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certains exercices de la feuille de TD numéro 2.

Exercice 1
Pour tout a premier à p, notons λ(a) la signature de la multiplication par a.

Première preuve. Les applications a 7→
(

a
p

)
et a 7→ λ(a) sont deux

morphismes de groupes de (Z/pZ)× vers {−1, 1} ; comme leur valeur en un
élément donné ne peut être égale qu’à 1 ou (−1) il suffit, pour montrer qu’ils
cöıncident, de vérifier qu’ils prennent la valeur 1 exactement sur les mêmes
éléments, c’est-à-dire qu’ils ont même noyau.

Or (Z/pZ)× est cyclique de cardinal pair, et possède dès lors un unique
sous-groupe G d’indice 2, et tout morphisme surjectif de (Z/pZ)× vers {−1, 1}
a nécessairement G pour noyau. C’est en particulier le cas de a 7→

(
a
p

)
, et il

suffit donc pour conclure de démontrer que λ est lui aussi surjectif. Autrement
dit, il suffit d’exhiber un élément a de (Z/pZ)× tel que λ(a) = −1. Prenons
pour a un générateur du groupe cyclique (Z/pZ)×. L’orbite de 1 sous l’action
de ⟨a⟩ est {ai}i∈Z et c’est donc (Z/pZ)× tout entier. La permutation de (Z/pZ)×

induite par a est par conséquent un (p− 1)-cycle ; puisque p− 1 est pair, cette
permutation est impaire, et λ(a) = −1.

Seconde preuve, proposée par l’un d’entre-vous. Soit a un élément de
(Z/pZ)× et soit σ la permutation de (Z/pZ)× induite par la multiplication par
a. Si l’on identifie (Z/pZ)× à {1, . . . , p− 1} on a

ε(σ) =
∏

1⩽i<j⩽p−1

σ(j) − σ(i)
j − i

.

C’est une égalité qu’on peut réduire modulo p car si i et j sont deux entiers tels
que 1 ⩽ i < j ⩽ p− 1 alors 1 ⩽ j− i ⩽ p− 2 et j− i est en particulier inversible
modulo p.

Il vient

λ(a) =
∏

1⩽i<j⩽p−1

a(j − i)
j − i

,

puisque σ(i) est par définition pour tout i la classe de ai modulo p. Comme il y
a (p− 1)(p− 2)/2 paires d’éléments de {1, . . . , p− 1} on voit que

λ(a) =
∏

1⩽i<j⩽p−1
a = a(p−1)(p−2)/2 = a(p−1)/2 =

(
a

p

)
,

où l’avant-dernière égalité provient du fait que a(p−1)/2 ∈ {−1, 1} (c’est un
symbole de Legendre) et que p− 2 est impair.
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Exercice 2
Commençons par une remarque : l’exercice introduit une matrice S, carrée

de taille p (mais indexée par {0, . . . , p − 1}2 et non par {1, . . . , p}2). On a par
définition

Tr(S) =
p−1∑
x=0

ξx2
= Gp;

le nombre complexe qu’on se propose de calculer est donc la trace de S.

Question (1). Le terme d’indice (i, j) de S2 est

p−1∑
k=0

ξikξkj =
p−1∑
k=0

ξk(i+j)

=
p−1∑
k=0

(ξi+j)k.

On distingue maintenant deux cas. Si i+j est non nul modulo p, c’est-à-dire
ici si i+ j ̸= 0 et i+ j ̸= p, alors ξi+j ̸= 1 et la somme calculée vaut

1 − (ξi+j)p

1 − ξi+j
= 0.

Et si i+ j est nul modulo p alors ξi+j = 1 et la somme calculée vaut p.
On voit donc que tous les coefficients de S2 sont nuls, hormis les coefficients

d’indice (0, 0) et (i, p − i) pour i variant entre 1 et p − 1. La matrice S2 est
donc égale à Diag(p,B) où B est le bloc de taille (p − 1, p − 1), paramétré par
({1, . . . , p − 1}2, et dont tous les termes sont nuls sauf ceux de l’antidiagonale
qui valent p.

La suite de l’exercice va requérir de bien comprendre les valeurs propres de
S2 et leurs multiplicités. Pour cela, il va être commode de faire la remarque
suivante. Identifions B à l’endomorphisme de Cp−1 dont elle est la matrice dans
la base canonique (e1, . . . , ep−1). On a alors Bei = pep−i pour tout i, si bien que
dans la base (e1, ep−1, e2, ep−2, . . . , ep−1/2, ep+1/2), l’endomorphisme B a pour
matrice Diag (C, . . . , C)︸ ︷︷ ︸

(p−1)/2 blocs

où

C =
(

0 p
p 0

)
.

La matrice C a pour polynôme caractéristique X2 − p2 = (X + p)(X − p). Elle
est donc diagonalisable, avec deux valeurs propres distinctes p et (−p).

Il s’ensuit que S2 est diagonalisable avec pour valeurs propres p, qui apparâıt
avec multiplicité 1 + p−1

2 = p+1
2 et (−p) qui apparait avec multiplicité p−1

2 . En
particulier detS2 = (−1)(p−1)/2pp, que l’on peut récrire (−1)p(p−1)/2pp puisque
p est impair.
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Question (2). On remarque que la matrice S est la matrice de Vandermonde
associée à (1, ξ, ξ2, . . . , ξp−1). Il vient, en posant ω = exp(iπ/p) :

detS =
∏

0⩽i<j⩽p−1
ξj − ξi

=
∏

0⩽i<j⩽p−1
ωi+j(ωj−i − ωi−j)

=
∏

0⩽i<j⩽p−1
ωi+j

= ω

∑
0⩽i<j⩽p−1

i+j(2i)p(p−1)/2
∏

0⩽i<j⩽p−1
sin(π(j − i)/p).

Nous savons que detS2 = (−1)p(p−1)/2pp, si bien que | detS| = pp/2. Pour
déterminer complètement detS, il suffit de déterminer son argument. Comme
sin(π(j − i)/p) > 0 pour tous les couples (i, j) avec 0 ⩽ i < j ⩽ p − 1, cet
argument est celui de ip(p−1)/2ωN , où l’on a posé N =

∑
0⩽i<j⩽p−1 i+ j.

Il reste donc à calculer N . On a

N =
∑

0⩽i<j⩽p−1
i+ j

=
∑

1⩽j⩽p−1

∑
0⩽i⩽j−1

j + i

=
∑

1⩽j⩽p−1
j2 + j(j − 1)

2

= 1
2

∑
1⩽j⩽p−1

3j2 − j

= 1
2

(
(p− 1)p(2p− 1)

2 − (p− 1)p
2

)
= 1

2
p(p− 1)(2p− 2)

2

= p(p− 1)2

2 .

Or comme (p− 1) est pair, (p− 1)2 est multiple de 4 et (p− 1)2/2 est donc pair.
Par conséquent N est multiple de 2p, si bien que ωN = 1. L’argument de S est
dès lors égal à celui de ip(p−1)/2 et il vient

detS = ip(p−1)/2pp/2,

ce qu’on souhaitait établir.

Question (3). En considérant une base de trigonalisation de l’endomorphisme
de matrice S (dans la base canonique) on voit que si λ1, . . . , λn désigne la liste
des valeurs propres de S (chacune étant répétée autant de fois qu’il convient)
alors λ2

1, . . . , λ
2
n est la liste des valeurs propres de S2, que nous connaissons : il

y a p avec multiplicité (p+ 1/2), et (−p) avec multiplicité (p− 1)/2. Il s’ensuit
que toute valeur propre de S est de carré p ou −p, donc de la forme ±√

p ou
±i√p.
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Les valeurs propres de S égales à ±√
p sont celles de carré p, si bien que

u+ v doit être égal à la multiplicité de p comme valeur propre de S, c’est-à-dire
p + 1/2. De même, les propres de S égales à ±i√p sont celles de carré −p, si
bien que r + s doit être égal à la multiplicité de p comme valeur propre de S,
c’est-à-dire p+ 1/2.

Enfin le déterminant de S est égal à (−1)vir(−i)spp/2, c’est-à-dire à
i2v+r−spp/2 (puisque (−1) = i2 et −i = i−1 et on sait par ailleurs qu’il
vaut (i)p(p−1)/2pp/2. Il vient ip(p−1)/2 = i2v+r−s, ce qui revient à dire que
2v + r − s = p(p− 1)/2 modulo 4 puisque i est d’ordre 4.

Question (4). La trace de S est égale
∑

x∈Fp
ξx2 . Or si k est un élément de

Fp, on est dans l’un des trois cas suivants (exclusifs l’un de l’autre) :
(a) On a k = 0 ; dans ce cas k est égal à x2 pour un unique x de Fp, à savoir

0 ;
(b) Si k ∈ (F×

p )2 alors k est égal à x2 pour exactement deux éléments x de
Fp ;

(c) Si k /∈ (F×
p )2 alors k n’est égal à x2 pour aucun élément x de Fp.

La somme
∑

x∈Fp
ξx2 . peut donc se récrire

∑
k∈Fp

λ(k)ξk où λ(k) vaut 1 si
k = 0, 2 si k ∈ (F×

p )2, et 0 sinon. Petit miracle : si l’on a une bonne vue, on
remarque que λ(k) peut s’écrire uniformément (sans disjonction de cas) comme
1 +

(
k
p

)
.

On a donc

Tr(S) =
p−1∑
k=0

(
1 +

(
k

p

))
ξk.

Mais comme
∑p−1

k=0 ξ
k = (1 − ξp)/(1 − ξ) = 0, on a finalement

Tr(S) =
p−1∑
k=0

(
k

p

)
)ξk,

ce qu’il fallait démontrer.

Question (6). Pour conclure, nous allons commencer par étudier le module
et l’argument de Tr(S). On commence par remarquer que

Tr(S) =
p−1∑
k=0

(
k

p

)
ξ−k

=
∑
k∈Fp

(
k

p

)
ξ−k

=
∑
k∈Fp

(
−k
p

)
ξk

=
(

−1
p

) ∑
k∈Fp

(
k

p

)
ξk

=
(

−1
p

)
Tr(S).
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Par conséquent Tr(S) est réel si p vaut 1 modulo 4, et imaginaire pur si p vaut
(−1) modulo 4.

Calculons maintenant |Tr(S)|. On a

Tr(S)Tr(S) =

 ∑
k∈Fp

(
k

p

)
ξk

  ∑
k∈Fp

(
k

p

)
ξ−k


=

∑
k,ℓ∈Fp

(
k

p

) (
ℓ

p

)
ξk−ℓ

=
∑

k∈Fp,i∈Fp

(
k

p

) (
k − i

p

)
ξi

(la dernière s’obtient en faisant le changement de variable (k, i) = (k, k − ℓ).
Fixons i et calculons

∑
k∈Fp

(
k
p

) (
k−i

p

)
. Supposons tout d’abord que i = 0.

On trouve alors
∑

k∈Fp

(
k
p

)2
, ce qui fait p − 1 car

(
k
p

)
est égal à ±1 si k est

non nul et à 0 sinon. Supposons maintenant que i ̸= 0. On a∑
k∈Fp

(
k

p

) (
k − i

p

)
=

∑
k∈F×

p

(
k

p

) (
k − i

p

)

=
∑

k∈F×
p

(
k

p

) (
k

p

) (
1 − ik−1

p

)

=
∑

k∈F×
p

(
1 − ik−1

p

)
.

Or comme i est non nul l’application a 7→ 1 − ia est une bijection de Fp

sur lui-même. L’application k 7→ k−1 est une bijection de F×
p sur lui-même et

comme i est non nul l’application a 7→ 1 − ia est une bijection de Fp sur lui-
même, qui en induit une de F×

p sur Fp − {1}. Il s’ensuit que k 7→ 1 − ik−1 induit
une bijection de F×

p sur F×
p \ {1}.

La somme étudiée se récrit donc
∑

a∈Fp,a̸=1

(
a
p

)
. Or on sait que∑

a∈Fp

(
a
p

)
= 0 (cela découle du fait que

(
0
p

)
= 0 et que a 7→

(
a
p

)
définit

un caractère non trivial de F×
p ). Il vient

∑
a∈Fp,a ̸=1

(
a

p

)
= −

(
1
p

)
= (−1).

Il découle de tout ce qui précède que

Tr(S)Tr(S) = (p− 1) −
∑

i∈F×
p

ξi.

Mais comme
∑

i∈Fp
ξi =

∑
0⩽i⩽p−1 ξ

i = (1 − ξp)/(1 − ξ) = 0,
∑

i∈F×
p
ξi = −1.

On en conclut que Tr(S)Tr(S) = p. Par conséquent, |Tr(S)| = √
p.
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Nous allons maintenant pouvoir déterminer entièrement Tr(S). Remarquons
déjà que par définition même de u, v, r et s on a Tr(S) = (u−v)√p+ i(r−s)√p.
On distingue maintenant deux cas.

Supposons que p = 1 modulo 4. On sait alors que Tr(S) est réelle, ce qui
entrâıne r = s = (p−1)/4 puisque r+s = (p−1)/2. Et comme |Tr(S)| = √

p on
a u−v = 1 ou u−v = −1 ; comme on sait par ailleurs que u+v = (p+1)/2, cela
signifie qu’on a u = (p+ 3)/4 et v = (p− 1)/4 ou u = (p− 1)/4 et v = (p+ 3)/4.
Mais on sait aussi que 2v + r − s est égal à p(p − 1)/2 modulo 4, c’est-à-dire
encore à (p − 1)/2 modulo 4 puisque p vaut 1 modulo 4. Cela exclut le cas où
v = (p + 3)/4 car (p + 3)/2 − (p − 1)/2 = 2 ̸= 0 modulo 4. Par conséquent
v = (p− 1)/4, u = (p+ 3)/4 et Tr(S) = √

p.
Supposons que p = − modulo 4. On sait alors que Tr(S) est imaginaire pure,

ce qui entrâıne u = v(p+1)/4 puisque u+v = (p+1)/2. Et comme |Tr(S)| = √
p

on a r−s = 1 ou r−s = −1 ; comme on sait par ailleurs que r+s = (p−1)/2, cela
signifie qu’on a r = (p+ 1)/4 et s = (p− 3)/4 ou r = (p− 3)/4 et v = (p+ 1)/4.
Mais on sait aussi que 2v + r − s est égal à p(p − 1)/2 modulo 4, c’est-à-dire
encore à−(p− 1)/2 modulo 4 puisque p vaut −1 modulo 4. Cela exclut le cas où
r− s = −1 car (p+ 1)/2 − 1 = (p− 1)/2 qui est différent de −(p− 1)/2 modulo
4 puisque (p− 1)/2 est impair (car p ̸= 1 modulo 4), donc inversible modulo 4.
Par conséquent r − s = 1 et Tr(S) = i

√
p.

Exercice 4
Avant d’entamer la correction de l’exercice proprement dit, nous allons

rappeler quelques faits généraux de théorie des groupes, qui doivent être bien
connus, et dont l’utilisation doit être un réflexe.

Préliminaires (P1) : Morphismes depuis un groupe cyclique.
Commençons par rappeler quelques faits généraux sur les morphismes de
groupes, et les caractères en particulier.

Soit H un groupe et soit n un entier. L’application φ 7→ φ(1) établit une
bijection de Hom(Z/nZ), H) sur {h ∈ H,hn = e}. Sa réciproque envoie un
élément h de H tel que hn = e sur le morphisme a 7→ ha de Z/nZ vers H, qui
est bien défini car comme hn = e, l’élément ha de G ne dépend bien que de la
classe a de a modulo n.

Supposons de plus que H est abélien. Dans ce cas Hom(G,H) a pour tout
groupe G une structure naturelle de groupe abélien : sa loi interne envoie un
couple (φ,ψ) de morphismes sur φψ:G → H, g 7→ φ(g)ψ(g) (exercice : vérifiez
que φψ est bien un morphisme ; c’est là que le caractère abélien de H intervient).
Et {h ∈ H,hn = e} est un sous-groupe de H (c’est le noyau de h 7→ hn qui
est un morphisme de groupes de H dans H car H est abélien). La bijection
entre Hom(Z/nZ), H) et {h ∈ H,hn = e} construite ci-dessus est alors un
isomorphisme de groupes.

Soit maintenant G un groupe cyclique, soit n son cardinal et soit g un
générateur de G. Il existe un isomorphisme entre Z/nZ et G envoyant 1 sur
G, et l’on déduit alors de ce qui précède que pour tout groupe H, l’application
φ 7→ φ(g) établit une bijection de Hom(GH) sur {h ∈ H,hn = e}, dont la
réciproque envoie un élément h de H tel que hn = e sur le morphisme ga 7→ ha

de G vers H, qui est bien défini ; et cette bijection est un isomorphisme de
groupes lorsque H est abélien.
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Préliminaires (P2) : morphismes depuis un produit. Soient G et H
deux groupes, et soit K un groupe abélien. On dispose alors d’un isomorphisme
de groupes

Hom(G×H,K) ≃ Hom(G,K) × Hom(H,K).

Il est donné par la formule

χ 7→ (g 7→ χ(g, 1), h 7→ χ(1, h))

et sa réciproque est
(φ,ψ) 7→ ((g, h) 7→ φ(g)ψ(h))

(que (g, h) 7→ φ(g)ψ(h) soit un morphisme résulte du fait que K est abélien,
vérifiez-le en exercice).

Question (1). Le groupe (Z/4Z)× est égal à {−1, 1} et est cyclique d’ordre
2, de générateur (−1). Il résulte alors du paragraphe (P1) que φ 7→ φ(−1)
établit un isomorphisme entre le groupe des caractères de Dirichlet modulo 4 et
{z ∈ C×, z2 = 1} = {−1, 1}. Il y a par conséquent deux caractères de Dirichlet
modulo 4 : le caractère trivial qui envoie 1 et (−1) sur 1, et le caractère qui
envoie 1 sur 1 et (−1) sur (−1).

Le groupe (Z/8Z)× est égal à {−1, 1, 3,−3}, avec 32 = (−3)2 = 9 = 1
(on travaille modulo 8). Les sous-ensembles {1,−1} et {1, 3} de (Z/8Z)× en
sont deux sous-groupes, tous deux cycliques d’ordre 2, et l’application du
produit {1,−1} × {1, 3} vers (Z/8Z)× qui envoie (a, b) sur ab est clairement
un isomorphisme de groupes. On en déduit à l’aide du paragraphe (P2) que se
donner un caractère sur (Z/8Z)× revient à se donner un caractère sur {1,−1},
c’est-à-dire par le paragraphe (P1) un élément de carré 1 de C× (l’image de
(−1)), et un caractère sur {1, 3}, c’est-à-dire par le paragraphe (P1) un élément
de carré 1 de C× (l’image de (3)). On a en conséquence quatre caractères sur
(Z/8Z)×, donnés par les quatre tableaux de valeurs(

1 −1 3 −3
1 1 1 1

) (
1 −1 3 −3
1 1 −1 −1

)
(

1 −1 3 −3
1 −1 1 −1

) (
1 −1 3 −3
1 −1 −1 1

)
.

Question (2). On sait que le groupe (Z/7Z)× = {−3,−2,−1, 1, 2, 3} est
cyclique ; commençons par en trouver un générateur. Modulo 7 on a 23 = 1
donc 2 est d’ordre 3 ; on a 32 = 2 et 33 = −1 donc l’ordre de 3 n’est ni 1,
ni 2, ni 3 et 3 est par conséquent d’ordre 6 : c’est un générateur de (Z/7Z)×.
On sait alors d’après le paragraphe (P1) que φ 7→ φ(3) établit une bijection
entre l’ensemble des caractères d’ordre 3 de (Z/7Z)× et l’ensemble des éléments
d’ordre 3 de C×, qui n’est autre que {j, j2} où j = exp(2iπ/3). On a donc deux
tels caractères. Pour les décrire explicitement, commençons par exprimer tous
les éléments de (Z/7Z)× comme des puissances de 3 :

30 = 1, 31 = 3, 32 = 2, 33 = (−1), 34 = (32)2 = −3, 35 = 3 · 34 = (−2).

On peut alors donner les deux caractères par leur tableau de valeurs ; sur la
première ligne on met les éléments de (Z/7Z)×, sur la seconde on rappelle (en
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rouge) leur écriture comme puissance de 3, et sur la troisième on met (en bleu)
la valeur du caractère, obtenue par la formule φ(3n) = φ(3)n. −3 −2 −1 1 2 3

34 35 33 30 32 31

j j2 1 1 j2 j

  −3 −2 −1 1 2 3
34 35 33 30 32 31

j2 j 1 1 j j2

 .

Exercice 5.
Soit φ un caractère de G. On a alors

⟨φ,φ⟩ = 1
|G|

∑
g∈G

φ(g)φ(g)

= 1
|G|

∑
g∈G

1

= |G|
|G|

= 1,

(la deuxième égalité provient du fait que φ(g) est une racine de l’unité, et en
particulier un nombre complexe de module 1, pour tout g ∈ G).

Soit maintenant χ un caractère distinct de φ. On a alors

⟨φ, χ⟩ = 1
|G|

∑
g∈G

φ(g)χ(g)

= 1
|G|

∑
g∈G

φ(g)χ(g)−1

= 1
|G|

∑
g∈G

(φχ−1)(g)

= 0,

où la deuxième égalité provient encore du fait que χ(g) est de module 1 pour
tout g ∈ G, et la dernière du fait que le caractère ψ := φχ−1 est non trivial (car
φ ̸= χ par hypothèse), ce qui entrâıne d’après le cours que

∑
g∈G ψ(g) = 0.

Les caractères de G forment donc une famille orthonormée de l’espace E des
applications de G dans C ; cette famille est en particulier libre, et pour montrer
que c’est une base il suffit de s’assurer que son cardinal est égal à la dimension
de E. Or E est de dimension |G| : si l’on note δg l’application h 7→ δgh de G
dans {0, 1} ⊂ C, la famille (δg)g∈G est en effet une base de E (si f ∈ E on
a f =

∑
g f(g)δg et si

∑
agδg = 0, en appliquant cette fonction à un élément

quelconque h de G on voit que ah = 0). Et on sait d’après le cours que |Ĝ| = |G| ;
les caractères de Ĝ forment donc bien une base orthonormée de E.

Exercice 6
Questions (1) et (2). Fixons une racine primitive m-ième de l’unité ζ. On
utilise le paragraphe (P1) de la correction de l’exercice (4) : comme ζm = 1, il
existe un unique morphisme χ de H dans C× tel que χ(ζ) = h, et le théorème de
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prolongement des caractères assure que χ peut être prolongé en un caractère de
G tout entier, que nous noterons encore χ. L’image χ(H) est le groupe engendré
par ζ (car H est engendré par h), qui est le groupe µm des racines m-ièmes de
l’unité puisque ζ est primitive. Par conséquent χ(G) ⊃ µm. D’autre part si
g ∈ G son ordre divise m par choix de m, si bien que gm = e et donc que
χ(g)m = 1 ; ainsi χ(g) ∈ µm, d’où l’inclusion χ(G) ⊂ µm et finalement l’égalité
χ(G) = µm.

Question (3)). Si n est un entier on a

χ(hn) = 0 ⇐⇒ ζn = 0 ⇐⇒ n = 0 mod m ⇐⇒ hn = e.

Par conséquent, χ|H est injective. Or K ∩H est le noyau de χ|H ; il s’ensuit que
K ∩H = {e}.

Soit µ:H ×K → G le morphisme (h, k) 7→ hk. Montrons que µ est injectif.
Soit (h, k) ∈ H × K tel que hk = e. On a alors h = k−1, si bien que h et
k appartiennent tous deux à H ∩ K, lequel est trivial. Il vient h = k = e,
c’est-à-dire (h, k) = (e, e) et µ est injective. Montrons que µ est surjective. Soit
g ∈ G. On a vu plus haut que χ(G) = χ(H) = µm. Il existe donc h ∈ H
tel que χ(h) = χ(g). On a g = h(h−1g), et χ(h−1g) = χ(h)−1χ(g) = 1 ; ainsi
h−1g ∈ K et g = µ(h, h−1g). Par conséquent µ est surjective et est finalement
un isomorphisme.

Exercice 7
La question (1) a été traitée au paragraphe préliminaire (P2) de la correction

de l’exercice 4.

Question (2). Montrons le résultat par récurrence sur |G|. Si |G| est égal
à 1 le résultat est vrai car G ≃ Z/1Z ou, de manière plus satisfaisante
conceptuellement, car G s’identifie au produit vide de groupes cycliques.
Supposons |G| > 1 et le résultat vrai pour tout groupe abélien fini de cardinal
strictement inférieur à |G|. Soit m le PPCM des ordres des éléments de G. C’est
un entier > 1 car |G| > 1 (et n’importe quel élément non trivial de G est d’ordre
strictement supérieur à 1). D’après le cours, il existe un élément h d’ordre m
dans G. Si H désigne le sous-groupe de G engendré par h, l’exercice 6 fournit
un sous-groupe K de G et un isomorphisme entre H × K et G. L’existence de
cet isomorphisme assure que |G| = |H| × |K|. Comme |H| = m > 1, le cardinal
de K est strictement inférieur à celui de G. L’hypothèse de récurrence garantit
alors que K est isomorphe à un produit fini de groupes cycliques. Comme H
est lui-même cyclique par construction, G est isomorphe à un produit fini de
groupes cycliques, ce qui achève la démonstration.

Question (3). Par la question précédente G est isomorphe à un produit

H1 ×H2 × . . .×Hr

avec les Hi cycliques. Par conséquent Ĝ est isomorphe au groupe des caractères
de H1×H2×. . .×Hr, qui est lui-même d’après la question (1) (et une récurrence
immédiate sur r) isomorphe à Ĥ1 ×Ĥ2 × . . .×Ĥr. Il suffit dès lors pour conclure
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de montrer que pour tout i le groupe Ĥi est isomorphe à Hi. Fixons donc i, et
soit ni le cardinal du groupe cyclique Hi. Une fois fixé un générateur de Hi, le
paragraphe préliminaire (P1) du corrigé de l’exercice 4 fournit un isomorphisme
entre Ĥi et {z ∈ C×, zni = 1} ; or ce dernier groupe est lui-même cyclique de
cardinal ni, donc isomorphe à Hi, ce qui achève la démonstration.
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