FEUILLE DE TD 1

Exercice 1. Soit $\mathbb{H} = \{ \tau \in \mathbb{C} \mid \operatorname{Im}(\tau) > 0 \}$ le demi-plan de Poincaré. Pour toute matrice dans $\operatorname{SL}_2(\mathbf{R})$, posons

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}.$$

- (1) Démontrer que cette formule définit une action transitive de $SL_2(\mathbf{R})$ sur \mathbf{H} .
- (2) Soit $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z})$. Démontrer que si $\tau' = \frac{a\tau + b}{c\tau + d}$, alors les réseaux $\mathbf{Z} \oplus \mathbf{Z} \tau$ et $\mathbf{Z} \oplus \mathbf{Z} \tau'$ sont homothétiques. En déduire que l'application

$$\mathbb{H}/\mathrm{SL}_2(\mathbf{Z}) \longrightarrow \{\text{r\'eseaux dans } \mathbf{C}\}/\mathbf{C}^{\times}$$
$$[\tau] \longmapsto [\mathbf{Z} \oplus \mathbf{Z}\tau]$$

est bien définie.

(3) Démontrer qu'elle est bijective.

Exercice 2. Soient $\Lambda = \mathbf{Z}\omega_1 \oplus \mathbf{Z}\omega_2$ un réseau et \mathbf{C}/Λ la courbe elliptique associée.

- (1) Démontrer que \mathbb{C}/Λ est isomorphe à $\mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}\tau$ avec $\tau = \omega_1/\omega_2$.
- (2) Démontrer que les endomorphismes de \mathbb{C}/Λ forment une extension intègre de \mathbb{Z} , c'està-dire un anneau contenant \mathbb{Z} dont tous les éléments sont des racines de polynômes unitaires à coefficients entiers.
- (3) Démontrer que si $\operatorname{End}(\mathbf{C}/\Lambda)$ n'est pas réduit à \mathbf{Z} , alors $K = \mathbf{Q}(\tau)$ est un corps quadratique imaginaire et il y a un isomorphisme $\operatorname{End}(\mathbf{C}/\Lambda) \otimes_{\mathbf{Z}} \mathbf{Q} \cong K$. On dit alors que la courbe elliptique \mathbf{C}/Λ a multiplication complexe.
- (4) Donner des exemples de courbes elliptiques à multiplication complexe.

Exercice 3. Soit $\Lambda \subset \mathbf{C}$ un réseau d'invariants g_2 et g_3 , et soient $z_1, z_2 \in \mathbf{C} \setminus \Lambda$ des nombres complexes tels que $\wp(z_1) \neq \wp(z_2)$. Soit

$$y = ax + b$$

l'équation de la droite passant par les points $(\wp(z_1),\wp'(z_1))$ et $(\wp(z_2),\wp'(z_2))$.

- (1) Démontrer que la fonction $\wp'(z) a\wp(z) b$ a trois zéros comptés avec multiplicité.
- (2) En déduire que si $2z_1 + z_2$ ou $z_1 + 2z_1$ n'appartiennent pas au réseau, alors cette fonction a un zéro en un point $z_3 \equiv -z_1 z_2 \mod \Lambda$.
- (3) Démontrer l'égalité

$$4(x - \wp(z_1))(x - \wp(z_2))(x - \wp(z_3)) = 4x^3 - g_2x - g_3x - (ax + b)^2.$$

(4) En déduire l'égalité $\wp(z_1)+\wp(z_2)+\wp(z_3)=a^2/4.$

(5) Démontrer l'égalité : pour tous $z_1, z_2 \in \mathbf{C}$,

$$\wp(z_1 + z_2) = -\wp(z_1) - \wp(z_2) + \frac{1}{4} \left(\frac{\wp'(z_1) - \wp'(z_2)}{\wp(z_1) - \wp(z_2)} \right)^2.$$

(6) En faisant tendre z_2 vers z_1 , en déduire la formule de duplication

$$\wp(2z) = -2\wp(z) + \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)} \right)^2.$$

(7) Soient (x_1, y_1) et (x_2, y_2) deux points distincts sur la courbe algébrique affine

C:
$$y^2 = 4x^3 - g_2x - g_3$$
.

Démontrer qu'il existe un point (x_3,y_3) dans l'intersection entre C et la droite passant par (x_1,y_1) et (x_2,y_2) de coordonnée

$$x_3 = -x_1 - x_2 + \frac{1}{4} \left(\frac{y_1 - y_2}{x_1 - x_2} \right)^2$$

et comparer avec ce qui précède.

Exercice 4. Soit $\Lambda \subset \mathbf{C}$ un réseau. Notons δ la distance minimale entre deux points distincts de Λ et V le volume d'un domaine fondamental.

- (1) Soit A une couronne de rayon intérieur r et d'épaisseur $\delta/2$. Démontrer que $A \cap \Lambda$ contient au plus $4\pi r/\delta$ points.
- (2) Démontrer l'estimée

$$|\{\omega \in \Lambda \mid |\omega| \le R\}| = \frac{\pi R^2}{V} + O(R) \text{ lorsque } R \to +\infty.$$

(3) En déduire qu'il existe une constante c dépendant seulement de Λ tel que

$$|\{\omega \in \Lambda \mid R \le |\omega| < R+1\}| \le cR$$
 pour tout $R > 0$.