
FEUILLE DE TD 1

Exercice 1 (Quelques petits compléments au cours 1).

(a) Soient a et b des entiers. Démontrer l’égalité

aZ ∩ bZ = ppcm(a, b)Z,

où ppcm(a, b) désigne le plus petit common multiple de a et b.

(b) Démontrer que l’application Z/mnZ → Z/mZ× Z/nZ n’est pas un isomorphisme si m
et n ne sont pas premiers entre eux.

(c) Soit p un nombre premier et soient x, y ∈ Q tels que ordp(x) ̸= ordp(y). Montrer l’égalité

ordp(x+ y) = min(ordp(x), ordp(y)).

(d) Démontrer que le groupe multiplicatif Q× n’est pas finiment engendré.

Exercice 2 (Nécessité de l’hypothèse abélien dans les lemmes de théorie des groupes du cours 2).
Soit G un groupe abélien fini. On a vu en cours que les trois propriétés suivantes sont vraies :

— Soient g, h ∈ G des éléments d’ordre m et n respectivement. Si m et n sont premiers entre
eux, alors gh est d’ordre mn.

— Étant donnée une partie S ⊂ G, il existe un élément de G d’ordre le ppcm de tous les
éléments de S.

— Soit N le maximum des ordres des éléments de G. Alors gN = 1 pour tout g ∈ G.
Montrer par des exemples que ces trois énoncés peuvent tomber en défaut si G n’est pas abélien.

Exercice 3 (Générateurs des groupes cycliques (Z/pZ)×).

(a) Trouver un générateur du groupe cyclique (Z/97Z)×.

(b) Soit p un nombre premier de la forme 4ℓ + 1, où ℓ est un nombre premier. Démontrer
que 2 est un générateur de (Z/pZ)×.

Exercice 4 (Valuation p-adique des factorielles). Soit p un nombre premier. Écrivons n en
base p, c’est-à-dire

n = a0 + a1p+ · · ·+ arp
r avec ai ∈ {0, . . . , p− 1} et ar ̸= 0.

(a) Démontrer que la valuation p-adique de n! est donnée par

ordp(n!) =

∞∑
j=1

⌊
n

pj

⌋
=
n− (a0 + · · · −+an)

p− 1
,

où ⌊x⌋ désigne la partie entière d’un nombre réel x.

(b) Soit n ⩾ 1 un entier. Démontrer que tout nombre premier p satisfaisant à n < p ⩽ 2n
divise le coefficient binomial

(
2n
n

)
.

(c) Démontrer que le quotient de factorielles

n!(30n)!

(6n)!(10n)!(15n)!

est un nombre entier pour tout n ⩾ 1.
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(d) Soient a, b ⩾ 1 des entiers. Démontrer que ordp(
(
a+b
a

)
) est le nombre de retenus dans

l’addition de a et b en base p.

(e) Soit p un nombre premier. Démontrer que
(
p
i

)
est divisible par p pour tout 1 ⩽ i ⩽ p−1.

En déduire que np − n est divisible par p pour tout entier n et que l’application x 7→ xp

induit un morphisme d’anneaux A → A pour tout anneau A dans lequel p est nul.

Exercice 5 (Cas élémentaires du théorème de Dirichlet).

(a) En considérant (n!)2−1, démontrer qu’il existe une infinité de nombres premiers congrus
à −1 modulo 4.

(b) En considérant 5(n!)2−1, démontrer qu’il existe une infinité de nombres premiers congrus
à −1 modulo 5.

(c) En adaptant la preuve d’Euclide, démontrer qu’il existe une infinité de nombres premiers
congrus à −1 modulo 6.

(d) Montrer que si p est un nombre premier congru à 3 modulo 4, alors il n’existe pas d’entier
a ∈ Z tel que a2+1 soit multiple de p. (Indication : que vaut ap−1 modulo p ?). En déduire
qu’il existe une infinité de nombres premiers congrus à 1 modulo 4.

(e) Soit n ⩾ 2 un entier. Démontrer qu’il existe une infinité de nombres premiers qui ne sont
pas congrus à 1 modulo n.

Exercice 6. Soit f ∈ Z[T] un polynôme non constant.

(a) Montrer qu’il existe des entiers n arbitrairement grands tels que f(n) ne soit pas un
nombre premier.

(b) Montrer que l’ensemble des nombres premiers qui divisent l’une des valeurs f(n), pour
n ⩾ 1, est infini.

Exercice 7 (Pseudopolynômes).

(a) Soit f ∈ Z[T] un polynôme. Posons an = f(n) pour n ⩾ 0. Démontrer que

m− n divise am − an pour tout m > n ⩾ 0.

(b) Soit f ∈ Q[T] tel que f(n) ∈ Z pour tout n. La propriété ci-dessus reste-elle vraie ?

(c) Soit bn =
∑n

k=0
n!
k! . Démontrer l’égalité bn = ⌊en!⌋ pour tout n ⩾ 1, où e =

∑∞
k=0

1
k! .

(d) Démontrer qu’il n’existe pas de polynôme f ∈ Z[T] tel que f(n) = bn pour tout n ⩾ 0.

(e) Démonter que m− n divise bm − bn pour tout m > n ⩾ 0. Les suites d’entiers (bn)n⩾0

ayant cette propriété s’appellent des pseudopolynômes.

Exercice 8 (Fonction indicatrice d’Euler). Soit n ⩾ 1 un entier.

(a) Démontrer l’égalité

φ(n) = n
∏
p|n

p− 1

p
,

où le produit décrit l’ensemble des nombres premiers divisant n.

(b) Soit a un nombre entier tel que a et n sont premiers entre eux. Démontrer que l’ordre
de a mod n dans Z/nZ est égal à n.

(c) En général, démontrer que l’ordre de a mod n dans Z/nZ est égal à n/pgcd(a, n).

(d) Démontrer l’égalité ∑
d|n

φ(d) = n,

où la somme décrit l’ensemble des entiers 1 ⩽ d ⩽ n divisant n.
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Exercice 9 (Équation diophantienne y2 = x3 + 7). Soit (x, y) ∈ Z2 une solution de l’équation

y2 = x3 + 7.

(a) Démontrer que x est impair et que y est pair.

(b) À l’aide de la factorisation x3 + 8 = (x+ 2)(x2 − 2x+ 4), démontrer que x3 + 8 possède
un facteur premier congru à 3 modulo 4.

(c) Démontrer que chaque facteur premier de y2 + 1 est congru à 1 modulo 4.

(d) Conclure que y2 = x3 + 7 n’a pas de solution entière.

Exercice 10 (Des énoncés équivalents au théorème des nombres premiers).

(a) Montrer que le théorème des nombres premiers π(X) ∼ X/ log X est équivaut à l’énoncé

ppcm(1, . . . , n) = en+o(n),

où o(n) désigne une fonction f(n) telle que f(n)/n converge vers 0 lorsque n→ +∞.

(b) Soit Λ la fonction de von Mangoldt, définie comme

Λ(n) =

{
log p si n = pr avec r ⩾ 1,

0 sinon.

Posons ψ(X) =
∑

n⩽X Λ(n) pour un nombre réel X > 0. Démontrer que le théorème des

nombres premiers π(X) ∼ X/ log X équivaut à l’énoncé ψ(X) ∼ X lorsque X → +∞.

(c) En considérant le coefficient binomial
(
2n
n

)
, démontrer l’inégalité ψ(2n) ⩾ n log 2.

Exercice 11.

(a) Soient m et n des nombres entiers. Démontrer que le groupe Z/mZ×Z/nZ est cyclique
si et seulement si m et n sont premiers entre eux.

(b) Si n est une puissance de 2, montrer que (1 + 4x)n ≡ 1 + 4nx modulo 8n.

(c) Soient a un entier et n = 2a. Démontrer que l’ordre de la classe de 5 dans (Z/nZ)× est
égal à 2a−2. Le groupe (Z/nZ)× est-il cyclique ?

(d) Soient p ⩾ 3 un nombre premier et a ⩾ 2 un entier. Si x est un entier, démontrer que les
conditions x ≡ 1 mod pa−1 et xp ≡ 1 mod pa sont équivalentes.

(e) Soit x un entier dont la classe modulo p engendre (Z/pZ)×. Montrer que la classe de x
engendre (Z/nZ)× si et seulement si xp−1 ̸≡ 1 mod p2.

(f) Si xp−1 ≡ 1 mod p, démontrer que (x+ p)p−1 ̸≡ 1 mod p2. En déduire qu’au moins l’un
des deux, x ou x+ p, est générateur de (Z/nZ)×.

(g) Quels sont les nombres entiers pour lesquels le groupe (Z/nZ)× est cyclique ?

Exercice 12 (Nombres de Carmichael). On appelle nombre de Carmichael un entier n qui n’est
pas un nombre premier tel que : tout entier 1 ⩽ a < n premier à n satisfait à an−1 ≡ 1 mod n.

(a) Soit n ⩾ 2 un entier sans facteur carré tel que, pour tout diviseur premier p de n, le
nombre p−1 divise n−1. Démontrer que n est soit premier soit un nombre de Carmichael.

(c) En déduire que 561 est le plus petit nombre de Carmichael.

Exercice 13 (Témoins de non-primalité dans le critère de Miller-Rabin).

(1) Démontrer que dans un groupe cyclique G d’ordre pair, l’équation 2x = 0 possède exac-
tement deux solutions.

(2) Soit n ⩾ 3 un entier impair et soit u le nombre de facteurs premiers distincts de n.
Montrer que dans le groupe (Z/nZ)×, l’équation x2 = 1 possède exactement 2u solutions.
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(3) On suppose que n n’est pas premier, d’où u ⩾ 2. Démontrer que, parmi les nombres
entiers 1 ⩽ a ⩽ n qui sont premiers à n, les témoins de non-primalité de Miller-Rabin de
n sont en proportion au moins égale à 1− 21−u ⩾ 3/4.
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