FEUILLE DE TD 1

Exercice 1 (Quelques petits compléments au cours 1).
(a) Soient a et b des entiers. Démontrer 1'égalité
aZ NbZ = ppem(a, b)Z,
ot ppcm(a, b) désigne le plus petit common multiple de a et b.

(b) Démontrer que lapplication Z/mnZ — Z/mZ x Z/nZ n’est pas un isomorphisme si m
et n ne sont pas premiers entre eux.

(c) Soit p un nombre premier et soient z,y € Q tels que ord,(z) # ord,(y). Montrer 1'égalité
ord,(z + y) = min(ord,(z), ord,(y)).

(d) Démontrer que le groupe multiplicatif @* n’est pas finiment engendré.

Exercice 2 (Nécessité de ’hypotheése abélien dans les lemmes de théorie des groupes du cours 2).
Soit G un groupe abélien fini. On a vu en cours que les trois propriétés suivantes sont vraies :
— Soient g, h € G des éléments d’ordre m et n respectivement. Si m et n sont premiers entre
eux, alors gh est d’ordre mn.
— Etant donnée une partie S C G, il existe un élément de G d’ordre le ppcm de tous les
éléments de S.
— Soit N le maximum des ordres des éléments de G. Alors gN = 1 pour tout g € G.
Montrer par des exemples que ces trois énoncés peuvent tomber en défaut si G n’est pas abélien.

Exercice 3 (Générateurs des groupes cycliques (Z/pZ)*).

(a) Trouver un générateur du groupe cyclique (Z/972)*.

(b) Soit p un nombre premier de la forme 4¢ + 1, ou £ est un nombre premier. Démontrer

que 2 est un générateur de (Z/pZ)*.
Exercice 4 (Valuation p-adique des factorielles). Soit p un nombre premier. Ecrivons n en
base p, c’est-a-dire
n=ay+ap+---+ap" aveca; €{0,...,p—1} et a, #0.
(a) Démontrer que la valuation p-adique de n! est donnée par

= 32| 2] <=l v

P p—1

Jj=1
ou |z] désigne la partie entiere d’un nombre réel x.

(b) Soit n > 1 un entier. Démontrer que tout nombre premier p satisfaisant & n < p < 2n
divise le coefficient binomial (2711)

(c) Démontrer que le quotient de factorielles
n!(30n)!
(6n)!(10n)!(15n)!

est un nombre entier pour tout n > 1.
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(d) Soient a,b > 1 des entiers. Démontrer que ordp((a:b)) est le nombre de retenus dans
I’addition de a et b en base p.

(e) Soit p un nombre premier. Démontrer que (’Z’ ) est divisible par p pour tout 1 <+ < p—1.
En déduire que n? — n est divisible par p pour tout entier n et que I'application = +— xP
induit un morphisme d’anneaux A — A pour tout anneau A dans lequel p est nul.
Exercice 5 (Cas élémentaires du théoreme de Dirichlet).

(a) En considérant (n!)? —1, démontrer qu’il existe une infinité de nombres premiers congrus
a —1 modulo 4.

(b) En considérant 5(n!)2—1, démontrer qu’il existe une infinité de nombres premiers congrus
a —1 modulo 5.

(¢) En adaptant la preuve d’Euclide, démontrer qu’il existe une infinité de nombres premiers
congrus & —1 modulo 6.

(d) Montrer que si p est un nombre premier congru a 3 modulo 4, alors il n’existe pas d’entier
a € Z tel que a®+1 soit multiple de p. (Indication : que vaut a?~! modulo p ?). En déduire
qu’il existe une infinité de nombres premiers congrus a 1 modulo 4.

(e) Soit n > 2 un entier. Démontrer qu’il existe une infinité de nombres premiers qui ne sont
pas congrus a 1 modulo n.
Exercice 6. Soit f € Z[T] un polynéme non constant.

(a) Montrer qu’il existe des entiers n arbitrairement grands tels que f(n) ne soit pas un
nombre premier.

(b) Montrer que I'ensemble des nombres premiers qui divisent 'une des valeurs f(n), pour
n > 1, est infini.

Exercice 7 (Pseudopolynomes).
(a) Soit f € Z[T] un polynéme. Posons a,, = f(n) pour n > 0. Démontrer que

m — n divise a,, — a,, pour tout m >n > 0.

—~

b) Soit f € Q[T] tel que f(n) € Z pour tout n. La propriété ci-dessus reste-elle vraie ?

A~

)
¢) Soit b, =Y 1_, Z—,’ Démontrer I'égalité b, = |en!| pour tout n > 1, ote =3 -, %
d) Démontrer qu’il n’existe pas de polynéme f € Z[T] tel que f(n) = b, pour tout n > 0.
)

—

e) Démonter que m — n divise by, — b, pour tout m > n > 0. Les suites d’entiers (b,)n>0
ayant cette propriété s’appellent des pseudopolynomes.
Exercice 8 (Fonction indicatrice d’Euler). Soit n > 1 un entier.

(a) Démontrer I’égalité

ou le produit décrit I’ensemble des nombres premiers divisant n.

(b) Soit a un nombre entier tel que a et n sont premiers entre eux. Démontrer que l'ordre
de a mod n dans Z/nZ est égal a n.

(¢) En général, démontrer que 'ordre de @ mod n dans Z/nZ est égal a n/pged(a,n).

> eld) =n,

d|n
ou la somme décrit 'ensemble des entiers 1 < d < n divisant n.
2

(d) Démontrer 1’égalité
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Exercice 9 (Equation diophantienne 32 = 23 + 7). Soit (z,y) € Z2 une solution de I'équation
v =+ 7.
(a) Démontrer que = est impair et que y est pair.
(b) A laide de la factorisation 3 + 8 = (z + 2)(22 — 2z + 4), démontrer que 2 + 8 possede
un facteur premier congru a 3 modulo 4.
(c) Démontrer que chaque facteur premier de y? + 1 est congru & 1 modulo 4.

(d) Conclure que y?> = 2% + 7 n’a pas de solution entiere.

Exercice 10 (Des énoncés équivalents au théoreme des nombres premiers).
(a) Montrer que le théoréme des nombres premiers m(X) ~ X/log X est équivaut a I’énoncé
ppem(l, ..., n) = ento(n)
ol o(n) désigne une fonction f(n) telle que f(n)/n converge vers 0 lorsque n — +00.

(b) Soit A la fonction de von Mangoldt, définie comme

A(n) = {logp sin=p" avecr > 1,

0 sinon.
Posons ¢(X) =}, «x A(n) pour un nombre réel X > 0. Démontrer que le théoreme des
nombres premiers 7(X) ~ X/log X équivaut a ’énoncé 1(X) ~ X lorsque X — +o0.

(c¢) En considérant le coefficient binomial (27?), démontrer 'inégalité ¢)(2n) > nlog 2.

Exercice 11.

(a) Soient m et n des nombres entiers. Démontrer que le groupe Z/mZ x Z/nZ est cyclique
si et seulement si m et n sont premiers entre eux.

(b) Sin est une puissance de 2, montrer que (1 + 4z)"™ = 1 + 4nx modulo 8n.

(c) Soient a un entier et n = 2%. Démontrer que 'ordre de la classe de 5 dans (Z/nZ)* est
égal & 2972 Le groupe (Z/nZ)* est-il cyclique ?

(d) Soient p > 3 un nombre premier et a@ > 2 un entier. Si x est un entier, démontrer que les
conditions z = 1 mod p®~! et 2P = 1 mod p® sont équivalentes.

(e) Soit x un entier dont la classe modulo p engendre (Z/pZ)*. Montrer que la classe de
engendre (Z/nZ)* si et seulement si 277! # 1 mod p?.

(f) Si 2P~! =1 mod p, démontrer que (z + p)?~! # 1 mod p?. En déduire qu’au moins 1'un
des deux, x ou x + p, est générateur de (Z/nZ)*.
(g) Quels sont les nombres entiers pour lesquels le groupe (Z/nZ)* est cyclique ?
Exercice 12 (Nombres de Carmichael). On appelle nombre de Carmichael un entier n qui n’est
pas un nombre premier tel que : tout entier 1 < a < n premier & n satisfait & ¢~ = 1 mod n.

(a) Soit n > 2 un entier sans facteur carré tel que, pour tout diviseur premier p de n, le
nombre p—1 divise n—1. Démontrer que n est soit premier soit un nombre de Carmichael.

(¢) En déduire que 561 est le plus petit nombre de Carmichael.

Exercice 13 (Témoins de non-primalité dans le critere de Miller-Rabin).
(1) Démontrer que dans un groupe cyclique G d’ordre pair, 'équation 2z = 0 possede exac-
tement deux solutions.

(2) Soit n» > 3 un entier impair et soit w le nombre de facteurs premiers distincts de n.
Montrer que dans le groupe (Z/nZ)*, 'équation 2% = 1 posseéde exactement 2* solutions.
3
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(3) On suppose que n n’est pas premier, d’ott u > 2. Démontrer que, parmi les nombres
entiers 1 < a < n qui sont premiers a n, les témoins de non-primalité de Miller-Rabin de
n sont en proportion au moins égale 4 1 — 217% > 3/4.



