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 Annals of Mathematics, 151 (2000), 705-740

 Series Gevrey de type arithmetique, I.
 Theoremes de purete et de dualite

 Par YVES ANDRE

 Introduction

 Ceci est le premier volet d'un article promouvant un point de vue
 arithmetique sur les fonctions speciales classiques.

 En feuilletant les traites de fonctions speciales, on peut faire les trois
 observations suivantes. La premiere, vieille d'au moins un siecle, est que
 les series explicites qui apparaissent comme developpements de Taylor (ou
 bien asymptotiques) "classiques" sont des series Gevrey d'ordre rationnel.
 Rappelons qu'une serie entiere Yn>O ann est dite Gevrey d'ordre s si la serie

 o (n!zn a un rayon de convergence non nul. La theorie, developpee par
 Watson (1911), puis Ramis (des 1978) et d'autres auteurs, s'est averee feconde
 bien au-dela de l'etude des proprietes a l'infini des equations diff6rentielles
 "classiques".

 La seconde observation, d'oui le present article tire sa source, est qu'outre
 ces proprietes analytiques, les series "classiques" -du moins celles a para-
 metres rationnels - possedent aussi de remarquables proprietes arithmetiques,
 que nous englobons dans le concept de serie Gevrey de type arithmetique:

 Nous dirons qu'une serie entiere En>0 anzn est Gevrey d'ordre s E Q de
 type arithmetique, si ses coefficients an sont des nombres algebriques, et s'il
 existe une constante C > 0 telle que pour tout n E N, les conjugues du nombre
 algebrique (so sont de module inferieur Cn, et le denominateur communl a
 ao = ( 7 an est inferieur a Cn. a0 - (0!) ,.., (n!)s

 C'est par exemple le cas de toute serie hypergeometrique generalisee, con-
 fluente ou non, a parametres rationnels.

 Un peu plus generalement, nous definissons les series Nilsson-Gevrey
 d'ordre s de type arithmetique comme etant les sommes finies de la forme

 Y ,Aa,k, lz (logk Z) Yoa,k,l(Z)
 o,k,l

 1 C'est-a-dire le plus petit entier naturel dn > 0 tel que dnam/(m!)s soit entier algebrique pour
 tout m < n.
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 YVES ANDRE

 ou les Aa,k,l sont des nombres complexes, a des nombres rationnels, k, 1 des
 entiers naturels, et Ya,k,l(z) des series Gevrey d'ordre s de type arithmetique;
 pour s fixe, on montre que ces "series" forment une C[z]-algebre diff6rentielle,
 notee NGA{z}s.

 La troisieme observation est que la plupart des equations differentielles
 lineaires a coefficients polynomiaux qui emaillent les traites de fonctions
 speciales sont de nature tres simple; par exemple, on constate qu'ou bien elles
 sont fuchsiennes sur la sphere de Riemann, ou bien elles n'ont de singularites
 qu'a l'origine et a l'infini, l'une des deux etant reguliere.

 Nous nous proposons de montrer que la presence d'une serie Nilsson-
 Gevrey de type arithmetique parmi les solutions suffit a rendre compte de cette
 derniere observation, en la precisant. Les principaux resultats sont les suivants
 (purete).

 THEOREME DE PURETE. Soit y un element de NGA{z}s verifiant une
 equation differentielle lineaire Iy = 0 a coefficients dans C[z]. On suppose 4
 d'ordre minimal (en d). Alors:

 i) Si s < 0, T admet une base de solutions dans NGA{z}s;

 ii) Si s > 0, I admet une base de solutions de la forme exp (ciz- ) -i, avec

 yi E NGA{z}3, ci E Q.

 En termes plus vagues, toutes les series qui interviennent dans les "solu-
 tions en 0" sont purement du meme type. Comme les series Gevrey d'ordre
 < 0 convergent, on voit en particulier que 0 est une singularite reguliere si
 s < 0. Dans le cas s > 0, on voit que 1 est la seule pente non nulle du polyg6ne
 de Newton de ' a l'origine, et que les facteurs determinants sont monomiaux.

 Le cas s = 0 (cas fuchsien) est maintenant bien compris par la theorie des
 G-fonctions, cf. ?3 ci-dessous; le resultat principal, du en partie a Chudnovsky
 et en partie au present auteur, exprime la permanence du "type arithmetique"
 par prolongement analytique (purete en tout point algebrique):

 THE1OREME DE PERMANENCE (s = 0). Soient y et I comme ci-dessus, et
 supposons en outre que s = 0. Alors pour tout nombre complexe algebrique a,
 T admet une base de solutions dans NGA{z - a}o (resp. dans NGA{ }o).

 On s'interessera davantage ici au cas s 74 0; c'est alors la prise de deve-
 loppement asymptotique qui remplace le prolongement analytique, et donne
 lieu a une "dualite" 0 <- oo:

 706
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 THEOREME DE DUALITE (s #7 0). Soient y et P comme ci-dessus, et sup-
 posons en outre que s k O. Alors T a au plus deux singularites non triviales:2
 l'origine et l'infini, dont l'une est reguliere. De plus:

 i) Si s < 0, P admet une base de solutions de la forme exp (iiz-) Yi

 avec Yi E NGA { }-s , i E Q. A fortiori, pour toute direction 0 sauf un
 nombre fini (les directions de Stokes), il existe un nombre algebrique ao tel

 que exp(aoez-s) y admette a l'infini dans la direction 0 un developpement
 asymptotique dans NGA { z } s;

 ii) Si s > O, P admet une base de solutions dans NGA { }_. A fortiori, pour
 toute direction 0, y est le developpement asymptotique a l'origine dans la
 direction 0 d'une solution3 de P dans NGA { }

 On a done aussi "purete" a l'infini, mais pour l'ordre -s. Dans le cas
 s < 0, on voit que - est la seule pente non nulle du polygone de Newton de
 P l'infini, et que les facteurs determinants sont monomiaux.

 Ces resultats peuvent etre illustres par l'exemple de l'integrale oscillante
 d'Airy [OS]:

 Ai(z) = ? o0 cos (zt + dt, solution de l'equation differentielle

 d'ordre 2 (minimal) 2Ai(z) = zAi(z),

 qui ne presente qu'une seule singularite (a l'infini), de pente 3/2.
 A l'aide du symbole de Pochhammer (a)n = a(a + 1) ... (a + n - 1), le

 developpement de Taylor de Ai(z) en 0 s'ecrit

 (3 )n (3 n( 9 ( n!

 Les deux series qui apparaissent forment une base de solutions de l'equation
 d'Airy; elles sont Gevrey d'ordre -2/3 de type arithmetique (on peut utiliser
 le fait que pour a, b rationnels, le denominateur commun de a/b,..., (a)n/(b)n
 a une croissance au plus geometrique en n).

 D'autre part, dans tout secteur d'ouverture < 27r/3 bissecte par le demi-
 axe reel positif, exp (z2). Ai(z) admet le developpement asymptotique a

 2 Une singularite est dite triviale si l'op6rateur diff6rentiel y admet une base de solutions
 holomorphes.

 3 Si 0 n'est pas singuliere, la -sommation de y au sens de Ramis fournit une telle solution

 canonique. Si 0 est une direction singuliere, la 1-sommation mediane y pourvoit. 8
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 YVES ANDRE

 l'infini

 1 (1/4 3 2n (6)2n (6)2n )2
 2 ^V/ n>O 2 4J 2n! Vz

 1 (1 3/4 2n+ ()2n (+l 32n+1 n+1
 2 z n>O 4 (2n + 1)! z

 et on constate que les deux series en z qui apparaissent sont Gevrey d'ordre
 +2/3 de type arithmetique (les directions d'angle ?7r/3 sont des directions de
 Stokes).

 La preuve des theoremes ci-dessus requiert des outils d'analyse p-adique
 et d'analyse complexe. Les techniques p-adiques servent a l'etude du cas
 s = 0 (G-operateurs diff6rentiels, ?3); des techniques complexes interviennent
 dans l'etude detaille (4.3) de ce que nous appelons E-operateurs differentiels,
 c'est-a-dire des transformes de Fourier-Laplace des G-operateurs differentiels
 (??4, 5). L'importance de ces E-operateurs apparait dans le resultat suivant
 (?6):

 Soit y(z) une serie Nilsson-Gevrey d'ordre s A 0 de type arithmetique,
 verifiant une equation differentielle a coefficients polynomiaux. Alors y(z-S)
 est solution d'un E-operateur differentiel.

 Ce volet se termine par une breve application des resultats ci-dessus a
 l'arithmetique des equations aux differences.

 Plan

 1. Series Gevrey de type arithmetique
 2. Holonomie. G-fonctions et E-fonctions

 3. G-op6rateurs differentiels (compendium)

 4. E-op6rateurs differentiels

 5. Autour de Laplace. Preuve de 4.3 et 4.6
 6. Purete et dualite

 7. Series de factorielles et operateurs aux differences finies

 1. Series Gevrey de type arithmetique

 1.1. Soit a = (ao, al, a2, ) une suite de nombres algebriques. On con-
 sidere la condition suivante:

 (G): I1 existe une constante C > 0 telle que pour tout n,

 (G)conj: Les conjugues de an sont de module inf6rieur a Cn,

 (G)den: Le denominateur commun a ao, al, a2,... an est inf6rieur a Cn.

 708
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 PROPOSITION 1.1.1. Soit s = p/q un nombre rationnel ecrit comme
 fraction irreductible, avec q positif. Les conditions suivantes sont equivalentes:

 i) la suite de terme general (aS verifie (G),

 ii) la suite de terme general a( vrifie (G).4
 ([n]!)P

 Ces conditions sur a sont stables par addition, par produit de Cauchy, et
 par les transformations an -- an-i, an -? (n + l)an+l, an -> nan-i-

 Preuve. En ce qui concerne (G)conj, l'equivalence de i) et ii) vient de
 ce que, d'apres Stirling, log([n]!)P . log(n!)s - nslogq + O(logn). Notons

 que i) equivaut a dire que la suite de terme general (a!) verifie (G). En
 ce qui concerne (G)den, l'equivalence de i) et ii) se ramene done a com-
 parer le denominateur commun de (ao)q,..., ( , d'une part, et celui de

 (ao)q.., (a]!)pq d'autre part. Or ([q]!)q divise (q[n])!, qui divise lui-meme

 n!, et il s'agit de montrer que le plus petit commun multiple de 1,1,..., ([n!q

 a une croissance au plus exponentielle en n. On observe que seuls des nombres

 premiers p < n divisent ([')q pour m E {1, 2,..., n), l'exposant etant

 \m m l \~m \ mm m 1 ? log m
 [P - q + [p2q logp '

 On a done

 ppcm '!)q < (nq)Card(p<n)
 m<n G -Mq

 et le theoreme de Chebishev Card{p < n} = O(n/log n) suffit pour conclure.
 Traitons ensuite la question des denominateurs quant a la stabilite par

 produit de Cauchy: Si s > 0, on ecrit, pour n fixe,

 m<n m albM m< 1 n 1( s - 1!s (l<m<n (!S (m -1)!

 Si s < 0, on ecrit

 d'en l: ([I-]!) Talbm-l < den ((A!) albm-l
 m<n lq <m<n

 < den ! a-1l! bm -i
 <mdn d ca, o o a a q

 dans les deux cas, on obtient la croissance exponentielle souhaitee.

 4 La constante C impliquee dans (G) n'etant pas n6cessairement la meme dans i) et dans ii).
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 YVES ANDRE

 Pour la question des denominateurs quant a la stabilite par transformation
 an - an-1, on invoque de nouveau Chebishev sous la forme

 log ppcm(l, 2,..., n) = O(n).

 Les autres verifications relatives a la seconde assertion de la proposition
 sont immediates.

 Nous utiliserons librement le lemme suivant familier en theorie des

 G-fonctions depuis Siegel.

 LEMME 1.1.2. Soient a, b deux nombres rationnels, non entiers negatifs.

 Alors le denominateur commun de a/b, ..., (a)n/(b)n a une croissance au plus
 geometrique en n.

 1.2. Lorsque les conditions de la proposition 1.1.1. sont realisees, nous
 dirons que la serie entiere f- fa = En>0 anzn est Gevrey d'ordre s de type
 arithmetique (ou, plus brievement, que f est une serie Gevrey arithmetique
 d'ordre s).

 La seconde assertion de 1.1.1 montre que les series Gevrey d'ordre s de type

 arithmetique forment une sous-Q[z]-algebre de Q[[z]] stable par differentiation
 et integration. Nous noterons Q{z}A cette algebre diff6rentielle, et K{z)A la
 sous-algebre differentielle formee des series dont tous les coefficients an appar-
 tiennent a un corps de nombres donne K.

 Remarques. a) La suite de terme general a- verifie (G)conj si et seule-
 ment si le rayon de convergence des series En>O t(an)zn (pour tout plongement
 t: Q -- C) est minore par une constante > 0 independante de t. En particulier,
 chaque t induit un plongement Q{z})l -+ C{z}s dans l'algebre diff6rentielle des
 series Gevrey d'ordre s usuelles.

 b) Si K est un corps de nombres plonge dans C, l'inclusion de K{z}A
 dans C{z}s jouit de la propriete suivante: Tout element de K{z}A est soit
 un polynome, soit une serie Gevrey d'ordre exactement s (i.e. n'est Gevrey
 d'ordre r pour aucun r < s). En particulier K{z}A n K{z}A - K[z] si s z s'.

 Une formulation equivalente est que si une suite de terme general an E K
 verifie (G) et a une infinite de termes non nuls, la serie ~n>O anzN a un rayon
 de convergence fini. De fait, la norme d'un terme an non nul est un nombre
 rationnel de denominateur et numerateur bornes par Cn[K:'] par hypothese,
 ce qui entraine bien que lim sup lanl > O.

 c) Rappelons que pour s < 0, les elements de C{z}s s'identifient aux
 fonctions entieres F d'ordre - , i.e. pour lesquelles il existe une constante

 B > 0 telle que JF(z)l = O(eB- Z 1).

 710

This content downloaded from 
�����������195.176.96.246 on Thu, 28 Sep 2023 12:55:00 +00:00����������� 

All use subject to https://about.jstor.org/terms



 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 1.3. Changement d'ordre. L'etude des series Gevrey de type arithmetique
 se ramene dans une large mesure a celle des series d'ordre s = -1,0 ou +1.
 Voici comment.

 Soient u, v deux entiers naturels, u 5~ 0, et introduisons les transformations
 de series formelles suivantes, familieres en analyse ultrametrique:

 S0u (yanz) = Zanz I)V/U (yanz = aun+vz .
 \n>O / n>O \n>O n>O

 PROPOSITION 1.3.1. Soit s un nombre rationnel. Les conditions suiv-

 antes sont equivalentes:

 i) f E Q{z}A,
 ii) qOuf E ({z}s

 iii) pour tout v E {0,..., u - 1}, 'v/uf E Q{z}u.

 Seules les questions relatives aux denominateurs sont non triviales.
 L'equivalence de i) et ii) decoule alors du fait vu en 1.1.1 le plus petit com-
 mun multiple de 1,1,..., n! a une croissance au plus exponentielle en n. Pour
 l'equivalence de i) et iii), on applique i) => ii) a la serie Tv/uf (au lieu de f),
 en remarquant que

 Zv PuJ'v/uf aun+vn+
 n>O

 de sorte que f = Ev-=0 zVpuTv/uf. Les details sont laisses au lecteur.

 COROLLAIRE 1.3.2. Soit s = p/q un nombre rationnel non nul ecrit
 comme fraction irreductible, (avec q positif), et soit e(s) le signe de s. Alors
 on a

 anz E Q{zl}
 n>O

 si et seulement si pour tout v E {O,...,q - 1},

 aqn+vZIpn E Q{Z}e(S).
 n>O

 Remarque. Le produit de Hadamard d'une serie Gevrey d'ordre r de type
 arithmetique par une serie Gevrey d'ordre s de type arithmetique est une serie
 Gevrey d'ordre r + s de type arithmetique. En revanche le produit de Cauchy
 de series Gevrey de type arithmetique d'ordres differents n'est pas en general
 de type arithmetique.
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 YVES ANDRE

 1.4. Un plongement Q -> C etant fixe, nous definissons (comme dans
 l'introduction) les series Nilsson-Gevrey d'ordre s de type arithmetique comme
 etant les sommes finies de la forme

 y(z) = A A,k,lza logk Zya,k,l(Z),
 a,k

 avec

 ,k,l E C, a E Q, k, 1 N, et Ya,k,l(z) E Q{Z}8.

 On peut former l'algebre diff6rentielle compositum de C[logz] et Q[[z]]
 (series de Puiseux a coefficients algebriques). Ii est alors clair que, pour s fixe,
 les series Nilsson-Gevrey d'ordre s de type arithmetique forment une sous-C[z]-
 algebre differentielle de ce compositum. Nous la noterons NGA{z} .

 PROPOSITION 1.4.1. Soit s un nombre rationnel non nul, et notons e(s)
 son signe. Les conditions suivantes sont equivalentes:

 i) y(z) E NGA{z},,
 ii) y(zlsl) E NGA{z},(,).

 Cela decoule directement du corollaire precedent.

 2. Holonomie. G-fonctions et E-fonctions

 2.1. Soit a = (ao, al, a2,...) une suite de nombres algebriques. On con-
 sidere la condition suivante:

 (H): La suite a verifie une relation de recurrence de la forme

 Po(n)an + Pl(n + 1)an+l + + P(n + ? a)an+, = 0

 ou les Po, ... , P, designent des polynomes a coefficients algebriques.

 On remarque que les termes d'une suite verifiant (H) engendrent une
 extension finie de Q; on notera souvent K le corps de nombres engendre par
 ces termes et par les coefficients des Pj.

 II est bien connu que la condition (H) equivaut a dire que f satisfait a
 une equation diff6rentielle lineaire a coefficients polynomiaux (on dit aussi que
 f est holonome).

 PROPOSITION 2.1.1. Soit s = p/q un nombre rationnel ecrit comme
 fraction irreductible, avec q positif. Les conditions suivantes sont equivalentes:

 i) La suite a verifie (H),

 ii) La suite de terme general ([na)p verifie (H).5

 5 Le rang /, de la recurrence impliquee dans (H) n'6tant pas necessairement le meme dans i) et
 dans ii).
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 Ces conditions sur a sont stables par addition, par produit de Cauchy, par
 produit terme a terme, et par les transformations an -> an-l, an -? (n+l)an+l,
 an - an-1; de plus, si u,v sont deux entiers naturels, u t 0, ces conditions

 sont aussi stables par les transformations an -+ (an/u si u divise n, 0 sinon),
 an - aun+v.

 Preuve. La seconde assertion (relativement a la condition i)) signifie re-
 spectivement que l'holonomie d'une serie est preservee par somme, produit,
 produit de Hadamard (cf. [A, 1.3]), multiplication par z, derivation, integration,

 et par les operations p, et 'v/u, ce qui est bien connu (pour Tv/u, on peut
 utiliser la formule 'v/uf = Zeu=l(z-Vf)(ez))?

 Deduisons-en la premiere assertion. Posons g = En>o ([ ]!z)p Alors
 - q

 Tv/qq = En>0o aqv zn' Z v/qf = -n>O aqn+vzn, et en appliquant les formules
 f = Ev=0 ZV(PqTv/qf et g = Ev- Zv(pqv/qg, on se ramene (en iterant Ipl fois)
 a montrer que f = n>O anzn est holonome si et seulement F = En>o a zn
 l'est. Cela resulte aisement du tableau de correspondances suivant:

 (2.1.2) f (z) F(z),
 d d

 (2.1.3) f () Zd F(z),
 2 d (2.1.4) (2 + z f (z) zF(z),

 (2.1.5) zf(z) J F(z).
 Jo

 2.2. Soit a une suite de nombres algebriques verifiant (G) et (H). On dit
 alors que la serie

 f = fa = Z anZn
 n>O

 est de type G, ou est une G-fonction, et que la serie

 F =Fa = azn
 n>O

 est de type E, ou est une E-fonction.
 I1 y a lieu de considerer aussi la serie

 f = fa = n!anz.
 n>O

 Nous donnerons a une telle serie le nom de serie de type 3, ou 3-fonction6
 (elle diverge aux places archimediennes mais definit des fonctions analytiques

 6 Prononcer "e" en pensant a Euler a Saint-Petersbourg (suggestion de D. Bertrand).
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 YVES ANDRE

 en 0 pour toute place ultrametrique, dont les proprietes diophantiennes out ete
 etudiees par V. Chirskii). Un exemple typique est la serie d'Euler

 (--l)nn!zn+l
 n>O

 qui est le developpement asymptotique a l'origine de la fonction f0 e1+/
 Comme nous le verrons plus loin, les 3-fonctions apparaissent dans l'etude a
 l'infini des E-fonctions.

 Nous qualifierons d'associees les series de type G, E, ou 3 associees a une
 meme suite a.

 D'apres 2.1.1, les series de type G, E, 3 ne sont autres que les series
 Gevrey de type arithmetique holonomes, d'ordre 0, -1, +1, respectivement.

 Exemples de G et E-fonctions associees.

 a) Si a est la suite constante de valeur 1, on a f = 1lz, F = eZ.

 b) Si an = n - 1 pour tout n, on a f = (-, F = (z - )e.

 (Plus generalement, si f est une fonction rationnelle, F est un polynome ex-
 ponentiel.)

 c) Siao = 0, et an pourn> , onaf =log(-), F= el 1.

 ~d) 1Si Jo(1)) (fonction d) Si a2n = (_1)n , et a2n+l = 0, on a f F = Jo(z) (fonctio
 de Bessel).

 e) Si an = (.i.)n. (c)np pour des nombres rationnels ai,^3i, avec /3i N,
 (cf. 1.1.2), on a

 I/lal,...,Zr, a (Ol,...,O r)
 ( = 1 ,yBr ) ( 1 z ] =rr F ) i>ze r \I F r3 F ?31, . . . ,I 33 ;

 En revanche, les series a coefficients rationnels --z et (1-z)v2-(1- z)-)v
 sont holonomes et Gevrey d'ordre exact 0, mais pas de type arithmetique.

 2.3. On peut aussi introduire une version affaiblie de (G):

 (G-): Pour tout E > 0 et pour tout n assez grand,

 (G-)conj: Les conjugues de an sont de module inf6rieur a (n!)z,
 (G-)den: Le denominateur commun a ao, al, a2,..., an est inf6rieur

 a (n!).

 Nous appellerons series Gevrey de type arithmetique (resp. de type G, E,
 ou 3) au sens large les series associees comme ci-dessus a une suite verifiant
 (G-) au lieu de (G).
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 Les E-fonctions au sens large sont exactement celles introduites dans
 l'article original de Siegel [S].7 Dans les travaux d'approximation diophanti-
 enne de l'ecole de Shidlovskii apparaissent aussi des E-fonctions au sens strict
 de 2.2 (cf. [Sh, p. 406]).

 En ce qui concerne les G-fonctions, Siegel commence par les definir au
 sens large, mais precise immediatement qu'il ne considerera que celles au sens
 strict (loc. cit. p. 239). On conjecture en fait que les sens stricts et larges
 coincident (cf. e.g. [Sh, ibid.]), c'est-a-dire:

 CONJECTURE 2.3.1. Sous (H), les conditions (G) et (G-) sont equival-
 entes.

 Le probleme a trait aux denominateurs, car on a:

 PROPOSITION 2.3.2.8 Sous (H), les conditions (G)conj et (G-),onj sont
 equivalentes.

 Demonstration. Soit K comme ci-dessus le corps de nombres engendre
 d par les termes de a et par les coefficients d'un polynome b en z et en d

 non nul qui annule f = ^n>o anz. Un theoreme classique de O. Perron [P]
 (resultat de base de la theorie des series Gevrey, voir [R2]) nous place alors dans
 l'alternative suivante: Ou bien f converge, ou bien il existe un nombre rationnel
 strictement positif r7 (c'est l'inverse d'une pente du polygone de Newton de b
 en 0) tel que a soit sujette a une estimation du type lanl < n(n!)7)Cn, mais a
 aucune estimation semblable pour un exposant inf6rieur a Tr. On en deduit,
 en considerant tour a tour chaque plongement complexe t de K, que (G-)conj
 entraine que f definit un germe de fonction analytique en 0 via L, et ceci
 equivaut a (G)conj.

 Les series Gevrey de type arithmetique au sens large n'interviendront plus
 dans ce volet.

 2.4. On remarque que si la suite a verifie (G)conj, le rayon de conver-
 gence de f = fa est au moins C-1 (relativement a un plongement complexe
 de K determine quelconque) et F = Fa verifie IF(z) = O(eCIzl). On peut
 donc definir la transformee de Laplace F+(z) = ?fo F(w)e-wzdw sur le demi-
 plan Re (z) > C (on pourrait du reste remplacer l'intervalle d'integration par
 n'importe quelle demi-droite d'origine 0). Un calcul standard montre alors que

 7 L'hypothese d'holonomie figure dans sa d6finition (p. 223), mais en a et6 6cartee ulterieurement
 dans les travaux de l'6cole russe.

 8 Voir aussi le dernier paragraphe de [R2].
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 YVES ANDRE

 f(z) = 'F+(), ce qu'on ecrira aussi f(z) = fo? F(zw)e-Wdw, ou bien

 (2.4.1) F+(z) ) .
 Les proprietes suivantes de la transformation de Laplace sont bien connues
 (voir par exemple [DiP, 1.2]):

 (2.4.2) F+ = (-zF)+, ddz

 (2.4.3) z F+-= (d ) +F(O),

 (2.4.4) -F+ / F

 (2.4.5) F+(z - a) = (eaZF)+,

 (2.4.6) F+(z/a) = a(F(az))+.
 En fait, ces proprietes sont purement formelles: en associant a la suite a les
 series f et F E K[[z]] comme ci-dessus, et en definissant la serie F+ E K[[
 par (2.4.1), on a ipso facto les identites (2.4.2) a (2.4.6) (avec F(O) = ao).

 On a vu d'autre part, sous la condition (H), qu'il existe q E K[z, d]
 d'ordre , annulant f. Par changement de variable z -- , il existe donc aussi
 E k[z, d] de meme ordre annulant F+. Rappelons que la transformation
 de Fourier-Laplace 7 des operateurs differentiels (ou plus generalement des
 K[z, d]-modules) est l'automorphisme d'ordre 4 de K[z, d] defini par

 d d
 z> - - -2- Z;

 dz dz

 en notant 7 la transformation 7 suivie de la symetrie par rapport a l'origine,
 on a donc

 i7 7 = 7 7 = id.

 Posons v = deg,z. La multiplication a gauche de T par d-, neutralise le terme
 F(O) dans l'application itere de (2.4.3), et il decoule alors de (2.4.2) et (2.4.3)
 que ( dv )F = 0. Comme

 dv
 ( T)F = (-z)7 (I)F,

 on voit que F verifie l'equation diff6rentielle d'ordre v,

 (2.4.7) OF = 0, avec = -7(T).

 Reciproquement, si F verifie l'equation differentielle 1F = 0, et si L = degzT,
 alors F+ verifie l'equation differentielle d-' 7()F+ = 0, i.e. 7(P)F+ est un
 polynome de degre < /, en general non nul. On retrouve par la en particulier
 le fait que toute E-fonction verifie une equation diff6rentielle a coefficients
 polynomiaux. Nous preciserons plus loin les proprietes d'une telle equation.
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 2.5. On deduit de 1.1.1 et 2.1.1 que les G-fonctions forment une Q[z]-
 sous-algebre de Q[[z]] stable par differentiation; de meme pour les E-fonctions.
 Toutefois, on prendra garde que la bijection Q-lineaire "serie associee"

 {G-fonctions} - {E-fonctions}
 f F

 ne respecte pas le produit de Cauchy.
 De ce que les E-fonctions sont entieres d'ordre 1, il est facile de deduire que

 les unites de l'anneau des E-fonctions sont de la forme beaz, ou a et b sont des
 nombres algebriques (b :7 0). Il est beaucoup plus delicat de montrer que les
 unites de ' anneau des G-fonctions sont les fonctions algebriques holomorphes
 et non nulles en 0 (cf. [A, p. 124]); nous n'aurons pas a faire usage de ce resultat
 dans cet article.

 Pour toute fonction rationnelle r(z) a coefficients algebriques et s'annulant
 en 0 et pour toute G-fonction f(z), f(r(z)) est encore une G-fonction.9 II
 n'en va pas du tout de meme pour les E-fonctions, pour lesquelles les seuls
 changements de coordonnees permis sont les homotheties.

 Enfin, puisque les conditions (G) et (H) sont stables par produit terme a
 terme, tout produit de Hadamard de G-fonctions est une G-fonction.

 Remarque. Tout y E NGA{z}s annule par un element non nul de C[z, dz]

 est aussi annule par un element non nul de Q[z, z]. C'est clair si y cG Q{z}A
 en general, on ecrit

 Y= C , Aak,lz(logk Z)Ya,k,l, Ya,k,l E ZQ{Z}
 a,k

 les a e6tant dans des classes distinctes modulo Z, et on voit que les Ya,k,l sont
 holonomes au sens ci-dessus. On conclut par l'existence10 de multiples com-
 muns dans Q[z, d].

 3. G-operateurs diff6rentiels (compendium)

 3.1. Soit K un corps de nombres et soit qb = = 0 Qj(z) dj E k[z, dz]
 un operateur diff6rentiel. On lui associe une suite d'operateurs (q$m)m>i de la
 maniere suivante: /m est l'unique element de K[z, ] divisible a droite par ?b

 9 En effet cette derniere verifie clairement une equation diff6rentielle a coefficients polyn6miaux,

 et elle converge a l'origine (relativement a tout plongement complexe du corps des coefficients), ce
 qui etablit les conditions (H) et (G)conj pour la suite de ses coefficients de Taylor; on etablit (G)den
 (resp. (G-)den) en remarquant qu'il existe un entier N > 1 tel que le developpement de Taylor a
 l'origine de r(Nz) soit a coefficients entiers algebriques.

 10 Condition de Ore, cf. [Bj, I, 8.4].

 717

This content downloaded from 
�����������195.176.96.246 on Thu, 28 Sep 2023 12:55:00 +00:00����������� 

All use subject to https://about.jstor.org/terms



 YVES ANDRE

 et de la forme

 (3.1.1) Sim= ^-! (Z)m dZ i-l + Qmj(Z dJz
 j=0

 On dit que q est de type G, ou est un G-operateur s'il satisfait a la condition
 suivante introduite par Galochkin [G]:

 (5) I1 existe une constante C > 0 telle que pour tout n > 1, le denominateur
 commun aux coefficients des Qm,j(z), pour m < n et 0 < j </L- 1, est
 inferieur a Cn.

 Cette appellation est justifiee par la remarque (quasi immediate) que toute
 solution dans K[[z - a]] d'un G-operateur en un point a tel que Qp,(a) 4 0 est
 une G-fonction (en la variable z - a).

 On constate sans difficulte que si q verifie (g), il en est de meme de tout
 diviseur a droite de 0; il en est aussi de meme de l'operateur I considere en
 2.4, ainsi que de l'operateur obtenu a partir de q en faisant un changement de
 coordonnees z -- az, a c K*. (En fait, la notion de G-operateur est en un sens
 evident stable par changement rationnel de coordonnee, et peut se definir sur
 toute variete algebrique definie sur Q; cf. [ABa].)

 On conjecture que les G-operateurs sont d'origine geometrique, c'est-a-
 dire produits de facteurs d'operateurs de Picard-Fuchs (controlant la variation
 de cohomologie dans une famille a un parametre de varietes algebriques definie
 surQ).

 Rappelons les quatre resultats de base concernant ces operateurs.

 THE1OREME 3.2 (Chudnovsky). Soit f E K[[z]] une G-fonction, et soit
 E e K[z, d] un operateur non nul d'ordre minimal tel que O5f = 0. Alors (

 verifie (5).

 Ce resultat est demontre dans [CC]; voir aussi [A, VI].
 Les deux resultats suivants mettent en jeu les rayons de solubilite generique

 R,(b, 1), ainsi definis: pour toute place finie v de K, de caracteristique residuelle
 p = p(v), normalisons la valeur absolue v-adique par Iply = p-~; pour tout
 r > 0, Rv (q, r) est le rayon de convergence, limite superieurement a r par
 convention, d'une base de solutions de q au point generique v-adique de valeur
 absolue r.

 THEOREME 3.3. La condition (5) equivaut a Hfv Rv(Q, 1) 7 O.

 Ce resultat est demontre dans [A, IV5.2] (la normalisation des valeurs
 absolues y est diff6rente, mais cela n'a pas d'incidence sur le resultat).
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 On deduit par exemple de ce critere qu'un produit q. q ' de G-operateurs
 en est un, de meme que l'adjoint 0* = =o0(-l)7j * Qj(z); cf. [A, IV4.4].

 THEOREME 3.4 (Katz). Supposons que Rv(q, 1) > p(v)-1/(p(v)-) pour
 toute place v au-dessus d'un ensemble de nombres premiers de densite 1 (c'est
 le cas en particulier si flvj Rv(/, 1) # 0). Alors q est fuchsien, i.e. n'a que des
 singularites regulieres a distance finie et a l'infini. De plus les exposants en
 chaque singularite sont rationnels.

 Voir [A, IV5.2] ou [DGS, III].
 En combinant ces trois resultats (Chudnovsky, Andre, Katz), on obtient

 qu'une equation differentielle d'ordre minimal satisfaite par une G-fonction est
 toujours fuchsienne, a exposants rationnels. En tout point (resp. en l'infini),
 elle admet donc une base de solutions de la forme

 (3.4.1)f (fz,)(z - ),... f(z ()) (Z ()

 (3.4.2) (resp. (f) ( ,..,f)()). (1) ),

 ou les f),f} () sont des series formelles a coefficients dans K, et Co,Co
 designent des matrices carrees d'ordre ,/ triangulaires superieures a coefficients
 dans Q.

 THEOREME 3.5 (Sous (g)). Les series f(?c) et f() (pour tout ( e Q) sont
 des G-fonctions.

 Ce resultat est demontre dans [A, V]. (C'est non banal seulement si ( est
 une singularite).

 3.6. Techniquement, il est plus commode de travailler avec des modules
 differentiels (sur Q(z)) plutot qu'avec des operateurs differentiels ([A, IV]). Les
 definitions sont compatibles au sens ou Q(z)[Wz]/Q(z)[j']q est de type G si et
 seulement si q l'est. On dit aussi qu'un Q[z, d]-module holonome (i.e. fini et
 de torsion) est de type G si sa fibre generique l'est.

 Le fait que la somme directe et le produit tensoriel de modules differentiels
 de type G sont de type G ([A, IV4.4]) entraine le point i) du lemme suivant:

 LEMME 3.6.1. i) Soit yi (resp. Y2) une solution d'un G-operateur (resp.
 d'un autre G-operateur) dans une Q[z]-algebre differentielle convenable. Alors
 Yi + Y2 est solution d'un G-operateur. De meme pour yi ' Y2.

 ii) Soient q0 et q2 deux G-operateurs, et soit qb un multiple commun a
 gauche de b1 et 52, d'ordre minimal. Alors q est un G-operateur.
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 YVES ANDRE

 Pour le point i), considerer le sous-module diff6rentiel

 Q(z) [d] (yi + Y2) (resp. Q(z) [ JI Y1 Y2)

 de

 Q(z) [] Y1 fD Q(z) [-] Y2 (resp. Q(z) [] Y,1 (z Q () [1 Y2).

 Le point ii) decoule de i) en utilisant le fait que tout multiple a gauche par
 un element de Q[z], et tout diviseur a droite, d'un G-operateur, sont des G-
 operateurs).

 Vu que za logk z est solution d'un G-operateur (d'ordre k + 1) lorsque
 a est rationnel, ce lemme permet d'etendre le theoreme de Chudnovsky aux
 elements de NGA{z}o:

 Tout element holonome de NGA{z}o est solution d'un G-operateur.

 En combinant ceci au theoreme 3.5, on en deduit le theoreme de permanence
 enonce dans l'introduction (et le cas s = 0 du theoreme de purete).

 4. E-operateurs differentiels

 4.1. Nous appellerons E-operateur le transforme de Fourier-Laplace d'un
 G-operateur. I1 revient au meme de dire que 4 est un E-operateur si et seule-
 ment si son transforme de Fourier-Laplace est un G-operateur.

 En effet, si I designe l'operateur deduit de ' := ~(7) en appliquant la
 symetrie par rapport a l'origine, on a ( = -7I = -71; or ' est un G-operateur
 si et seulement si T en est un. Un produit (. I' de E-operateurs est un
 E-operateur, de meme que tout diviseur a droite de 4) et que l'adjoint (*; (D et
 V' admettent un multiple commun a gauche qui est un E-operateur (propriete
 de Ore a gauche). Ceci resulte des proprietes analogues pour les G-operateurs,
 et de ce que ( 7)* = 7(T*) (cf. [M, V3.6]).

 Le nom de "E-operateur" est motive par le resultat suivant.

 THEOREME 4.2. Toute E-fonction F est solution d'un E-operateur 1;
 de plus, on peut choisir 1 de degre en z egal au minimum des degres en z des
 operateurs differentiels annulant F. Plus generalement, tout element holonome
 de NGA{z}_l est solution d'un E-operateur.

 En effet, soient f la G-fonction associee a F et b un operateur differentiel
 non nul d'ordre minimal annulant f. Alors q est un G-operateur (3.2), et il
 en est donc de meme de ' (cf. 2.4) et de T. Donc F := ( 7 = 7- 1 est un
 E-operateur non nul, et annule F (cf. 2.4.7).
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 Pour demontrons la seconde assertion, on peut supposer que cet operateur
 - = 7T n'est pas de degre minimal en z parmi les operateurs differentiels
 annulant F. Montrons qu'alors tout operateur differentiel 4' annulant F, de
 degre minimal en z (note /uo), est un E-operateur. En effet, (74')F est un
 polynome de degre < lo. On en deduit d'une part que -7' est un operateur
 d'ordre minimal tel que do (7') * F = 0, et d'autre part que T divise a
 droite le produit 4' d'un operateur differentiel d'ordre 1 et de 74I'. Comme
 ord T = 7~4' par hypothese, et puisque d-O ' F = O, on en deduit ord ? =
 ord '. Des lors 4', et par suite I74', sont des G-operateurs, donc V' est un
 E-operateur.

 Passons au cas d'un element holonome Za,,k , Al,,lz(logk Z)a,k,l(Z) de
 NGA{z}_l. En utilisant la propriete de Ore a gauche pour les E-operateurs,
 on se ramene aisement au cas d'un produit y(z) = za(logk z)F(z), ou F est
 une E-fonction (annulee par un E-operateur 4?), et ohu a est positif; puis, en
 considerant 4?y et en raisonnant par recurrence sur k, au cas ou k = 0, i.e.
 y = zaF. On observe alors que la transformee de Laplace y n'est autre que

 y+(z) = F(a + l)z- ) * zF+z),

 ou * designe le produit de Hadamard de series en z. Ainsi{ (1- )-" *zF+ (z)}
 1 +

 est une G-fonction en z, et y+(z) est solution d'un G-operateur (cf. 2.5, 3.2).

 Remarque. On deduit de 4.2. qu'un operateur d'ordre minimal 3 annu-
 lant F admet un multiple a gauche de la forme Q(z)), ou Q est un polynome
 et 4) un E-operateur. On prendra toutefois garde qu'en general ni Q(z)4) ni 3
 ne sont eux-memes des E-operateurs. C'est le cas de l'exemple 2.3.b ci-dessus
 (F = (z - l)ez), pour lequel on peut prendre:

 d d
 (= (z-1)(2z-1)- +3z-1, =-(z-1)(z-2) +Z-3, dz dz

 d2 d d
 4D = 7T = 2 + (1- 3z) +2z, e=(z- 1) - z. dz2 dz dz

 On a (z - 1)q( = (z - 2z + 1) * 0, donc Q(z) z - 1 convient, mais O7 =
 -(1 + z) + z - 1 n'est pas un G-operateur. Notons d'ailleurs que 4 n'est pas
 de degre minimal en z: on a

 ( -1).=(z-l) )( -2+1 ) dz dz2

 et '' := - - 2 d + 1 est un autre E-operateur d'ordre minimal annulant F,
 independant de 4.

 THEOREME 4.3 (structure des E-operateurs). Soit 4 E K[z, z] un E-ope-
 rateur, d'ordre note v. Alors:
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 YVES ANDRE

 i) I n'a que deux singularites: 0 et oo.

 ii) L'origine est une singularite reguliere. Les exposants de ?( en 0 sont ra-
 tionnels; exceptes peut-etre ceux entiers, ce sont, modulo Z (et comptes
 sans multiplicitY), les exposants a l'infini du G-operateur 74).

 iii) II existe une base de solutions en 0 de 1'equation r(F = 0 de la forme

 (F (z), . . ., F (z)) . zrO

 oi les Fj sont des E-fonctions a coefficients dans K, et Fo designe une
 matrice carree d'ordre v triangulaire superieure a coefficients dans Q.

 iv) L'infini est une singularite en general irreguliere, de pentes C {0,1}.
 L'ensemble des exposants de Turrittin non entiers de ? en oo co'ncide,
 modulo Z, avec l'ensemble des exposants non entiers de 7J) aux singu-
 larites a distance finie.

 v) II existe une base de solutions en oo de l'equation (FF = 0 de la forme

 (fc) ,fve)) (1) *e-z
 oil les fj sont des 3-fonctions a coefficients dans l'extension finie de K
 obtenue par adjonction des singularites a distance finie de 7)P, oil A est
 la matrice diagonale ayant pour coefficients diagonaux les singularites a
 distance finie de 7'b (comptees avec multiplicite), et oiu ro designe une
 matrice carree triangulaire superieure a coefficients dans Q (ayant pour
 elements diagonaux les exposants de Turrittin), qui commute a A.

 La demonstration occupera les sections 5.1 a 5.6. Nous priviligierons une
 approche formelle, qui permettrait de travailler sur Q(r(k)(a))kcPT,acO plutot
 que sur C si l'on voulait (en fait les r(k)(a) n'interviennent que via leurs "re-
 lations de distribution"). Toutefois nous preciserons aussi par voie analytique
 les liens entre () et 7().

 Exemples. a) L'operateur a coefficients constants ) = - -2z + 1 con-
 sidere plus haut admet les E-fonctions eZ et zez comme base de solutions; ~7(
 est l'operateur d'ordre nul (z + 1)2, qui admet -1 comme singularite triviale
 double.

 b) Par le point i) du theoreme, on voit que les seuls operateurs differentiels
 irreductibles qui sont a la fois de type G et E sont, a multiplication pres par
 un monome en z, ceux de la forme z- - a avec a E Q*, et d

 c) Equation differentielle de Whittaker [WW], [Bu]. Soient k et m deux
 nombres rationnels, et considerons l'operateur de Whittaker

 d2 2 1
 "D k,m -- T2n2

 .- 9U +1 9
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 On calcule

 ( ^ (?? ^\ d2 ,d (9 2 =(Z-2 (z + 2 + (4z + k) d+ (-m ,
 qui est un G-operateur, car c'est un operateur de type hypergeometrique a
 exposants rationnels (correspondant au schema de Riemann

 i 1

 0 0 -m+ ;Z ).

 \-k-1 +k-1 +m+ 3

 On rappelle que si m n'est pas demi-entier, une base de solutions de Jk,m en
 0 est donnee par

 Mk,+m(Z) = z2 me-lF (- m-k; ?2m + ; z;
 \2 )

 une autre base est donnee par les fonctions de Whittaker

 r(-2m)
 Wk,m(Z) ( m-k)m(z)

 r(2m)
 + ( m-k) Mk-m(Z) et Wk,m(-z).

 Le developpement asymptotique de Wk,m(Z) a l'infini est

 Wk,m(z) zke-~2F F - -- k, + m-k; -))

 pour I arg(z)l < 7r - e. On constate que 1F (? + m - k; ?2m + 1; z) est une
 E-fonction tandis que 2Fo( - m - k, ? + m - k; z) est une 3-fonction.

 d) E-operateur associe a l'equation differentielle de Lame [WW], [D].
 Soient n un nombre rationnel, B, el,2, e3, quatre nombres algebriques
 (ei y? ej), et considerons l'operateur de Lame

 AnB = 4( - el)(z - e2)(z - e3) d2 + + + jdz2 2k\z- e Z - e2 z-e3 dz

 -(n(n + l)z + B)}.

 C'est un operateur fuchsien a exposants rationnels (correspondant au schema
 de Riemann

 (ei 00
 3 0 -;Z ).

 1 n+l
 2 2 2

 Si B = Bn est l'une des 2n+l valeurs classiques pour lesquelles An,B admet une
 fonction de Lame solution, il est connu que An,B est un G-operateur. L'exemple
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 YVES ANDRE

 du E-op6rateur du troisieme ordre F(A,Bnm) montre qu'il est necessaire de se
 limiter aux exposants de Turrittin non entiers au point iv) de 4.3.

 Notons par ailleurs que si n est un entier pair negatif, 7(An,Bm) admet une
 E-fonction solution (transformee de Laplace inverse d'une fonction de Lame);
 il me parait douteux qu'elle soit hypergeometrique au sens de Siegel en general
 (cf. [Sh, p. 184]).

 Compte tenu de la remarque suivant 4.2, le theoreme 4.3 entraine:

 COROLLAIRE 4.4. Soit F une E-fonction, et soit 0 c K[z, d] un
 operateur non nul d'ordre minimal annulant F. Alors ? n'a que deux singu-
 larites non triviales: 0 et oo.

 L'origine est une singularite reguliere, a exposants rationnels; plus
 precisement, il existe une base de solutions en 0 de l'equation OF = 0 de
 la forme (Fi(z),..., F\(z)) zr, ou0 les Fj sont des E-fonctions a coefficients
 dans K (et F1 = F), et ou F designe une matrice carree triangulaire superieure
 a coefficients dans Q.

 Remarque. Le fait que 0 n'ait que deux singularites non triviales en-
 traine que l'algebre de Lie de son groupe de Galois diff6rentiel global se calcule
 arithmetiquement selon la conjecture de Katz [K], [B]: c'est la plus petite sous-
 algebre de Lie de l'algebre de Lie des matrices carrees d'ordre celui de 0, dont
 la reduction modulo presque tout nombre premier p contient la p-courbure
 de O.

 4.5. Application a un probleme de Shidlovskii. Dans [Sh, p. 184], Shidlov-
 skii remarque que toutes les E-fonctions solutions d'une equation diff6rentielle
 homogene (lineaire) d'ordre 1 sont de la forme Q(z)eCZ, ou Q est un polynome,
 et signale que la determination des E-fonctions solutions d'une equation
 diff6rentielle inhomogene d'ordre 1 est une question ouverte. Le corollaire ci-
 dessus permet d'y apporter une reponse, en considerant l'equation homogene
 associee.

 On trouve que ce sont les fonctions entieres de la forme

 F - q(z)z-eZ J r(t)t- e-?t

 ou a est rationnel, C est algebrique, et oiu q(z) E Q[z], r(z) E Q(z) (soumis
 aux conditions adequates pour que F soit entiere). Le prototype en est

 q(z)lFl (1; a; z) + p(z), avec p(z), q(z) G Q[z];

 il resterait a determiner si on les obtient toutes ainsi.

 Le lien tisse entre 3-fonctions et E-fonctions par le theoreme 4.3 est ren-
 force par le resultat suivant, pendant de 4.2:
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 THEOREME 4.6. Soit f(z) une 3-fonction (ou plus gene'ralement un
 element holonome de NGA{z}+l). Alors f(z) est solution d'un E-operateur.

 Par exemple Zn>o(-l)nn!(z)n est solution du E-operateur ( = z +
 (1 - z) - 1 (de G-operateur associe F7)1 = z((1 + z)d + 1)).

 Je conjecture la caracterisation p-adique suivante des E-operateurs (pen-
 dant de 3.3):

 CONJECTURE 4.7. Supposons que 4 E K[z, d] n'ait de singularite qu'en
 0 et oo. Alors 4 est un E-operateur si et seulement si

 n (R (p(v )-1/P(V)-1) p(v)1/((V)-)) O.
 V

 Remarque 4.8. En interpretant la transformee de Fourier-Laplace comme
 un foncteur p2*(pi? O e-ZW)[1] en theorie des D-modules (cf. [M, app. 2]), les
 methodes de [AB] ramenent essentiellement la conjecture a un probleme de
 convergence p-adique des series formelles intervenant dans la decomposition
 de Turrittin-Levelt a l'origine et a l'infini, pour p assez grand.

 4.9. Plus generalement, on definit les Q[z, z]-modules de type E comme

 etant les transformes de Fourier-Laplace des Q[z, dA-modules holonomes de
 type G (cf. 3.6). Les definitions sont compatibles au sens ou iQ[z, d]/Q[z, dZ]4
 est de type E si et seulement si 4) l'est. On prendra garde que cette pro-
 priete ne depend pas uniquement de la fibre generique de Q[z, j]/Q[z, -]4),
 contrairement a ce qui se passe pour le "type G".

 5. Autour de Laplace. Preuve de 4.3 et 4.6

 5.1. Pentes. Soit p = ^ ai,j d- K[z, d]; son transforme de
 Fourier-Laplace est

 v I-L v p dA

 TP -- ~ Z (-1)j ai,j -- z = bjiz dzJ
 j=0 i=o j=0 i=O

 Tous les operateurs diff6rentiels que nous considerons sont de type exponentiel
 au sens de [M, XII], c'est-a-dire verifient a,y # 0 (ce qui equivaut a b&,,, 0).
 En effet nous ne considerons que des operateurs differentiels reguliers en l'infini,
 ou facteurs de transformes de Fourier de tels.

 Notons d'autre part que si p est regulier en l'infini, on a alors aiv = 0
 pour i < /, donc b&,i = 0 pour i < A, ce qui signifie que 7p n'a de singularites
 qu'en 0 et oo. Ceci etablit i).

 Pour aller plus loin, rappelons que le polygone de Newton-Ramis N((p) est
 l'enveloppe convexe dans le plan des demi-droites {u < i, v = j - i/ai,j 0}
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 YVES ANDRE

 [R1], [M, V1]. Toute pente non nulle n'apparait que sur un cote; on distingue
 les cotes horizontaux en donnant la pente -0 (resp. +0) au cote superieur (resp.
 inf6rieur). De la sorte, la partie de pente > 0 (resp. < 0) est a translation
 verticale pres le polygone de Newton usuel de ( en 0 (resp. le symetrise par
 rapport a l'axe des u du polygone de Newton usuel de ( en oo).

 Il est immediat qu'on passe de N((p) a N(~7p) par la transformation
 (u, v) -- (u + v, -v); en particulier les pentes t de N(p) devient la pente -t1
 de N(7p). On en deduit tout de suite le critere suivant (avec 4 = 1 -):

 (4b n'a que deux singularites, O qui est reguliere,

 et l'infini qui est irreguliere de pentes E {0,1})

 4z( J~ est regulier en 0 et en l'infini).

 Compte tenu de ce que tout G-operateur est fuchsien, ceci etablit les assertions
 de 4.3 concernant les pentes de (.

 On peut dire plus: si go est fuchsien (i.e. n'a que des singularites regulieres),
 alors on peut appliquer ci-dessus aux translates cPa de Sp (par z -> z - a);
 comme 7(Oa n'est autre que le "tordu" de ~7o par ea, on en conclut que les
 pentes d'un tel tordu sont toujours dans {0, 1}, ce qui montre que les facteurs
 determinants de ~7( (a priori constants ou bien polynomiaux de degre v! en
 zl/l!) sont simplement de la forme 6z. En particulier, d'apres Turrittin-Levelt,
 il existe une base de solutions en oo de l'equation 4>F = 0 de la forme

 (\ (1) ^ (1)). (1) e

 oui rF designe une matrice sous forme de Jordan (ayant pour elements dia-
 gonaux les exposants de Turrittin), ou A est une matrice diagonale commutant
 a Fr (Az ayant pour elements diagonaux les facteurs determinants), et ou les
 fj sont des series de Laurent a coefficients dans l'extension de K obtenue par
 adjonction des coefficients de Fr et A.

 5.2. Monodromie de et monodromie de 74P. Fixons un plongement com-
 plexe de K. Notons {(1,..., (} l'ensemble des singularites finies de (o, qu'on
 suppose fuchsiennes (de mmee que l'infini). Alors le module differentiel
 C[Z, dz]/C[Z, dz] o est determine a isomorphisme pres par le systeme local des
 solutions de gp sur C- {(1,..., ,r

 Pour () = --7, en revanche, le module diff6rentiel C[z, z]/C[z, d ]4) est
 determine a isomorphisme pres par le systeme local des solutions de () sur
 C* et par la structure de Stokes a l'infini (cf. [M, IV]). La determination de
 ces donnees est de maniere generale l'objet de la theorie de la transformation
 de Fourier geometrique, mais dans le cas exponentiel elementaire que nous
 considerons ici, elle est fournie par la recette explicite suivante ([M, XII]).
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 Pour l'exposer, nous introduirons comme dans loc. cit. une autre vari-
 able, soit w, et nous mettrons en dualite reelle le plan complexe des z (avec
 l'orientation usuelle) et le plan complexe des w (avec l'orientation inhabituelle).
 Nous considererons ( comme un element de C[w, d ]; sa monodromie en 0
 tourne donc par convention dans le sens inhabituel.

 Soit Oz le [, module des fonctions holomorphes sur le revetement
 universel du plan des z prive d'un disque ferme assez grand, et soit Cz son
 quotient par les fonctions entieres d'ordre < 1. On a les applications standard

 Can

 O(z 'Cz, et T = id+Var Can est la monodromie autour du disque manquant.
 Var

 De meme pour la variable w, avec l'orientation inverse.
 Ces applications passent aux noyaux de o et de () respectivement:

 Canw Varn
 Ker(W ,O ) _ Ker(W, Cz), Ker((, Cw) Ker(I, Ow).

 Vary Canm

 Le resultat principal de loc. cit. est d'une part que la structure de Stokes de
 qI est indexee par {-C1,... ,-(r} (ce qui se traduit ici par le fait que dans
 la decomposition de Turrittin-Levelt au voisinage de w = oo, les facteurs
 determinants sont les -(iw),ll et d'autre part que Vare et Canm s'identifient
 canoniquement a Can, et Vary respectivement.
 L'isomorphisme canonique Ker((I, O0) = Ker(y,Cz) est donne de la

 maniere suivante. On a une decomposition Ker(yp,Cz) = (BKer(p,Cz () en
 espaces de microsolutions de W en chaque singularite a distance finie. On choisit
 une direction de demi-droite 0 telle que les demi-droites , o, de direction 0

 issues de C ne se chevauchent pas. Pour f E Ker(p,Cz= ), on choisit f( tel
 que canjf = fc. Alors la formule

 f(z)e-Zdz + (varf)(z)e-Zdz
 \z-(\=e J6,o,z-(I>E

 definit une solution de () (qui ne depend pas du choix de f) sur un demi-plan
 Re (wei0) ?> 0.12 On obtient ainsi un sous-espace Ker(I, Ow)C de Ker((, Ow),
 et on a Ker((, Ow) = EcKer((, Ow)C (decomposition de Stokes).

 11 Pour se convaincre qu'on a pris les bons signes, on peut considerer le cas de () = d + -.
 12 La procedure est reversible et permet de construire les solutions de p a'l'infini a partir des

 microsolutions de ( a l'origine.
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 Les fleches cane, var( et T7 = id + varycane associees aux microsolutions
 de 7p en ( sont reliees a Can, et Vary par les formules

 (/ cang

 Can = cani ? Ti-. T1 , Var = (var,...,varr)

 \can.r T(._, * ... T(1

 (dans loc. cit. ce calcul est fait en supposant, pour fixer les idees, que
 Im l > ... > Im r, de sorte qu'on puisse prendre 0 = 0; mais c'est sans
 importance, car on se ramene immediatement a ce cas en effectuant une ho-
 mothetie sur z et l'homothetie inverse sur w).

 La monodromie To,0 de () tournant dans le sens usuel autour de 0 s'ident-
 ifie a (id + Var,Can>)-l, et donc a (id + Can,Varp)-l, tandis que la mon-
 odromie T,oo, de (p = 74) autour de l'infini s'identifie a (id + Var,Can,)-1.
 Comme les valeurs propres non nulles de Can,Var, coYncident avec celles de
 Var ,Canpo, on voit en particulier que les valeurs propres de T<,o et de T,,oo,
 distinctes de 1 coYncident (compte non tenu des multiplicites), ce qui demontre,
 par voie analytique, l'assertion 4.3.ii).

 Avec ces resultats, joints au theoreme de Turrittin-Levelt, il ne reste plus
 qu'a etablir que les series Fi de 4.3. iii) sont des E-fonctions, tandis que les
 series fi de 4.3. v) sont des 3-fonctions, et a caracteriser les exposants de
 Turrittin.

 5.3. Calcul operationnel (formulaire). Rappelons que pour tout a de par-
 tie reelle > -1, la transformee de Laplace de za est

 (5.3.1) (z-)+ = r(a + l)z-a1;
 plus generalement, pour tout entier naturel k,

 (5.3.2) (z, logk z)+ = r(a + 1)z-a- ((-1)k logk z + un polynome

 de degre k- 1 en log z)

 Ce polynome fait intervenir les valeurs en a de la fonction F et de ses derivees
 jusqu'a l'ordre k, mais son expression importe peu ici.

 Il nous faudra etendre la transformation + dans le cas d'un nombre com-

 plexe a quelconque, de maniere a disposer encore des formules du type de celles
 de 2.4. Ce probleme est resolu par le calcul operationnel de la maniere suivante
 (cf. [DiP, 115.3]).

 Considerons une somme finie

 h = ha,kza logk z,
 ao,k
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 et posons

 (a+j k) (,,) k!

 (5.3.3) (z, a, k)=( k (-?a() -1(l) -logk-1 Z si a 7 -1,

 log4' kz
 (5.3.4) (z, -1, k) gk+ z

 k+l

 Rappelons que la partie finie de l'integrale fo h(t)dt est la fonction de z

 p.f. / h(t)dt = lim ha k (e, +, k) + h(t )dt

 = ha,k(z, a, k).
 ot,k

 Il suit de cette definition que

 (5.3.5) p.f. ( z t)t logktdt = ( _l) z-+n /P o n!] !m-O,m m!(n-m)! m + a + 1
 m=0,m77a-i1

 x logkz +... + (1)kk
 \(o - ~ (m + a + 1)k/

 plus un terme
 (-1)a+ ++l logk+l z

 (-a-l)!(n+c + 1)! k + 1
 si a - 1 est un entier compris entre 0 et n.

 On a pour ces parties finies un calcul integro-diff6rentiel analogue au calcul

 usuel, la formule habituelle g(z) - Sf(tg(t))dt = g(0) etant remplacee par

 h(z) - p.f. ((h(t))dt) ho

 (constante qu'on note aussi p.f.(h)(0)). On peut alors etendre le formalisme
 de la transformation de Laplace en posant

 (5.3.6) h+ = +1 p.f. (z ! h(t)dt

 pour tout n > -Re a - 1 (cette expression ne depend pas d'un tel n). Par
 exemple, la formule (5.3.1) vaut pour tout a non entier negatif, tandis que

 (1) = z (log z)+ r'(1) - logz.

 La formule (2.4.2) est encore valide, i.e.

 (5.3.7) dh+ = (-zh)+, dz
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 YVES ANDRE

 tandis que (2.4.3) est a modifier comme suit

 (5.3.8) z? h+ =dxd + (5.3.8) zh z -jh) + (-1)mz p.f.(zmh)(O)
 m>O

 (la somme s'arrete a m = n), ce qui redonne (2.4.3) si h n'a pas de terme qui
 soit une puissance entiere strictement negative de z.

 Compte tenu de (5.3.5) et de la formule

 n (-_1m 1
 (5.39) m!(n- m)! + + 1 = (( + )n+l)-1

 m=-O

 si -a - 1 n'est pas un entier compris entre 0 et n, on obtient la generalisation
 suivante de (5.3.2):

 (5.3.10) (z logk z)+ = r(a + l)z-a-l((-l)klogk

 + un polynome de degre k- 1 en log z)

 si a n'est pas un entier strictement negatif,

 Z-a-1 logk+l z
 (-z ((-1)+ 1 (-Q/! 1 k+l
 + un polyn6me de degre k en log z) sinon.

 5.4. Laplace et Nilsson-Gevrey. Par completion formelle z-adique (resp.
 !-adique), la transformation + de (5.3.6) se prolonge en deux applications:

 z"([[z]] [log z] c[[_ [z+ ] [log ]

 qui verifient (5.3.7) et (5.3.8). En filtrant par le degre du logarithme, on voit
 immediatement que ces applications sont injectives, et meme bijectives si a
 n'est pas entier. Pour a rationnel, ces applications s'etendent respectivement
 par linearite en des applications injectives encore notees +, qui verifient (5.3.7)
 et (5.3.8):

 C[[z]] [logz] ] [log ]

 ou C[[z]] et C[[f]] designent les anneaux de series de Puiseux en z et en 1
 respectivement.

 PROPOSITION 5.4. .Ces applications induisent des applications C-lineaires
 injectives

 NGA{ z}_i -1NGA{- o, NGA{ o NG GA {
 Z+1
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 la source de chacune de ces applications comncidant avec sa preimage dans

 C[[z]] [log z] ou C[[]] [log 1] respectivement.

 Preuve. Nous traiterons la question de NGA{z}_lNGA{)}o et de
 NGA{1}1 -- NGA{z}o, les deux cas restants etant similaires.

 Par Q-linearite, on se ramene a montrer d'une part les inclusions

 1
 (5.4.2) (z log k 1Z}ZA) C [logz]1

 a { C Za+l Q{z} [log z], (za logk Z~ {Q c C 1 A I z ~Za+1

 et d'autre part que:

 (5.4.3) Les seuls elements de C[[z]][logz] (resp. {1}C[[ ]][log z]) dont
 l'image par + est dans le compositum C[log z] Q {z}} (resp. C[log ] Q{z} )
 appartiennent au compositum

 A )?

 C[logz] . {z}Al1 (resp. C[log z] Q { )A

 Soit done a = (ao,al,a2,...) une suite de nombres complexes algebriques
 verifiant la condition (G), considerons les series Fa = En>0o a.zn E (Q{z}Al et
 fa = En> n!anz-n e Q{z}A et posons, suivant (5.3.10):

 (z logk zFa) = E E bjz- 1- logJ z,
 j n>O

 (z log za)+ E ,jz -a-~n log z .
 j n>O

 Quitte a retrancher de zCFa (resp. zafa) un element de Q[1] (resp. Q[z]), on
 peut supposer, pour l'etude de (za logk zfa)+, que a ? -N (resp. a f N). Les
 coefficients de la puissance maximale du logarithme sont donnes par:

 (5.4.4) b,k= (-l)kr(a + 1)( )na
 n!

 C,k = (-l)k+nr(a + 1) ( - 1) an si a n'est pas entier,

 Cn,k+1 = (-l)a+n 1 a si a est entier < 0. Cn,k+l () (k+l)( n )n

 (k+1) (-a -a)
 Comme a est rationnel, on en deduit deja que les series En>o.bn,kZ-a-l-n et
 ZEn>O C,kZ--l+n sont dans C . {}IA et (C1 . Q{z}A respectivement.
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 Ecrivons encore (5.3.10) sous la forme
 (5.4.5)

 k

 (za+m logk ) = Fr(a+ + l)z-c- 1- Pm,j log3 z,
 j=0

 Pm,j E C, Pm,k+l = (-1)k

 si a + m n'est pas un entier strictement negatif,

 mk+l

 (-_ -1-) -m! 5 Pm,j logJ z, (- - 1 -)  j=O

 Pm,j E C, Pm,k+l + 1 sinon

 Alors la formule (za+m logk z)+ = -d(zca+m-1 logk z)+ (cf. (5.3.7)) donne la
 relation de recurrence

 j+l
 (5.4.6) Pm,j = Pm-l,j - +mPm-l,j+1 si m 7 -a,
 d'ou l'on deduit que pour Iml assez grand, Pm,j s'ecrit comme combinai-
 son lineaire Pm,j - Co<i<l rm,iPi, oi les rm,i sont des nombres complexes
 algebriques tels que les suites

 (ro,i, rl,i,..., rmi ...) (resp. (r,i,, ?r?,. , r-Mr,i,))
 verifient la condition (G) (le point essentiel est que la croissance en n du
 denominateur commun des quantites rationnelles -Ii =l m- I, < k +1 (k fixe),
 1 < mi < n, est exponentielle). Par exemple, si k = 1, et si a n'est pas entier,
 on a Pm,1 = -1, Pm,O (a + 1) + Eim . De ce que

 n!

 (5.4.7) bnkj = (-a- 1)n Pnjan)

 Cn,j - (-) ( - 1) P-n,jan si a n'est pas entier, (-a - a)n

 Cnj = (n) P-n,jan si a est entier < 0,
 (-a-)

 on en conclut que les series En>O bn,jz-a-l-n et En>O Cn,jz-a-l+n sont dans

 Cz --{r}{1 Aet C 1 -Q{z}A respectivement, ce qui etablit (5.4.2).
 Pour prouver (5.4.3), considerons un ensemble fini de suites

 (aO,k, al,k, . *, am,k ...)

 de nombres complexes (plus necessairement algebriques), puis formons les
 series

 Fk = na!zn et fk=En!an,kzn
 n>O n>O
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 Il s'agit de voir que si -k(logk zFk)+ (resp. k( logk zfk)+) appartient a
 C[log z] .Q{ }0 (resp. a C[log z] -Q{ zz}), alors chaque Fk (resp. fk) appartient

 aC Q{z}A1i (resp. a C. Q{} ).
 Par recurrence sur le degre en logz, on se ramene a ne considerer que le

 maximum des k, et le resultat decoule alors des premiere et troisieme formules
 de (5.4.4).

 5.5. Solutions de 4 en 0 et (micro)solutions de C7b en oo. On a etabli en
 5.1, 5.2 l'existence d'une base de solutions en 0 du E-operateur ) de la forme

 (y (z),..., y(z))= (F (z),..., F,(z)) zr

 ou les Fi sont dans K[[z]], et Fo designe une matrice carree d'ordre v trian-
 gulaire superieure a coefficients dans Q. II s'agit de voir que les Fi sont des
 E-fonctions, ou, ce qui revient au meme, que les yi sont dans NGA{z}_l .

 En utilisant les formules (5.3.7) et (5.3.8), on voit . , n v comme en (2.4) que y+
 est solution du G-operateur d ' 7* ) pour p convenable (on pourrait prendre
 p = 0 si le i-eme terme diagonal de Fo etait non entier). D'apres le theoreme
 3.5 (appliqueN l'infini), on a donc y+ E NGA{z}o. En vertu de 5.4.1, on en
 conclut que yiNGA{z}-l.

 Remarque. On peut modifier legerement l'argument de maniere a ne pas
 supposer a priori que les exposants sont rationnels. On retrouve alors, par voie
 "formelle", que l'ensemble des classes non nulles d'exposants modulo Z de (
 en 0 coincide avec l'ensemble analogue pour 74) en oo.

 5.6. Solutions de '( en oo et (micro)solutions de ~74 en les singularites
 a distance finie. Soit K' l'extension finie de K obtenue par adjonction des
 singularites a distance finie (i de 7() et des exposants de Turrittin de () en
 oo. On a etabli en 5.1 et 5.2 (via Turrittin-Levelt) l'existence d'une base de
 solutions en oo du E-operateur 4 de la forme

 (Y1 , I ,Y,)= (fI,...),) ? ) *e-az

 ou les fj sont dans K'(( )), A est la matrice diagonale ayant pour coefficients
 diagonaux les Cj (comptees avec multiplicite), et r, designe une matrice sous
 forme de Jordan a coefficients diagonaux dans K', commutant a A. En par-
 ticulier, roo est sous forme de blocs rooi, un pour chaque singularite finie de
 7q4 (sans multiplicite).

 Il s'agit de montrer d'une part que

 (5.6.1) Pour tout j, apres multiplication par une puissance de z, fj(z)
 devient une 3-fonction, ou, ce qui revient au meme, que yj := yje jz est dans
 NGA{z}1,
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 et d'autre part que

 (5.6.2) Les classes non nulles modulo Z des elements diagonaux de Fro,
 coYncident avec classes non nulles des exposants de ~74 en (i.

 On commence par se ramener au cas Si = 0 de la maniere suivante: le
 tordu < (0 e-(j de 4 par e-jz (c'est-a-dire l'operateur obtenu en remplacant
 d par d - i) annule les "series" yj correspondant au bloc o,i et est encore
 de type E car 7((4 0 e-(Z) n'est autre que le G-operateur translate de 7(4
 par (i (c'est-a-dire l'operateur obtenu en remplagant z par z + (i). Fixant i,
 nous supposons done que Foo, est le bloc attache a la singularite 0 de -74,
 et nous considerons les elements diagonaux aj de Foo,i et les "series" j yj
 correspondantes, yj C (z)'j K'((z))[logz].

 Considerons d'abord le cas des exposants de Turrittin aj non entiers.
 Alors en utilisant les formules (5.3.7) et (5.3.8), on voit comme ci-dessus que
 y+(-z) est solution du G-operateur 74? dans zajK'((z))[logz]. D'apres 3.5
 (applique en l'infini), on a done y+ E NGA{z}o. En vertu de 5.4.1, on en con-

 clut que yj C NGA{z}+i. Reciproquement, si y E zaK'((z))[logz] est solution
 en 0 de 74, avec a ? 2, alors y+ est solution dans () K'/((z))[logz] de 4D en
 oo. Ceci prouve (5.6.2) (en particulier K' = K((i)i), et aussi (5.6.1) dans le cas
 des exposants de Turrittin non entiers. La difficulte avec les exposants entiers
 vient bien entendu de ce qu'une serie infinie apparait au second membre de
 (5.3.8). Pour la contourner , il suffit en fait de multiplier Yj () K'((1))[log z]
 par (z)c, pour oa rationnel convenable, a condition de prouver que (z)yj est
 encore solution d'un certain E-operateur. Par recurrence sur le degre du log-
 arithme comme en 4.2, on se ramene a prouver l'enonce suivant:

 PROPOSITION 5.6.3. Soient f C C((Z)) et a C Q. Alors f une solution
 d'un E-operateur <=x zaf est solution d'un E-operateur.

 On peut supposer f E 1C[[l]]. Prouvons => (<= est analogue ou meme plus
 facile: pour a E Q-Z, on pourrait l'obtenir par voie formelle en comparant f+
 et (zaf)+). Nous procederons par voie analytique. Comme tout E-operateur
 4 annulant f a une seule pente non nulle a l'infini, egale a 1, on sait que
 f est 1-sommable au sens de Ramis dans toute direction 0 non singuliere,
 i.e. asymptotique a une (unique) fonction holomorphe fo sur un secteur V
 d'ouverture > 7r bissecte par 0; en outre, fo est automatiquement solution de
 (>. D'apres ce qui a ete prouve en 5.5, fo est done restriction sur V d'une
 (unique) solution y de ( dans NGA{z}_i. D'apres 4.2, zay est solution d'un
 E-operateur 4i'. Son developpement asymptotique dans V n'est autre que zaf,
 et c'est une solution de V4' (noter que quitte a changer legerement 0, on peut
 supposer que 0 n'est pas direction singuliere de 4'). Ceci acheve la preuve de
 4.3.
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 Remarque. Soit y une solution d'un E-operateur ( sur le demi-axe reel
 positif, bornee en 0. Supposons que les monodromies locales de 7I) en les
 singularites a distance finie (i soient finies. Renumerotons (1,..., (r celles de
 ces singularites de partie reelle maximale (r > 1 si et seulement si l'axe reel
 est une ligne de Stokes).

 On peut developper (le prolongement analytique de) la transformee de
 Laplace y+ de y au voisinage de -( = -C,...,-Cr sous la forme

 y+(z - C) zaC an, az pour Iz < E,
 aC n>O

 ou les a( sont dans des classes distinctes modulo Z. Un calcul integral long
 mais elementaire ([DiP, 118]), base sur le lemme de Jordan, donne alors le
 developpement asymptotique explicite de y(z) pour z -+ oo:

 1 /1\

 Z i-czZ E (z) Z r(-n- ao () -Z) ?=(~,...,(r a? n>O

 Comme le developpement de y+(z - ) est element de NGA{z}o d'apres le
 "theoreme de permanence", on voit directement que les coefficients des e-(Z
 dans ce developpement asymptotique sont elements de NGA{z}i. C'est cette
 remarque qui m'a permis de deviner le "theoreme de dualite".

 Il est d'ailleurs plausible que l'on puisse tirer une preuve "analytique" de
 4.3 (sans recours au calcul operationnel) en amplifiant cette remarque.

 5.7. Preuve de 4.6. Le cas d'un element holonome de NGA{z}i se ramene
 a celui d'une 3-fonction comme dans 4.2. Soit donc f(z) E K[[z]] une
 3-fonction. Soit a E Q -Z. D'apres 5.6.3 (implication =), il suffit de montrer
 que la serie holonome zaf(?) E zCK{I}A+1 est solution d'un E-operateur. En
 vertu de 5.4.1, et des formules (5.3.7) et (5.3.8) , (zaf(z))+ est un element
 holonome de z-a"-K{z}A. C'est donc une solution d'un G-operateur I (cf.
 3.2, amplifie en 3.6). Les memes formules (5.3.7) et (5.3.8) montrent alors que
 zf( z) est solution du E-operateur 74If.

 6. Purete et dualite

 THEOREME 6.1. Soient s un nombre rationnel non nul, et y(z) un
 element holonome de NGA{z}s. Alors y(z-S) est solution d'un E-operateur
 differentiel. Plus precisement, si [ est un operateur d'ordre minimal annulant
 y(z), il existe un E-operateur differentiel qui annule toutes les solutions de T
 en 0 recalibrees par z z-.
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 YVES ANDRE

 Preuve. Remarquons que pour s < 0 (resp. s > 0), y(z-s) est un element
 holonome de NGA{z}_i (resp. NGA{z}+l); cf. 1.4.1. La premiere assertion
 est donc consequence de la forme forte de 4.2 (resp. 4.6). Soit 4I un E-operateur
 annulant y(z-S).

 Pour la seconde assertion, ecrivons s = p/q comme fraction irreductible,

 et considerons un operateur V' E C[z, d] d'ordre minimal annulant y(zi). Un
 peu de theorie de Galois diff6rentielle montre que V' annule toutes les solu-

 1

 tions de tI en 0 recalibrees par z -- zq. D'autre part, le module diff6rentiel

 M, :=' C(z)[z]/C(z)[fz]/' est quotient de p,M?, en notant p l'application
 z -> z-p, donc p*MF, est quotient de p*p*M4>. On voit par la que tout
 E-operateur V' multiple commun a gauche de E-operateurs annulant les
 y(ez-S), ou e parcourt les racines de l'unite d'ordre p, annule toutes les
 solutions de 1 en 0 recalibrees par z -+ z.-

 6.2. Le theoreme de purete (en 0) et de dualite (purete en oo) suivent
 alors directement de 6.1 et 4.3 (voir aussi 4.5), sauf en ce qui concerne les
 assertions relatives aux developpements asymptotiques.

 Ces dernieres decoulent aisement d'une part de ce qu'il n'y a qu'une seule
 pente non nulle en jeu, de sorte que toutes les series divergentes qui apparais-
 sent sont -i-sommables selon toute direction non singuliere (sur de "grands"

 secteurs d'ouverture > IslTr; cf. [R3]), et d'autre part de ce que la '-sommation
 respecte la structure d'algebre diff6rentielle.

 Remarque. On pourrait arithmetiser davantage notre cadre en remplagant,
 dans les definitions et le theoreme de dualite, le corps C par le sous-corps
 obtenu en adjoignant a Q les valeurs de la fonction gamma et de ses derivees
 aux points rationnels.

 6.3. Exemple: l'equation differentielle de Weber [WW].

 d2 f z2 1
 Dm(z) = (- -- m) Dm(z)

 ne presente qu'une seule singularite (a l'infini), de pente 2. Supposant m
 rationnel mais non entier naturel, une base de solutions en 0 est alors donnee
 par les fonctions cylindriques paraboliques

 ,22 z 2(_ m . 1 z-\
 Dm(z -_ = (e 4 - m 3 z2
 - r( )(z)e lF2 2 2 2'2

 qui appartiennent a NGA{z}_i.
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 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 D'autre part, dans tout secteur d'ouverture < 7r/2 bissecte par le demi-axe
 reel positif, Dm(?z) admet le developpement asymptotique

 / (2 T 1-m -m rn 1 2
 ^ ^^''[-r-^r--22 2 [-.

 dont on verifie directement qu'il satisfait l'equation de Weber dans l'algebre
 diff6rentielle zmzexp(z2 - Z)Q((Q)). Pour Dm(+z), ce developpement asymp-
 totique est du reste valide dans tout secteur d'ouverture < 37r/2 bissect6 par
 le demi-axe reel positif, de sorte que la 2-sommation au sens de Ramis de

 2Fo (1-m -m /()) 2 ' 2( )
 z2

 selon toute direction d'angle e]- 7r/2, 7r/2[ est z-meTDm(z). Par contre,
 lorsqu'on franchit la ligne de Stokes d'angle -7r/4, le developpement asymp-
 totique de Dm(-Z) doit etre corrige par addition du terme

 -/ 2 -m-l r (, 1 +m I l e(---)~ Z 2Fo 1+ ~2-2 ;2 )

 qui satisfait aussi l'equation de Weber dans l'algebre diff6rentielle

 zmZexp (z2) Q 1)

 Remarquons pour finir que

 2Fo 1 -m,m 2() )2

 et

 2F (1 1+m ()2

 sont dans Q{1 z }+
 2

 7. Series de factorielles et equations aux differences finies

 7.1. On note A l'operateur de diff6rences finies de pas 1 (Ag)(x)
 g(x + 1) - g(x). Considerons l'espace vectoriel complexe C[!x!](P) des "series
 de factorielles (inverses) generalisees"

 g(x) = b + +p1)r(x)
 n>O np?)'
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 YVES ANDRE

 ou l"'exposant" p est un nombre complexe donne. Cet espace est en fait un
 C[x, A]-module. Le cas des series de factorielles inverses, introduites par Nicole
 dans son "traite du calcul des differences finies" (Mem. Acad. Sci. Paris 1717),
 correspond a p = 0, i.e. g(x) = o x(x+). n) Rappelons que dans ce
 cas, le developpement formel a l'infini g(x) = ]n>o an-n-1 peut se calculer

 ainsi: en posant F(z) = n>O zn (de sorte que n>O anz-n--l = F+), on a
 En>o zbn = F(log lz) (cf. [WW, 7.82]).

 La transformee de Mellin formelle est l'application lineaire

 M. : C[!x!](P -- (1 - z)PC[[1 - z]]

 definie par

 M (g,) = (I - z)P C b, (1 -Zz)n M(g) = (1 ) r(n + p + 1)

 (cf. [BaD]). Cette application est injective si p n'est pas un entier stricte-
 ment negatif. Un element de C[!x!](P) est dit Gevrey d'ordre s si la serie

 En>o bnr(I++l) est Gevrey d'ordre s au sens usuel (en la variable 1 - z).
 D'autre part, la transformee de Mellin operatorielle est l'application M
 C[x,A] -- C[z, d] definie par x - z -z, A -- z- 1. C'est un isomor-
 phisme de C-algebres; en outre, si g est annule par un element E de C[x, A],
 alors M(g) est annule par AM() (loc. cit.).

 7.2. Une serie de factorielles generalisee g(x) est dite Gevrey d'ordre s
 de type arithmetique (pour des nombres rationnel s et p fixes) si les bn sont
 alg6briques et si la suite de terme general bn v6rifie la condition (G) de
 1.1. (en particulier g(x) est Gevrey d'ordre s au sens ci-dessus). Pour p = 0,
 une telle serie n'est donc autre qu'un element de M-1(Q{1 - z}A).

 Du theoreme de purete pour les equations diff6rentielles, on deduit alors,
 via la transformation de Mellin, le resultat suivant.

 THEOREME 7.3. Soit E un element non nul de C[x,A], et soient g
 et g' des solutions de E dans C[!x!](P) et C[!x!](p ) respectivement, avec p, p' E
 C\Z<o. On suppose que E est d'ordre minimal en x parmi les operateurs aux
 differences finies polynomiaux annulant g. Alors si g est Gevrey d'ordre s de
 type arithmetique, il en est de meme de g'.

 Noter que la rationalite de p fait partie de l'hypothese, et celle de p' de la
 conclusion.

 7.4. Remarques et perspectives. Je considere les resultats de cette etude
 comme la pointe d'un iceberg de questions inexplorees, dont les plus patentes
 sont:
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 739 SERIES GEVREY DE TYPE ARITHMETIQUE, I

 a) Generalisation en dimension superieure, en vue d'englober par exemple
 des fonctions de type hypergeometrique beaucoup plus generales. Deja
 pour s = 0, les resultats du paragraphe 3 ne sont pas completement ecrits
 a plusieurs variables.13

 b) Peut-on definir une "bonne classe" d'operateurs differentiels de type
 arithmetique, en etudiant l'indice a l'origine et a l'infini dans les espaces
 de series Gevrey de type arithmetique?

 c) Est-il necessaire de se limiter a des equations differentielles lineaires? On
 sait en effet que la theorie Gevrey "complexe" a d'importantes applications
 non-lineaires; voir [R3] pour un tour d'horizon, et les travaux d'Ecalle.

 d) Y a-t-il des q-analogues? Par exemple, peut-on considerer la fonction de
 Tschakaloff [T] Zn>o q-n(n-l)/2zn comme une q-E-fonction? Rappelons
 qu'il y a une theorie q-Gevrey "complexe" [Be], [R3], [MaZ], et en partic-
 ulier une transformation q-Laplace (et meme plusieurs); nous reviendrons
 en partie sur cette question a la fin du second volet de cet article.14

 e) Combiner c) et d) serait du reste interessant au vu des nouvelles fonctions
 introduites par L. Denis [De], qui "interpolent" l'exponentielle de Drin-
 feld et l'exponentielle usuelle, et satisfont des equations aux q-differences
 polynomiales.

 f) La theorie des equations diff6rentielles lineaires p-adiques presente des
 phenomenes de monodromie "tres sauvage" lies aux exposants de Liou-
 ville (sans doute absents des equations definies sur Q), mais aussi des
 phenomenes de monodromie "sauvage" plus subtils , etudies par Christol
 et Mebkhout, qui ont lieu meme pour des equations definies sur Q a ex-
 posants de Turrittin rationnels (par exemple des modules exponentiels de
 Dwork), ou il arrive que le rayon de convergence des developpements de
 Turrittin soit inf6rieur au rayon "attendu". II est plausible que pour les
 equations differentielles "de type arithmetique" considerees dans cet arti-
 cle, ces phenomenes n'apparaissent que pour un nombre fini de premiers
 p (cf. 4.8).
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