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Exercice 1

Pour tout a premier & p, notons A(a) la signature de la multiplication par a.

Premiére preuve. Les applications a — (%) et a — A(a) sont deux

morphismes de groupes de (Z/pZ)* vers {—1,1}; comme leur valeur en un
élément donné ne peut étre égale qu’a 1 ou (—1) il suffit, pour montrer qu’ils
coincident, de vérifier qu’ils prennent la valeur 1 exactement sur les mémes
éléments, c’est-a-dire qu’ils ont méme noyau.

Or (Z/pZ)* est cyclique de cardinal pair, et posséde dés lors un unique
sous-groupe G d’indice 2, et tout morphisme surjectif de (Z/pZ)* vers {—1,1}

a nécessairement G pour noyau. C’est en particulier le cas de a — % , et il

suffit donc pour conclure de démontrer que A est lui aussi surjectif. Autrement
dit, il suffit d’exhiber un élément a de (Z/pZ)* tel que A(a) = —1. Prenons
pour a un générateur du groupe cyclique (Z/pZ)*. L’orbite de 1 sous 'action
de (a) est {a'};ez et c’est donc (Z/pZ)* tout entier. La permutation de (Z/pZ)*
induite par a est par conséquent un (p — 1)-cycle; puisque p — 1 est pair, cette
permutation est impaire, et A(a) = —1.

Seconde preuve, proposée par 'un d’entre-vous. Soit a un élément de
(Z/pZ)* et soit o la permutation de (Z/pZ)* induite par la multiplication par
a. Si Von identifie (Z/pZ)* 4 {1,...,p—1} ona
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e(o) = =

1<i<j<p—1

C’est une égalité qu’on peut réduire modulo p car si i et j sont deux entiers tels

quel <t <j<p—Tlalorsl1 <j—1<p—2et j—1 est en particulier inversible
modulo p.
Il vient

a(g —1
Aa)= ]I —(._i),
1<i<j<p—1 J

puisque o(i) est par définition pour tout 4 la classe de ai modulo p. Comme il y
a (p—1)(p —2)/2 paires d’éléments de {1,...,p — 1} on voit que

Ma)=  [[  a=aCbe-22 g0/ <a) ,

1<i<j<p—1 p

otl I'avant-derniere égalité provient du fait que aP~1/2 € {—1,1} (c’est un
symbole de Legendre) et que p — 2 est impair.



Exercice 2
Commencgons par une remarque : l’exercice introduit une matrice S, carrée

de taille p (mais indexée par {0,...,p — 1}? et non par {1,...,p}?). On a par
définition

p—1

2
Te(S) =Y € =Gy
=0

le nombre complexe qu’on se propose de calculer est donc la trace de S.

Question (1). Le terme d’indice (i, ) de S? est

p—1 p—1
Z gikgkj _ Z gk(l+])
k=0 k=0
p—l
_ Z(gﬁj)k.
k=0

On distingue maintenant deux cas. Si ¢+ j est non nul modulo p, c’est-a-dire
icisii+j#0eti+j#p,alors £ £ 1 et la somme calculée vaut

3
L,
1—¢&iti
Et si i + 5 est nul modulo p alors €77 = 1 et la somme calculée vaut p.

On voit donc que tous les coefficients de S? sont nuls, hormis les coefficients
d’indice (0,0) et (i,p — i) pour i variant entre 1 et p — 1. La matrice S? est
donc égale & Diag(p, B) ot B est le bloc de taille (p — 1,p — 1), paramétré par
({1,...,p — 1}2, et dont tous les termes sont nuls sauf ceux de I'antidiagonale
qui valent p.

La suite de I’exercice va requérir de bien comprendre les valeurs propres de
S? et leurs multiplicités. Pour cela, il va étre commode de faire la remarque
suivante. Identifions B & I’endomorphisme de C?~! dont elle est la matrice dans
la base canonique (eq, ..., e,—1). On a alors Be; = pe?~" pour tout , si bien que
dans la base (e1,ep_1,€2,€p_2,...,€,_1/2,€pt1/2), 'endomorphisme B a pour
matrice Diag (C,...,C) ou

———

(p—1)/2 blocs

o-(22)

La matrice C' a pour polyndme caractéristique X2 — p? = (X + p)(X — p). Elle
est donc diagonalisable, avec deux valeurs propres distinctes p et (—p).
Il s’ensuit que S? est diagonalisable avec pour valeurs propres p, qui apparait
p—1 _ pt

avec multiplicité 1+ 25+ = Tl et (—p) qui apparait avec multiplicité prl. En

particulier det §? = (—1)®P=1/2pP que I'on peut récrire (—1)PP~1/2pP puisque
p est impair.



Question (2). On remarque que la matrice S est la matrice de Vandermonde
associée a (1,£,£2,...,6P71). 1l vient, en posant w = exp(in/p) :

detS = I ¢-¢
0<i<j<p—1
— H witd (wj—i _ wi—j)

0<i<j<p—1

- I e
0<i<j<p—1
= w20<i<_7'<p—1 sl (2i)P(P—1)/2 H sin(m(j —i)/p).
0<i<j<p—1

Nous savons que det S? = (—1)P(P=D/2pP i bien que |det S| = p?/2. Pour
déterminer completement det .S, il suffit de déterminer son argument. Comme
sin(n(j — i)/p) > 0 pour tous les couples (i,7) avec 0 < i < j < p — 1, cet
argument est celui de i?®P=1/2wN ot I'on a posé N = Zogiquﬂ v+ 7.

Il reste donc a calculer N. On a

N = > ity

0<i<j<p—1

= 2 2 it

1<j<p—10<i<j—1

_ Z j2+j(j2—1)

1<i<p—1

Z 37 -

1<j<p—1

_ ( p(2=1) (—21>p)

2p 2)

= N =

[\)

1p
5 2
plp —1)?
——

Or comme (p — 1) est pair, (p— 1) est multiple de 4 et (p —1)?/2 est donc pair.
Par conséquent N est multiple de 2p, si bien que w’¥ = 1. L’argument de S est
des lors égal a celui de i?®~1/2 et il vient

det § = iPP=1)/2pp/2,

ce qu’on souhaitait établir.

Question (3). En considérant une base de trigonalisation de ’endomorphisme
de matrice S (dans la base canonique) on voit que si A, ..., A\, désigne la liste
des valeurs propres de S (chacune étant répétée autant de fois qu’il convient)
alors A?,... A2 est la liste des valeurs propres de S2, que nous connaissons : il
y a p avec multiplicité (p 4+ 1/2), et (—p) avec multiplicité (p — 1)/2. Il s’ensuit
que toute valeur propre de S est de carré p ou —p, donc de la forme +,/p ou

+i/p.



Les valeurs propres de S égales a +,/p sont celles de carré p, si bien que
u~+ v doit étre égal a la multiplicité de p comme valeur propre de S, c’est-a-dire
p + 1/2. De méme, les propres de S égales a =+i,/p sont celles de carré —p, si
bien que 7 + s doit étre égal a la multiplicité de p comme valeur propre de .S,
c’est-a-dire p + 1/2.

Enfin le déterminant de S est égal & (—1)Vi"(—i)*pP/?, clest-a-dire &
i2vtr=spp/2 (puisque (—1) = i®> et —i = i~ ' et on sait par ailleurs qu'il
vaut (i)PP=1D/2pp/2 11 vient #(P~1/2 = 20475 ce qui revient a dire que
2v+71—s=p(p—1)/2 modulo 4 puisque i est d’ordre 4.

Question (4). La trace de S est égale 3 p ¢*. Or si k est un élément de
F,, on est dans I'un des trois cas suivants (exclusifs 'un de l'autre) :
(a) Ona k= 0; dans ce cas k est égal & 22 pour un unique z de F,, a savoir
0;
(b) Si ke (Fy)? alors k est égal & #* pour exactement deux éléments z de
Fy;
(c) Sik ¢ (F))? alors k n'est égal a 2 pour aucun élément 2 de F,.
La somme erFP ¢° . peut donc se récrire Zker A(E)EF ou A\(k) vaut 1 si
k=0, 2s1k¢ (IE‘;)Q, et 0 sinon. Petit miracle : si I'on a une bonne vue, on
remarque que A(k) peut s’écrire uniformément (sans disjonction de cas) comme

1+(§>.

On a donc

ce qu’il fallait démontrer.

Question (6). Pour conclure, nous allons commencer par étudier le module
et Pargument de Tr(S). On commence par remarquer que

- (2o

k=0

keF,
- X (5)¢
- )z ()¢
- ()



Par conséquent Tr(S) est réel si p vaut 1 modulo 4, et imaginaire pur si p vaut
(=1) modulo 4.
Calculons maintenant |Tr(S)|. On a

TH(S)TH(S) S ()] (2 (E)e

kelF, keF, p

Il
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i\g
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= |
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kEF, icF,

(la derniére s’obtient en faisant le changement de variable (k,7) = (k,k — £).

Fixons i et calculons } (%) (k;z

). Supposons tout d’abord que i = 0.

2
On trouve alors Zkeﬁp (%) , ce qui fait p — 1 car (%) est égal a +1 si k est

non nul et a 0 sinon. Supposons maintenant que ¢ # 0. On a

OICOENOICS

- ()6 )
- Y (55)

Or comme ¢ est non nul 'application a — 1 — ia est une bijection de I,
sur lui-méme. L’application k& — k! est une bijection de FJ sur lui-méme et
comme ¢ est non nul I'application @ — 1 — 7a est une bijection de F,, sur lui-
méme, qui en induit une de FX sur F,, — {1}. Il s’ensuit que k — 1 —ik~" induit
une bijection de F¢ sur F5 \ {1}.

La somme étudiée se récrit donc Zaerﬂ#l (%) Or on sait que

2 aeF, (%) = 0 (cela découle du fait que <%) =0 et que a — (%) définit

un caractere non trivial de ). Il vient

a 1
£, (0)()-o
a€lFy,a#1 p p

Il découle de tout ce qui précede que

Te(S)Te(S) = (p—1) = ) €
i€Fy
Mais comme 37;cp & = Docic,18 = (1—€7)/(1=8) =0, 3, px & = —1.
On en conclut que Tr(S)Tr(S) = p. Par conséquent, |Tr(S)| = /p.



Nous allons maintenant pouvoir déterminer entierement Tr(S). Remarquons
déja que par définition méme de u,v,r et s on a Tr(S) = (u—v)/pP+i(r—s5)\/D.
On distingue maintenant deux cas.

Supposons que p = 1 modulo 4. On sait alors que Tr(S) est réelle, ce qui
entraine r = s = (p—1)/4 puisque r+s = (p—1)/2. Et comme |Tr(S)| = \/p on
au—v=1ouu—v = —1;comme on sait par ailleurs que u+v = (p+1)/2, cela
signifie quonau = (p+3)/detv=(p—1)/4douu=(p—1)/detv=(p+3)/4.
Mais on sait aussi que 2v + r — s est égal & p(p — 1)/2 modulo 4, c’est-a-dire
encore & (p — 1)/2 modulo 4 puisque p vaut 1 modulo 4. Cela exclut le cas ou
v=(p+3)/4car (p+3)/2—(p—1)/2 = 2 # 0 modulo 4. Par conséquent

v=(p—1)/4, u=(p+3)/4 et Tr(S) = /p.

Supposons que p = — modulo 4. On sait alors que Tr(.S) est imaginaire pure,
ce qui entraine u = v(p+1)/4 puisque u+v = (p+1)/2. Et comme |Tr(S)| = \/p
onar—s=1our—s= —1;comme on sait par ailleurs que r+s = (p—1)/2, cela

signifiequon ar = (p+1)/det s=(p—3)/dour=(p—3)/detv=(p+1)/4.
Mais on sait aussi que 2v + r — s est égal & p(p — 1)/2 modulo 4, c’est-a-dire
encore a—(p —1)/2 modulo 4 puisque p vaut —1 modulo 4. Cela exclut le cas ou
r—s=—1lcar (p+1)/2—1=(p—1)/2 qui est différent de —(p — 1)/2 modulo
4 puisque (p — 1)/2 est impair (car p # 1 modulo 4), donc inversible modulo 4.
Par conséquent r — s = 1 et Tr(S) = i,/p.

Exercice 4

Avant d’entamer la correction de l’exercice proprement dit, nous allons
rappeler quelques faits généraux de théorie des groupes, qui doivent étre bien
connus, et dont 1'utilisation doit étre un réflexe.

Préliminaires (P1) : Morphismes depuis un groupe cyclique.
Commengons par rappeler quelques faits généraux sur les morphismes de
groupes, et les caracteres en particulier.

Soit H un groupe et soit n un entier. L’application ¢ +— (1) établit une
bijection de Hom(Z/nZ),H) sur {h € H,h™ = e}. Sa réciproque envoie un
élément h de H tel que h™ = e sur le morphisme @ +— h* de Z/nZ vers H, qui
est bien défini car comme h"™ = e, ’élément h® de GG ne dépend bien que de la
classe @ de a modulo n.

Supposons de plus que H est abélien. Dans ce cas Hom(G, H) a pour tout
groupe G une structure naturelle de groupe abélien : sa loi interne envoie un
couple (p,%) de morphismes sur pv: G — H,g — p(g)1(g) (exercice : vérifiez
que v est bien un morphisme ; c’est 1a que le caractére abélien de H intervient).
Et {h € H,h™ = e} est un sous-groupe de H (c’est le noyau de h — h™ qui
est un morphisme de groupes de H dans H car H est abélien). La bijection
entre Hom(Z/nZ),H) et {h € H,h™ = e} construite ci-dessus est alors un
isomorphisme de groupes.

Soit maintenant G un groupe cyclique, soit n son cardinal et soit g un
générateur de G. Il existe un isomorphisme entre Z/nZ et G envoyant 1 sur
G, et I'on déduit alors de ce qui précede que pour tout groupe H, 'application
¢ — ©(g) établit une bijection de Hom(GH) sur {h € H,h"™ = e}, dont la
réciproque envoie un élément h de H tel que h™ = e sur le morphisme g +— h®
de G vers H, qui est bien défini; et cette bijection est un isomorphisme de
groupes lorsque H est abélien.



Préliminaires (P2) : morphismes depuis un produit. Soient G et H
deux groupes, et soit K un groupe abélien. On dispose alors d’un isomorphisme
de groupes

Hom(G x H, K) ~ Hom(G, K) x Hom(H, K).

Il est donné par la formule

x = (g x(g,1),h = x(1,h))

et sa réciproque est
(0, ¥) = ((9.h) = ©(9)¥(R))

(que (g,h) — ¢(g)¥(h) soit un morphisme résulte du fait que K est abélien,
vérifiez-le en exercice).

Question (1). Le groupe (Z/4Z)* est égal & {—1,1} et est cyclique d’ordre
2, de générateur (—1). Il résulte alors du paragraphe (P1) que ¢ — ¢(—1)
établit un isomorphisme entre le groupe des caracteres de Dirichlet modulo 4 et
{z € C*,22 =1} = {-1,1}. Il y a par conséquent deux caractéres de Dirichlet
modulo 4 : le caractére trivial qui envoie 1 et (—1) sur 1, et le caractére qui
envoie 1 sur 1 et (—1) sur (—1).

Le groupe (Z/8Z)* est égal & {—1,1,3,-3}, avec 32 = (=3)? = 9 = 1
(on travaille modulo 8). Les sous-ensembles {1, —1} et {1,3} de (Z/8Z)* en
sont deux sous-groupes, tous deux cycliques d’ordre 2, et l'application du
produit {1,—1} x {1,3} vers (Z/8Z)* qui envoie (a,b) sur ab est clairement
un isomorphisme de groupes. On en déduit a l’aide du paragraphe (P2) que se
donner un caractére sur (Z/8Z)* revient & se donner un caractére sur {1, —1},
c’est-d-dire par le paragraphe (P1) un élément de carré 1 de C* (I'image de
(—1)), et un caractere sur {1, 3}, c’est-a-dire par le paragraphe (P1) un élément
de carré 1 de C* (I'image de (3)). On a en conséquence quatre caractéres sur
(Z/8Z)*, donnés par les quatre tableaux de valeurs

1 -1 3 -3 1 -1 3 =3
(1 11 1><1 1 -1 —1)
1 -1 3 -3 1 -1 3 =3
(1 ~1 1 1)(1 -1 -1 1 )
Question (2). On sait que le groupe (Z/72)* = {-3,-2,-1,1,2,3} est
cyclique; commencons par en trouver un générateur. Modulo 7 on a 23 = 1
donc 2 est d’ordre 3; on a 32 = 2 et 33 = —1 donc 'ordre de 3 n’est ni 1,
ni 2, ni 3 et 3 est par conséquent d’ordre 6 : c’est un générateur de (Z/7Z)*.
On sait alors d’apres le paragraphe (P1) que ¢ — (3) établit une bijection
entre 'ensemble des caracteéres d’ordre 3 de (Z/7Z)* et ensemble des éléments
d’ordre 3 de C*, qui n’est autre que {j, %} ol j = exp(2in/3). On a donc deux

tels caracteres. Pour les décrire explicitement, commengons par exprimer tous
les éléments de (Z/7Z)* comme des puissances de 3 :

3'=1,3"=3,32=2,3" = (-1),3* = (3%)* = -3,3° = 3. 3* = (-2).

On peut alors donner les deux caractéres par leur tableau de valeurs; sur la
premiére ligne on met les éléments de (Z/7Z)*, sur la seconde on rappelle (en



rouge) leur écriture comme puissance de 3, et sur la troisiéme on met (en bleu)
la valeur du caractére, obtenue par la formule ¢(3™) = (3)™.

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3
34 35 3.‘5 30 32 3] 34 35 3.‘5 30 32 31
/A S U U S | g 1 1 g g

Exercice 5.
Soit ¢ un caractere de G. On a alors

51 2 #l0)2(0)

geG

1
- @21

geG

(%)

G
G|
= 1,
(la deuxieéme égalité provient du fait que ¢(g) est une racine de l'unité, et en
particulier un nombre complexe de module 1, pour tout g € G).

Soit maintenant y un caractere distinct de ¢. On a alors

(ox) = %”ZMQ)@

geG

= \%I > elg)x(e)™

geG

- Tcln 3 (exH(9)

geG
= 07

ou la deuxiéme égalité provient encore du fait que x(g) est de module 1 pour
tout g € G, et la derniére du fait que le caractére ¢ := @y ~! est non trivial (car
 # x par hypothese), ce qui entraine d’apres le cours que dec ¥(g) = 0.

Les caracteres de GG forment donc une famille orthonormée de 'espace E des
applications de G dans C; cette famille est en particulier libre, et pour montrer
que c’est une base il suffit de s’assurer que son cardinal est égal a la dimension
de E. Or E est de dimension |G| : si 'on note §, application h — dgp de G
dans {0,1} C C, la famille (§4)4cc est en effet une base de E (si f € E on
af = Zg f(9)dg et si > agd, = 0, en appliquant cette fonction & un élément
quelconque h de G on voit que aj, = 0). Et on sait d’apres le cours que |@| =|G|;
les caractéres de G forment donc bien une base orthonormée de E.

Exercice 6

Questions (1) et (2). Fixons une racine primitive m-ieme de 'unité ¢. On
utilise le paragraphe (P1) de la correction de l’exercice (4) : comme (™ = 1, il
existe un unique morphisme y de H dans C* tel que x({) = h, et le théoréme de



prolongement des caracteres assure que y peut étre prolongé en un caractere de
G tout entier, que nous noterons encore x. L’image x(H) est le groupe engendré
par ¢ (car H est engendré par h), qui est le groupe p,, des racines m-iémes de
Punité puisque ¢ est primitive. Par conséquent x(G) D pi,. D’autre part si
g € G son ordre divise m par choix de m, si bien que ¢ = e et donc que
x(g)™ = 1; ainsi x(g) € fim, d’ou Uinclusion x(G) C py, et finalement I’égalité
X(G) = pim.

Question (3)). Sin est un entier on a
xX(h") =0 < ("=0 <= n=0modm < h" =e.

Par conséquent, x|z est injective. Or K N H est le noyau de x| ; il s’ensuit que
KnNH={e}.

Soit pu: H x K — G le morphisme (h, k) — hk. Montrons que p est injectif.
Soit (h,k) € H x K tel que hk = e. On a alors h = k™!, si bien que h et
k appartiennent tous deux a H N K, lequel est trivial. Il vient h = k = e,
c’est-a-dire (h, k) = (e, e) et p est injective. Montrons que p est surjective. Soit
g € G. On a vu plus haut que x(G) = x(H) = pm. 1l existe donc h € H
tel que x(h) = x(g). On a g = h(h~'g), et x(h~'g) = x(h)~"x(g) = 1; ainsi
h=lg € K et g = u(h,h~1g). Par conséquent y est surjective et est finalement
un isomorphisme.

Exercice 7

La question (1) a été traitée au paragraphe préliminaire (P2) de la correction
de V'exercice 4.

Question (2). Montrons le résultat par récurrence sur |G|. Si |G| est égal
a 1 le résultat est vrai car G ~ Z/1Z ou, de maniére plus satisfaisante
conceptuellement, car G s’identifie au produit vide de groupes cycliques.
Supposons |G| > 1 et le résultat vrai pour tout groupe abélien fini de cardinal
strictement inférieur & |G|. Soit m le PPCM des ordres des éléments de G. C’est
un entier > 1 car |G| > 1 (et n’importe quel élément non trivial de G est d’ordre
strictement supérieur a 1). D’apres le cours, il existe un élément h d’ordre m
dans G. Si H désigne le sous-groupe de G engendré par h, Iexercice 6 fournit
un sous-groupe K de G et un isomorphisme entre H x K et G. L’existence de
cet isomorphisme assure que |G| = |H| x |K|. Comme |H| = m > 1, le cardinal
de K est strictement inférieur a celui de G. L’hypothese de récurrence garantit
alors que K est isomorphe & un produit fini de groupes cycliques. Comme H
est lui-méme cyclique par construction, G est isomorphe a un produit fini de
groupes cycliques, ce qui acheve la démonstration.

Question (3). Par la question précédente G est isomorphe & un produit
H{ x Hyx...x H,

avec les H; cycliques. Par conséquent G est isomorphe au groupe des caracteres
de Hy x Hy X ...x H,, qui est lui-méme d’apres la question (1) (et une récurrence
immédiate sur r) isomorphe & Hy X Hy X ... x H,. Il suffit dés lors pour conclure



de montrer que pour tout ¢ le groupe I/{Q est isomorphe a H;. Fixons donc 7, et
soit n; le cardinal du groupe cyclique H;. Une fois fixé un générateur de H;, le
paragraphe préliminaire (P1) du corrigé de I’exercice 4 fournit un isomorphisme
entre f[: et {z € C*,z™ = 1}; or ce dernier groupe est lui-méme cyclique de
cardinal n;, donc isomorphe a H;, ce qui acheve la démonstration.
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