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Séries Gevrey de type arithmétique, 1.
Théorémes de pureté et de dualité

Par YVES ANDRE

Introduction

Ceci est le premier volet d’un article promouvant un point de vue
arithmétique sur les fonctions spéciales classiques.

En feuilletant les traités de fonctions spéciales, on peut faire les trois
observations suivantes. La premiére, vieille d’au moins un siécle, est que
les séries explicites qui apparaissent comme développements de Taylor (ou
bien asymptotiques) “classiques” sont des séries Gewrey d’ordre rationnel.
Rappelons qu’une série entiére EnZO an 2™ est dite Gevrey d’ordre s si la série
ano (—&ls;z" a un rayon de convergence non nul. La théorie, développée par
Watson (1911), puis Ramis (dés 1978) et d’autres auteurs, s’est avérée féconde
bien au-dela de 1’étude des propriétés & l’infini des équations différentielles
“classiques”.

La seconde observation, d’ou le présent article tire sa source, est qu’outre
ces propriétés analytiques, les séries “classiques” — du moins celles & para-
metres rationnels — possedent aussi de remarquables propriétés arithmétiques,
que nous englobons dans le concept de série Gevrey de type arithmétique:

Nous dirons qu’une série entiere ano an2™ est Gevrey d’ordre s € QQ de
type arithmétique, si ses coefficients a, sont des nombres algébriques, et s’il
existe une constante C' > 0 telle que pour tout n € N, les conjugués du nombre
algébrique (S,ﬂ)—; sont de module inférieur & C™, et le dénominateur commun?! &
ag = (—6‘37, S, (S,ﬂ)—; est inférieur & C™.

C’est par exemple le cas de toute série hypergéométrique généralisée, con-
fluente ou non, & parametres rationnels.

Un peu plus généralement, nous définissons les séries Nilsson-Gevrey
d’ordre s de type arithmétique comme étant les sommes finies de la forme

Z Aak12% (108" 2) Yo (2)
a,k,l

1 C’est-a-dire le plus petit entier naturel dn, > 0 tel que dpnam /(m!)* soit entier algébrique pour
tout m < n.
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706 YVES ANDRE

ou les Ay, sont des nombres complexes, o des nombres rationnels, k,! des
entiers naturels, et yo (%) des séries Gevrey d’ordre s de type arithmétique;
pour s fixé, on montre que ces “séries” forment une C[z]-algebre différentielle,
notée NGA{z},.

La troisiéme observation est que la plupart des équations différentielles
linéaires & coefficients polyndémiaux qui émaillent les traités de fonctions
spéciales sont de nature trés simple; par exemple, on constate qu’ou bien elles
sont fuchsiennes sur la sphére de Riemann, ou bien elles n’ont de singularités
qu’a origine et a I'infini, 'une des deux étant réguliere.

Nous nous proposons de montrer que la présence d’une série Nilsson-
Gevrey de type arithmétique parmi les solutions suffit a rendre compte de cette
derniére observation, en la précisant. Les principaux résultats sont les suivants

(pureté).

THEOREME DE PURETE.  Soit y un élément de NGA{z}s vérifiant une
équation différentielle linéaire ¥y = 0 4 coefficients dans C[z]. On suppose ¥
d’ordre minimal (en %). Alors:

i) Sis <0, ¥ admet une base de solutions dans NGA{z}s;

ii) Sis>0, U admet une base de solutions de la forme exp (aiz“%) - Ys, avec

yi € NGA{z}s, oz € Q.

En termes plus vagues, toutes les séries qui interviennent dans les “solu-
tions en 0” sont purement du méme type. Comme les séries Gevrey d’ordre
< 0 convergent, on voit en particulier que 0 est une singularité réguliere si
s < 0. Dans le cas s > 0, on voit que % est la seule pente non nulle du polygone
de Newton de ¥ & 'origine, et que les facteurs déterminants sont monémiaux.

Le cas s = 0 (cas fuchsien) est maintenant bien compris par la théorie des
G-fonctions, cf. §3 ci-dessous; le résultat principal, di en partie & Chudnovsky
et en partie au présent auteur, exprime la permanence du “type arithmétique”
par prolongement analytique (pureté en tout point algébrique):

THEOREME DE PERMANENCE (s = 0). Soient y et ¥ comme ci-dessus, et
supposons en outre que s = 0. Alors pour tout nombre compleze algébrique a,
W admet une base de solutions dans NGA{z — a}o (resp. dans NGA{1}o).

On s’intéressera davantage ici au cas s # 0; c’est alors la prise de déve-
loppement asymptotique qui remplace le prolongement analytique, et donne
lieu & une “dualité” 0 < oo:
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SERIES GEVREY DE TYPE ARITHMETIQUE, I 707

THEOREME DE DUALITE (s # 0). Soienty et ¥ comme ci-dessus, et sup-
posons en outre que s # 0. Alors U a au plus deuz singularités non triviales:?
Uorigine et Uinfini, dont l'une est réguliere. De plus:

i) Si s < 0, U admet une base de solutions de la forme exp (ﬂiz_é) - Uz,

avec J; € NGA {%}_s, B; € Q. A fortiori, pour toute direction 0 sauf un

nombre fini (les directions de Stokes), il existe un nombre algébrique oy tel

que exp(agz_%) -y admette a U’infini dans la direction 0 un développement
“asymptotique dans NGA {%}_s;

ii) Sis > 0, U admet une base de solutions dans NGA {%}_s. A fortiori, pour

toute direction 6,y est le développement asymptotique & I’ origine dans la
direction @ d’une solution® de ¥ dans NGA {%}_S.

On a donc aussi “pureté” & l'infini, mais pour l'ordre —s. Dans le cas
s < 0, on voit que —% est la seule pente non nulle du polygone de Newton de
¥ & Dinfini, et que les facteurs déterminants sont mondémiaux.

Ces résultats peuvent étre illustrés par ’exemple de I'intégrale oscillante
d’Airy [OS]:

-7

d’ordre 2 (minimal) E%Ai(z) = zAi(z2),

Ai(z) = L [(°cos (zt + %) dt, solution de ’équation différentielle

qui ne présente qu’une seule singularité (a 'infini), de pente 3/2.
A Taide du symbole de Pochhammer (a), = a(a +1)---(a +n —1), le
développement de Taylor de Ai(z) en 0 s’écrit

1 1 3n 1 3n+1
2" — z .
) T o V) 2 )
Les deux séries qui apparaissent forment une base de solutions de ’équation
d’Airy; elles sont Gevrey d’ordre —2/3 de type arithmétique (on peut utiliser
le fait que pour a, b rationnels, le dénominateur commun de a/b, ..., (a)n/(b)n
a une croissance au plus géométrique en n).

D’autre part, dans tout secteur d’ouverture < 2m/3 bissecté par le demi-

axe réel positif, exp (%z%) - Ai(z) admet le développement asymptotique a

2 Une singularité est dite triviale si I'opérateur différentiel y admet une base de solutions
holomorphes.
3 Si 0 n’est pas singuliere, la %-somma,tion de y au sens de Ramis fournit une telle solution

canonique. Si 8 est une direction singuliére, la %-sommation médiane y pourvoit.
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708 YVES ANDRE

() B O

_ %_7? (%>3/4?§) (z)zn“ (%)g;fgl))?nﬁ (%>3n+1

et on constate que les deux séries en % qui apparaissent sont Gevrey d’ordre
+2/3 de type arithmétique (les directions d’angle +7/3 sont des directions de
Stokes).

La preuve des théorémes ci-dessus requiert des outils d’analyse p-adique
et d’analyse complexe. Les techniques p-adiques servent & ’étude du cas
s = 0 (G-opérateurs différentiels, §3); des techniques complexes interviennent
dans 1’étude détaillée (4.3) de ce que nous appelons E-opérateurs différentiels,
c’est-a-dire des transformés de Fourier-Laplace des G-opérateurs différentiels

(8§84, 5). L’importance de ces E-opérateurs apparait dans le résultat suivant
(§6):
Soit y(z) une série Nilsson-Gevrey d’ordre s # 0 de type arithmétique,

vérifiant une équation différentielle o coefficients polynomiaux. Alors y(z~—%)

est solution d’un E-opérateur différentiel.
Ce volet se termine par une bréve application des résultats ci-dessus &

Parithmétique des équations aux différences.

I'infini

Plan
. Séries Gevrey de type arithmétique
. Holonomie. G-fonctions et E-fonctions
. G-opérateurs différentiels (compendium)
FE-opérateurs différentiels
. Autour de Laplace. Preuve de 4.3 et 4.6

. Pureté et dualité

T B R N

. Séries de factorielles et opérateurs aux différences finies

1. Séries Gevrey de type arithmétique

1.1. Soit @ = (ag,a1,as,---) une suite de nombres algébriques. On con-
sidere la condition suivante:
(G): Il existe une constante C' > 0 telle que pour tout n,

(G)conj: Les conjugués de a,, sont de module inférieur & C”,

(G)gén: Le dénominateur commun & ag, ai, ag, - - - a,, est inférieur & C™.
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SERIES GEVREY DE TYPE ARITHMETIQUE, I 709

ProrosiTION 1.1.1. Soit s = p/q un nombre rationnel écrit comme
fraction irréductible, avec q positif. Les conditions suivantes sont équivalentes:

i) la suite de terme général (sﬁ—; vérifie (G),
.. . s 2 a S 4
ii) la suite de terme général (T%—T')T’ vérifie (G).
Ces conditions sur g sont stables par addition, par produit de Cauchy, et
par les transformations an — an—1, an — (n+ 1)any1, an — %an_l.

Preuve. En ce qui concerne (G)conj, ’équivalence de i) et ii) vient de
ce que, d’apreés Stirling, log(["]')p ~ log(n!)® — nslogq + O(logn). Notons

que i) équivaut a dire que la suite de terme général ((’,'))p vérifie (G). En

ce qui concerne (G)ygn, 1’équivalence de i) et ii) se rameéne donc & com-
(an)?
()P

(a0)9,..., —%]’%;,3 d’autre part. Or ([7]')? divise (q[%])!, qui divise lui-méme

n!, et il s’agit de montrer que le plus petit commun multiple de 1,1, ...

parer le dénominateur commun de (ag)?,... d’une part, et celui de

(Ipg ] )
a une croissance au plus exponentielle en n. On observe que seuls des nombres

premiers p < n divisent (E0d ],)q pour m € {1,2,...,n}, I'exposant étant
m m m m : logm
RENCE AR
p pq p p=q ogp
On a donc '

m! Card{p<

em —— < (p4)Card{p<n}

p£<n ([m]|)q > ( ) s

et le théoreme de Chebishev Card{p < n} = O(n/logn) suffit pour conclure.
Traitons ensuite la question des dénominateurs quant & la stabilité par

produit de Cauchy: Si s > 0, on écrit, pour n fixé,

albm 1 m\°® a1 bp1 ) ar  bpo1 .
dén 3. denz(l) = m—1F =50, (T!‘s'(m—nls)’

m<n 1< m<n 1Sm

Si s < 0, on écrit

-p —-p
dén 3 ([T-] !) aiby,_1 < dén ([T] !) a1y, 1
mn {2 q 1<m<n q
—p _ —p
s ()" (=)
1<m<n q q

dans les deux cas, on obtient la croissance exponentielle souhaitée.

4 La constante C impliquée dans (G) n’étant pas nécessairement la méme dans i) et dans ii).
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710 YVES ANDRE

Pour la question des dénominateurs quant a la stabilité par transformation
an — %an_l, on invoque de nouveau Chebishev sous la forme

log ppem(1,2,...,n) = O(n).

Les autres vérifications relatives a la seconde assertion de la proposition
sont immédiates.
Nous utiliserons librement le lemme suivant familier en théorie des

G-fonctions depuis Siegel.

LEMME 1.1.2.  Soient a, b deux nombres rationnels, non entiers négatifs.
Alors le dénominateur commun de a/b,...,(a)n/(b)n a une croissance au plus

géométrique en n.

1.2. Lorsque les conditions de la proposition 1.1.1. sont réalisées, nous
dirons que la série entiere f = f, = >, ~oan2" est Gevrey d’ordre s de type
arithmétique (ou, plus briévement, que f est une série Gevrey arithmétique
d’ordre s).

La seconde assertion de 1.1.1 montre que les séries Gevrey d’ordre s de type
arithmétique forment une sous-Q[z]-algebre de Q[[2]] stable par différentiation
et intégration. Nous noterons Q{z}Z cette algebre différentielle, et K{z}4 la
sous-algebre différentielle formée des séries dont tous les coefficients a,, appar-
tiennent a un corps de nombres donné K. v

Remarques. a) La suite de terme général (—ggg vérifie (G)conj si et seule-
ment si le rayon de convergence des séries ), - t(an)2™ (pour tout plongement
1 : Q — C) est minoré par une constante > 0 indépendante de .. En particulier,
chaque ¢ induit un plongement Q{z}2 — C{z}, dans I’algebre différentielle des
séries Gevrey d’ordre s usuelles.

b) Si K est un corps de nombres plongé dans C, I'inclusion de K{z}4
dans C{z}s jouit de la propriété suivante: Tout élément de K{z} est soit
un polynome, soit une série Gevrey d’ordre exactement s (i.e. n’est Gevrey
d’ordre r pour aucun r < s). En particulier K{z}4 N K{2}4 = K[2] si s # 5.

Une formulation équivalente est que si une suite de terme général a, € K
vérifie (G) et a une infinité de termes non nuls, la série Y, anz" a un rayon
de convergence fini. De fait, la norme d’un terme a, non nul est un nombre
rationnel de dénominateur et numérateur bornés par C™%:U par hypothese,
ce qui entraine bien que lim sup ]an|% > 0.

c) Rappelons que pour s < 0, les éléments de C{z}; s’identifient aux
fonctions entiéres F' d’ordre —%, i.e. pour lesquelles il existe une constante

1
B > 0 telle que |F(2)| = O(eBF™ ).
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SERIES GEVREY DE TYPE ARITHMETIQUE, I 711

1.3. Changement d’ordre. L’étude des séries Gevrey de type arithmétique
se raméne dans une large mesure & celle des séries d’ordre s = —1,0 ou +1.
Voici comment.

Soient u, v deux entiers naturels, u # 0, et introduisons les transformations
de séries formelles suivantes, familieéres en analyse ultramétrique:

Yy Zanz” = Z an2", Wy Zanz" = Z Quntv2".

n>0 n>0 n>0 n>0

ProrosiTION 1.3.1. Soit s un nombre rationnel. Les conditions suiv-
antes sont équivalentes:

i) feQ{z},
) guf € Qlthe,
iii) pour tout v € {0,...,u—1}, ¥,/ f € Q{z}4,.

Seules les questions relatives aux dénominateurs sont non triviales.
L’équivalence de i) et ii) découle alors du fait vu en 1.1.1 le plus petit com-
mun multiple de 1,1,..., % a une croissance au plus exponentielle en n. Pour
I’équivalence de i) et iii), on applique i) < ii) & la série ¥, /, f (au lieu de f),
en remarquant que

ZvSOuI\I/,U/uf _ Z aun+vzun+v,
- n>0

de sorte que f = Zz;é 2%y Wy f. Les détails sont laissés au lecteur.

COROLLAIRE 1.3.2. Soit s = p/q un nombre rationnel non nul écrit
comme fraction irréductible, (avec q positif), et soit €(s) le signe de s. Alors
on a

: Z anz" € Q{z}2

n>0

si et seulement si pour tout v € {0,...,q — 1},

n>0

Remarque. Le produit de Hadamard d’une série Gevrey d’ordre r de type
arithmétique par une série Gevrey d’ordre s de type arithmétique est une série
Gevrey d’ordre r + s de type arithmétique. En revanche le produit de Cauchy
de séries Gevrey de type arithmétique d’ordres différents n’est pas en général
de type arithmétique.
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712 YVES ANDRE

1.4. Un plongement Q — C étant fixé, nous définissons (comme dans
I'introduction) les séries Nilsson-Gevrey d’ordre s de type arithmétique comme
étant les sommes finies de la forme

Y(2) =Y Aapiz* 108" 2ya k1(2),
a,k
avec '
Akl €C, a€Q, kleN, et yari(2) € @{z};4

On peut former lalgebre différentielle compositum de Cllog z] et Q[[2]]
(séries de Puiseux a coefficients algébriques). 11 est alors clair que, pour s fixé,
les séries Nilsson-Gevrey d’ordre s de type arithmétique forment une sous-C|z]-
algebre différentielle de ce compositum. Nous la noterons NGA{z}; .

PROPOSITION 1.4.1. Soit s un nombre rationnel non nul, et notons (s)
son signe. Les conditions suivantes sont équivalentes:

i) y(z) € NGA{z}s,
i) y(z1¥) e NGA{z}(s)-
Cela découle directement du corollaire précédent.

2. Holonomie. G-fonctions et F-fonctions

2.1. Soit a = (ag,a1,as,...) une suite de nombres algébriques. On con-
sidere la condition suivante: ‘
(H): La suite a vérifie une relation de récurrence de la forme

Py(n)an + Pi(n+ 1)angr + -+ Pu(n + p)any, =0

oules F,..., P, désignent des polynémes & coefficients algébriques.

On remarque que les termes d’une suite vérifiant (H) engendrent une
extension finie de Q; on notera souvent K le corps de nombres engendré par

ces termes et par les coefficients des P;.
I1 est bien connu que la condition (H) équivaut & dire que f satisfait a
une équation différentielle linéaire & coefficients polynémiaux (on dit aussi que

f est holonome).
ProroSsITION 2.1.1. Soit s = p/q un nombre rationnel écrit comme
fraction irréductible, avec q positif. Les conditions suivantes sont équivalentes:
i) La suite a vérifie (H), _
ii) La suite de terme général U—%‘—T;)—p vérifie (H).?

5 Le rang u de la récurrence impliquée dans (H) n’étant pas nécessairement le méme dans i) et

dans ii).
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SERIES GEVREY DE TYPE ARITHMETIQUE, I 713

Ces conditions sur g sont stables par addition, par produit de Cauchy, par
produit terme & terme, et par les transformations a, — an—1, an — (n+1)an41,
Gn — Gn-1; de plus, si u,v sont deuzr entiers naturels, u # 0, ces conditions
sont aussi stables par les transformations a, — (an/u st u divise n, 0 sinon),

Qn — Gyntv-

Preuve. La seconde assertion (relativement & la condition 1)) signifie re-
spectivement que l’holonomie d’une série est préservée par somme, produit,
produit de Hadamard (cf. [A, I.3]), multiplication par z, dérivation, intégration,
et par les opérations ¢, et ¥, ,, ce qui est bien connu (pour ¥, ,, on peut
utiliser la formule W,/ f = > u_; (27" f)(€2)).

Déduisons-en la premiére assertion. Posons g = Zn>0 Tf,)—p 2", Alors

U, /00 = Zn>0 2ande 2m, W, Jaf = D on>0 Gqntvz"; et en apphquant les formules

f= Zv —02"pq¥y/qf et g = Zg;(l) 2%pq¥, /49, on se ramene (en itérant [p| fois)
a montrer que f = > -, an2" est holonome si et seulement F' =} -, 942"
lest. Cela résulte aisément du tableau de correspondances suivant:

(2.1.2) f(2) & F(2),
(2.1.3) ZZl%f(z) - zad—zF(z),
(2.1.4) (zzél—z + z) f(z) & 2F(z),
(2.1.5) 2f(2) o /0 F(2)

2.2. Soit @ une suite de nombres algébriques vérifiant (G) et (H). On dit

alors que la série
f=fa=) an"
n>0

est de type G, ou est une G—fonctwn, et que la série
Pon=Y
n>0

est de type E, ou est une E-fonction.
Il y a lieu de considérer aussi la série

f=fo=>_ nlan2".

n>0

Nous donnerons & une telle série le nom de série de type 3, ou 3-fonctionS
(elle diverge aux places archimédiennes mais définit des fonctions analytiques

6 Prononcer “¢” en pensant 3 Euler & Saint-Petersbourg (suggestion de D. Bertrand).
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714 YVES ANDRE

en 0 pour toute place ultramétrique, dont les propriétés diophantiennes ont été
étudiées par V. Chirskii). Un exemple typique est la série d’Euler

> (=1l

n>0

qui est le développement asymptotique a 'origine de la fonction f >0 61_:'5.

Comme nous le verrons plus loin, les 3-fonctions apparaissent dans 1’étude a

I'infini des F-fonctions.
Nous qualifierons d’associées les séries de type G, E, ou 3 associées a une

méme suite a.
D’apres 2.1.1, les séries de type G, E, 3 ne sont autres que les séries

Gevrey de type arithmétique holonomes, d’ordre 0, —1,+1, respectivement.
Ezxemples de G et E-fonctions associées.
a) Si a est la suite constante de valeur 1, on a f = 1—};, F = e~
b) Si a, =n — 1 pour tout n, on a f = 1—Z)12, =(z—1)e*

(Plus généralement, si f est une fonction rationnelle, F' est un polynéme ex-
ponentiel.)

c) Sia0=0,etan=%pournZl,onaf=log(IT1z),F=ezz_l—l.

d) Siagy, = (— 1)”—%—),3, et agn+1 =0,0n a f = \/_—2’ F = Jy(z) (fonction
de Bessel).

e) Si ap, = %%%, pour des nombres rationnels o, 3;, avec B; ¢ N,

(cf. 1.1.2),0on a
al""aaral A1y, Qp
= F, F=,F, 12 .
f T T( ﬂl)‘")ﬂ?‘ ) ! (/817 "7/87‘ )

En revanche, les séries & coefficients rationnels - et (1 —2)V24(1-2)"V2
sont holonomes et Gevrey d’ordre exact 0, mais pas de type arithmétique.

2.3. On peut aussi introduire une version affaiblie de (G):
(G™): Pour tout € > 0 et pour tout n assez grand,
(G )conj: Les conjugués de a,, sont de module inférieur & (n!),
(G7)gén: Le dénominateur commun & ag, a1, ag, .. ., a, est inférieur
a (nl)e.

Nous appellerons séries Gevrey de type arithmétique (resp. de type G, E,
ou 3) au sens large les séries associées comme ci-dessus & une suite vérifiant

(G7) au lieu de (G).
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SERIES GEVREY DE TYPE ARITHMETIQUE, I 715

Les E-fonctions au sens large sont exactement celles introduites dans
I’article original de Siegel [S].” Dans les travaux d’approximation diophanti-
enne de ’école de Shidlovskii apparaissent aussi des F-fonctions au sens strict
de 2.2 (cf. [Sh, p. 406]).

En ce qui concerne les G-fonctions, Siegel commence par les définir au
sens large, mais précise immédiatement qu’il ne considérera que celles au sens
strict (loc. cit. p. 239). On conjecture en fait que les sens stricts et larges
coincident (cf. e.g. [Sh, ibid.]), c’est-a-dire:

CONJECTURE 2.3.1.- Sous (H), les conditions (G) et (G™) sont équival-
entes.

Le probléme a trait aux dénominateurs, car on a:

PRrOPOSITION 2.3.28 Sous (H), les conditions (G)conj €t (G™)conj sONE
équivalentes. '

Démonstration. Soit K comme ci-dessus le corps de nombres engendré
d

par les termes de a et par les coefficients d’'un polynome ¢ en 2z et en -
non nul qui annule f =Y, -;an2" Un théoréme classique de O. Perron [P]
(résultat de base de la théorie des séries Gevrey, voir [R2]) nous place alors dans
l’alternative suivante: Ou bien f converge, ou bien il existe un nombre rationnel
strictement positif 1 (c’est I'inverse d’une pente du polygéne de Newton de ¢
en 0) tel que a soit sujette & une estimation du type |an| < k(n!)7C™, mais &
aucune estimation semblable pour un exposant inférieur & 7. On en déduit,
en considérant tour & tour chaque plongement complexe ¢ de K, que (G™)conj
entraine que f définit un germe de fonction analytique en 0 via ¢, et ceci
équivaut & (G)con;-

Les séries Gevrey de type arithmétique au sens large n’interviendront plus
dans ce volet.

2.4. On remarque que si la suite g vérifie (G)conj, le rayon de conver-
gence de f = f, est au moins C~! (relativement & un plongement complexe
de K déterminé quelconque) et F' = Fj vérifie |F(z)| = O(eCl*l). On peut
donc définir la transformée de Laplace FT(2) = [;° F(w)e *dw sur le demi-
plan Re (z) > C (on pourrait du reste remplacer l'intervalle d’intégration par
n’importe quelle demi-droite d’origine 0). Un calcul standard montre alors que

7 L’hypothése d’holonomie figure dans sa définition (p. 223), mais en a été écartée ultérieurement
dans les travaux de I’école russe.
8 Voir aussi le dernier paragraphe de [R2].
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716 YVES ANDRE
f(2) = LFT(1), ce qu'on écrira aussi f(z) = Js° F(zw)e™dw, ou bien

1 1
2.4.1 Ftizy==f(=>).
(2.4.1) @=11(2)
Les propriétés suivantes de la transformation de Laplace sont bien connues

(voir par exemple [DiP, 1.2]):
d

(2.4.2) SET = (=2F)",
(2.4.3) s Pt = (%F)+ + F(0),
(2.4.4) 1-F+:</'ZF)+,
Z 0
(2.4.5) Ft(z —a) = (e*F)*,
(2.4.6) F*(z/a) = a(F(az))".

En fait, ces propriétés sont purement formelles: en associant & la suite g les
séries f et F' € K|[[2]] comme ci-dessus, et en définissant la série F* € 1K[[1]]
par (2.4.1), on a ipso facto les identités (2.4.2) & (2.4.6) (avec F(0) = ayp).

On a vu d’autre part, sous la condition (H), qu’il existe ¢ € K|z, Ed;]
d’ordre p annulant f. Par changement de variable z — %, il existe donc aussi
U € klz, %] de méme ordre annulant F'*. Rappelons que la transformation
de Fourier-Laplace 7 des opérateurs différentiels (ou plus généralement des
K|z, d%]—modules) est 'automorphisme d’ordre 4 de K|z, diiz—] défini par
d d '

Az’ dz
en notant - la transformation = suivie de la symétrie par rapport & l’origine,
on a donc

z— —

7 7 =7 7 =id.
Posons v = deg,¥. La multiplication & gauche de ¥ par Cg‘i—”,, neutralise le terme
F(0) dans P’application itérée de (2.4.3), et il découle alors de (2.4.2) et (2.4.3)
que 7 (45 W)F = 0. Comme

dz?
- dv -
. v

7 (5 UF = (=2)"7(V)F,
on voit que F' vérifie 'équation différentielle d’ordre v,
(2.4.7) OF =0, avec®= (U).
Réciproquement, si F' vérifie I’équation différentielle ®F' = 0, et si p = deg, ¥,
alors F'* vérifie I'équation différentielle £~ (®)F+ =0, i.e. 7(P)FT est un
polyndme de degré < pu, en général non nul. On retrouve par 1a en particulier

le fait que toute E-fonction vérifie une équation différentielle & coefficients
polynémiaux. Nous préciserons plus loin les propriétés d’une telle équation.
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2.5. On déduit de 1.1.1 et 2.1.1 que les G-fonctions forment une Q[z]-
sous-algebre de Q[[2]] stable par différentiation; de méme pour les E-fonctions.
Toutefois, on prendra garde que la bijection Q-linéaire “série associée”

{G—fonctions} « {E—fonctions}
f - F

ne respecte pas le produit de Cauchy.

De ce que les E-fonctions sont entiéres d’ordre 1, il est facile de déduire que
les unités de I’anneau des E-fonctions sont de la forme be*?, ou a et b sont des
nombres algébriques (b # 0). Il est beaucoup plus délicat de montrer que les
unités de I’anneau des G-fonctions sont les fonctions algébriques holomorphes
et non nulles en 0 (cf. [A, p. 124]); nous n’aurons pas & faire usage de ce résultat
dans cet article.

Pour toute fonction rationnelle 7(z) & coefficients algébriques et s’annulant
en 0 et pour toute G-fonction f(z), f(r(z)) est encore une G-fonction.® Il
n’en va pas du tout de méme pour les E-fonctions, pour lesquelles les seuls
changements de coordonnées permis sont les homothéties.

 Enfin, puisque les conditions (G) et (H) sont stables par produit terme &
terme, tout produit de Hadamard de G-fonctions est une G-fonction.

Remarque. Tout y € NGA{z}, annulé par un élément non nul de C|z, diz]

est aussi annulé par un élément non nul de Q[z, £]. Clest clair si y € Q{z}4;
en général, on écrit

Y= Iakiz*(108" 2okt Yokt € Q2}S,
a.k
les o étant dans des classes distinctes modulo Z, et on voit que les yq x,; sont
holonomes au sens ci-dessus. On conclut par 'existence!® de multiples com-
muns dans Q[z, &].

3. G-opérateurs différentiels (compendium)

dzJ
un opérateur différentiel. On lui associe une suite d’opérateurs (¢m)m>1 de la

maniére suivante: ¢, est 'unique élément de K|z, ad;] divisible & droite par ¢

3.1. Soit K un corps de nombres et soit ¢ = Y5, Qj(z)—d—jv € k[z, &

9 En effet cette dernitre vérifie clairement une équation différentielle & coefficients polynémiaux,
et elle converge & 'origine (relativement & tout plongement complexe du corps des coefficients), ce
qui établit les conditions (H) et (G)conj pour la suite de ses coefficients de Taylor; on établit (G)daen
(resp. (G )d¢n) en remarquant qu'’il existe un entier N > 1 tel que le développement de Taylor a
Porigine de r(Nz) soit & coefficients entiers algébriques.

10 Condition de Ore, cf. [Bj, I, 8.4].
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718 YVES ANDRE

et de la forme

dmtup—1

(3.1.1) bm Q,u( )md mtp—1 +ZQ’”L,J dzJ :

On dit que ¢ est de type G, ou est un G-opérateur s’il satisfait & la condition
suivante introduite par Galochkin [G]:

(G) 1l existe une constante C > 0 telle que pour tout n > 1, le dénominateur
commun aux coefficients des @, ;(2), pour m <net 0 < j < pu—1, est
inférieur a C™.

Cette appellation est justifiée par la remarque (quasi immédiate) que toute
solution dans K[[z — a]] d’un G-opérateur en un point a tel que Q,(a) # 0 est
une G-fonction (en la variable z — a).

On constate sans difficulté que si ¢ vérifie (G), il en est de méme de tout
diviseur & droite de ¢; il en est aussi de méme de 'opérateur ¥ considéré en
2.4, ainsi que de 'opérateur obtenu a partir de ¢ en faisant un changement de
coordonnées z — az, a € K*. (En fait, la notion de G-opérateur est en un sens
évident stable par changement rationnel de coordonnée, et peut se définir sur
toute variété algébrique définie sur Q; cf. [ABa].)

.On conjecture que les G-opérateurs sont d’origine géométrique, c’est-a-
dire produits de facteurs d’opérateurs de Picard-Fuchs (contrélant la variation
de cohomologie dans une famille & un parameétre de variétés algébriques définie

sur Q).

Rappelons les quatre résultats de base concernant ces opérateurs.

THEOREME 3.2 (Chudnovsky).  Soit f € K|[[z]] une G-fonction, et soit
¢ € K|z, %] un opérateur non nul d’ordre minimal tel que ¢f = 0. Alors ¢

vérifie (G).

-Ce résultat est démontré dans [CC]; voir aussi [A, VI].

Les deux résultats suivants mettent en jeu les rayons de solubilité générique
R,(¢,1), ainsi définis: pour toute place finie v de K, de caractéristique résiduelle
p = p(v), normalisons la valeur absolue v-adique par |p|, = p~'; pour tout
r > 0, Ry(4,7) est le rayon de convergence, limité supérieurement & r par
convention, d’une base de solutions de ¢ au point générique v-adique de valeur
absolue 7.

THEOREME 3.3.  La condition (G) équivaut & [], Ry(¢,1) # 0.

Ce résultat est démontré dans [A, IV5.2] (la normalisation des valeurs
absolues y est différente, mais cela n’a pas d’incidence sur le résultat).
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On déduit par exemple de ce critére qu'un produit ¢ - ¢’ de G-opérateurs
en est un, de méme que l'adjoint ¢* = ;‘zo(—l)jz‘% - Qj(2); cf. [A, IV4.4].

THEOREME 3.4 (Katz).  Supposons que Ry($,1) > p(v) =Y/ @)1 poyr
toute place v au-dessus d’un ensemble de nombres premiers de densité 1 (c’est
le cas en particulier si [, Ry(¢,1) # 0). Alors ¢ est fuchsien, i.e. n’a que des
singularités régulieres a distance finie et a Uinfini. De plus les exposants en
chaque singularité sont rationnels.

Voir [A, IV5.2] ou [DGS, III].

En combinant ces trois résultats (Chudnovsky, André, Katz), on obtient
qu’une équation différentielle d’ordre minimal satisfaite par une G-fonction est
toujours fuchsienne, & exposants rationnels. En tout point ¢ (resp. en linfini),
elle admet donc une base de solutions de la forme

(3.41) (FO= =0, SO~ 0) - (e - 0%,

Gane e (40 (D)0 (2)- ()

ol les f;o, f;oo) sont des séries formelles & coefficients dans K, et Ce¢,Coo
désignent des matrices carrées d’ordre p triangulaires supérieures a coefficients
dans Q.

THEOREME 3.5 (Sous (G)). Les séries f;oo) et f;o (pour tout ¢ € Q) sont
des G-fonctions.

Ce résultat est démontré dans [A, V]. (C’est non banal seulement si ¢ est
une singularité).

3.6. Techniquement, il est plus commode de travailler avec des modules
différentiels (sur Q(z)) plutdt qu’avec des opérateurs différentiels ([A, IV]). Les
définitions sont compatibles au sens ot Q(z) diz]/ Q(z)[d%’]qﬁ est de type G si et

seulement si ¢ ’est. On dit aussi qu’un Q[z, -g;]—module holonome (i.e. fini et
de torsion) est de type G si sa fibre générique ’est.

Le fait que la somme directe et le produit tensoriel de modules différentiels
de type G sont de type G ([A, IV4.4]) entraine le point i) du lemme suivant:

LEMME 3.6.1. i) Soit y1 (resp. y2) une solution d’un G-opérateur (resp.
d’un autre G-opérateur) dans une Q[z]-algebre différentielle convenable. Alors
y1 +y2 est solution d’un G-opérateur. De méme pour y1 - ya.

ii) Soient ¢1 et ¢o deux G-opérateurs, et soit ¢ un multiple commun a
gauche de ¢1 et ¢o, d’ordre minimal. Alors ¢ est un G-opérateur.
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720 YVES ANDRE

Pour le point i), considérer le sous-module différentiel

Q(Z)[ }(yl +y2) (resp. Q(z ){dJyl y2)
de
U | ] m 0@ [ ]w ep 0@ |1 nog, @) 1] w.

Le point ii) découle de i) en utilisant le fait que tout multiple & gauche par
un élément de Q[z], et tout diviseur & droite, d’un G-opérateur, sont des G-
opérateurs).

Vu que 2%log® 2 est solution d’un G-opérateur (d’ordre k + 1) lorsque
a est rationnel, ce lemme permet d’étendre le théoreme de Chudnovsky aux

éléments de NGA{z}o:
Tout élément holonome de NGA{z}y est solution d’un G-opérateur.

En combinant ceci au théoréme 3.5, on en déduit le théoreme de permanence
énoncé dans 'introduction (et le cas s = 0 du théoréme de pureté).

4. E-opérateurs différentiels

4.1. Nous appellerons E-opérateur le transformé de Fourier-Laplace d’un
G-opérateur. Il revient au méme de dire que ® est un F-opérateur si et seule-
ment si son transformé de Fourier-Laplace est un G-opérateur.

En effet, si ¥ désigne I’opérateur déduit de ¥ := 7® en appliquant la
symétrie par rapport & l’origine, on a ® = 7V = 7 V; or ¥ est un G-opérateur
si et seulement si ¥ en est un. Un produit ® - &’ de E-opérateurs est un
E-opérateur, de méme que tout diviseur & droite de ® et que ’adjoint ®*; @ et
@’ admettent un multiple commun & gauche qui est un E-opérateur (propriété
de Ore a gauche). Ceci résulte des propriétés analogues pour les G-opérateurs,
et de ce que (7V)* = 7(U*) (cf. [M, V3.6]).

Le nom de “E-opérateur” est motivé par le résultat suivant.

THEOREME 4.2.  Toute E-fonction F est solution d’un E-opérateur ®;
de plus, on peut choisir ® de degré en z égal au minimum des degrés en z des
opérateurs différentiels annulant F. Plus généralement, tout élément holonome
de NGA{z}_1 est solution d’un E-opérateur.

En effet, soient f la G-fonction associée & F' et ¢ un opérateur différentiel
non nul d’ordre minimal annulant f. Alors ¢ est un G-opérateur (3.2), et il
en est donc de méme de ¥ (cf. 2.4) et de ¥. Donc ® := 7¥ = 7V est un
E-opérateur non nul, et annule F' (cf. 2.4.7).
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Pour démontrons la seconde assertion, on peut supposer que cet opérateur
® = VU n’est pas de degré minimal en 2 parmi les opérateurs différentiels
annulant F. Montrons qu’alors tout opérateur différentiel ®' annulant F, de
degré minimal en z (noté yg), est un E-opérateur. En effet, (7®')F est un
polynéme de degré < pg. On en déduit d’une part que 7%’ est un opérateur
d’ordre minimal tel que 5’:700(7@ ) - F = 0, et d’autre part que ¥ divise &
droite le produit ¥’ d’un opérateur différentiel d’ordre 1 et de 7®'. Comme
ord U # 7®' par hypothese, et puisque jlzL,fO\Il -F =0, on en déduit ord ¥ =
ord ¥’. Des lors ¥/, et par suite 7®’, sont des G-opérateurs, donc ® est un
E-opérateur. ' _

Passons au cas d’un élément holonome }_, . Aok, 12*(log® 2)ya r1(2) de
NGA{z}-1. En utilisant la propriété de Ore & gauche pour les E-opérateurs,
on se raméne aisément au cas d'un produit y(z) = 2*(log 2)F(z), ot F est
une E-fonction (annulée par un F-opérateur ®), et ol « est positif; puis, en
considérant ®y et en raisonnant par récurrence sur k, au cas ou k = 0, i.e.
y = z®F. On observe alors que la transformée de Laplace y n’est autre que

vy (2) =T(a+1)z7>7! { (1 — é) - * zF+(z)} ,

olt * désigne le produit de Hadamard de séries en 1. Ainsi {(1—1)~%x2F*(2)}
est une G-fonction en %, et y*(z) est solution d'un G-opérateur (cf. 2.5, 3.2).

Remarque. On déduit de 4.2. qu’un opérateur d’ordre minimal © annu-
lant F admet un multiple & gauche de la forme Q(2)®, o @ est un polynéme
et ® un E-opérateur. On prendra toutefois garde qu’en général ni Q(2)® ni ©
ne sont eux-mémes des E-opérateurs. C’est le cas de ’exemple 2.3.b ci-dessus
(F = (2 — 1)€?), pour lequel on peut prendre:

d ‘ d
=(z—1)(2z~1)d—z+3z—1, \Il——(z—l)(z~2)gz-+z—3,

2

d d d
® = 7\Il—zd2 (1~—3z)32+2z, @—(z—l)%—z.

Ona(z—1)® = (24 —2z+1)-0, donc Q(2) = z — 1 convient, mais 70 =
—(1+ z)ad; + z —1 n’est pas un G-opérateur. Notons d’ailleurs que ® n’est pas
de degré minimal en z: on a

(%4) 9—(z—1)<—d—2~——2+1)

et o' = éf - 2% + 1 est un autre E-opérateur d’ordre minimal annulant F,
indépendant de .

THEOREME 4.3 (structure des E-operateurs) Soit ® € K[z, £] un E-opé-
rateur, d’ordre noté v. Alors:
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722 YVES ANDRE

i) ® n’a que deuz singularités: 0 et oo.

ii) L’origine est une singularité réguliére. Les exposants de ® en 0 sont ra-
tionnels; exceptés peut-étre ceux entiers, ce sont, modulo Z (et comptés
sans multiplicité), les exposants a I'infini du G-opérateur 7®.

iii) Il existe une base de solutions en 0 de équation ®F =0 de la forme
(Fi(2),..., Fu(2)) - 2™

ot les Iy sont des E-fonctions a coefficients dans K, et I'g désigne une
matrice carrée d’ordre v triangulaire supérieure a coefficients dans Q.
iv) Linfini est une singularité en général irréguliere, de pentes € {0,1}.
L’ensemble des exposants de Turrittin non entiers de ® en oo coincide,
modulo Z, avec I’ensemble des exposants non entiers de 7® auz singu-
larités a distance finie.
v) Il existe une base de solutions en oo de I’équation ®F = 0 de la forme

(h (;) SR (%)) . @F” gy

ot les §; sont des 3-fonctions a coefficients dans I’extension finie de K
obtenue par adjonction des singularités o distance finie de 7®, ot A est
la matrice diagonale ayant pour coefficients diagonaux les singularités a
distance finie de 7® (comptées avec multiplicité), et ot Ty désigne une
matrice carrée triangulaire supérieure 4 coefficients dans Q (ayant pour
éléments diagonaux les exposants de Turrittin), qui commute a A.

La démonstration occupera les sections 5.1 a 5.6. Nous priviligierons une
approche formelle, qui permettrait de travailler sur Q(I'*®)(a))gem acq plutot
que sur C si 'on voulait (en fait les I'®(a) n’interviennent que via leurs “re-
lations de distribution”). Toutefois nous préciserons aussi par voie analytique
les liens entre ® et 7 ®.

Ezemples. a) L’opérateur & coefficients constants ® = '('1%25 — 2% + 1 con-
sidéré plus haut admet les E-fonctions e* et ze* comme base de solutions; -7 ®
est 'opérateur d’ordre nul (2 + 1)2, qui admet —1 comme singularité triviale
double.

b) Par le point i) du théoréme, on voit que les seuls opérateurs différentiels
irréductibles qui sont & la fois de type G et E sont, & multiplication prés par
un monéme en z, ceux de la forme za‘-i; — o avec a € QF, et d%.

c) Equation différentielle de Whittaker [WW], [Bu]. Soient k et m deux
nombres rationnels, et considérons I’ opérateur de Whittaker

d2 22 1
2 2
@k,m—z_zz <————+kz—|— ——m).
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On calcule

_ 1 1\ & d (9
7<I>k,m—<z—§><z+§)d—z2+(4z+k)£+<z—m),

qui est un G-opérateur, car c’est un opérateur de type hypergéométrique a
exposants rationnels (correspondant au schéma de Riemann
1 1
—2 T3 00
B 0 0 -m+3 ;z|).
~k-1 +k—-1 +m+3

On rappelle que si m n’est pas demi-entier, une base de solutions de @, en
0 est donnée par

1
My am(2) = z%ime"%lel (5 +m—k;£2m +1; z) ;

une autre base est donnée par les fonctions de Whittaker

__Tm)
Wk,m(z) = T (% o — k) k:,m(z)
T'(2m)
TEam—k) eomle) e Wokm(=2)

Le développement asymptotique de Wi n,(2) & l'infini est

Wim(2) = zke_%zzFo (% -—m— k,% +m—k; (—-i—))
pour |arg(z)| < 7 — e. On constate que 1Fi(3 £ m — k;£2m + 1;z) est une
E-fonction tandis que QFO(% -m—k, % +m — k; z) est une 3-fonction.
d) E-opérateur associé & I’équation différentielle de Lamé [WW], [D].
Soient m un nombre rationnel, B,ei, ez, e3, quatre nombres algébriques
(e; # €j), et considérons I’opérateur de Lamé

2 1 1 1 1 d
An,B:4(z—e1)(z—62)(zTe3){Ez—§+§(z—e1+Z—€2+Z—e3)£

—(n(n+ 1)z+B)} .

C’est un opérateur fuchsien & exposants rationnels (correspondant au schéma
de Riemann

€; o0

BLL O —F2 )
1 ntl
2 2

Si B = B™ est I'une des 2n+1 valeurs classiques pour lesquelles A,, p admet une
fonction de Lamé solution, il est connu que A,, g est un G-opérateur. L’exemple
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724 YVES ANDRE

du E-opérateur du troisi¢eme ordre (A, pm) montre qu’il est nécessaire de se
limiter aux exposants de Turrittin non entiers au point iv) de 4.3.

Notons par ailleurs que si n est un entier pair négatif, (A, pm) admet une
E-fonction solution (transformée de Laplace inverse d’une fonction de Lamé);
il me parait douteux qu’elle soit hypergéométrique au sens de Siegel en général

(cf. [Sh, p. 184]).
Compte tenu de la remarque suivant 4.2, le théoréeme 4.3 entraine:

COROLLAIRE 4.4. Soit F une E-fonction, et soit © € K]z, %] un
opérateur non nul d’ordre minimal annulant F. Alors © n’a que deuzx singu-
larités non triviales: 0 et co.

L’origine est une singularité réguliere, a exposants rationnels; plus
précisément, il existe une base de solutions en 0 de I’équation OF = 0 de
la forme (F1(2),...,Fx(2)) - 2¥, ot les F; sont des E-fonctions & coefficients
dans K (et Fy = F), et ouI' désigne une matrice carrée triangulaire supérieure

a coefficients dans Q.

Remarque. Le fait que © n’ait que deux singularités non triviales en-
traine que ’algebre de Lie de son groupe de Galois différentiel global se calcule
arithmétiquement selon la conjecture de Katz [K], [B]: ¢’est la plus petite sous-
algébre de Lie de I'algebre de Lie des matrices carrées d’ordre celui de ©, dont
la réduction modulo presque tout nombre premier p contient la p-courbure

de ©.

4.5. Application a un probleme de Shidlovskii. Dans [Sh, p. 184], Shidlov-
skii remarque que toutes les F-fonctions solutions d’une équation différentielle
homogene (linéaire) d’ordre 1 sont de la forme Q(z)eS?, o1 Q est un polynéme,
et signale que la détermination des FE-fonctions solutions d’une équation
différentielle inhomogéne d’ordre 1 est une question ouverte. Le corollaire ci-
dessus permet d’y apporter une réponse, en considérant 1’équation homogeéne

associée.
On trouve que ce sont les fonctions entieres de la forme

z
F = q(z)z“o‘egz/ r(t)t> et

ol « est rationnel, ¢ est algébrique, et ot ¢(2) € Q[z], 7(z) € Q(2) (soumis
aux conditions adéquates pour que F soit entiere). Le prototype en est

q(2)1F1(1; 05 2) + p(2), avec p(z),q(z) € Q[2];

il resterait a déterminer si on les obtient toutes ainsi.
Le lien tissé entre 3-fonctions et F-fonctions par le théoréme 4.3 est ren-

forcé par le résultat suivant, pendant de 4.2:
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SERIES GEVREY DE TYPE ARITHMETIQUE, I 725

THEOREME 4.6. Soit §(z) une 3-fonction (ou plus généralement un
élément holonome de NGA{z}11). Alors f(1) est solution d'un E-opérateur.

Par exemple ano(—l)”n!(%)" est solution du E-opérateur & = zf} +
(1—2z)£& — 1 (de G-opérateur associé 7 = z((1 + 2)4 +1)).

Je conjecture la caractérisation p-adique suivante des E-opérateurs (pen-
dant de 3.3):

CONJECTURE 4.7. Supposons que ® € K|z, d%] n’ait de singularité qu’en
0 et co. Alors ® est un E-opérateur si et seulement si

11 ( R, (<1>, p(v)—l/p(v)—l) : p(v)l/(p(v)—l)) £0.

Remarque 4.8. En interprétant la transformée de Fourier-Laplace comme
un foncteur po.(pi? ® e *")[1] en théorie des D-modules (cf. [M, app. 2]), les
méthodes de [AB] rameénent essentiellement la conjecture & un probléme de
convergence p-adique des séries formelles intervenant dans la décomposition
de Turrittin-Levelt a lorigine et & 'infini, pour p assez grand.

4.9. Plus généralement, on définit les Q|z, d%]-modules de type E comme

étant les transformés de Fourier-Laplace des Q[z, %-modules holonomes de
type G (cf. 3.6). Les définitions sont compatibles au sens ot Q|z, d%] /Qz, %]‘I’
est de type F si et seulement si @ I'est. On prendra garde que cette pro-
priété ne dépend pas uniquement de la fibre générique de Q|z, d%] /Qlz, %]@,
contrairement a ce qui se passe pour le “type G”.

5. Autour de Laplace. Preuve de 4.3 et 4.6

5.1. Pentes. Soit ¢ = Y1 > %_gai;2 d%% € K|z, £]; son transformé de
Fourier-Laplace est

Y & od & L s
7Q0 = z Z(—l)’ai,jwz = ZZ bj,iz @
§=0 i=0 §=0 i=0
Tous les opérateurs différentiels que nous considérons sont de type exponentiel
au sens de [M, XII], c’est-a-dire vérifient a,, # 0 (ce qui équivaut & by, # 0).
En effet nous ne considérons que des opérateurs différentiels réguliers en I'infini,
ou facteurs de transformés de Fourier de tels.

Notons d’autre part que si ¢ est régulier en linfini, on a alors a;, = 0
pour ¢ < u, donc b,,; = 0 pour ¢ < 4, ce qui signifie que 7 n’a de singularités
qu’en 0 et oo. Ceci établit i).

Pour aller plus loin, rappelons que le polygone de Newton-Ramis N(p) est
I'enveloppe convexe dans le plan des demi-droites {u < i,v = j —4/a;; # 0}
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726 YVES ANDRE

[R1], [M, V1]. Toute pente non nulle n’apparait que sur un c6té; on distingue
les cotés horizontaux en donnant la pente —0 (resp. +0) au c6té supérieur (resp.
inférieur). De la sorte, la partie de pente > 0 (resp. < 0) est & translation
verticale pres le polygone de Newton usuel de ¢ en 0 (resp. le symétrisé par
rapport & l’axe des u du polygéne de Newton usuel de ¢ en 0o).

Il est immédiat qu’on passe de N(p) & N(7¢) par la transformation
(u,v) — (u + v, —v); en particulier les pentes ¢ de N(y) devient la pente t—:_—tl—
de N(“¢). On en déduit tout de suite le critére suivant (avec ® = “y):

(® n’a que deux singularités, 0 qui est réguliére,
et linfint qui est irréguliere de pentes € {0,1})

& (7P est régulier en 0 et en l'infini).

Compte tenu de ce que tout G-opérateur est fuchsien, ceci établit les assertions
de 4.3 concernant les pentes de .

On peut dire plus: si ¢ est fuchsien (i.e. n’a que des singularités régulieres),
alors on peut appliquer ci-dessus aux translatés ¢, de ¢ (par z — z — a);
comme 4 n’est autre que le “tordu” de 7y par e**, on en conclut que les
pentes d’un tel tordu sont toujours dans {0, 1}, ce qui montre que les facteurs
déterminants de ¢ (a priori constants ou bien polynémiaux de degré v! en
21/ "!) sont simplement de la forme 6z. En particulier, d’aprés Turrittin-Levelt,
il existe une base de solutions en co de ’équation ¢ F = 0 de la forme

(u(2) oo () (2) e

ou ', désigne une matrice sous forme de Jordan (ayant pour éléments dia-
gonaux les exposants de Turrittin), ou A est une matrice diagonale commutant
8 I'o (Az ayant pour éléments diagonaux les facteurs déterminants), et ou les
fj sont des séries de Laurent a coefficients dans ’extension de K obtenue par
adjonction des coefficients de ', et A.

5.2. Monodromie de et monodromie de 7®. Fixons un plongement com-
plexe de K. Notons {(i,...,( -} I'ensemble des singularités finies de ¢, qu'on
suppose fuchsiennes (de méme que linfini). Alors le module différentiel
Clz, a%]/ Clz, ad;]cp est déterminé & isomorphisme pres par le systéme local des
solutions de ¢ sur C — {(1,...,{ }- :

Pour ® = 7, en revanche, le module différentiel C[z, £]/Clz, L1P est
déterminé & isomorphisme prés par le systéme local des solutions de ® sur
C* et par la structure de Stokes a l'infini (cf. [M, IV]). La détermination de
ces données est de maniere générale 'objet de la théorie de la transformation
de Fourier géométrique, mais dans le cas exponentiel élémentaire que nous
considérons ici, elle est fournie par la recette explicite suivante ([M, XII]).
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Pour P’exposer, nous introduirons comme dans loc. cit. une autre vari-
able, soit w, et nous mettrons en dualité réelle le plan complexe des z (avec
lorientation usuelle) et le plan complexe des w (avec orientation inhabituelle).
Nous considérerons ® comme un élément de Clw, 3%]; sa monodromie en 0
tourne donc par convention dans le sens inhabituel.

Soit O, le C[z, %]emodule des fonctions holomorphes sur le revétement
universel du plan des z privé d'un disque fermé assez grand, et soit CNz son

quotient par les fonctions entieres d’ordre < 1. On a les apphcatlons standard
Ca.n -

(9 —CyetT = 1d+Var Can est la monodromie autour du disque manquant.
Var

De méme pour la varlable w, avec ’orientation inverse.

Ces applications passent aux noyaux de ¢ et de ® respectivement:

__ Varg o
Ker(yp, z) Ker(go,C) Ker(®,Cy) = Ker(®,0y).

Var, Cang
©

Le résultat principal de loc. cit. est d’une part que la structure de Stokes de
® est indexée par {—(1,...,—Cr} (ce qui se traduit ici par le fait que dans
la décomposition de Turr1tt1n—Levelt au voisinage de w = oo, les facteurs
déterminants sont les —(;w),' et d’autre part que Varg et Canq> s’identifient
canoniquement a Cany, et Var, respectlvement '
L’isomorphisme canonique Ker(®,0y) = Ker(go, C,) est donné de la
maniére suivante. On a une décomposition Ker(p,C,) = B¢Ker(p, z=¢) en
espaces de microsolutions de ¢ en chaque singularité a distance finie. On choisit
v une direction de demi-droite 6 telle que les demi-droites 64 9, de direction 0
‘issues de ¢ ne se chevauchent pas. Pour f¢ € Ker(p, Z—C)’ on choisit fC tel
que cang fg = f¢. Alors la formule

L <|‘—; F)e™dz + / (var¢ f)(z)e”*dz

8¢,0,|z—¢|>e

définit une solution de ® (qui ne dépend pas du choix de f) sur un demi-plan
Re (we'®) >> 0.12 On obtient ainsi un sous-espace Ker(®, Ow)g de Ker(®, 0,,),

et on a Ker(®, Oy) = ®¢Ker(®, Ow)c (décomposition de Stokes).

11 Pour se convaincre qu’on a pris les bons signes, on peut considérer le cas de ® = d% +¢.
12 La procédure est réversible et permet de construire les solutions de ¢ & 'infini & partir des
microsolutions de @ & 'origine.
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- 728 YVES ANDRE

Les fleches cang,vare et Ty = id + varccang associées aux microsolutions
de ¢ en ( sont reliées a Can,, et Var, par les formules

cang,
Can, = | cang, - T¢;_, ---T¢, |, Var, = (varg,...,vare,)

cang, - T¢, -+ Ty
(dans loc. cit. ce calcul est fait en supposant, pour fixer les idées, que
Im{; > --- > Im(,., de sorte qu’on puisse prendre § = 0; mais c’est sans
importance, car on se ramene immédiatement a ce cas en effectuant une ho-
mothétie sur z et ’homothétie inverse sur w).

La monodromie Ty o de ® tournant dans le sens usuel autour de 0 s’ident-
ifie & (id + VargCang) ™!, et donc a (id + Cany,Var,) ™!, tandis que la mon-
odromie T, », de ¢ = 7® autour de linfini s’identifie & (id + Var,Can,)~t.
Comme les valeurs propres non nulles de Can,Var,, coincident avec celles de
Var,Cany, on voit en particulier que les valeurs propres de Tg o et de T, o,
distinctes de 1 coincident (compte non tenu des multiplicités), ce qui démontre,
par voie analytique, l’assertion 4.3.ii).

Avec ces résultats, joints au théoréme de Turrittin-Levelt, il ne reste plus
qu’a établir que les séries F; de 4.3. iii) sont des E-fonctions, tandis que les
séries f; de 4.3. v) sont des 3-fonctions, et & caractériser les exposants de

Turrittin.

5.3. Calcul opérationnel (formulaire). Rappelons que pour tout a de par-
tie réelle > —1, la transformée de Laplace de 2% est

(5.3.1) (29T =T(a+1)z7%71;

plus généralement, pour tout entier naturel k,

(5.3.2) * (2%logF2)T =T(a+1)z721 ((—l)k log® z + un polynéme
de degré k — 1 en log z)

Ce polyndme fait intervenir les valeurs en « de la fonction I' et de ses dérivées
jusqu’a lordre k, mais son expression importe peu ici.

Il nous faudra étendre la transformation * dans le cas d’un nombre com-
plexe a quelconque, de maniére & disposer encore des formules du type de celles
de 2.4. Ce probléme est résolu par le calcul opérationnel de la maniére suivante
(cf. [DiP, I15.3]).

Considérons une somme finie

h=> haxz*loghz,
a,k
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SERIES GEVREY DE TYPE ARITHMETIQUE, I 729

et posons
a—l—l
(5.33)  V(z,a,k) ) Z 1 —(—a— D7 llogh 1tz si a# -1,
logk+1
3.4) 9(z,—1
(53.4) 9(e-1,k) = o

Rappelons que la partie finie de Vintégrale [ h(t)dt est la fonction de z

p.f. / h(t)dt = lim > haid(e, o k) + / h(t)dt
0 a,k €

e—0
= Z ho ik ¥(z, 0, k).
a,k
Il suit de cette définition que

n _1\m a+n+1
(5.3.5) p / G ar0gk g = 3 (=1) z

mli(n —m)!m+a+1

m=0m#a—1
—1)kk!
log® (_
x(og Z +(m+a+1)k)
plus un terme :
(_1)a+1 anil logk-l-l P

(—a—1ln+a+1)! kE+1
si @ — 1 est un entier compris entre 0 et n.
On a pour ces parties finies un calcul intégro-différentiel analogue au calcul
usuel, la formule habituelle g(z) — foz(% g(t))dt = g(0) étant remplacée par

h(2) — pf. /0 ’ (%(h(t))dt) — hoo

(constante qu’on note aussi p.f.(h)(0)). On peut alors étendre le formalisme
de la transformation de Laplace en posant

(5.3.6) ht = ot (p.f. /0 g ;!t)n h(t)dt> i

pour tout n > —Rea — 1 (cette expression ne dépend pas d’un tel n). Par
exemple, la formule (5.3.1) vaut pour tout « non entier négatif, tandis que

(%>+ =2 (log 2)* =T"(1) — log 2.

La formule (2.4.2) est encore valide, i.e.

, d,+_ +
(5.3.7) Rt = (=zh)",
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730 YVES ANDRE

tandis que (2.4.3) est & modifier comme suit

+ LM
(5.3.8) 2Bt = (%h) + ()" A (Z"R)(0)

m>0

(la somme s’arréte & m = n), ce qui redonne (2.4.3) si h n’a pas de terme qui
soit une puissance entiére strictement négative de z.
Compte tenu de (5.3.5) et de la formule

(539) S L (st Do)

:Om!(n—m)!m-i-a—i-l

si —a — 1 n’est pas un entier compris entre 0 et 2, on obtient la généralisation
suivante de (5.3.2):
(5.3.10) (2%logF2)* = T(a+ 1)z~ 1((=1)*log" 2
+ un polynéme de degré k — 1 en log z)
si a n’est pas un entier strictement négatif,
—a—1 k+1,
= oo S 1

+ un polynéme de degré k en log z) sinon.

5.4. Laplace et Nilsson-Gevrey. Par complétion formelle z-adique (resp.
%—adique), la transformation * de (5.3.6) se prolonge en deux applications :

2 Cllellog ] 2 € [FH [10% 1}

qui vérifient (5.3.7) et (5.3.8). En filtrant par le degré du logarithme, on voit
immédiatement que ces applications sont injectives, et méme bijectives si o
n’est pas entier. Pour « rationnel, ces applications s’étendent respectivement
par linéarité en des applications injectives encore notées *, qui vérifient (5.3.7)

ot (5.3.8): -
Clog 1 ¢ || 2] e
1

ot C[[z]] et C[[L]] désignent les anneaux de séries de Puiseux en 2 et en %

respectivement.

PROPOSITION 5.4.1.Ces applications induisent des applications C-linéaires
injectives

NGA{Z} 1 NGA{- }OaNGA{z}O-—)NGA{z} ’
+1
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la source de chacune de ces applications coincidant avec sa préimage dans

C[[z]][log 2] ou C[[1]][log 1] respectivement. _
Preuve. Nous traiterons la question de NGA{z}_1NGA{1}; et de

NGA{1}; — NGA{z}o, les deux cas restants étant similaires.
Par Q-linéarité, on se rameéne & montrer d’une part les inclusions

wr kT + 1 (4
(5.4.2) (z_ log® zQ{z}fl) C C;m -Q {;}0 [log 2],

At 1 -
(z" log’c zQ{;} > - Cza+1 ~Q{Z}OA[10gz] ,

1

et d’autre part que:

(5.4.3) Les seuls éléments de C[[z]|[logz] (resp. {1}C[[L]]log 2]) dont
image par T est dans le compositum Cllog z] - Q{z}4' (resp. C[log 2] - Q{z}4)
appartiennent au compositum

A
Cllog 2] - Q{2}2; (resp. Cllog2]-Q {%} ).

1
Soit donc a = (ap,a1,az,...) une suite de nombres complexes algébriques

vérifiant la condition (G), considérons les séries Fy, = Y, - 22" € Q{2}4, et
fo = p>onlanz™™ € Q{21}{, et posons, suivant (5.3.10):

(z“‘ log"c ng)+ = Z Z bnjz " logl 2,

j n>0
N .
(za log” zfg) = Z Z Cnj2 1" logl 2 .
j n>0

Quitte & retrancher de 2*F, (resp. 2%f,) un élément de @[%] (resp. Q[z]), on
peut supposer, pour Pétude de (z* log® 2fa)T, que a & —N (resp. a & N). Les
coeflicients de la puissance maximale du logarithme sont donnés par:

(5.44)  bup = (~1)*T'(a + 1)(—01%)"%

n!
(—a—1)n o

1
enjs1 = (=1)*7 o\
(k+n( )
- —Q

Comme « est rationnel, on-en déduit déja que les séries g bz 17" et
—a—1+n
2 n>0 Cnjk?

Cn o = (—1)k+"f‘(a +1) si a n’est pas entier,

si a est entier < 0.

sont dans Cr - Q{1}¢' et C3r -Q{z}{ respectivement.

This content downloaded from
195.176.96.246 on Thu, 28 Sep 2023 12:55:00 +00:00
All use subject to https://about.jstor.org/terms



732 YVES ANDRE

Ecrivons encore (5.3.10) sous la forme

(5.4.5)
+ k .
(z°“+m log” z) =TD(a+m+1)z7o7 1™ Z Pm,; log’ 2,
j=0
Pm,j € C, Pmk+1 = (_1)k
si a +m n’est pas un entier strictement négatif,
k+1
=)™ e j
S Caimrt 2 PmalE'
j=0
(_1 a+m )
pmj €C, pmi+1 = T sinon.
Alors la formule (22T logF 2)* = — £ (22+™11og® 2)* (cf. (5.3.7)) donne la
relation de récurrence
Jj+1 .
(546) Pm,j = Pm—1,j — o mpm_l’j+1 s1m # —Q,

d’oll T'on déduit que pour |m| assez grand, pp; s’écrit comme combinai-
son linéaire pmj — Y o<i<1 Tm,iPi; OU les rp; sont des nombres complexes
algébriques tels que les suites

(T0,is T4y - - - s Tmyir---)  (T€SP. (T045, T—1,35- -+ » T—myir---))
vérifient la condition (G) (le point essentiel est que la croissance en n du

dénominateur commun des quantités rationnelles HZ 13 +m , < k+1 (k fixé),
1 < m; < n, est exponentielle). Par exemple, si k = 1, et si « n’est pas entier,

on a pm1=—1, pmo=S(a+1)+ X7, +- De ce que
n!

(5.4.7) bnk; = EE < Pn,j0n,
= (- 1)”—L P—n.i0n Sl a n’est pas entier,
(—a—1)," ™
1
Cnj = (—n——)—p_n,jan si a est entier < 0,
—o—1

on en conclut que les séries }_, bnjz %17 et > on>0 cn,j2 %711 sont dans
Coarr - Q{114 et Clr - Q{2}¢ respectivement, ce qui établit (5.4.2).
Pour prouver (5.4.3), considérons un ensemble fini de suites
(a‘O,ka A1ky---Amk, - - )
de nombres complexes (plus nécessairement algébriques), puis formons les

séries
k
F, = Z &n, z" et i = Zn'ankz ",
n>0 n>0
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Il s'agit de voir que si 3, (logF 2Fg)* (resp. > k(3 log® 2f;)+) appartient 2
Cllog 2]-Q{1}§' (resp. a Cllog 2]-Q{z}4)), alors chaque Fy (resp. fi) appartient
3 C-Q{z}2; (resp. & C- Q{1}{).

Par récurrence sur le degré en log 2z, on se rameéne & ne considérer que le

maximum des k, et le résultat découle alors des premiere et troisieme formules
de (5.4.4).

5.5. Solutions de ® en 0 et (micro)solutions de 7¢ en co. On a établi en
5.1, 5.2 l'existence d’une base de solutions en 0 du E-opérateur ® de la forme

W1(2), -, (2)) = (Fi(2), ..., Fu(2)) - 2'°

ol les F; sont dans K[[2]], et Iy désigne une matrice carrée d’ordre v trian-
gulaire supérieure & coefficients dans Q. Il s’agit de voir que les F; sont des
E-fonctions, ou, ce qui revient au méme, que les y; sont dans NGA{z}_; .

En utilisant les formules (5.3.7) et (5.3.8), on voit comme en (2.4) que y;°
est solution du G-opérateur j—;, - 7® pour p convenable (on pourrait prendre
p = 0 si le i-éme terme diagonal de I'y était non entier). D’apres le théoréme
3.5 (appliqué a l'infini), on a donc y;” € NGA{l}o. En vertu de 5.4.1, on en
conclut que y;NGA{z}_;.

Remarque. On peut modifier légérement I’argument de maniére a ne pas
supposer a priori que les exposants sont rationnels. On retrouve alors, par voie
“formelle”, que I’ensemble des classes non nulles d’exposants modulo Z de ®
en 0 coincide avec ’ensemble analogue pour 7® en oo.

5.6. Solutions de ® en oo et (micro)solutions de 7® en les singularités
a distance finie. Soit K’ ’extension finie de K obtenue par adjonction des
singularités & distance finie ¢; de 7® et des exposants de Turrittin de ® en
0o. On a établi en 5.1 et 5.2 (via Turrittin-Levelt) ’existence d’une base de
solutions en oo du E-opérateur ® de la forme

- - ; 2\ 1\ —Az
i) = (fo ) () e
ou les fj sont dans K'((1)), A est la matrice diagonale ayant pour coefficients
diagonaux les (; (comptées avec multiplicité), et I's, désigne une matrice sous
forme de Jordan & coefficients diagonaux dans K’, commutant & A. En par-
. ticulier, I's, est sous forme de blocs I' s, un pour chaque singularité finie de
~7® (sans multiplicité).
Il s’agit de montrer d’une part que

(5.6.1) Pour tout j, aprés multiplication par une puissance de z, f;(%)
devient une 3-fonction, ou, ce qui revient au méme, que §; := gjeﬁa'z est dans
NGA{1}4,
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734 YVES ANDRE

et d’autre part que
(5.6.2) Les classes non nulles modulo Z des éléments diagonaux de ' ;
coincident avec classes non nulles des exposants de 7® en (;.

On commence par se ramener au cas (; = 0 de la maniére suivante: le
tordu ® ® e~%% de ® par e~%? (c’est-a-dire 'opérateur obtenu en remplacant
ad; par Zziz —¢;) annule les “séries” gj; correspondant au bloc I ;, €t est encore
de type E car 7(® ® e %%) n’est autre que le G-opérateur translaté de =@
par (; (c’est-a-dire 'opérateur obtenu en remplagant z par z + (;). Fixant i,
nous supposons donc que I' ; est le bloc attaché & la singularité 0 de 7@,
et nous considérons les éléments diagonaux o; de I'o; €t les “séries” §; = ¥,
correspondantes, §; € ()% K’((2))[log z].

Considérons d’abord le cas des exposants de Turrittin a; non entiers.
Alors en utilisant les formules (5.3.7) et (5.3.8), on voit comme ci-dessus que
g;r(—'z) est solution du G-opérateur 7® dans 2% K'((2))[log 2]. D’apres 3.5
(appliqué en I'infini), on a donc gj;r € NGA{z}o. En vertu de 5.4.1, on en con-
clut que §; € NGA{1},1. Réciproquement, si y € 2*K’((z))[log z] est solution
en0de 7®, avec a € Z, alors y* est solution dans (2)* K'((1))[log 2] de ® en
0o. Ceci prouve (5.6.2) (en particulier K’ = K ((;);), et aussi (5.6.1) dans le cas
des exposants de Turrittin non entiers. La difficulté avec les exposants entiers
vient bien entendu de ce qu’une série infinie apparait au second membre de
(5.3.8). Pour la contourner , il suffit en fait de multiplier §;(1) € K’((2))[log 2]
par ()%, pour a rationnel convenable, & condition de prouver que (2)2g; est
encore solution d’un certain F-opérateur. Par récurrence sur le degré du log-
arithme comme en 4.2, on se rameéne a prouver ’énoncé suivant:

PROPOSITION 5.6.3.  Soient f € C((3)) et a € Q. Alors f une solution
d’un-E-opérateur < z*f est solution d’un E-opérateur.

On peut supposer f € 1C[[1]]. Prouvons = (<= est analogue ou méme plus
facile: pour a € Q—7Z, on pourrait ’obtenir par voie formelle en comparant f +
et (2*f)*). Nous procéderons par voie analytique. Comme tout E-opérateur
® annulant f a une seule pente non nulle & 'infini, égale a 1, on sait que
f est 1-sommable au sens de Ramis dans toute direction 6 non singuliére,
i.e. asymptotique & une (unique) fonction holomorphe fy sur un secteur V'
d’ouverture > 7 bissecté par 6; en outre, fy est automatiquement solution de
®. D’apres ce qui a été prouvé en 5.5, fy est donc restriction sur V d’une
(unique) solution y de ® dans NGA{z}_;. D’apreés 4.2, 2%y est solution d’un
E-opérateur ®'. Son développement asymptotique dans V n’est autre que z* f ,
et c’est une solution de ®’ (noter que quitte & changer légérement 6, on peut
supposer que 8 n’est pas direction singuliere de ®’). Ceci achéve la preuve de
4.3.
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Remarque. Soit y une solution d’un E-opérateur ® sur le demi-axe réel
positif, bornée en 0. Supposons que les monodromies locales de 7® en les
singularités a distance. finie (; soient finies. Renumérotons (i, ..., (. celles de
ces singularités de partie réelle maximale (r > 1 si et seulement si ’axe réel
est une ligne de Stokes).

On peut développer (le prolongement analytique de) la transformée de
Laplace yT de y au voisinage de —¢ = —(1, ..., —(. sous la forme

Y= D2 Y anaga", pour |2l <,
af

n>0

olt les o sont dans des classes distinctes modulo Z. Un calcul intégral long
mais élémentaire ([DiP, II8]), basé sur le lemme de Jordan, donne alors le
développement asymptotique explicite de y(z) pour z — oo:
‘ 1' af 1 1 n+1
S (3 Sreamaes(i)

=ttt oC

- Comme le développement de yt(z — ¢) est élément de NGA{z}o d’aprés le
“théoréme de permanence”, on voit directement que les coefficients des e¢?
dans ce développement asymptotique sont éléments de NGA{—zl-}l. Cest cette
remarque qui m’a permis de deviner le “théoréme de dualité”.

11 est d’ailleurs plausible que 'on puisse tirer une preuve “analytique” de
4.3 (sans recours au calcul opérationnel) en amplifiant cette remarque.

5.7. Preuve de 4.6. Le cas d’un élément holonome de NGA{z}; se raméne
a celui d’une 3-fonction comme dans 4.2. Soit donc f(z) € K][[z]] une
3-fonction. Soit @ € Q —Z. D’apreés 5.6.3 (implication <), il suffit de montrer
que la série holonome z*f (1) € z22K{1}4, est solution d’un E-opérateur. En
vertu de 5.4.1, et des formules (5.3.7) et (5.3.8) , (z"‘fA(%))+ est un élément
holonome de 2~ 1 K{z}#. C’est donc une solution d’un G-opérateur ¥ (cf.
3.2, amplifié en 3.6). Les mémes formules (5.3.7) et (5.3.8) montrent alors que
2% f() est solution du E-opérateur 7.

6. Pureté et dualité

THEOREME 6.1. Soient s un nombre rationnel non nul, et y(z) un
élément holonome de NGA{z},. Alors y(z~*) est solution d’un E-opérateur
différentiel. Plus précisément, si U est un opérateur d’ordre minimal annulant
y(2), il existe un E-opérateur différentiel qui annule toutes les solutions de ¥

en 0 recalibrées par z — z75.
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736 . YVES ANDRE

Preuve. Remarquons que pour s < 0 (resp. s > 0), y(z~°) est un élément
holonome de NGA{z}_; (resp. NGA{2}*1); cf. 1.4.1. La premitre assertion
est donc conséquence de la forme forte de 4.2 (resp. 4.6). Soit ¢ un E-opérateur
annulant y(z7%).

Pour la seconde assertion, écrivons s = p/q comme fraction irréductible,
et considérons un opérateur ¥’ € C|z, %] d’ordre minimal annulant y(z%). Un
peu de théorie de Galois différentielle montre que ¥’ annule toutes les solu-
tions de ¥ en 0 recalibrées par z — zé. D’autre part, le module différentiel
My = C(z)[a%]/([:(z)[adz]\lf' est quotient de p,Mg, en notant p 'application
z — 2z7P donc p*My est quotient de p*p.Mgp. On voit par la que tout
E-opérateur ¥ multiple commun 3 gauche de E-opérateurs annulant les
y(ez~%), ou € parcourt les racines de l'unité d’ordre p, annule toutes les
solutions de ¥ en 0 recalibrées par z — z°.

6.2. Le théoreme de pureté (en 0) et de dualité (pureté en oco) suivent
alors directement de 6.1 et 4.3 (voir aussi 4.5), sauf en ce qui concerne les
assertions relatives aux développements asymptotiques.
~ Ces dernieres découlent aisément d’une part de ce qu’il n'y a qu’une seule
pente non nulle en jeu, de sorte que toutes les séries divergentes qui apparais-
sent sont %{-somma.bles selon toute direction non singuliére (sur de “grands”
secteurs d’ouverture > |s|m; cf. [R3]), et d’autre part de ce que la ﬁ-sommation
respecte la structure d’algebre différentielle.

Remarque. On pourrait arithmétiser davantage notre cadre en remplagant,
dans les définitions et le théoréme de dualité, le corps C par le sous-corps
obtenu en adjoignant & Q les valeurs de la fonction gamma et de ses dérivées
aux points rationnels.

6.3. Ezemple: I’équation différentielle de Weber [WW].

g;l)m(z) = <%2 - % - m) D (2)

ne présente qu’'une seule singularité (& infini), de pente 2. Supposant m
rationnel mais non entier naturel, une base de solutions en 0 est alors donnée

par les fonctions cylindriques paraboliques

7 2 —-m 1 2?
Dm(iz):—\/j‘gj—@_flﬂ< mE;%)

e B
NG 2 (1-m 3 22
IR G T

qui appartiennent &8 NGA{z}_1.
2
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SERIES GEVREY DE TYPE ARITHMETIQUE, I 737

D’autre part, dans tout secteur d’ouverture < /2 bissecté par le demi-axe
réel positif, Dy,(£2) admet le développement asymptotique

: 22 1-m —-m 1\?
me—4 py [ ——= . o=
(iZ) € 42 0( 2 ) 2 ) (Z) )a

dont on vérifie directement qu’il satisfait I’équation de Weber dans ’algebre
! .

différentielle 2™%exp(% — Z)Q((2)). Pour Dy,(+2), ce développement asymp-

totique est du reste valide dans tout secteur d’ouverture < 37 /2 bissecté par

le demi-axe réel positif, de sorte que la 2-sommation au sens de Ramis de

1—-m —m 1\?
ol —— . _of=
2 0( 2 ) 2’ (Z))

22
selon toute direction d’angle €] — 7/2,7/2[ est 2~™e® D,,(2). Par contre,
lorsqu’on franchit la ligne de Stokes d’angle —7 /4, le développement asymp-
totique de Dy, (—z) doit étre corrigé par addition du terme

-2 2 m 1+m 1\?
—Ver Fl1+2 2™ o2
F("m)e‘lz 2 0( + 27 2 3 (Z> )>

qui satisfait aussi I’équation de Weber dans ’algebre différentielle
2 1
2™exp (Z—Z) Q (—) .
4 z
Remarquons pour finir que

1—-m —-m 1\?
| —, —; -2 -
2 0( 2 ) 2a (Z))
140 (1)
210 2 2 PR

et

sont dans Q{i—}ﬁl.
2

7. Séries de factorielles et équations aux différences finies

7.1. On note A l'opérateur de différences finies de pas 1 : (Ag)(z) =
g(z + 1) — g(x). Considérons 'espace vectoriel complexe C[!z!](®) des “séries
de factorielles (inverses) généralisées”

_ I'(z)
9(=) _nzzobnr(xwtm—m— 1)’
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738 YVES ANDRE

ou I’“exposant” p est un nombre complexe donné. Cet espace est en fait un
Clz, A]-module. Le cas des séries de factorielles inverses, introduites par Nicole
dans son “traité du calcul des différences finies” (Mém. Acad. Sci. Paris 1717),
correspond & p = 0, ie. g(z) = 3,50 m—n_) Rappelons que dans ce
cas, le développement formel & l'infini g(z) =, 5, anz~ "1 peut se calculer
ainsi: en posant F'(z) = ) -, 22" (de sorte que_zn20 anz "1 =Ft) ona
Zn>0 2" = F(log 1= z) (cf. [WW, 7.82]).

La transformée de Mellin formelle est I’application linéaire
M : Cl1zl]P) — (1 = 2)°C[1 — 2]]

définie par

i == Sl

(cf. [BaD]). Cette application est injective si p n’est pas un entier stricte-
ment négatif. Un élément de C[lz!]®) est dit Gevrey d’ordre s si la série
2 on>0 bnﬂ(% est Gevrey d’ordre s au sens usuel (en la variable 1 — z).
D’autre part, la transformée de Mellin opératorielle est I'application M :
Clz,A] — Clz, L] définie par z — —2%, A — 2z — 1. C’est un isomor-
phisme de C-algebres; en outre, si g est annulé par un élément E de Clz, A],
alors M(g) est annulé par M(E) (loc. cit.).

7.2. Une série de factorielles généralisée g(x) est dite Gevrey d’ordre s
de type arithmétique (pour des nombres rationnel s et p fixés) si les b, sont
algébriques et si la suite de terme général ﬁ;f vérifie la condition (G) de
1.1. (en particulier g(z) est Gevrey d’ordre s au sens ci-dessus). Pour p = 0,
une telle série n’est donc autre qu'un élément de M~1(Q{1 — 2}4).

Du théoréme de pureté pour les équations différentielles, on déduit alors,
via la transformation de Mellin, le résultat suivant.

THEOREME 7.3. Soit E un élément non nul de Clz, A, et soient g
et g des solutions de E dans C[lz!]®) et C[lz!]®) respectivement, avec p, p/ €
C\Z<o. On suppose que = est d’ordre minimal en x parms les opérateurs aux
différences finies polynémiauz annulant g. Alors si g est Gevrey d’ordre s de
type arithmétique, il en est de méme de g'.

Noter que la rationalité de p fait partie de ’hypothese, et celle de p’ de la

conclusion.
7.4. Remarques et perspectives. Je considere les résultats de cette étude
comme la pointe d’un iceberg de questions inexplorées, dont les plus patentes

sont:
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a) Généralisation en dimension supérieure, en vue d’englober par exemple
des fonctions de type hypergéométrique beaucoup plus générales. Déja
pour s = 0, les résultats du paragraphe 3 ne sont pas complétement écrits
A plusieurs variables.!3

b) Peut-on définir une “bonne classe” d’opérateurs différentiels de type
arithmétique, en étudiant l'indice & 'origine et & I'infini dans les espaces
de séries Gevrey de type arithmétique?

c) Est-il nécessaire de se limiter & des équations différentielles linéaires? On
sait en effet que la théorie Gevrey “complexe” a d’importantes applications
non-linéaires; voir [R3] pour un tour d’horizon, et les travaux d’Ecalle.

d) Y a-t-il des g-analogues? Par exemple, peut-on considérer la fonction de
Tschakaloff [T] 3", <, g ™"=1/2;7 comme une g-E-fonction? Rappelons
qu'il y a une théorie g-Gevrey “complexe” [Bé], [R3], [MaZ], et en partic-
ulier une transformation g-Laplace (et méme plusieurs); nous reviendrons
en partie sur cette question & la fin du second volet de cet article.l4

e) Combiner c) et d) serait du reste intéressant au vu des nouvelles fonctions
introduites par L. Denis [De], qui “interpolent” l’exponentielle de Drin-
feld et 'exponentielle usuelle, et satisfont des équations aux g¢-différences
polyndmiales.

f) La théorie des équations différentielles linéaires p-adiques présente des
phénomeénes de monodromie “trés sauvage” liés aux exposants de Liou-
ville (sans doute absents des équations définies sur Q), mais aussi des
phénomenes de monodromie “sauvage” plus subtils , étudiés par Christol
et Mebkhout, qui ont lieu méme pour des équations définies sur Q & ex-
posants de Turrittin rationnels (par exemple des modules exponentiels de
Dwork), ou il arrive que le rayon de convergence des développements de
Turrittin soit inférieur au rayon “attendu”. Il est plausible que pour lés
équations différentielles “de type arithmétique” considérées dans cet arti-
cle, ces phénomenes n’apparaissent que pour un nombre fini de premiers
p (cf. 4.8). ‘

INSTITUT DE MATHEMATIQUES, PARIS, FRANCE
E-mail address: andre@math.jussieu.fr
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