all exponential functions

except e−s
4
, and evaluated the remaining integral in terms of the gamma func-

tion. Setting k = k0 + k1 + k2 + k3, we can now reindex the resulting series as

P (z4) =
∞∑
n=0

∑
∗=0

ak33 a
k2
2 a

k1
1 a

k0
0

2k3!k2!k1!k0!
Γ
(
k − n+ 1

4

)
z4n−1

+
∞∑
n=0

∑
∗=2

ak33 a
k2
2 a

k1
1 a

k0
0

2k3!k2!k1!k0!
Γ
(
k − n− 1

4

)
z4n+1,

where the sums labelled with (∗ = r) run over the finitely many integers

k0, k1, k2, k3 > 0 satisfying k3 + 2k2 + 3k1 + 4k0 − 4n = r. This yields the

expression

(5.4.1) P (z) =
1

2
Γ
(

1
4

)
z−1/4E0(z) +

1

2
Γ
(−1

4

)
z1/4E2(z)

for the original function, where Er(z) is the E-function

(5.4.2) Er(z) =
∞∑
n=0

Ç∑
∗=r

ak33 a
k2
2 a

k1
1 a

k0
0 · (1−r

4 )k−n

k3!k2!k1!k0!

å
zn.
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Lemma 5.5. Let M be a DGm-module, and let s : M → C((z))(z1/n) be a

solution for some integer n > 1. For each m ∈ M , the unique Laurent series

sj(m) ∈ C((z)) satisfying

s(m) =
n−1∑
j=0

zj/nsj(m)

give rise to solutions zj/nsj : M → C((z))(z1/n) of M for j = 0, 1, . . . , n− 1.

Proof. Existence and uniqueness of the given decomposition of s(m) fol-

lows from the fact that the powers zj/n form a basis C((z))-basis of C((z))(z1/n),

and each function sj : M → C((z)) is Q[z, z−1]-linear. For every m ∈ M , the

equality

n−1∑
j=0

zj/nsj(∂m) = s(∂m) = ∂s(m) =
n−1∑
j=0

∂(zj/nsj(m))

=
n−1∑
j=0

zj/n( jnz
−1sj(m) + sj(m)′)

holds. From this and the C((z))-linear independence of the zj/n, we deduce

that the equality zj/nsj(∂m) = ∂(zj/nsj(m)) holds for every j, so zj/nsj is

indeed a solution of M . �

Lemma 5.6. Let M be an irreducible DGm-module of type E, let m ∈ M
be a non-zero element, and let s : M → E be a non-zero solution.

(1) If s(m) belongs H, then M belongs to H.

(2) If s(m) is algebraic over H, then M is Lie-generated by objects of H.

Proof. Suppose that s(m) belongs to H. By (3.9.1), there exist an object

M0∈H, an element m0∈M0, and a solution s0 : M0→H with s(m)=s0(m0).

We suppose without loss of generality that that the DGm-module M0 is gen-

erated by m0. Since s is non-zero and M is irreducible, s is injective. Hence,

m ∈ M and s(m) ∈ H have the same annihilator ideal in DGm , and this ideal

contains the annihilator ideal of m0 ∈ M0. There is thus a unique morphism

of DGm-modules M0 → M mapping m0 to m. Since m is non-zero and M

is irreducible, this morphism is surjective. This shows that M is a quotient

of M0, and hence belongs to H as claimed. The second statement is proved

similarly, on noting that an object of E is Lie-generated by objects of H if and

only if all of its solutions are algebraic over H. �

Theorem 5.7. Let a0, . . . , a3 ∈ Q be algebraic numbers such that the

critical values of the polynomial f(x) = x4−a3x
3−a2x

2−a1x−a0 are neither

collinear nor do they form an equilateral triangle. Then, the E-functions E0(z)
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and E2(z) given in (5.4.2) are transcendental over H and, in particular, are

not polynomial expressions in hypergeometric E-functions.

Proof. By Proposition 5.1, the module M = j∗FT−1(f∗OA1/OA1) is an

object of E and there exist an element m1 ∈ M , namely the class of dx,

and a solution s2 of M , namely integration along the real line, such that

F2,1 = s2(m1) holds. Let r∈{0, 2}. By Lemma 5.5, there also exists a solution

s : M→E with s(m1) = z(r−1)/4Er(z). Using Lemma 5.3 and Theorem 4.9,

the hypotheses on f imply that M is simple and not Lie-generated by objects

of H, so we deduce from Lemma 5.6 that z(r−1)/4Er(z), and hence Er(z), is

transcendental over H. �

5.8. If we identify the space of monic polynomials of degree four with

complex coefficients with R8 by taking real and imaginary parts of coefficients,

those with critical values that are neither collinear nor do they lie on an equilat-

eral triangle form a Zariski open dense subset. In that sense, most monic poly-

nomials f ∈ Q[t] of degree four satisfy this hypothesis. The E-function from

the introduction was produced by choosing f(x) = x4−x2 +x in Theorem 5.7.

The critical values of this polynomial are the roots of x3 + 1
2x

2 − 1
2x + 23

256 ,

which form an isosceles, but not equilateral triangle. Since now (a3, a2, a1, a0)

is equal to (0, 1,−1, 0), all terms in the sums labelled with (∗ = r) in (5.4.2)

are zero, except when k3 = k0 = 0, and we find the E-functions

Er(z) =
∞∑
n=0

Ñ ∑
2k2+3k1=4n+r

(−1)k1 · (1−r
4 )k−n

k2!k1!

é
zn.

For r = 0, the condition 2k2 + 3k1 = 4n + r implies that k1 is even. Writing

2m = k1, it translates into k2 = 2n− 3m, hence the expression

E0(z) =
∞∑
n=0

b2n/3c∑
m=0

(1
4)n−m

(2n− 3m)!(2m)!
zn,

which is the one given in the introduction.
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ETH Zürich, Zürich, Switzerland and King’s College, London, England

E-mail : peter.jossen@math.ethz.ch

This content downloaded from 
������������129.104.78.146 on Sun, 07 Nov 2021 15:58:10 UTC������������� 

All use subject to https://about.jstor.org/terms

http://www.ams.org/mathscinet-getitem?mr=0862711
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0609.12025
https://doi.org/10.1007/BF01389152
https://doi.org/10.1007/BF01389152
http://www.ams.org/mathscinet-getitem?mr=1081536
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0731.14008
https://doi.org/10.1515/9781400882434
http://www.ams.org/mathscinet-getitem?mr=1878556
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0984.00001
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-1-4613-0041-0
http://www.ams.org/mathscinet-getitem?mr=1960772
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1036.12008
https://doi.org/10.1007/978-3-642-55750-7
https://hal.archives-ouvertes.fr/hal-03327786
http://www.ams.org/mathscinet-getitem?mr=1033015
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0689.10043
https://doi.org/10.1515/9783110889055
https://doi.org/10.1515/9783110889055
http://www.emis.de/cgi-bin/JFM-item?56.0180.05
http://www.ams.org/mathscinet-getitem?mr=0032684
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1283.11003
https://doi.org/10.1515/9781400882359
https://doi.org/10.1515/9781400882359
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0208.32702
https://doi.org/10.1007/BF01090408
http://www.ams.org/mathscinet-getitem?mr=0102503
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0085.27301
mailto:javier.fresan@polytechnique.edu
mailto:peter.jossen@math.ethz.ch

	Introduction and overview
	1. On E-functions and their differential equations
	2. Differential modules associated with E-operators
	3. Hypergeometric E-functions and D-modules
	4. Galois theory of hypergeometric D-modules
	5. A non-hypergeometric E-function
	References

